1
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
2
|
Consalvo KM, Rijal R, Tang Y, Kirolos SA, Smith MR, Gomer RH. Extracellular signaling in Dictyostelium. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:395-405. [PMID: 31840778 DOI: 10.1387/ijdb.190259rg] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few decades, we have learned a considerable amount about how eukaryotic cells communicate with each other, and what it is the cells are telling each other. The simplicity of Dictyostelium discoideum, and the wide variety of available tools to study this organism, makes it the equivalent of a hydrogen atom for cell and developmental biology. Studies using Dictyostelium have pioneered a good deal of our understanding of eukaryotic cell communication. In this review, we will present a brief overview of how Dictyostelium cells use extracellular signals to attract each other, repel each other, sense their local cell density, sense whether the nearby cells are starving or stressed, count themselves to organize the formation of structures containing a regulated number of cells, sense the volume they are in, and organize their multicellular development. Although we are probably just beginning to learn what the cells are telling each other, the elucidation of Dictyostelium extracellular signals has already led to the development of possible therapeutics for human diseases.
Collapse
Affiliation(s)
- Kristen M Consalvo
- Department of Biology, Texas A∧M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
3
|
Gomer RH. The Use of Diffusion Calculations and Monte Carlo Simulations to Understand the Behavior of Cells in Dictyostelium Communities. Comput Struct Biotechnol J 2019; 17:684-688. [PMID: 31303972 PMCID: PMC6603294 DOI: 10.1016/j.csbj.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/01/2022] Open
Abstract
Microbial communities are the simplest possible model of multicellular tissues, allowing studies of cell-cell interactions to be done with as few extraneous factors as possible. For instance, the eukaryotic microbe Dictyostelium discoideum proliferates as single cells, and when starved, the cells aggregate together and form structures of ~20,000 cells. The cells use a variety of signals to direct their movement, inform each other of their local cell density and whether they are starving, and organize themselves into groups of ~20,000 cells. Mathematical models and computational approaches have been a key check on, and guide of, the experimental work. In this minireview, I will discuss diffusion calculations and Monte Carlo simulations that were used for Dictyostelium studies that offer general paradigms for several aspects of cell-cell communication. For instance, computational work showed that diffusible secreted cell-density sensing (quorum) factors can diffuse away so quickly from a single cell that the local concentration will not build up to incorrectly cause the cell to sense that it is in the presence of a high density of other cells secreting that signal. In another example, computation correctly predicted a mechanism that allows a group of cells to break up into subgroups. These are thus some examples of the power and necessity of computational work in biology.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
4
|
A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet 2019; 15:e1008188. [PMID: 31237867 PMCID: PMC6592521 DOI: 10.1371/journal.pgen.1008188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Telomerase, particularly its main subunit, the reverse transcriptase, TERT, prevents DNA erosion during eukaryotic chromosomal replication, but also has poorly understood non-canonical functions. Here, in the model social amoeba Dictyostelium discoideum, we show that the protein encoded by tert has telomerase-like motifs, and regulates, non-canonically, important developmental processes. Expression levels of wild-type (WT) tert were biphasic, peaking at 8 and 12 h post-starvation, aligning with developmental events, such as the initiation of streaming (~7 h) and mound formation (~10 h). In tert KO mutants, however, aggregation was delayed until 16 h. Large, irregular streams formed, then broke up, forming small mounds. The mound-size defect was not induced when a KO mutant of countin (a master size-regulating gene) was treated with TERT inhibitors, but anti-countin antibodies did rescue size in the tert KO. Although, conditioned medium (CM) from countin mutants failed to rescue size in the tert KO, tert KO CM rescued the countin KO phenotype. These and additional observations indicate that TERT acts upstream of smlA/countin: (i) the observed expression levels of smlA and countin, being respectively lower and higher (than WT) in the tert KO; (ii) the levels of known size-regulation intermediates, glucose (low) and adenosine (high), in the tert mutant, and the size defect's rescue by supplemented glucose or the adenosine-antagonist, caffeine; (iii) the induction of the size defect in the WT by tert KO CM and TERT inhibitors. The tert KO's other defects (delayed aggregation, irregular streaming) were associated with changes to cAMP-regulated processes (e.g. chemotaxis, cAMP pulsing) and their regulatory factors (e.g. cAMP; acaA, carA expression). Overexpression of WT tert in the tert KO rescued these defects (and size), and restored a single cAMP signaling centre. Our results indicate that TERT acts in novel, non-canonical and upstream ways, regulating key developmental events in Dictyostelium.
Collapse
|
5
|
Mir H, Alex T, Rajawat J, Kadam A, Begum R. Response of Dictyostelium discoideum to UV-C and involvement of poly (ADP-ribose) polymerase. Cell Prolif 2015; 48:363-74. [PMID: 25858552 DOI: 10.1111/cpr.12182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Radiation and chemical mutagens are direct DNA-damaging agents and ultraviolet (UV) radiation is frequently used in biological studies. Consequent to ozone depletion, UV-C could become a great challenge to living organisms on earth, in the near future. The present study has focused on the role of poly (ADP-ribose) polymerase (PARP) during UV-C-induced growth and developmental changes in Dictyostelium discoideum, a phylogenetically important unicellular eukaryote. MATERIALS AND METHODS Dictyostelium discoideum cells were exposed to different doses of UV-C and PARP activity, and effects of its inhibition were studied. Expression of developmentally regulated genes yakA, car1, aca, csA, regA, ctnA, ctnB, gp24, hspD and dsn were analysed using semiquantitative RT-PCR. RESULTS We report that the D. discoideum cells displayed PARP activation within 2 min of UV-C irradiation and there was increase in NO levels in a dose-dependent manner. UV-C-irradiated cells had impaired growth, delayed or blocked development and delayed germination compared to control cells. In our previous studies we have shown that inhibition of PARP recovered oxidative stress-induced changes in D. discoideum; however, intriguingly PARP inhibition did not correct all defects as effectively in UV-C-irradiated cells. This possibly was due to interplay with increased NO signalling. CONCLUSIONS Our results signify that UV-C and oxidative stress affected growth and development in D. discoideum by different mechanisms; these studies could provide major clues to complex mechanisms of growth and development in higher organisms.
Collapse
Affiliation(s)
- H Mir
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | | | | | | | | |
Collapse
|
6
|
Jang W, Schwartz OG, Gomer RH. A cell number counting factor alters cell metabolism. Commun Integr Biol 2013; 2:293-7. [PMID: 19721869 DOI: 10.4161/cib.2.4.8470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/19/2022] Open
Abstract
It is still not clear how organisms regulate the size of appendages or organs during development. During development, Dictyostelium discoideum cells form groups of approximately 2 x 10(4) cells. The cells secrete a protein complex called counting factor (CF) that allows them to sense the local cell density. If there are too many cells in a group, as indicated by high extracellular concentrations of CF, the cells break up the group by decreasing cell-cell adhesion and increasing random cell motility. As a part of the signal transduction pathway, CF decreases the activity of glucose-6-phosphatase to decrease internal glucose levels. CF also decreases the levels of fructose-1,6-bisphosphate and increases the levels of glucose-6-phosphate and fructose-6-phosphate. In this report, we focus on how a secreted signal used to regulate the size of a group of cells regulates many basic aspects of cell metabolism, including the levels of pyruvate, lactate, and ATP, and oxygen consumption.
Collapse
Affiliation(s)
- Wonhee Jang
- Department of Life Science; Dongguk University; Seoul, South Korea
| | | | | |
Collapse
|
7
|
Abstract
The social amoeba Dictyostelium discoideum is one of the leading model systems used to study how cells count themselves to determine the number and/or density of cells. In this review, we describe work on three different cell-density sensing systems used by Dictyostelium. The first involves a negative feedback loop in which two secreted signals inhibit cell proliferation during the growth phase. As the cell density increases, the concentrations of the secreted factors concomitantly increase, allowing the cells to sense their density. The two signals act as message authenticators for each other, and the existence of two different signals that require each other for activity may explain why previous efforts to identify autocrine proliferation-inhibiting signals in higher eukaryotes have generally failed. The second system involves a signal made by growing cells that is secreted only when they starve. This then allows cells to sense the density of just the starving cells, and is an example of a mechanism that allows cells in a tissue to sense the density of one specific cell type. The third cell density counting system involves cells in aggregation streams secreting a signal that limits the size of fruiting bodies. Computer simulations predicted, and experiments then showed, that the factor increases random cell motility and decreases cell-cell adhesion to cause streams to break up if there are too many cells in the stream. Together, studies on Dictyostelium cell density counting systems will help elucidate how higher eukaryotes regulate the size and composition of tissues.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, ILSB MS 3474, Texas A&M University, College Station, Texas 77843-3474, USA.
| | | | | |
Collapse
|
8
|
Gersting SW, Staudigl M, Truger MS, Messing DD, Danecka MK, Sommerhoff CP, Kemter KF, Muntau AC. Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor. J Biol Chem 2010; 285:30686-97. [PMID: 20667834 PMCID: PMC2945563 DOI: 10.1074/jbc.m110.124016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/29/2010] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate L-Phenylalanine and its natural cofactor 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)). Sapropterin dihydrochloride, the synthetic form of BH(4), was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH(4), a previously unknown finding. Analyses of structurally preactivated variants substantiated BH(4)-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient's metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.
Collapse
Affiliation(s)
- Søren W. Gersting
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Michael Staudigl
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marietta S. Truger
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Dunja D. Messing
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marta K. Danecka
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Christian P. Sommerhoff
- the Department of Clinical Chemistry and Clinical Biochemistry, Surgical Clinic, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Kristina F. Kemter
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Ania C. Muntau
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| |
Collapse
|
9
|
Choe JM, Bakthavatsalam D, Phillips JE, Gomer RH. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation. BMC BIOCHEMISTRY 2009; 10:4. [PMID: 19187549 PMCID: PMC2644720 DOI: 10.1186/1471-2091-10-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/02/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA. RESULTS We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 microg/ml near a stationary cell density. When added to wild-type or aprA- cells, recombinant AprA (rAprA) significantly slows proliferation at 0.1 microg/ml and higher concentrations. From 4 to 64 microg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating aprA- cells show saturable binding of rAprA to 92,000 +/- 11,000 cell-surface receptors with a KD of 0.03 +/- 0.02 microg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to aprA- cells with a Ki of 0.03 mug/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA. CONCLUSION Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a CfaD receptor, and activation of both receptors is required to slow proliferation. We previously found that crlA- cells are sensitive to CfaD. Combined with the results presented here, this suggests that CrlA is not the AprA or CfaD receptor, and may be the receptor for an unknown third factor that is required for AprA and CfaD activity.
Collapse
Affiliation(s)
- Jonathan M Choe
- Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892, USA
| | | | - Jonathan E Phillips
- Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892, USA
| | - Richard H Gomer
- Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892, USA
| |
Collapse
|
10
|
Jang W, Gomer RH. Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 2008; 5 Suppl 1:S49-58. [PMID: 18426773 DOI: 10.1098/rsif.2008.0067.focus] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about how the sizes of specific organs and tissues are regulated. To try to understand these mechanisms, we have been using a combination of modelling and experiments to study the simple system Dictyostelium discoideum, which forms approximately 20000 cell groups. We found that cells secrete a factor, and as the number of cells increases, the concentration of the factor increases. Diffusion calculations indicated that this lets cells sense the local cell density. Computer simulations predicted, and experiments then showed, that this factor decreases cell-cell adhesion and increases random cell motility. In a group, adhesion forces keep cells together, while random motility forces cause cells to pull apart and separate from each other. As the group size increases above a threshold, the factor concentration goes above a threshold and the cells switch from an adhered state to a separated state. This causes excessively large groups to break apart and/or dissipate, creating an upper limit to group size. In this review, we focus on how computer simulations made testable predictions that led the way to understanding the size regulation mechanism mediated by this factor.
Collapse
Affiliation(s)
- Wonhee Jang
- Department of Life Science, Dongguk University, Chung-Gu, Seoul, Korea.
| | | |
Collapse
|
11
|
Involvement of Sib proteins in the regulation of cellular adhesion in Dictyostelium discoideum. EUKARYOTIC CELL 2008; 7:1600-5. [PMID: 18676957 DOI: 10.1128/ec.00155-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechanism underlying this regulation, we analyzed the expression of recently identified Dictyostelium adhesion molecules (Sib proteins) that present features also found in mammalian integrins. sibA and sibC are both expressed in vegetative Dictyostelium cells, but the expression of sibC is repressed strongly in conditions where cellular adhesion decreases. Analysis of sibA and sibC mutant cells further suggests that variations in the expression levels of sibC account largely for changes in cellular adhesion in response to environmental cues.
Collapse
|
12
|
Bakthavatsalam D, Brock DA, Nikravan NN, Houston KD, Hatton RD, Gomer RH. The secreted Dictyostelium protein CfaD is a chalone. J Cell Sci 2008; 121:2473-80. [PMID: 18611962 DOI: 10.1242/jcs.026682] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dictyostelium discoideum cells secrete CfaD, a protein that is similar to cathepsin proteases. Cells that lack cfaD proliferate faster and reach a higher stationary-phase density than wild-type cells, whereas cells that overexpress CfaD proliferate slowly and reach the stationary phase when at a low density. On a per-nucleus basis, CfaD affects proliferation but not growth. The drawback of not having CfaD is a reduced spore viability. Recombinant CfaD has no detectable protease activity but, when added to cells, inhibits the proliferation of wild-type and cfaD(-) cells. The secreted protein AprA also inhibits proliferation. AprA is necessary for the effect of CfaD on proliferation. Molecular-sieve chromatography indicates that in conditioned growth medium, the 60 kDa CfaD is part of a approximately 150 kDa complex, and both chromatography and pull-down assays suggest that CfaD interacts with AprA. These results suggest that two interacting proteins may function together as a chalone signal in a negative feedback loop that slows Dictyostelium cell proliferation.
Collapse
|
13
|
Brock DA, van Egmond WN, Shamoo Y, Hatton RD, Gomer RH. A 60-kilodalton protein component of the counting factor complex regulates group size in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:1532-8. [PMID: 16963635 PMCID: PMC1563584 DOI: 10.1128/ec.00169-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large groups, and high levels of CF result in small groups. We previously found three components of CF (D. A. Brock and R. H. Gomer, Genes Dev. 13:1960-1969, 1999; D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, R. Ammann, and R. H. Gomer, Development 129:3657-3668, 2002; and D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, W. Jang, R. Ammann, and R. H. Gomer, Eukaryot. Cell 2:788-797, 2003). We describe here a fourth component, CF60. CF60 has similarity to acid phosphatases, although it has very little, if any, acid phosphatase activity. CF60 is secreted by starving cells and is lost from the 450-kDa CF when a different CF component, CF50, is absent. Although we were unable to obtain cells lacking CF60, decreasing CF60 levels by antisense resulted in large groups, and overexpressing CF60 resulted in small groups. When added to wild-type cells, conditioned starvation medium from CF60 overexpressor cells as well as recombinant CF60 caused the formation of small groups. The ability of recombinant CF60 to decrease group size did not require the presence of the CF component CF45-1 or countin but did require the presence of CF50. Recombinant CF60 does not have acid phosphatase activity, indicating that the CF60 bioactivity is not due to a phosphatase activity. Together, the data suggest that CF60 is a component of CF, and thus this secreted signal has four different protein components.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, 6100 S. Main Street, Houston, Texas 77005-1892, USA
| | | | | | | | | |
Collapse
|
14
|
Jang W, Gomer RH. A protein in crude cytosol regulates glucose-6-phosphatase activity in crude microsomes to regulate group size in Dictyostelium. J Biol Chem 2006; 281:16377-83. [PMID: 16606621 PMCID: PMC4486306 DOI: 10.1074/jbc.m509995200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). The CF signal transduction pathway involves CF-repressing internal glucose levels by increasing the K(m) of glucose-6-phosphatase. Little is known about how this enzyme is regulated. Glucose-6-phosphatase is associated with microsomes in both Dictyostelium and mammals. We find that the activity of glucose-6-phosphatase in crude microsomes from cells with high, normal, or low CF activity had a negative correlation with the amount of CF present in these cell lines. In crude cytosols (supernatants from ultracentrifugation of cell lysates), the glucose-6-phosphatase activity had a positive correlation with CF accumulation. The crude cytosols were further fractionated into a fraction containing molecules greater than 10 kDa (S>10K) and molecules less than 10 KDa (S<10K). S>10K from wild-type cells strongly repressed the activity of glucose-6-phosphatase in wild-type microsomes, whereas S>10K from countin(-) cells (cells with low CF activity) significantly increased the activity of glucose-6-phosphatase in wild-type microsomes by decreasing K(m). The regulatory activities in the wild-type and countin(-) S>10Ks are heat-labile and protease-sensitive, suggesting that they are proteins. S<10K from both wild-type and countin(-) cells did not significantly change glucose-6-phosphatase activity. Together, the data suggest that, as a part of a pathway modulating multicellular group size, CF regulates one or more proteins greater than 10 KDa in crude cytosol that affect microsome-associated glucose-6-phosphatase activity.
Collapse
Affiliation(s)
- Wonhee Jang
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
15
|
Dallon J, Jang W, Gomer RH. Mathematically modelling the effects of counting factor in Dictyostelium discoideum. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2006; 23:45-62. [PMID: 16371424 PMCID: PMC4469269 DOI: 10.1093/imammb/dqi016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Size regulation is a crucial feature in many biological systems, with misregulation leading to dysplasia or hyperplasia. The recent discovery of counting factor (CF) in Dictyostelium discoideum will lead to a greater understanding of how the system regulates the size of a group of cells. In this paper we mathematically model the known effects of CF using two different models: a cellular automata model and a discrete continuum hybrid model. With the use of these models we are able to understand how modulation of adhesion and motile forces by CF can facilitate stream breakup. In addition, the modelling suggests a new possible mechanism for stream breakup involving the frequency of cell reorientation.
Collapse
Affiliation(s)
- John Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602-6539, USA.
| | | | | |
Collapse
|
16
|
Jang W, Gomer RH. Exposure of cells to a cell number-counting factor decreases the activity of glucose-6-phosphatase to decrease intracellular glucose levels in Dictyostelium discoideum. EUKARYOTIC CELL 2005; 4:72-81. [PMID: 15643062 PMCID: PMC544156 DOI: 10.1128/ec.4.1.72-81.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of Dictyostelium discoideum is a model for tissue size regulation, as these cells form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). CF signal transduction involves decreasing intracellular CF glucose levels. A component of CF, countin, has the bioactivity of the entire CF complex, and an 8-min exposure of cells to recombinant countin decreases intracellular glucose levels. To understand how CF regulates intracellular glucose, we examined the effect of CF on enzymes involved in glucose metabolism. Exposure of cells to CF has little effect on amylase or glycogen phosphorylase, enzymes involved in glucose production from glycogen. Glucokinase activity (the first specific step of glycolysis) is inhibited by high levels of CF but is not affected by an 8-min exposure to countin. The second enzyme specific for glycolysis, phosphofructokinase, is not regulated by CF. There are two corresponding enzymes in the gluconeogenesis pathway, fructose-1,6-bisphosphatase and glucose-6-phosphatase. The first is not regulated by CF or countin, whereas glucose-6-phosphatase is regulated by both CF and an 8-min exposure to countin. The countin-induced changes in the Km and Vmax of glucose-6-phosphatase cause a decrease in glucose production that can account for the countin-induced decrease in intracellular glucose levels. It thus appears that part of the CF signal transduction pathway involves inhibiting the activity of glucose-6-phosphatase, decreasing intracellular glucose levels and affecting the levels of other metabolites, to regulate group size.
Collapse
Affiliation(s)
- Wonhee Jang
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA
| | | |
Collapse
|
17
|
Gao T, Knecht D, Tang L, Hatton RD, Gomer RH. A cell number counting factor regulates Akt/protein kinase B to regulate Dictyostelium discoideum group size. EUKARYOTIC CELL 2005; 3:1176-84. [PMID: 15470246 PMCID: PMC522607 DOI: 10.1128/ec.3.5.1176-1184.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of approximately 20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin- cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB.
Collapse
Affiliation(s)
- Tong Gao
- Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main St., Houston, TX 77005-1892, USA
| | | | | | | | | |
Collapse
|
18
|
Winckler T, Iranfar N, Beck P, Jennes I, Siol O, Baik U, Loomis WF, Dingermann T. CbfA, the C-module DNA-binding factor, plays an essential role in the initiation of Dictyostelium discoideum development. EUKARYOTIC CELL 2005; 3:1349-58. [PMID: 15470262 PMCID: PMC522599 DOI: 10.1128/ec.3.5.1349-1358.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently isolated from Dictyostelium discoideum cells a DNA-binding protein, CbfA, that interacts in vitro with a regulatory element in retrotransposon TRE5-A. We have generated a mutant strain that expresses CbfA at <5% of the wild-type level to characterize the consequences for D. discoideum cell physiology. We found that the multicellular development program leading to fruiting body formation is highly compromised in the mutant. The cells cannot aggregate and stay as a monolayer almost indefinitely. The cells respond properly to prestarvation conditions by expressing discoidin in a cell density-dependent manner. A genomewide microarray-assisted expression analysis combined with Northern blot analyses revealed a failure of CbfA-depleted cells to induce the gene encoding aggregation-specific adenylyl cyclase ACA and other genes required for cyclic AMP (cAMP) signal relay, which is necessary for aggregation and subsequent multicellular development. However, the cbfA mutant aggregated efficiently when mixed with as few as 5% wild-type cells. Moreover, pulsing cbfA mutant cells developing in suspension with nanomolar levels of cAMP resulted in induction of acaA and other early developmental genes. Although the response was less efficient and slower than in wild-type cells, it showed that cells depleted of CbfA are able to initiate development if given exogenous cAMP signals. Ectopic expression of the gene encoding the catalytic subunit of protein kinase A restored multicellular development of the mutant. We conclude that sensing of cell density and starvation are independent of CbfA, whereas CbfA is essential for the pattern of gene expression which establishes the genetic network leading to aggregation and multicellular development of D. discoideum.
Collapse
Affiliation(s)
- Thomas Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
During starvation-induced Dictyostelium development, up to several hundred thousand amoeboid cells aggregate, differentiate and form a fruiting body. The chemotactic movement of the cells is guided by the rising phase of the outward propagating cAMP waves and results in directed periodic movement towards the aggregation centre. In the mound and slug stages of development, cAMP waves continue to play a major role in the coordination of cell movement, cell-type-specific gene expression and morphogenesis; however, in these stages where cells are tightly packed, cell-cell adhesion/contact-dependent signalling mechanisms also play important roles in these processes.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, UK.
| |
Collapse
|