1
|
Ito T, Suzuki Y, Sano H, Honkura N, Castellino FJ, Urano T. Demonstration of Three Distinct High-Molecular-Weight Complexes between Plasminogen Activator Inhibitor Type 1 and Tissue-Type Plasminogen Activator. Thromb Haemost 2021; 122:336-343. [PMID: 33984865 DOI: 10.1055/a-1508-7919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Details of the molecular interaction between tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type-1 (PAI-1) remain unknown. METHODS AND RESULTS Three distinct forms of high-molecular-weight complexes are demonstrated. Two of the forms were detected by mass spectrometry. The high molecular mass detected by MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) was 107,029 Da, which corresponds to the sum of molecular masses of the intact tPA (65,320 Da) and the intact PAI-1 (42,416 Da). The lower molecular mass was 104,367 Da and is proposed to lack the C-terminal bait peptide of PAI-1 (calculated mass: 3,804 Da), which was detected as a 3,808 Da fragment. When the complex was analyzed by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), only a single band was observed. However, after treatment by SDS and Triton X-100, two distinct forms of the complex with different mobilities were shown by SDS-PAGE. The higher molecular weight band demonstrated specific tPA activity on fibrin autography, whereas the lower molecular weight band did not. Peptide sequence analysis of these two bands, however, unexpectedly revealed the existence of the C-terminal cleavage peptide in both bands and its amount was less in the upper band. In the upper band, the sequences corresponding to the regions at the interface between two molecules in its Michaelis intermediate were diminished. Thus, these two bands corresponded to distinct nonacyl-enzyme complexes, wherein only the upper band liberated free tPA under the conditions employed. CONCLUSION These data suggest that under physiological conditions a fraction of the tPA-PAI-1 population exists as nonacylated-enzyme inhibitor complex.
Collapse
Affiliation(s)
- Tae Ito
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Dame, Indiana, United States
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Shizuoka Graduate University of Public Health, Shizuoka, Japan
| |
Collapse
|
2
|
Jendroszek A, Madsen JB, Chana-Muñoz A, Dupont DM, Christensen A, Panitz F, Füchtbauer EM, Lovell SC, Jensen JK. Biochemical and structural analyses suggest that plasminogen activators coevolved with their cognate protein substrates and inhibitors. J Biol Chem 2019; 294:3794-3805. [PMID: 30651349 DOI: 10.1074/jbc.ra118.005419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/11/2019] [Indexed: 11/06/2022] Open
Abstract
Protein sequences of members of the plasminogen activation system are present throughout the entire vertebrate phylum. This important and well-described proteolytic cascade is governed by numerous protease-substrate and protease-inhibitor interactions whose conservation is crucial to maintaining unchanged protein function throughout evolution. The pressure to preserve protein-protein interactions may lead to either co-conservation or covariation of binding interfaces. Here, we combined covariation analysis and structure-based prediction to analyze the binding interfaces of urokinase (uPA):plasminogen activator inhibitor-1 (PAI-1) and uPA:plasminogen complexes. We detected correlated variation between the S3-pocket-lining residues of uPA and the P3 residue of both PAI-1 and plasminogen. These residues are known to form numerous polar interactions in the human uPA:PAI-1 Michaelis complex. To test the effect of mutations that correlate with each other and have occurred during mammalian diversification on protein-protein interactions, we produced uPA, PAI-1, and plasminogen from human and zebrafish to represent mammalian and nonmammalian orthologs. Using single amino acid point substitutions in these proteins, we found that the binding interfaces of uPA:plasminogen and uPA:PAI-1 may have coevolved to maintain tight interactions. Moreover, we conclude that although the interaction areas between protease-substrate and protease-inhibitor are shared, the two interactions are mechanistically different. Compared with a protease cleaving its natural substrate, the interaction between a protease and its inhibitor is more complex and involves a more fine-tuned mechanism. Understanding the effects of evolution on specific protein interactions may help further pharmacological interventions of the plasminogen activation system and other proteolytic systems.
Collapse
Affiliation(s)
- Agnieszka Jendroszek
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Jeppe B Madsen
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Andrés Chana-Muñoz
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Daniel M Dupont
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Anni Christensen
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Frank Panitz
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Ernst-Martin Füchtbauer
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| | - Simon C Lovell
- the School of Biological Sciences, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Jan K Jensen
- From the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark and
| |
Collapse
|
3
|
Gonias SL, Banki MA, Gilder AS, Azmoon P, Campana WM, Mantuano E. PAI1 blocks NMDA receptor-mediated effects of tissue-type plasminogen activator on cell signaling and physiology. J Cell Sci 2018; 131:jcs.217083. [PMID: 29930084 DOI: 10.1242/jcs.217083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
The fibrinolysis proteinase tissue-type plasminogen activator (tPA, also known as PLAT) triggers cell signaling and regulates cell physiology. In PC12 cells, Schwann cells and macrophages, the N-methyl-D-aspartate receptor (NMDA-R) mediates tPA signaling. Plasminogen activator inhibitor-1 (PAI1, also known as SERPINE1) is a rapidly acting inhibitor of tPA enzyme activity. Although tPA-initiated cell signaling is not dependent on its enzyme active site, we show that tPA signaling is neutralized by PAI1. In PC12 cells, PAI1 blocked the ERK1/2 activation mediated by tPA as well as neurite outgrowth. In Schwann cells, PAI1 blocked tPA-mediated ERK1/2 activation and cell migration. In macrophages, PAI1 blocked the ability of tPA to inhibit IκBα phosphorylation and cytokine expression. The cell signaling activity of tPA-PAI1 complex was rescued when the complex was formed with PAI1R76E, which binds to LRP1 with decreased affinity, by pre-treating cells with the LRP1 antagonist receptor-associated protein and upon LRP1 gene silencing. The inhibitory role of LRP1 in tPA-PAI1 complex-initiated cell signaling was unanticipated given the reported role of LRP1 as an NMDA-R co-receptor in signaling responses elicited by free tPA or α2-macroglobulin. We conclude that PAI1 functions as an in-hibitor not only of the enzyme activity of tPA but also of tPA receptor-mediated activities.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla CA 92093, USA
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla CA 92093, USA
| | - Andrew S Gilder
- Department of Pathology, University of California San Diego, La Jolla CA 92093, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla CA 92093, USA
| | - Wendy M Campana
- Department of Anesthesiology and the Program in Neuroscience, University of California San Diego, La Jolla CA 92093, USA
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla CA 92093, USA.,Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
4
|
Translational initiatives in thrombolytic therapy. Front Med 2017; 11:1-19. [DOI: 10.1007/s11684-017-0497-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/10/2016] [Indexed: 01/26/2023]
|
5
|
Suzuki Y, Sano H, Tomczyk M, Brzoska T, Urano T. Activities of wild-type and variant tissue-type plasminogen activators retained on vascular endothelial cells. FEBS Open Bio 2016; 6:469-76. [PMID: 27419052 PMCID: PMC4856425 DOI: 10.1002/2211-5463.12057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022] Open
Abstract
We reported that tissue‐type plasminogen activator (tPA) secreted from vascular endothelial cells (VECs) is retained on the cell surface and effectively evokes both plasminogen activation and fibrin clot dissolution (fibrinolysis) on VECs. Here, to evaluate possibly different behaviors of variants of tPA, we quantitatively assessed these two events separately using green fluorescent protein (GFP)‐conjugated tPA in cultured human VECs. The amount of secreted wild‐type tPA‐GFP correlated well with both the activities of plasminogen activation (r = 0.66) and fibrinolysis (r = −0.93). A variant of tPA‐GFP, with a lower affinity to the surface of VECs but higher affinity to fibrin, showed higher fibrinolysis and lower plasminogen activation activity compared to the wild‐type.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Medical Physiology Hamamatsu University School of Medicine Japan
| | - Hideto Sano
- Department of Medical Physiology Hamamatsu University School of Medicine Japan
| | - Martyna Tomczyk
- Department of Medical Physiology Hamamatsu University School of Medicine Japan
| | - Tomasz Brzoska
- Department of Medical Physiology Hamamatsu University School of Medicine Japan
| | - Tetsumei Urano
- Department of Medical Physiology Hamamatsu University School of Medicine Japan
| |
Collapse
|
6
|
Gong L, Liu M, Zeng T, Shi X, Yuan C, Andreasen PA, Huang M. Structural basis of specific inhibition of tissue-type plasminogen activator by plasminogen activators inhibitor-1. Data Brief 2016; 6:550-5. [PMID: 26909366 PMCID: PMC4731420 DOI: 10.1016/j.dib.2015.12.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/02/2015] [Accepted: 12/29/2015] [Indexed: 11/25/2022] Open
Abstract
Thrombosis is a leading cause of death worldwide [1]. Recombinant tissue-type plasminogen activator (tPA) is the FDA-approved thrombolytic drug for ischemic strokes, myocardial infarction and pulmonary embolism. tPA is a multi-domain serine protease of the trypsin-family [2] and catalyses the critical step in fibrinolysis [3], converting the zymogen plasminogen to the active serine protease plasmin, which degrades the fibrin network of thrombi and blood clots. tPA is rapidly inactivated by endogenous plasminogen activators inhibitor-1 (PAI-1) [4] (Fig. 1). Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort [5]. Tenecteplase (TNK-tPA) is a newer generation of tPA variant showing slower inhibition by PAI-1 [6]. Extensive studies to understand the molecular interactions between tPA and PAI-1 have been carried out [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], however, the precise details at atomic resolution remain unknown. We report the crystal structure of tPA·PAI-1 complex here. The methods required to achieve these data include: (1) recombinant expression and purification of a PAI-1 variant (14-1B) containing four mutations (N150H, K154T, Q319L, and M354I), and a tPA serine protease domain (tPA-SPD) variant with three mutations (C122A, N173Q, and S195A, in the chymotrypsin numbering) [19]; (2) formation of a tPA-SPD·PAI-1 Michaëlis complex in vitro [19]; and (3) solving the three-dimensional structure for this complex by X-ray crystallography [deposited in the PDB database as 5BRR]. The data explain the specificity of PAI-1 for tPA and uPA [19], [20], and provide structural basis to design newer generation of PAI-1-resistant tPA variants as thrombolytic agents [19].
Collapse
Affiliation(s)
- Lihu Gong
- State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tu Zeng
- State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoli Shi
- State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Peter A Andreasen
- Danish-Chinese Centre for Proteases and Cancer, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Qureshi T, Goswami S, McClintock CS, Ramsey MT, Peterson CB. Distinct encounter complexes of PAI-1 with plasminogen activators and vitronectin revealed by changes in the conformation and dynamics of the reactive center loop. Protein Sci 2015; 25:499-510. [PMID: 26548921 DOI: 10.1002/pro.2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/07/2022]
Abstract
UNLABELLED Plasminogen activator inhibitor-1 (PAI-1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue-type and urokinase-type plasminogen activator (tPA, uPA), affect the fate of PAI-1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C-terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N-terminal RCL is observed upon binding of S195A-uPA to PAI-1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI-1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI-1 dynamics. SIGNIFICANCE Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Sumit Goswami
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Carlee S McClintock
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Matthew T Ramsey
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
8
|
Gong L, Liu M, Zeng T, Shi X, Yuan C, Andreasen PA, Huang M. Crystal Structure of the Michaelis Complex between Tissue-type Plasminogen Activator and Plasminogen Activators Inhibitor-1. J Biol Chem 2015; 290:25795-804. [PMID: 26324706 DOI: 10.1074/jbc.m115.677567] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 02/03/2023] Open
Abstract
Thrombosis is a leading cause of death worldwide. Recombinant tissue-type plasminogen activator (tPA) is the Food and Drug Administration-approved thrombolytic drug. tPA is rapidly inactivated by endogenous plasminogen activator inhibitor-1 (PAI-1). Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort. Precise details, with atomic resolution, of the molecular interactions between tPA and PAI-1 remain unknown despite previous extensive studies. Here, we report the crystal structure of the tPA·PAI-1 Michaelis complex, which shows significant differences from the structure of its urokinase-type plasminogen activator analogue, the uPA·PAI-1 Michaelis complex. The PAI-1 reactive center loop adopts a unique kinked conformation. The structure provides detailed interactions between tPA 37- and 60-loops with PAI-1. On the tPA side, the S2 and S1β pockets open up to accommodate PAI-1. This study provides structural basis to understand the specificity of PAI-1 and to design newer generation of thrombolytic agents with reduced PAI-1 inactivation.
Collapse
Affiliation(s)
- Lihu Gong
- From the State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China, the University of Chinese Academy of Sciences, Beijing, 100049, China, and
| | - Min Liu
- From the State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China, the University of Chinese Academy of Sciences, Beijing, 100049, China, and
| | - Tu Zeng
- From the State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China
| | - Xiaoli Shi
- From the State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China
| | - Cai Yuan
- From the State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China
| | - Peter A Andreasen
- the Danish-Chinese Centre for Proteases and Cancer, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Mingdong Huang
- From the State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China, the University of Chinese Academy of Sciences, Beijing, 100049, China, and
| |
Collapse
|
9
|
Caccia S, Ricagno S, Bolognesi M. Molecular bases of neuroserpin function and pathology. Biomol Concepts 2015; 1:117-30. [PMID: 25961991 DOI: 10.1515/bmc.2010.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serpins build a large and evolutionary widespread protein superfamily, hosting members that are mainly Ser-protease inhibitors. Typically, serpins display a conserved core domain composed of three main β-sheets and 9-10 α-helices, for a total of approximately 350 amino acids. Neuroserpin (NS) is mostly expressed in neurons and in the central and peripheral nervous systems, where it targets tissue-type plasminogen activator. NS activity is relevant for axogenesis, synaptogenesis and synaptic plasticity. Five (single amino acid) NS mutations are associated with severe neurodegenerative disease in man, leading to early onset dementia, epilepsy and neuronal death. The functional aspects of NS protease inhibition are linked to the presence of a long exposed loop (reactive center loop, RCL) that acts as bait for the incoming partner protease. Large NS conformational changes, associated with the cleavage of the RCL, trap the protease in an acyl-enzyme complex. Contrary to other serpins, this complex has a half-life of approximately 10 min. Conformational flexibility is held to be at the bases of NS polymerization leading to Collins bodies intracellular deposition and neuronal damage in the pathological NS variants. Two main general mechanisms of serpin polymerization are currently discussed. Both models require the swapping of the RCL among neighboring serpin molecules. Specific differences in the size of swapped regions, as well as differences in the folding stage at which polymerization can occur, distinguish the two models. The results provided by recent crystallographic and biophysical studies allow rationalization of the functional and pathological roles played by NS based on the analysis of four three-dimensional structures.
Collapse
|
10
|
Damare J, Brandal S, Fortenberry YM. Inhibition of PAI-1 antiproteolytic activity against tPA by RNA aptamers. Nucleic Acid Ther 2014; 24:239-49. [PMID: 24922319 DOI: 10.1089/nat.2013.0475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) inhibits the plasminogen activators: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Elevated levels of PAI-1 have been correlated with an increased risk for cardiovascular disease. Pharmacologically suppressing PAI-1 might prevent, or successfully treat PAI-1 related vascular diseases. This can potentially be accomplished by using small RNA molecules (aptamers). This study's goal is to develop RNA aptamers to a region of PAI-1 that will prevent the ability of PAI-1 to interact with the plasminogen activators. The aptamers were generated through a systematic evolution of ligands via exponential enrichment approach that ensures the creation of RNA molecules that bind to our target protein, PAI-1. In vitro assays were used to determine the effect of these aptamers on PAI-1's inhibitory activity. Three aptamers that bind to PAI-1 with affinities in the nanomolar range were isolated. The aptamer clones R10-4 and R10-2 inhibited PAI-1's antiproteolytic activity against tPA and disrupted PAI-1's ability to form a stable covalent complex with tPA. Increasing aptamer concentrations correlated positively with an increase in cleaved PAI-1. To the best of our knowledge, this is the first report of RNA molecules that inhibit the antiproteolytic activity of PAI-1.
Collapse
Affiliation(s)
- Jared Damare
- 1 Department of Pediatric Hematology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | | |
Collapse
|
11
|
Kaiserman D, Stewart SE, Plasman K, Gevaert K, Van Damme P, Bird PI. Identification of Serpinb6b as a species-specific mouse granzyme A inhibitor suggests functional divergence between human and mouse granzyme A. J Biol Chem 2014; 289:9408-17. [PMID: 24505135 PMCID: PMC3979379 DOI: 10.1074/jbc.m113.525808] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
The granzyme family serine proteases are key effector molecules expressed by cytotoxic lymphocytes. The physiological role of granzyme (Gzm) A is controversial, with significant debate over its ability to induce death in target cells. Here, we investigate the natural inhibitors of GzmA. We employed substrate phage display and positional proteomics to compare substrate specificities of mouse (m) and human (h) GzmA at the peptide and proteome-wide levels and we used the resulting substrate specificity profiles to search for potential inhibitors from the intracellular serpin family. We identified Serpinb6b as a potent inhibitor of mGzmA. Serpinb6b interacts with mGzmA, but not hGzmA, with an association constant of 1.9 ± 0.8 × 10(5) M(-1) s(-1) and a stoichiometry of inhibition of 1.8. Mouse GzmA is over five times more cytotoxic than hGzmA when delivered into P815 target cells with streptolysin O, whereas transfection of target cells with a Serpinb6b cDNA increases the EC50 value of mGzmA 13-fold, without affecting hGzmA cytotoxicity. Unexpectedly, we also found that Serpinb6b employs an exosite to specifically inhibit dimeric but not monomeric mGzmA. The identification of an intracellular inhibitor specific for mGzmA only indicates that a lineage-specific increase in GzmA cytotoxic potential has driven cognate inhibitor evolution.
Collapse
Affiliation(s)
- Dion Kaiserman
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E. Stewart
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kim Plasman
- the Department of Medical Protein Research, VIB, and
- the Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- the Department of Medical Protein Research, VIB, and
- the Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- the Department of Medical Protein Research, VIB, and
- the Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Phillip I. Bird
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Florova G, Karandashova S, Declerck PJ, Idell S, Komissarov AA. Remarkable stabilization of plasminogen activator inhibitor 1 in a "molecular sandwich" complex. Biochemistry 2013; 52:4697-709. [PMID: 23734661 DOI: 10.1021/bi400470s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) levels are elevated in a number of life-threatening conditions and often correlate with unfavorable outcomes. Spontaneous inactivation due to active to latent transition limits PAI-1 activity in vivo. While endogenous vitronectin (Vn) stabilizes PAI-1 by 1.5-2.0-fold, further stabilization occurs in a "molecular sandwich" complex (MSC) in which a ligand that restricts the exposed reactive center loop is bound to PAI-1/Vn. The effects of S195A two-chain urokinase (tcuPA) and Vn on inactivation of wild-type (wt) glycosylated (Gl-PAI-1), nonglycosylated (rPAI-1), and nonglycosylated Q123K PAI-1 (lacks Vn binding) forms were studied. S195A tcuPA decreased the rate constant (kL) for spontaneous inactivation at 37 °C for rPAI-1, Q123K, and Gl-PAI-1 by 6.7-, 3.4-, and 7.8-fold, respectively, and both S195A tcuPA and Vn by 66.7-, 5.5-, and 103.3-fold, respectively. Analysis of the temperature dependences of kL revealed a synergistic increase in the Gibbs free activation energy for spontaneous inactivation of wt Gl-PAI-1 and rPAI-1 in MSC from 99.8 and 96.1 to 111.3 and 107.0 kJ/mol, respectively, due to an increase in the activation enthalpy and a decrease in the activation entropy. Anti-PAI-1 monoclonal antibodies (mAbs) competing with proteinase also stabilize PAI-1/Vn. The rate of inhibition of target proteinases by MSCs, with a stoichiometry close to unity, was limited by the dissociation (k = 10(-4) to 10(-3) s(-1)) of S195A tcuPA or mAb. The stabilization of PAI-1 in MSCs in vivo may potentiate uncontrolled thrombosis or extravascular fibrin deposition, suggesting a new paradigm for using PAI-1 inhibitors and novel potential targets for therapy.
Collapse
Affiliation(s)
- Galina Florova
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler , 11937 U.S. Highway 271, Tyler, Texas 75708-3154, United States
| | | | | | | | | |
Collapse
|
13
|
Lin Z, Jiang L, Yuan C, Jensen JK, Zhang X, Luo Z, Furie BC, Furie B, Andreasen PA, Huang M. Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. J Biol Chem 2011; 286:7027-32. [PMID: 21199867 PMCID: PMC3044959 DOI: 10.1074/jbc.m110.204537] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/15/2010] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4-P3' residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.
Collapse
Affiliation(s)
- Zhonghui Lin
- From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
| | - Longguang Jiang
- From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
| | - Cai Yuan
- From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
- the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Jan K. Jensen
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
- the Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, and
| | - Xu Zhang
- From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
| | - Zhipu Luo
- From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
| | - Barbara C. Furie
- the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Bruce Furie
- the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Peter A. Andreasen
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
- the Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, and
| | - Mingdong Huang
- From the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences and
- the Danish-Chinese Centre for Proteases and Cancer, Fuzhou 350002, China
- the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
14
|
Suzuki JI, Ogawa M, Muto S, Itai A, Hirata Y, Isobe M, Nagai R. Effects of specific chemical suppressors of plasminogen activator inhibitor-1 in cardiovascular diseases. Expert Opin Investig Drugs 2011; 20:255-64. [PMID: 21194395 DOI: 10.1517/13543784.2011.546784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION plasminogen activator inhibitor-1 (PAI-1) is critical in thrombus formation and inflammation. Although these are essential pathological features of cardiovascular diseases, the effects of PAI-1 inhibition against the development of cardiovascular remodeling have not been well studied. AREAS COVERED the review explores the therapeutic value of PAI-1 in the progression of various cardiovascular diseases. To date, the authors have reported that a novel PAI-1 inhibitor suppressed the development of experimental autoimmune myocarditis, vascular remodeling after arterial injury, and heart transplant rejection using rodent models. Pathologically, the PAI-1 inhibitor improved histological remodeling of myocardium and arteries with suppression of inflammation and thrombus formation. EXPERT OPINION PAI-1 inhibitors appear to exhibit potent effects on the prevention of adverse tissue remodeling. However, PAI-1 is a multifunctional protein and more research is needed to further elucidate the association between PAI-1 expression and cardiovascular disease.
Collapse
Affiliation(s)
- Jun-Ichi Suzuki
- University of Tokyo, Graduate School of Medicine, Department of Advanced Clinical Science and Therapeutics, 7 - 3 - 1 Hongo, Bunkyo, Tokyo 113 - 8655, Japan +81 3 5800 9116 ; +81 3 5800 9182 ;
| | | | | | | | | | | | | |
Collapse
|
15
|
Olson ST, Gettins PGW. Regulation of proteases by protein inhibitors of the serpin superfamily. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:185-240. [PMID: 21238937 DOI: 10.1016/b978-0-12-385504-6.00005-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The serpins comprise an ancient superfamily of proteins, found abundantly in eukaryotes and even in some bacteria and archea, that have evolved to regulate proteases of both serine and cysteine mechanistic classes. Unlike the thermodynamically determined lock-and-key type inhibitors, such as those of the Kunitz and Kazal families, serpins use conformational change and consequent kinetic trapping of an enzyme intermediate to effect inhibition. By combining interactions of both an exposed reactive center loop and exosites outside this loop with the active site and complementary exosites on the target protease, serpins can achieve remarkable specificity. Together with the frequent use of regulatory cofactors, this permits a sophisticated time- and location-dependent mode of protease regulation. An understanding of the structure and function of serpins has suggested that they may provide novel scaffolds for engineering protease inhibitors of desired specificity for therapeutic use.
Collapse
Affiliation(s)
- Steven T Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
16
|
Blouse GE, Dupont DM, Schar CR, Jensen JK, Minor KH, Anagli JY, Gårdsvoll H, Ploug M, Peterson CB, Andreasen PA. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements. Biochemistry 2010; 48:1723-35. [PMID: 19193026 DOI: 10.1021/bi8017015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments designed to monitor the rapid association of PAI-1 with vitronectin indicate a fast, concentration-dependent, biphasic binding of PAI-1 to native vitronectin but only a monophasic association with the somatomedin B (SMB) domain, suggesting that multiple phases of the binding interaction occur only when full-length vitronectin is present. Nonetheless, in all cases, the initial fast interaction is followed by slower fluorescence changes attributed to a conformational change in PAI-1. Complementary experiments using an engineered, fluorescently silent PAI-1 with non-natural amino acids showed that concomitant structural changes occur as well in native vitronectin. Furthermore, we have measured the effect of vitronectin on the rate of insertion of the reactive center loop into beta-sheet A of PAI-1 during reaction with target proteases. With a variety of PAI-1 variants, we observe that both full-length vitronectin and the SMB domain have protease-specific effects on the rate of loop insertion but that the two exhibit clearly different effects. These results support a model for PAI-1 binding to vitronectin in which the interaction surface extends beyond the region of PAI-1 occupied by the SMB domain. In support of this model are recent results that define a PAI-1-binding site on vitronectin that lies outside the somatomedin B domain (Schar, C. R., Blouse, G. E., Minor, K. H., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309) and the complementary site on PAI-1 (Schar, C. R., Jensen, J. K., Christensen, A., Blouse, G. E., Andreasen, P. A., and Peterson, C. B. (2008) J. Biol. Chem. 283, 28487-28496).
Collapse
Affiliation(s)
- Grant E Blouse
- Laboratory of Cellular Protein Science, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Arhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Serpins form an enormous superfamily of 40-60-kDa proteins found in almost all types of organisms, including humans. Most are one-use suicide substrate serine and cysteine proteinase inhibitors that have evolved to finely regulate complex proteolytic pathways, such as blood coagulation, fibrinolysis, and inflammation. Despite distinct functions for each serpin, there is much redundancy in the primary specificity-determining residues. However, many serpins exploit additional exosites to generate the exquisite specificity that makes a given serpin effective only when certain other criteria, such as the presence of specific cofactors, are met. With a focus on human serpins, this minireview examines use of exosites by nine serpins in the initial complex-forming phase to modulate primary specificity in either binary serpin-proteinase complexes or ternary complexes that additionally employ a protein or other cofactor. A frequent theme is down-regulation of inhibitory activity unless the exosite(s) are engaged. In addition, the use of exosites by maspin and plasminogen activator inhibitor-1 to indirectly affect proteolytic processes is considered.
Collapse
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
18
|
Ricagno S, Caccia S, Sorrentino G, Antonini G, Bolognesi M. Human neuroserpin: structure and time-dependent inhibition. J Mol Biol 2009; 388:109-21. [PMID: 19265707 DOI: 10.1016/j.jmb.2009.02.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/23/2022]
Abstract
Human neuroserpin (hNS) is a protein serine protease inhibitor expressed mainly in the nervous system, where it plays key roles in neural development and plasticity by primarily targeting tissue plasminogen activator (tPA). Four hNS mutations are associated to a form of autosomal dominant dementia, known as familial encephalopathy with neuroserpin inclusion bodies. The medical interest in and the lack of structural information on hNS prompted us to study the crystal structure of native and cleaved hNS, reported here at 3.15 and 1.85 A resolution, respectively. In the light of the three-dimensional structures, we focus on the hNS reactive centre loop in its intact and cleaved conformations relative to the current serpin polymerization models and discuss the protein sites hosting neurodegenerative mutations. On the basis of homologous serpin structures, we suggest the location of a protein surface site that may stabilize the hNS native (metastable) form. In parallel, we present the results of kinetic studies on hNS inhibition of tPA. Our data analysis stresses the instability of the hNS-tPA complex with a dissociation half-life of minutes compared to a half-life of weeks observed for other serpin-cognate protease complexes.
Collapse
Affiliation(s)
- Stefano Ricagno
- Department of Biomolecular Sciences and Biotechnology, CNR-INFM and CIMAINA, University of Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
19
|
Suzuki JI, Ogawa M, Muto S, Yamaguchi Y, Itai A, Isobe M. The effects of pharmacological PAI-1 inhibition on thrombus formation and neointima formation after arterial injury. Expert Opin Ther Targets 2008; 12:783-94. [PMID: 18554148 DOI: 10.1517/14728222.12.7.783] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Plasminogen activator inhibitor (PAI)-1 plays a role in neointimal formation after percutaneous coronary intervention (PCI), the effect of overexpression or lack of PAI-1 is controversial. Murine arterial injury models develop neointimal hyperplasia similar to that observed in clinical coronary arterial restenosis after PCI. METHODS AND RESULTS To clarify the role of PAI-1 in thrombus formation and neointimal formation after arterial injury, we used a specific PAI-1 inhibitor (IMD-1622) in a rat aorta-vein shunt model and a mouse arterial injury model. While the non-treated shunt model showed massive thrombus formation, IMD-1622 administration suppressed this. Injured arteries with vehicles showed significant neointimal formation with enhancement of adhesion molecules, fibrinogen accumulation and cell proliferation on day 28 after injury. However, intimal thickening and expression of these factors were suppressed in PAI-1 recipients. CONCLUSION A specific PAI-1 inhibitor prevents thrombus formation and arterial neointimal formation after arterial injury. Thus, PAI-1 plays a critical role in arterial remodeling after mechanical injury. PAI-1 regulation may be useful to prevent thrombus and neointimal formation after PCI.
Collapse
Affiliation(s)
- Jun-ichi Suzuki
- Tokyo Medical and Dental University, Graduate School of Medicine, Department of Cardiovascular Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Liu L, Mushero N, Hedstrom L, Gershenson A. Short-lived protease serpin complexes: partial disruption of the rat trypsin active site. Protein Sci 2008; 16:2403-11. [PMID: 17962402 DOI: 10.1110/ps.073111207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Serpins inhibit serine proteases by mechanically disrupting the protease active site. The protease first reacts with the serpin's reactive center loop (RCL) to form an acylenzyme. Then the RCL inserts into a beta-sheet in the body of the serpin, translocating the attached protease approximately 70 A and deforming the protease active site, thereby trapping the acylenzyme. Loop insertion (approximately 1 s(-1)) is an order of magnitude slower than hydrolysis of a typical substrate acylenzyme (approximately 50 s(-1)), indicating that the protease is inhibited during translocation. We have previously trapped a partially translocated covalent complex of rat trypsin and alpha1-proteinase inhibitor (EpartI*) resulting from attractive interactions between cationic dyes and anionic rat trypsin. Here, using single pair Förster resonance energy transfer, we demonstrate that EpartI* is a metastable complex that can dissociate to free protease and cleaved serpin (I*) as well as convert to the canonical fully translocated complex EfullI*. The partitioning between these two pathways is pH dependent, with conversion favored at low pH and dissociation favored at high pH. The short lifetime of EpartI* (approximately 3 h at pH 7.4) and the pH dependence of EpartI* dissociation suggest that, unlike in EfullI*, the catalytic triad is intact in EpartI*. These results also demonstrate that interactions between target proteases and the body of the serpin can hinder protease translocation leading to short-lived covalent complexes.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry, Graduate Program in Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
21
|
Redirection of the reaction between activated protein C and a serpin to the substrate pathway. Thromb Res 2008; 122:397-404. [DOI: 10.1016/j.thromres.2007.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 09/13/2007] [Accepted: 10/23/2007] [Indexed: 11/19/2022]
|
22
|
Serpins in plants and green algae. Funct Integr Genomics 2007; 8:1-27. [PMID: 18060440 DOI: 10.1007/s10142-007-0059-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/06/2007] [Accepted: 09/15/2007] [Indexed: 01/02/2023]
Abstract
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.
Collapse
|
23
|
Gardell SJ, Krueger JA, Antrilli TA, Elokdah H, Mayer S, Orcutt SJ, Crandall DL, Vlasuk GP. Neutralization of Plasminogen Activator Inhibitor I (PAI-1) by the Synthetic Antagonist PAI-749 via a Dual Mechanism of Action. Mol Pharmacol 2007; 72:897-906. [PMID: 17622579 DOI: 10.1124/mol.107.037010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PAI-749 is a potent and selective synthetic antagonist of plasminogen activator inhibitor 1 (PAI-1) that preserved tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) activities in the presence of PAI-1 (IC(50) values, 157 and 87 nM, respectively). The fluorescence (Fl) of fluorophore-tagged PAI-1 (PAI-NBD119) was quenched by PAI-749; the apparent K(d) (254 nM) was similar to the IC(50) (140 nM) for PAI-NBD119 inactivation. PAI-749 analogs displayed the same potency rank order for neutralizing PAI-1 activity and perturbing PAI-NBD119 Fl; hence, binding of PAI-749 to PAI-1 and inactivation of PAI-1 activity are tightly linked. Exposure of PAI-1 to PAI-749 for 5 min (sufficient for full inactivation) followed by PAI-749 sequestration with Tween 80 micelles yielded active PAI-1; thus, PAI-749 did not irreversibly inactivate PAI-1, a known metastable protein. Treatment of PAI-1 with a PAI-749 homolog (producing less assay interference) blocked the ability of PAI-1 to displace p-aminobenzamidine from the uPA active site. Consistent with this observation, PAI-749 abolished formation of the SDS-stable tPA/PAI-1 complex. PAI-749-mediated neutralization of PAI-1 was associated with induction of PAI-1 polymerization as assessed by native gel electrophoresis. PAI-749 did not turn PAI-1 into a substrate for tPA; however, PAI-749 promoted plasmin-mediated degradation of PAI-1. In conclusion, PAI-1 inactivation by PAI-749 using purified components can result from a dual mechanism of action. First, PAI-749 binds directly to PAI-1, blocks PAI-1 from accessing the active site of tPA, and abrogates formation of the SDS-stable tPA/PAI-1 complex. Second, binding of PAI-749 to PAI-1 renders PAI-1 vulnerable to plasmin-mediated proteolytic degradation.
Collapse
Affiliation(s)
- Stephen J Gardell
- Wyeth Research, N2274, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Komissarov AA, Zhou A, Declerck PJ. Modulation of serpin reaction through stabilization of transient intermediate by ligands bound to alpha-helix F. J Biol Chem 2007; 282:26306-15. [PMID: 17613529 DOI: 10.1074/jbc.m702089200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, USA.
| | | | | |
Collapse
|
25
|
Al-Ayyoubi M, Schwartz BS, Gettins PGW. Maspin Binds to Urokinase-type and Tissue-type Plasminogen Activator through Exosite-Exosite Interactions. J Biol Chem 2007; 282:19502-9. [PMID: 17510061 DOI: 10.1074/jbc.m702445200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin is a member of the serpin family with a reactive center loop that is incompatible with proteinase inhibition by the serpin conformational change mechanism. Despite this there are reports that maspin might regulate uPA-dependent processes in vivo. Using exogenous and endogenous fluorescence, we demonstrate here that maspin can bind uPA and tPA in both single-chain and double-chain forms, with K(d) values between 300 and 600 nM. Binding is at an exosite on maspin close to, but outside of, the reactive center loop and is therefore insensitive to mutation of Arg(340) within the reactive center loop. The binding site on tPA does not involve the proteinase active site, with the result that maspin can bind to S195A tPA that is already complexed to plasminogen activator inhibitor-1. The ability of maspin to bind these proteinases without involvement of the reactive center loop leaves the latter free to engage in additional, as yet unidentified, maspin-protein interactions that may serve to regulate the properties of the exosite-bound proteinase. This may help to reconcile apparently conflicting studies that demonstrate the importance of the reactive center loop in certain maspin functions, despite the inability of maspin to directly inhibit tPA or uPA catalytic activity in in vitro assays through engagement between its reactive center loop and the active site of the proteinase.
Collapse
Affiliation(s)
- Maher Al-Ayyoubi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
26
|
Thelwell C, Longstaff C. The regulation by fibrinogen and fibrin of tissue plasminogen activator kinetics and inhibition by plasminogen activator inhibitor 1. J Thromb Haemost 2007; 5:804-11. [PMID: 17408411 DOI: 10.1111/j.1538-7836.2007.02422.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tissue plasminogen activator (tPA) is unusual in the coagulation and fibrinolysis cascades in that it is produced as an active single-chain enzyme (sctPA) rather than a zymogen. Two chain tPA (tctPA) is produced by plasmin but there are conflicting reports in the literature on the behaviour of sc- and tctPA and little work on inhibition by the specific inhibitor plasminogen activator inhibitor-1 (PAI-1) under physiological conditions. OBJECTIVES To perform a systematic study on the kinetics of sctPA and tctPA as plasminogen activators and targets for PAI-1. METHODS Detailed kinetic studies were performed in solution and in the presence of template stimulators, fibrinogen and fibrin, including native fibrin and partially digested fibrin. Numerical simulation techniques were utilized to cope with the challenges of investigating kinetics of activation and inhibition in the presence of fibrin(ogen). RESULTS Enzyme efficiency (k(cat)/K(m)) was higher for tctPA than sctPA in solution with chromogenic substrate (3-fold) and plasminogen (7-fold) but in the presence of templates, such as fibrinogen and native or cleaved fibrin, the difference disappeared. sctPA was more susceptible to PAI-1 in buffer solution and in the presence of fibrinogen; however, in the presence of fibrin, PAI-1 inhibited more slowly and there was no difference between sc and tctPA. CONCLUSIONS Fibrinogen and fibrin modulate the activity of tPA differently in regard to their activation of plasminogen and inhibition by PAI-1. Fibrinogen and fibrin stimulate tPA activity against plasminogen but fibrin protects tPA from PAI-1 to promote fibrinolysis.
Collapse
Affiliation(s)
- C Thelwell
- National Institute for Biological Standards and Control, South Mimms, Herts, UK
| | | |
Collapse
|
27
|
Felber LM, Kündig C, Borgoño CA, Chagas JR, Tasinato A, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP, Deperthes D, Cloutier SM. Mutant recombinant serpins as highly specific inhibitors of human kallikrein 14. FEBS J 2006; 273:2505-14. [PMID: 16704423 DOI: 10.1111/j.1742-4658.2006.05257.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactive center loop (RCL) of serpins plays an essential role in the inhibition mechanism acting as a substrate for their target proteases. Changes within the RCL sequence modulate the specificity and reactivity of the serpin molecule. Recently, we reported the construction of alpha1-antichymotrypsin (ACT) variants with high specificity towards human kallikrein 2 (hK2) [Cloutier SM, Kündig C, Felber LM, Fattah OM, Chagas JR, Gygi CM, Jichlinski P, Leisinger HJ & Deperthes D (2004) Eur J Biochem271, 607-613] by changing amino acids surrounding the scissile bond of the RCL and obtained specific inhibitors towards hK2. Based on this approach, we developed highly specific recombinant inhibitors of human kallikrein 14 (hK14), a protease correlated with increased aggressiveness of prostate and breast cancers. In addition to the RCL permutation with hK14 phage display-selected substrates E8 (LQRAI) and G9 (TVDYA) [Felber LM, Borgoño CA, Cloutier SM, Kündig C, Kishi T, Chagas JR, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP & Deperthes D (2005) Biol Chem386, 291-298], we studied the importance of the scaffold, serpins alpha1-antitrypsin (AAT) or ACT, to confer inhibitory specificity. All four resulting serpin variants ACT(E8), ACT(G9), AAT(E8) and AAT(G9) showed hK14 inhibitory activity and were able to form covalent complex with hK14. ACT inhibitors formed more stable complexes with hK14 than AAT variants. Whereas E8-based inhibitors demonstrated a rather relaxed specificity reacting with various proteases with trypsin-like activity including several human kallikreins, the two serpins variants containing the G9 sequence showed a very high selectivity for hK14. Such specific inhibitors might prove useful to elucidate the biological role of hK14 and/or its implication in cancer.
Collapse
Affiliation(s)
- Loyse M Felber
- Urology Research Unit, Department of Urology, CHUV, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Di Giusto DA, Sutherland APR, Jankova L, Harrop SJ, Curmi PMG, King GC. Plasminogen activator inhibitor-2 is highly tolerant to P8 residue substitution--implications for serpin mechanistic model and prediction of nsSNP activities. J Mol Biol 2005; 353:1069-80. [PMID: 16214170 DOI: 10.1016/j.jmb.2005.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
The serine protease inhibitor (serpin) superfamily is involved in a wide range of cellular processes including fibrinolysis, angiogenesis, apoptosis, inflammation, metastasis and viral pathogenesis. Here, we investigate the unique mousetrap inhibition mechanism of serpins through saturation mutagenesis of the P8 residue for a typical family member, plasminogen activator inhibitor-2 (PAI-2). A number of studies have proposed an important role for the P8 residue in the efficient insertion and stabilisation of the cleaved reactive centre loop (RCL), which is a key event in the serpin inhibitory mechanism. The importance of this residue for inhibition of the PAI-2 protease target urinary plasminogen activator (urokinase, uPA) is confirmed, although a high degree of tolerance to P8 substitution is observed. Out of 19 possible PAI-2 P8 mutants, 16 display inhibitory activities within an order of magnitude of the wild-type P8 Thr species. Crystal structures of complexes between PAI-2 and RCL-mimicking peptides with P8 Met or Asp mutations are determined, and structural comparison with the wild-type complex substantiates the ability of the S8 pocket to accommodate disparate side-chains. These data indicate that the identity of the P8 residue is not a determinant of efficient RCL insertion, and provide further evidence for functional plasticity of key residues within enzyme structures. Poor correlation of observed PAI-2 P8 mutant activities with a range of physicochemical, evolutionary and thermodynamic predictive indices highlights the practical limitations of existing approaches to predicting the molecular phenotype of protein variants.
Collapse
Affiliation(s)
- Daniel A Di Giusto
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Komissarov AA, Andreasen PA, Bødker JS, Declerck PJ, Anagli JY, Shore JD. Additivity in effects of vitronectin and monoclonal antibodies against alpha-helix F of plasminogen activator inhibitor-1 on its reactions with target proteinases. J Biol Chem 2004; 280:1482-9. [PMID: 15516335 DOI: 10.1074/jbc.m408608200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to study the effects of vitronectin and monoclonal antibodies (mAbs) directed against alpha-helix F (Mab-2 and MA-55F4C12) on the reactions of PAI-1 with tissue-type and urokinase-type plasminogen activators. Both mAbs delay the RCL insertion and induce an increase in the stoichiometry of inhibition (SI) to 1.4-9.5. Binding of vitronectin to NBD P9 PAI-1 does not affect SI but results in a 2.0-6.5-fold decrease in the limiting rate constant (klim) of RCL insertion for urokinase-type plasminogen activator at pH 6.2-8.0 and for tissue-type plasminogen activator at pH 6.2. Binding of vitronectin to the complexes of NBD P9 PAI-1 with mAbs results in a decrease in klim and in a 1.5-22-fold increase in SI. Thus, vitronectin and mAbs demonstrated additivity in the effects on the reaction with target proteinases. The same step in the reaction mechanism remains limiting for the rate of RCL insertion in the absence and presence of Vn and mAbs. We hypothesize that vitronectin, bound to alpha-helix F on the side opposite to the epitopes of the mAbs, potentiates the mAb-induced delay in RCL insertion and the associated substrate behavior by selectively decreasing the rate constant for the inhibitory branch of PAI-1 reaction (ki). These results demonstrate that mAbs represent a valid approach for inactivation of vitronectin-bound PAI-1 in vivo.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Division of Biochemical Research, Department of Pathology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Komissarov AA, Declerck PJ, Shore JD. Protonation State of a Single Histidine Residue Contributes Significantly to the Kinetics of the Reaction of Plasminogen Activator Inhibitor-1 with Tissue-type Plasminogen Activator. J Biol Chem 2004; 279:23007-13. [PMID: 15033993 DOI: 10.1074/jbc.m401383200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stopped-flow fluorometry was used to study the kinetics of the reactive center loop insertion occurring during the reaction of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 plasminogen activator inhibitor-1 (PAI-1) with tissue-(tPA) and urokinase (uPA)-type plasminogen activators and human pancreatic elastase at pH 5.5-8.5. The limiting rate constants of reactive center loop insertion (k(lim)) and concentrations of proteinase at half-saturation (K(0.5)) for tPA and uPA and the specificity constants (k(lim)/K(0.5)) for elastase were determined. The pH dependences of k(lim)/K(0.5) reflected inactivation of each enzyme due to protonation of His57 of the catalytic triad. However, the specificity of the inhibitory reaction with tPA and uPA was notably higher than that for the substrate reaction catalyzed by elastase. pH dependences of k(lim) and K(0.5) obtained for tPA revealed an additional ionizable group (pKa, 6.0-6.2) affecting the reaction. Protonation of this group resulted in a significant increase in both k(lim) and K(0.5) and a 4.6-fold decrease in the specificity of the reaction of tPA with NBD P9 PAI-1. Binding of monoclonal antibody MA-55F4C12 to PAI-1 induced a decrease in k(lim) and K(0.5) at any pH but did not affect either the pKa of the group or an observed decrease in k(lim)/K(0.5) due to protonation of the group. In contrast to tPA, the k(lim) and K(0.5) for the reactions of uPA with NBD P9 PAI-1 or its complex with the monoclonal antibody were independent of pH in the 6.5-8.5 range. Since slightly acidic pH is a feature of a number of malignant tumors, alterations in PAI-1/tPA kinetics could play a role in the cancerogenesis. Changes in the protonation state of His(188), which is placed closely to the S1 site and is unique for tPA, has been proposed to contribute to the observed pH dependences of k(lim) and K(0.5).
Collapse
Affiliation(s)
- Andrey A Komissarov
- Division of Biochemical Research, Department of Pathology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|