1
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
2
|
Oh SY, Jang G, Kim J, Jeong KY, Kim HM, Kwak YJ, Kong SH, Park DJ, Lee HJ, Cho SY, Kim JI, Yang HK. Identification of New Pathogenic Variants of Hereditary Diffuse Gastric Cancer. Cancer Res Treat 2024; 56:1126-1135. [PMID: 38605661 PMCID: PMC11491241 DOI: 10.4143/crt.2024.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Hereditary diffuse gastric cancer (HDGC) presents a significant genetic predisposition, notably linked to mutations in the CDH1 and CTNNA1. However, the genetic basis for over half of HDGC cases remains unidentified. The aim of this study is to identify novel pathogenic variants in HDGC and evaluate their protein expression. MATERIALS AND METHODS Among 20 qualifying families, two were selected based on available pedigree and DNA. Whole genome sequencing (WGS) on DNA extracted from blood and whole exome sequencing on DNA from formalin-fixed paraffin-embedded tissues were performed to find potential pathogenic variants in HDGC. After selection of a candidate variant, functional validation, and enrichment analysis were performed. RESULTS As a result of WGS, three candidate germline mutations (EPHA5, MCOA2, and RHOA) were identified in one family. After literature review and in-silico analyses, the RHOA mutation (R129W) was selected as a candidate. This mutation was found in two gastric cancer patients within the family. In functional validation, it showed RhoA overexpression and a higher GTP-bound state in the RhoaR129W mutant. Decreased phosphorylation at Ser127/397 suggested altered YAP1 regulation in the Rho-ROCK pathway. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses linked RhoaR129W overexpression to changed migration/adhesion in MKN1 cell line. However, this RHOA mutation (R129W) was not found in index patients in other families. CONCLUSION The RHOA mutation (R129W) emerges as a potential causative gene for HDGC, but only in one family, indicating a need for further studies to understand its role in HDGC pathogenesis fully.
Collapse
Affiliation(s)
- Seung-Young Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| | - Giyong Jang
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Ewha Biomedical Research Institute, Ewha Womans University Medical Center, Seoul, Korea
| | - Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Yun Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyun Myong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yoon Jin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
3
|
Ryu JY, Zhang J, Tirado SR, Dagen S, Frerichs KU, Patel NJ, Aziz-Sultan MA, Brown A, Rogers-Grazado M, Amr SS, Weiss ST, Du R. MiRNA expression profiling reveals a potential role of microRNA-148b-3p in cerebral vasospasm in subarachnoid hemorrhage. Sci Rep 2024; 14:22539. [PMID: 39341923 PMCID: PMC11438990 DOI: 10.1038/s41598-024-73579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Cerebral vasospasm (CVS) is an important contributor to delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage (aSAH), leading to high morbidity and long-term disability. While several microRNAs (miRNAs) have been implicated in vasospasm, the underlying mechanisms for CVS remain poorly understood. Our study aims to identify miRNAs that may contribute to the development of CVS. Whole-blood samples were obtained during or outside of vasospasm from aSAH patients whose maximal vasospasm was moderate or severe. MiRNAs were isolated from serial whole-blood samples, and miRNA sequencing was performed. Differentially expressed miRNAs were identified and the expression levels in patients' samples were verified using real-time qPCR. The biological functions of identified miRNA were evaluated in human brain endothelial cells (HBECs). MiRNA profiling revealed significant upregulation of miR-148b-3p in patients during CVS. We demonstrated that miR-148b-3p directly targeted and decreased the expression of ROCK1, affecting cell proliferation, migration, and invasion of HBECs through the ROCK-LIMK-Cofilin pathway. We propose that the upregulation of miRNA-148b-3p plays a role in the development of CVS by regulating actin cytoskeletal dynamics in HBECs, which is crucial for vascular function. Our study highlights miR-148b-3p as a potential diagnostic marker as well as therapeutic target for CVS following aSAH.
Collapse
Affiliation(s)
- Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jianing Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Selena-Rae Tirado
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Sarajune Dagen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kai U Frerichs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - M Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alison Brown
- Mass General Brigham Personalized Medicine, Mass General Brigham, Cambridge, MA, USA
| | | | - Sami S Amr
- Mass General Brigham Personalized Medicine, Mass General Brigham, Cambridge, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2024. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Pimenta FM, Huh J, Guzman B, Amanah D, Marston DJ, Pinkin NK, Danuser G, Hahn KM. Rho MultiBinder, a fluorescent biosensor that reports the activity of multiple GTPases. Biophys J 2023; 122:3646-3655. [PMID: 37085995 PMCID: PMC10541480 DOI: 10.1016/j.bpj.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Imaging two or more fluorescent biosensors in the same living cell can reveal the spatiotemporal coordination of protein activities. However, using multiple Förster resonance energy transfer (FRET) biosensors together is challenging due to toxicity and the need for orthogonal fluorophores. Here we generate a biosensor component that binds selectively to the activated conformation of three different proteins. This enabled multiplexed FRET with fewer fluorophores, and reduced toxicity. We generated this MultiBinder (MB) reagent for the GTPases RhoA, Rac1, and Cdc42 by combining portions of the downstream effector proteins Pak1 and Rhotekin. Using FRET between mCherry on the MB and YPet or mAmetrine on two target proteins, the activities of any pair of GTPases could be distinguished. The MB was used to image Rac1 and RhoA together with a third, dye-based biosensor for Cdc42. Quantifying effects of biosensor combinations on the frequency, duration, and velocity of cell protrusions and retractions demonstrated reduced toxicity. Multiplexed imaging revealed signaling hierarchies between the three proteins at the cell edge where they regulate motility.
Collapse
Affiliation(s)
- Frederico M Pimenta
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jaewon Huh
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bryan Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diepreye Amanah
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel J Marston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas K Pinkin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
6
|
Han X, Jiang S, Gu Y, Ding L, Zhao E, Cao D, Wang X, Wen Y, Pan Y, Yan X, Duan L, Sun M, Zhou T, Liu Y, Hu H, Ye Q, Gao S. HUNK inhibits epithelial-mesenchymal transition of CRC via direct phosphorylation of GEF-H1 and activating RhoA/LIMK-1/CFL-1. Cell Death Dis 2023; 14:327. [PMID: 37193711 DOI: 10.1038/s41419-023-05849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with the invasive and metastatic phenotypes in colorectal cancer (CRC). However, the mechanisms underlying EMT in CRC are not completely understood. In this study, we find that HUNK inhibits EMT and metastasis of CRC cells via its substrate GEF-H1 in a kinase-dependent manner. Mechanistically, HUNK directly phosphorylates GEF-H1 at serine 645 (S645) site, which activates RhoA and consequently leads to a cascade of phosphorylation of LIMK-1/CFL-1, thereby stabilizing F-actin and inhibiting EMT. Clinically, the levels of both HUNK expression and phosphorylation S645 of GEH-H1 are not only downregulated in CRC tissues with metastasis compared with that without metastasis, but also positively correlated among these tissues. Our findings highlight the importance of HUNK kinase direct phosphorylation of GEF-H1 in regulation of EMT and metastasis of CRC.
Collapse
Affiliation(s)
- Xiaoqi Han
- Medical School of Guizhou University, Guiyang, 550025, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Siyuan Jiang
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China
| | - Enhao Zhao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201200, China
| | - Dongxing Cao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201200, China
| | - Xiaodong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ya Wen
- Medical School of Guizhou University, Guiyang, 550025, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Yongbo Pan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Xin Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Tao Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yajuan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610044, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China.
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
A focus on Rho/ROCK signaling pathway: An emerging therapeutic target in depression. Eur J Pharmacol 2023; 946:175648. [PMID: 36894049 DOI: 10.1016/j.ejphar.2023.175648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Depression is the most common mental health disorder worldwide; however, the exact cellular and molecular mechanisms of this major depressive disorder are unclear so far. Experimental studies have demonstrated that depression is associated with significant cognitive impairment, dendrite spine loss, and reduction in connectivity among neurons that contribute to symptoms associated with mood disorders. Rho/Rho-associated coiled-coil containing protein kinase (ROCK) receptors are exclusively expressed in the brain and Rho/ROCK signaling has gained considerable attention as it plays a crucial role in the development of neuronal architecture and structural plasticity. Chronic stress-induced activation of the Rho/ROCK signaling pathway promotes neuronal apoptosis and loss of neural processes and synapses. Interestingly, accumulated evidence has identified Rho/ROCK signaling pathways as a putative target for treating neurological disorders. Furthermore, inhibition of the Rho/ROCK signaling pathway has proven to be effective in different models of depression, which signify the potential benefits of clinical Rho/ROCK inhibition. The ROCK inhibitors extensively modulate antidepressant-related pathways which significantly control the synthesis of proteins, and neuron survival and ultimately led to the enhancement of synaptogenesis, connectivity, and improvement in behavior. Therefore, the present review refines the prevailing contribution of this signaling pathway in depression and highlighted preclinical shreds of evidence for employing ROCK inhibitors as disease-modifying targets along with possible underlying mechanisms in stress-associated depression.
Collapse
|
8
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
9
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain. Int J Mol Sci 2022; 23:ijms23168842. [PMID: 36012107 PMCID: PMC9408373 DOI: 10.3390/ijms23168842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The IQ motif-containing GTPase-activating protein (IQGAP) family composes of three highly-related and evolutionarily conserved paralogs (IQGAP1, IQGAP2 and IQGAP3), which fine tune as scaffolding proteins numerous fundamental cellular processes. IQGAP1 is described as an effector of CDC42, although its effector function yet re-mains unclear. Biophysical, biochemical and molecular dynamic simulation studies have proposed that IQGAP RASGAP-related domains (GRDs) bind to the switch regions and the insert helix of CDC42 in a GTP-dependent manner. Our kinetic and equilibrium studies have shown that IQGAP1 GRD binds, in contrast to its C-terminal 794 amino acids (called C794), CDC42 in a nucleotide-independent manner indicating a binding outside the switch regions. To resolve this discrepancy and move beyond the one-sided view of GRD, we carried out affinity measurements and a systematic mutational analysis of the interfacing residues between GRD and CDC42 based on the crystal structure of the IQGAP2 GRD-CDC42Q61L GTP complex. We determined a 100-fold lower affinity of the GRD1 of IQGAP1 and of GRD2 of IQGAP2 for CDC42 mGppNHp in comparison to C794/C795 proteins. Moreover, partial and major mutation of CDC42 switch regions substantially affected C794/C795 binding but only a little GRD1 and remarkably not at all the GRD2 binding. However, we clearly showed that GRD2 contributes to the overall affinity of C795 by using a 11 amino acid mutated GRD variant. Furthermore, the GRD1 binding to the CDC42 was abolished using specific point mutations within the insert helix of CDC42 clearly supporting the notion that CDC42 binding site(s) of IQGAP GRD lies outside the switch regions among others in the insert helix. Collectively, this study provides further evidence for a mechanistic framework model that is based on a multi-step binding process, in which IQGAP GRD might act as a ‘scaffolding domain’ by binding CDC42 irrespective of its nucleotide-bound forms, followed by other IQGAP domains downstream of GRD that act as an effector domain and is in charge for a GTP-dependent interaction with CDC42.
Collapse
|
11
|
Tolomeu HV, Fraga CAM. The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:188-205. [PMID: 34414875 DOI: 10.2174/1871527320666210820092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease. OBJECTIVE In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease. METHODS The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors. RESULTS We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds. CONCLUSION We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Mosaddeghzadeh N, Nouri K, Krumbach OHF, Amin E, Dvorsky R, Ahmadian MR. Selectivity Determinants of RHO GTPase Binding to IQGAPs. Int J Mol Sci 2021; 22:12596. [PMID: 34830479 PMCID: PMC8625570 DOI: 10.3390/ijms222212596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) modulate a wide range of cellular processes by acting as scaffolds and driving protein components into distinct signaling networks. Their functional states have been proposed to be controlled by members of the RHO family of GTPases, among other regulators. In this study, we show that IQGAP1 and IQGAP2 can associate with CDC42 and RAC1-like proteins but not with RIF, RHOD, or RHO-like proteins, including RHOA. This seems to be based on the distribution of charged surface residues, which varies significantly among RHO GTPases despite their high sequence homology. Although effector proteins bind first to the highly flexible switch regions of RHO GTPases, additional contacts outside are required for effector activation. Sequence alignment and structural, mutational, and competitive biochemical analyses revealed that RHO GTPases possess paralog-specific residues outside the two highly conserved switch regions that essentially determine the selectivity of RHO GTPase binding to IQGAPs. Amino acid substitution of these specific residues in RHOA to the corresponding residues in RAC1 resulted in RHOA association with IQGAP1. Thus, electrostatics most likely plays a decisive role in these interactions.
Collapse
Affiliation(s)
- Niloufar Mosaddeghzadeh
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| | - Kazem Nouri
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Oliver H. F. Krumbach
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| | - Ehsan Amin
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
- Medical Faculty, Institute of Neural and Sensory Physiology, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Radovan Dvorsky
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| | - Mohammad R. Ahmadian
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.M.); (K.N.); (O.H.F.K.); (E.A.); (R.D.)
| |
Collapse
|
13
|
Conformational Insights into the Control of CNF1 Toxin Activity by Peptidyl-Prolyl Isomerization: A Molecular Dynamics Perspective. Int J Mol Sci 2021; 22:ijms221810129. [PMID: 34576292 PMCID: PMC8467853 DOI: 10.3390/ijms221810129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic necrotizing factor 1 (CNF1) toxin from uropathogenic Escherichia coli constitutively activates Rho GTPases by catalyzing the deamidation of a critical glutamine residue located in the switch II (SWII). In crystallographic structures of the CNF1 catalytic domain (CNF1CD), surface-exposed P768 and P968 peptidyl-prolyl imide bonds (X-Pro) adopt an unusual cis conformation. Here, we show that mutation of each proline residue into glycine abrogates CNF1CD in vitro deamidase activity, while mutant forms of CNF1 remain functional on RhoA in cells. Using molecular dynamics simulations coupled to protein-peptide docking, we highlight the long-distance impact of peptidyl-prolyl cis-trans isomerization on the network of interactions between the loops bordering the entrance of the catalytic cleft. The energetically favorable isomerization of P768 compared with P968, induces an enlargement of loop L1 that fosters the invasion of CNF1CD catalytic cleft by a peptide encompassing SWII of RhoA. The connection of the P968 cis isomer to the catalytic cysteine C866 via a ladder of stacking interactions is alleviated along the cis-trans isomerization. Finally, the cis-trans conversion of P768 favors a switch of the thiol side chain of C866 from a resting to an active orientation. The long-distance impact of peptidyl-prolyl cis-trans isomerizations is expected to have implications for target modification.
Collapse
|
14
|
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021; 10:1831. [PMID: 34359999 PMCID: PMC8305018 DOI: 10.3390/cells10071831] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Much progress has been made toward deciphering RHO GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through RHO GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstrasse 1, Building 22.03.05, 40225 Düsseldorf, Germany;
| |
Collapse
|
15
|
Yang Q, Shi W. Rho/ROCK-MYOCD in regulating airway smooth muscle growth and remodeling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1-L5. [PMID: 33909498 DOI: 10.1152/ajplung.00034.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abnormal airway remodeling is a common pathological change seen in chronic respiratory diseases. Altered proliferation and differentiation of airway smooth muscle cells (ASMCs) are the major components of airway remodeling, and the resultant structural abnormalities are difficult to restore. Understanding of airway smooth muscle regulation is urgently needed to identify potential intervention targets. MYOCD (or myocardin) and myocardin-related transcription factors (MRTFs) are key cotranscription factors in muscle growth, which have not been extensively investigated in airway smooth muscle cells. In addition, the RhoA/ROCK signaling pathway is known to play an important role in airway remodeling partly through regulating the proliferation and differentiation of ASMCs, which may be connected with MYOCD/MRTF cotranscription factors [Kumawat et al. (Am J Physiol Lung Cell Mol Physiol 311: L529-L537, 2016); Lagna et al. (J Biol Chem 282: 37244-37255, 2007)]. This review focuses on this newly recognized and potentially important RhoA/ROCK-MYOCD/MRTFs pathway in controlling airway smooth muscle growth and remodeling.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
Yan Y, Liu S, Hu C, Xie C, Zhao L, Wang S, Zhang W, Cheng Z, Gao J, Fu X, Yang Z, Wang X, Zhang J, Lin L, Shi A. RTKN-1/Rhotekin shields endosome-associated F-actin from disassembly to ensure endocytic recycling. J Cell Biol 2021; 220:211976. [PMID: 33844824 PMCID: PMC8047894 DOI: 10.1083/jcb.202007149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity. Loss of RTKN-1 led to a prominent decrease in actin structures and basolateral recycling defects. Furthermore, we showed that the presence of RTKN-1 thwarts the actin disassembly competence of UNC-60A/cofilin. Consistently, in RTKN-1–deficient cells, UNC-60A knockdown replenished actin structures and alleviated the recycling defects. Notably, an intramolecular interaction within RTKN-1 could mediate the formation of oligomers. Overexpression of an RTKN-1 mutant form that lacks self-binding capacity failed to restore actin structures and recycling flow in rtkn-1 mutants. Finally, we demonstrated that SDPN-1/Syndapin acts to direct the recycling endosomal dwelling of RTKN-1 and promotes actin integrity there. Taken together, these findings consolidated the role of SDPN-1 in organizing the endosomal actin network architecture and introduced RTKN-1 as a novel regulatory protein involved in this process.
Collapse
Affiliation(s)
- Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyi Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenrong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Lin Y, Lu S, Zhang J, Zheng Y. Structure of an inactive conformation of GTP-bound RhoA GTPase. Structure 2021; 29:553-563.e5. [PMID: 33497604 DOI: 10.1016/j.str.2020.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/22/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
By using 31P NMR, we present evidence that the Rho family GTPase RhoA, similar to Ras GTPases, exists in an equilibrium of conformations when bound to GTP. High-resolution crystal structures of RhoA bound to the GTP analog GMPPNP and to GDP show that they display a similar overall inactive conformation. In contrast to the previously reported crystal structures of GTP analog-bound forms of two RhoA dominantly active mutants (G14V and Q63L), GMPPNP-bound RhoA assumes an open conformation in the Switch I loop with a previously unseen interaction between the γ-phosphate and Pro36, instead of the canonical Thr37. Molecular dynamics simulations found that the oncogenic RhoAG14V mutant displays a reduced flexibility in the Switch regions, consistent with a crystal structure of GDP-bound RhoAG14V. Thus, GDP- and GTP-bound RhoA can present similar inactive conformations, and the molecular dynamics in the Switch regions are likely to have a role in RhoA activation.
Collapse
Affiliation(s)
- Yuan Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 Chongqing South Road, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 Chongqing South Road, Shanghai 200025, China
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Saadeldin IM, Tukur HA, Aljumaah RS, Sindi RA. Rocking the Boat: The Decisive Roles of Rho Kinases During Oocyte, Blastocyst, and Stem Cell Development. Front Cell Dev Biol 2021; 8:616762. [PMID: 33505968 PMCID: PMC7829335 DOI: 10.3389/fcell.2020.616762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
The rho-associated coiled-coil-containing proteins (ROCKs or rho kinase) are effectors of the small rho-GTPase rhoA, which acts as a signaling molecule to regulate a variety of cellular processes, including cell proliferation, adhesion, polarity, cytokinesis, and survival. Owing to the multifunctionality of these kinases, an increasing number of studies focus on understanding the pleiotropic effects of the ROCK signaling pathway in the coordination and control of growth (proliferation, initiation, and progression), development (morphology and differentiation), and survival in many cell types. There is growing evidence that ROCKs actively phosphorylate several actin-binding proteins and intermediate filament proteins during oocyte cytokinesis, the preimplantation embryos as well as the stem cell development and differentiation. In this review, we focus on the participation of ROCK proteins in oocyte maturation, blastocyst formation, and stem cell development with a special focus on the selective targeting of ROCK isoforms, ROCK1, and ROCK2. The selective switching of cell fate through ROCK inhibition would provide a novel paradigm for in vitro oocyte maturation, experimental embryology, and clinical applications.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S Aljumaah
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Zhou H, Yue X, Wang Z, Li S, Zhu J, Yang Y, Liu M. Expression, purification and characterization of the RhoA-binding domain of human SHIP2 in E.coli. Protein Expr Purif 2021; 180:105821. [PMID: 33421554 DOI: 10.1016/j.pep.2021.105821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Human SH2-containing inositol 5-phosphatase 2 (SHIP2) is a multi-domain protein playing essential roles in various physiological and pathological processes. In cell polarization and migration, SHIP2 serves as a RhoA effector for manipulating the level of phosphatidylinositol 3,4,5-trisphosphate. The domain between SH2 and a potential PH-R domain of SHIP2 was suggested to bind with GTP-bound form of RhoA. However, the structure of this RhoA-binding domain (RBD) of SHIP2 and the mechanism for its binding with RhoA remain unknown. In this study, SHIP2118-298 and SHIP2176-298, two truncated proteins harboring the RBD were designed, expressed, and purified successfully in E. coli. Unexpectedly, both SHIP2118-298 and SHIP2176-298 were determined to exist as homo-dimers in solution by multi-angle light scattering. Circular dichroism spectra indicated that both proteins predominantly consisted of α-helix structure. Moreover, in pull-down experiments, both proteins could bind with GTP-bound RhoA and RhoAQ63L, a mutant mimicing the state of GTP-bound RhoA. Importantly, in silico analysis showed that the shorter truncation, SHIP2176-298, contained all ordered residues between the SH2 and the PH-R domain, and matched the RhoA effector motif 1 of PKN1 well in sequence alignment, suggesting that SHIP2176-298 is sufficient for further studies on the structure and RhoA binding of SHIP2. This work shortens and confirms the main region of SHIP2 interacting with RhoA, provides the method for sample preparation, and presents preliminary information for SHIP2-RBD structure, which will facilitate the comprehensive understanding of the structure and function of SHIP2.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zi Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
21
|
Ligand-induced conformational rearrangements regulate the switch between membrane-proximal and distal functions of Rho kinase 2. Commun Biol 2020; 3:721. [PMID: 33247217 PMCID: PMC7699638 DOI: 10.1038/s42003-020-01450-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Rho-associated protein kinase 2 (ROCK2) is a membrane-anchored, long, flexible, multidomain, multifunctional protein. Its functions can be divided into two categories: membrane-proximal and membrane-distal. A recent study concluded that membrane-distal functions require the fully extended conformation, and this conclusion was supported by electron microscopy. The present solution small-angle X-ray scattering (SAXS) study revealed that ROCK2 population is a dynamic mixture of folded and partially extended conformers. Binding of RhoA to the coiled-coil domain shifts the equilibrium towards the partially extended state. Enzyme activity measurements suggest that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains, but smaller substrate analogues do not. The present study reveals the dynamic behaviour of this long, dimeric molecule in solution, and our structural model provides a mechanistic explanation for a set of membrane-proximal functions while allowing for the existence of an extended conformation in the case of membrane-distal functions. Using small-angle X-ray scattering, Hajdú et al. show that Rho-associated protein kinase 2 population is a mixture of folded and partially extended conformers. They find that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains. This study identifies a dynamic behavior of this long, dimeric molecule in solution.
Collapse
|
22
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
23
|
Bürgi J, Abrami L, Castanon I, Abriata LA, Kunz B, Yan SE, Lera M, Unger S, Superti-Furga A, Peraro MD, Gaitan MG, van der Goot FG. Ligand Binding to the Collagen VI Receptor Triggers a Talin-to-RhoA Switch that Regulates Receptor Endocytosis. Dev Cell 2020; 53:418-430.e4. [PMID: 32428455 DOI: 10.1016/j.devcel.2020.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/23/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022]
Abstract
Capillary morphogenesis gene 2 (CMG2/ANTXR2) is a cell surface receptor for both collagen VI and anthrax toxin. Biallelic loss-of-function mutations in CMG2 lead to a severe condition, hyaline fibromatosis syndrome (HFS). We have here dissected a network of dynamic interactions between CMG2 and various actin interactors and regulators, describing a different behavior from other extracellular matrix receptors. CMG2 binds talin, and thereby the actin cytoskeleton, only in its ligand-free state. Extracellular ligand binding leads to src-dependent talin release and recruitment of the actin cytoskeleton regulator RhoA and its effectors. These sequential interactions of CMG2 are necessary for the control of oriented cell division during fish development. Finally, we demonstrate that effective switching between talin and RhoA binding is required for the intracellular degradation of collagen VI in human fibroblasts, which explains why HFS mutations in the cytoskeleton-binding domain lead to dysregulation of extracellular matrix homeostasis.
Collapse
Affiliation(s)
- Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; EMBL Hamburg DESY, 22607 Hamburg, Germany
| | - Laurence Abrami
- Faculty of Life Sciences, Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Irinka Castanon
- Departments of Biochemistry and of Molecular Biology, Sciences II, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Luciano Andres Abriata
- Faculty of Life Sciences, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Beatrice Kunz
- Faculty of Life Sciences, Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shixu Emili Yan
- Faculty of Life Sciences, Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Manuel Lera
- Departments of Biochemistry and of Molecular Biology, Sciences II, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Faculty of Life Sciences, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marcos Gonzalez Gaitan
- Departments of Biochemistry and of Molecular Biology, Sciences II, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Francoise Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z, Huang JA. miR-335-5p inhibits TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer via ROCK1. Respir Res 2019; 20:225. [PMID: 31638991 PMCID: PMC6805547 DOI: 10.1186/s12931-019-1184-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Significant evidence has shown that the miRNA pathway is an important component in the downstream signaling cascades of TGF-β1 pathway. Our previous study has indicated that miR-335-5p expression was significantly down-regulated and acted as a vital player in the metastasis of non-small cell lung cancer (NSCLC), however the underlying mechanism remained unclear. METHODS The differential expression level of miR-335-5p and ROCK1 were determined by qRT-PCR and IHC analysis in human tissue samples with or without lymph node metastasis. Transwell assay was conducted to determine cell ability of migration and invasion. SiRNA interference, microRNA transfection and western blot analysis were utilized to clarify the underlying regulatory mechanism. RESULTS We showed that down-regulated expression of miR-335-5p and up-regulated expression of ROCK1 in NSCLC tissues were associated with lymph node metastasis. Over-expresion of miR-335-5p significantly inhibited TGF-β1-mediated NSCLC migration and invasion. Furthermore, luciferase reporter assays proved that miR-335-5p can bind to 3'-UTR of ROCK1 directly. Moreover, we confirmed that siRNA-mediated silencing of ROCK1 significantly diminished TGF-β1-mediated EMT and migratory and invasive capabilities of A549 and SPC-A1 cells. CONCLUSION This is the first time to report that miR-335-5p regulates ROCK1 and impairs its functions, thereby playing a key role in TGF-β1-induced EMT and cell migration and invasion in NSCLC.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Department of Respiratory Medicine, The First People's Hospital of Yancheng City, Yancheng, 224001, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
25
|
Haga RB, Garg R, Collu F, Borda D'Agua B, Menéndez ST, Colomba A, Fraternali F, Ridley AJ. RhoBTB1 interacts with ROCKs and inhibits invasion. Biochem J 2019; 476:2499-2514. [PMID: 31431478 PMCID: PMC6744581 DOI: 10.1042/bcj20190203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022]
Abstract
RhoBTB1 is an atypical Rho GTPase with two BTB domains in addition to its Rho domain. Although most Rho GTPases regulate actin cytoskeletal dynamics, RhoBTB1 is not known to affect cell shape or motility. We report that RhoBTB1 depletion increases prostate cancer cell invasion and induces elongation in Matrigel, a phenotype similar to that induced by depletion of ROCK1 and ROCK2. We demonstrate that RhoBTB1 associates with ROCK1 and ROCK2 and its association with ROCK1 is via its Rho domain. The Rho domain binds to the coiled-coil region of ROCK1 close to its kinase domain. We identify two amino acids within the Rho domain that alter RhoBTB1 association with ROCK1. RhoBTB1 is a substrate for ROCK1, and mutation of putative phosphorylation sites reduces its association with Cullin3, a scaffold for ubiquitin ligases. We propose that RhoBTB1 suppresses cancer cell invasion through interacting with ROCKs, which in turn regulate its association with Cullin3. Via Cullin3, RhoBTB1 has the potential to affect protein degradation.
Collapse
Affiliation(s)
- Raquel B Haga
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Ritu Garg
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Francesca Collu
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Bárbara Borda D'Agua
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Sofia T Menéndez
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Audrey Colomba
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Franca Fraternali
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Anne J Ridley
- Randall Centre of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
26
|
Wang H, Nada MH, Tanaka Y, Sakuraba S, Morita CT. Critical Roles for Coiled-Coil Dimers of Butyrophilin 3A1 in the Sensing of Prenyl Pyrophosphates by Human Vγ2Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:607-626. [PMID: 31227581 DOI: 10.4049/jimmunol.1801252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Vγ2Vδ2 T cells play important roles in human immunity to pathogens and tumors. Their TCRs respond to the sensing of isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate, by butyrophilin (BTN) 3A1. BTN3A1 is an Ig superfamily protein with extracellular IgV/IgC domains and intracellular B30.2 domains that bind prenyl pyrophosphates. We have proposed that intracellular α helices form a coiled-coil dimer that functions as a spacer for the B30.2 domains. To test this, five pairs of anchor residues were mutated to glycine to destabilize the coiled-coil dimer. Despite maintaining surface expression, BTN3A1 mutagenesis either abrogated or decreased stimulation by (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate. BTN3A2 and BTN3A3 proteins and orthologs in alpacas and dolphins are also predicted to have similar coiled-coil dimers. A second short coiled-coil region dimerizes the B30.2 domains. Molecular dynamics simulations predict that mutation of a conserved tryptophan residue in this region will destabilize the dimer, explaining the loss of stimulation by BTN3A1 proteins with this mutation. The juxtamembrane regions of other BTN/BTN-like proteins with B30.2 domains are similarly predicted to assume α helices, with many predicted to form coiled-coil dimers. An exon at the end of this region and the exon encoding the dimerization region for B30.2 domains are highly conserved. We propose that coiled-coil dimers function as rod-like helical molecular spacers to position B30.2 domains, as interaction sites for other proteins, and as dimerization regions to allow sensing by B30.2 domains. In these ways, the coiled-coil domains of BTN3A1 play critical roles for its function.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246.,College of Medicine, Tikrit University, Tiktit, 34001, Iraq
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.,Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shun Sakuraba
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; and
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; .,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
27
|
El-Amine N, Carim SC, Wernike D, Hickson GRX. Rho-dependent control of the Citron kinase, Sticky, drives midbody ring maturation. Mol Biol Cell 2019; 30:2185-2204. [PMID: 31166845 PMCID: PMC6743463 DOI: 10.1091/mbc.e19-04-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider's S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.
Collapse
Affiliation(s)
- Nour El-Amine
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sabrya C Carim
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Denise Wernike
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Gilles R X Hickson
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
28
|
Aktas S, Un I, Omer Barlas I, Ozturk AB, Ilkay Karagul M. Evaluation of the Rho A/Rho-kinase pathway in the uterus of the rat model of polycystic ovary syndrome. Reprod Biol 2019; 19:45-54. [PMID: 30704840 DOI: 10.1016/j.repbio.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 01/03/2023]
Abstract
The aim of this study was to investigate the expression of RhoA/Rho-kinase in the uterus and the effect of Rho-kinase inhibitors on uterine contractions of dehydroepiandrosterone (DHEA) induced polycystic ovary syndrome (PCOS) rats. Forty-four female Sprague-Dawley (21 days old) rats divided into three groups: The control group (n = 14, any procedure was not performed), vehicle group (n = 14, 0.2 ml of sesame oil, subcutaneous injection, 20 days) and PCOS group (n = 16, DHEA 6 mg/100 g in 0.2 ml of sesame oil, subcutaneous injection, 20 days). The myometrium thickness and uterine wet weight were assessed. The mRNA and protein expressions of Rho A, the effect of Rho-kinase inhibitors (fasudil and Y-27632) on KCl, carbachol, and PGF2α induced contractions were evaluated in the uterus. In the PCOS group, the myometrium thickness and uterine wet weight significantly increased compared to the control group and vehicle group. The mRNA expression level and the immunoreactive score of Rho A, ROCK 1, ROCK 2 were similar in all groups. In the PCOS group, KCl, carbachol, and PGF2α induced uterine contractions significantly increased compared to the control group and vehicle group. Fasudil and Y-27632 significantly inhibited KCl, carbachol, and PGF2α induced uterine contractions in all groups. In conclusion, the expression of Rho A, ROCK 1, ROCK 2 not changed although myometrium thickness, uterine wet weight and the contractile responses of uterus increased in the PCOS group. The results suggest that the Rho-kinase inhibitors effectively suppressed increased contractions in the PCOS group they might be potential therapeutic agents.
Collapse
Affiliation(s)
- Savas Aktas
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey.
| | - Ismail Un
- Department of Medical Pharmacology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ibrahim Omer Barlas
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ayla Batu Ozturk
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Meryem Ilkay Karagul
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
29
|
ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189:1-21. [DOI: 10.1016/j.pharmthera.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Abstract
The p21-activated kinase (PAK) group of serine/threonine kinases are downstream effectors of RHO GTPases and play important roles in regulation of the actin cytoskeleton, cell growth, survival, polarity, and development. Here we probe the interaction of the type II PAK, PAK4, with RHO GTPases. Using solution scattering we find that the full-length PAK4 heterodimer with CDC42 adopts primarily a compact organization. X-ray crystallography reveals the molecular nature of the interaction between PAK4 and CDC42 and shows that in addition to the canonical PAK4 CDC42/RAC interactive binding (CRIB) domain binding to CDC42 there are unexpected contacts involving the PAK4 kinase C-lobe, CDC42, and the PAK4 polybasic region. These additional interactions modulate kinase activity and increase the binding affinity of CDC42 for full-length PAK4 compared with the CRIB domain alone. We therefore show that the interaction of CDC42 with PAK4 can influence kinase activity in a previously unappreciated manner.
Collapse
|
31
|
Abstract
Rho kinases (ROCKs) are the first discovered RhoA effectors that are now widely known for their effects on actin organization. Recent studies have shown that ROCKs play important roles in cardiac physiology. Abnormal activation of ROCKs participate in multiple cardiovascular pathological processes, including cardiac hypertrophy, apoptosis, fibrosis, systemic hypertension, and pulmonary hypertension. ROCK inhibitors, fasudil and statins, have shown beneficial cardiovascular effects in many animal studies, clinical trials, and applications. Here, we mainly discuss the current understanding of the physiological roles of Rho kinase signaling in the heart, and briefly summarize the roles of ROCKs in cardiac-related vascular dysfunctions. We will also discuss the clinical application of ROCK inhibitors.
Collapse
Affiliation(s)
- Yuan Dai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Weijia Luo
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Jiang Chang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| |
Collapse
|
32
|
Yang Y, Song H, He D, Zhang S, Dai S, Xie X, Lin S, Hao Z, Zheng H, Chen PR. Genetically encoded releasable photo-cross-linking strategies for studying protein–protein interactions in living cells. Nat Protoc 2017; 12:2147-2168. [DOI: 10.1038/nprot.2017.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Hinsenkamp I, Schulz S, Roscher M, Suhr AM, Meyer B, Munteanu B, Fuchser J, Schoenberg SO, Ebert MPA, Wängler B, Hopf C, Burgermeister E. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia 2017; 18:500-11. [PMID: 27566106 PMCID: PMC5018096 DOI: 10.1016/j.neo.2016.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 11/27/2022]
Abstract
Gastric cancer (GC) remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2) which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl)-homopiperazine (HA-1077, fasudil) is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks) inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto) phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy.
Collapse
Affiliation(s)
- Isabel Hinsenkamp
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Sandra Schulz
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mareike Roscher
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Anne-Maria Suhr
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Björn Meyer
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Bogdan Munteanu
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | | | - Stefan O Schoenberg
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Matthias P A Ebert
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Björn Wängler
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Carsten Hopf
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elke Burgermeister
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| |
Collapse
|
34
|
Soriano-Castell D, Chavero A, Rentero C, Bosch M, Vidal-Quadras M, Pol A, Enrich C, Tebar F. ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrin-independent endocytosis. Sci Rep 2017; 7:6866. [PMID: 28761175 PMCID: PMC5537229 DOI: 10.1038/s41598-017-07130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/23/2017] [Indexed: 01/10/2023] Open
Abstract
Clathrin-dependent and -independent pathways contribute for β1-integrin endocytosis. This study defines a tubular membrane clathrin-independent endocytic network, induced with the calmodulin inhibitor W13, for β1-integrin internalization. This pathway is dependent on increased phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels and dynamin activity at the plasma membrane. Exogenous addition of PI(4,5)P2 or phosphatidylinositol-4-phosphate 5-kinase (PIP5K) expression mimicked W13-generated-tubules which are inhibited by active Rac1. Therefore, the molecular mechanisms downstream of Rac1, that controls this plasma membrane tubulation, were analyzed biochemically and by the expression of different Rac1 mutants. The results indicate that phospholipase C and ROCK1 are the main Rac1 effectors that impair plasma membrane invagination and tubule formation, essentially by decreasing PI(4,5)P2 levels and promoting cortical actomyosin assembly respectively. Interestingly, among the plethora of proteins that participate in membrane remodeling, this study revealed that ROCK1, the well-known downstream RhoA effector, has an important role in Rac1 regulation of actomyosin at the cell cortex. This study provides new insights into Rac1 functioning on plasma membrane dynamics combining phosphatidylinositides and cytoskeleton regulation.
Collapse
Affiliation(s)
- David Soriano-Castell
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Albert Chavero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Marta Bosch
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Maite Vidal-Quadras
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Albert Pol
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
35
|
Zalewski JK, Heber S, Mo JH, O'Conor K, Hildebrand JD, VanDemark AP. Combining Wet and Dry Lab Techniques to Guide the Crystallization of Large Coiled-coil Containing Proteins. J Vis Exp 2017. [PMID: 28117766 DOI: 10.3791/54886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Obtaining crystals for structure determination can be a difficult and time consuming proposition for any protein. Coiled-coil proteins and domains are found throughout nature, however, because of their physical properties and tendency to aggregate, they are traditionally viewed as being especially difficult to crystallize. Here, we utilize a variety of quick and simple techniques designed to identify a series of possible domain boundaries for a given coiled-coil protein, and then quickly characterize the behavior of these proteins in solution. With the addition of a strongly fluorescent tag (mRuby2), protein characterization is simple and straightforward. The target protein can be readily visualized under normal lighting and can be quantified with the use of an appropriate imager. The goal is to quickly identify candidates that can be removed from the crystallization pipeline because they are unlikely to succeed, affording more time for the best candidates and fewer funds expended on proteins that do not produce crystals. This process can be iterated to incorporate information gained from initial screening efforts, can be adapted for high-throughput expression and purification procedures, and is augmented by robotic screening for crystallization.
Collapse
Affiliation(s)
| | - Simone Heber
- Department of Biological Sciences, University of Pittsburgh; Institute of Structural Biology, German Research Center for Environmental Health
| | - Joshua H Mo
- Department of Biological Sciences, University of Pittsburgh
| | - Keith O'Conor
- Department of Biological Sciences, University of Pittsburgh
| | | | | |
Collapse
|
36
|
Zalewski JK, Mo JH, Heber S, Heroux A, Gardner RG, Hildebrand JD, VanDemark AP. Structure of the Shroom-Rho Kinase Complex Reveals a Binding Interface with Monomeric Shroom That Regulates Cell Morphology and Stimulates Kinase Activity. J Biol Chem 2016; 291:25364-25374. [PMID: 27758857 DOI: 10.1074/jbc.m116.738559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.
Collapse
Affiliation(s)
- Jenna K Zalewski
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joshua H Mo
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Simone Heber
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Annie Heroux
- the Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, and
| | - Richard G Gardner
- the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Jeffrey D Hildebrand
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrew P VanDemark
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
37
|
Yang Y, Song H, He D, Zhang S, Dai S, Lin S, Meng R, Wang C, Chen PR. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat Commun 2016; 7:12299. [PMID: 27460181 PMCID: PMC4974458 DOI: 10.1038/ncomms12299] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 06/16/2016] [Indexed: 11/10/2022] Open
Abstract
Coupling photocrosslinking reagents with mass spectrometry has become a powerful tool for studying protein–protein interactions in living systems, but it still suffers from high rates of false-positive identifications as well as the lack of information on interaction interface due to the challenges in deciphering crosslinking peptides. Here we develop a genetically encoded photo-affinity unnatural amino acid that introduces a mass spectrometry-identifiable label (MS-label) to the captured prey proteins after photocrosslinking and prey–bait separation. This strategy, termed IMAPP (In-situ cleavage and MS-label transfer After Protein Photocrosslinking), enables direct identification of photo-captured substrate peptides that are difficult to uncover by conventional genetically encoded photocrosslinkers. Taking advantage of the MS-label, the IMAPP strategy significantly enhances the confidence for identifying protein–protein interactions and enables simultaneous mapping of the binding interface under living conditions. Mapping protein-protein interaction using crosslinking and mass spectroscopy strategies is hampered by a high rate of false-positive results. Here, the authors develop a genetically encoded photo-affinity probe for accurate identification of protein interaction partners and crosslinking sites.
Collapse
Affiliation(s)
- Yi Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dan He
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shizhong Dai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Meng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
38
|
Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization. Sci Rep 2016; 6:28685. [PMID: 27350000 PMCID: PMC4923894 DOI: 10.1038/srep28685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/08/2016] [Indexed: 01/02/2023] Open
Abstract
It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress.
Collapse
|
39
|
Abstract
The Rho-associated coiled-coil containing kinases (ROCK) were first identified as effectors of the small GTPase RhoA, hence their nomenclature. Since their discovery, two decades ago, scientists have sought to unravel the structure, regulation, and function of these essential kinases. During that time, a consensus model has formed, in which ROCK activity is regulated via both Rho-dependent and independent mechanisms. However, recent findings have raised significant questions regarding this model. In their recent publication in Nature Communications, Truebestein and colleagues present the structure of a full-length Rho kinase for the first time. In contrast to previous reports, the authors could find no evidence for autoinhibition, RhoA binding, or regulation of kinase activity by phosphorylation. Instead, they propose that ROCK functions as a molecular ruler, in which the central coiled-coil bridges the membrane-binding regulatory domains to the kinase domains at a fixed distance from the plasma membrane. Here, we explore the consequences of the new findings, re-examine old data in the context of this model, and emphasize outstanding questions in the field.
Collapse
Affiliation(s)
- Linda Truebestein
- a Department of Structural and Computational Biology , Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC) , Vienna , Austria
| | - Daniel J Elsner
- a Department of Structural and Computational Biology , Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC) , Vienna , Austria
| | - Thomas A Leonard
- a Department of Structural and Computational Biology , Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC) , Vienna , Austria.,b Department of Medical Biochemistry , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
40
|
Schenkelaars Q, Quintero O, Hall C, Fierro-Constain L, Renard E, Borchiellini C, Hill AL. ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae). Dev Biol 2016; 412:298-310. [PMID: 26944094 DOI: 10.1016/j.ydbio.2016.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 01/16/2023]
Abstract
The Rho associated coiled-coil protein kinase (ROCK) plays crucial roles in development across bilaterian animals. The fact that the Rho/Rock pathway is required to initiate epithelial morphogenesis and thus to establish body plans in bilaterians makes this conserved signaling pathway key for studying the molecular mechanisms that may control early development of basally branching metazoans. The purpose of this study was to evaluate whether or not the main components of this signaling pathway exist in sponges, and if present, to investigate the possible role of the regulatory network in an early branching non-bilaterian species by evaluating ROCK function during Ephydatia muelleri development. Molecular phylogenetic analyses and protein domain predictions revealed the existence of Rho/Rock components in all studied poriferan lineages. Binding assays revealed that both Y-27632 and GSK429286A are capable of inhibiting Em-ROCK activity in vitro. Treatment with both drugs leads to impairment of growth and formation of the basal pinacoderm layer in the developing sponge. Furthermore, inhibition of Em-Rock prevents the establishment of a functional aquiferous system, including the absence of an osculum. In contrast, no effect of ROCK inhibition was observed in juvenile sponges that already possess a fully developed and functional aquiferous system. Thus, the Rho/Rock pathway appears to be essential for the proper development of the freshwater sponge, and may play a role in various cell behaviors (e.g. cell proliferation, cell adhesion and cell motility). Taken together, these data are consistent with an ancestral function of Rho/Rock signaling in playing roles in early developmental processes and may provide a new framework to study the interaction between Wnt signaling and the Rho/Rock pathway.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France; Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Switzerland.
| | - Omar Quintero
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Chelsea Hall
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Laura Fierro-Constain
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France
| | - Emmanuelle Renard
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France
| | - Carole Borchiellini
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - UMR CNRS 7263- IRD 237 - UAPV, Aix-Marseille Université, Marseille, France
| | - April L Hill
- Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
41
|
Lim B, Kim JH, Kim M, Kim SY. Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer. World J Gastroenterol 2016; 22:1190-1201. [PMID: 26811657 PMCID: PMC4716030 DOI: 10.3748/wjg.v22.i3.1190] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr virus-positive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets.
Collapse
|
42
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
43
|
A molecular ruler regulates cytoskeletal remodelling by the Rho kinases. Nat Commun 2015; 6:10029. [PMID: 26620183 PMCID: PMC4686654 DOI: 10.1038/ncomms10029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
The Rho-associated coiled-coil kinases (ROCK) are essential regulators of the actin cytoskeleton; however, the structure of a full-length ROCK is unknown and the mechanisms by which its kinase activity is controlled are not well understood. Here we determine the low-resolution structure of human ROCK2 using electron microscopy, revealing it to be a constitutive dimer, 120 nm in length, with a long coiled-coil tether linking the kinase and membrane-binding domains. We find, in contrast to previous reports, that ROCK2 activity does not appear to be directly regulated by binding to membranes, RhoA, or by phosphorylation. Instead, we show that changing the length of the tether modulates ROCK2 function in cells, suggesting that it acts as a molecular ruler. We present a model in which ROCK activity is restricted to a discrete region of the actin cytoskeleton, governed by the length of its coiled-coil. This represents a new type of spatial control, and hence a new paradigm for kinase regulation. Rho kinases regulate the actin cytoskeleton by controlling stress fibre formation. Truebestein et al. show that the length of its coiled-coil determines ROCK2 function, and propose that the coiled coil acts as a spacer, targeting kinase activity to a discrete distance from the membrane.
Collapse
|
44
|
Hartmann S, Ridley AJ, Lutz S. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease. Front Pharmacol 2015; 6:276. [PMID: 26635606 PMCID: PMC4653301 DOI: 10.3389/fphar.2015.00276] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function.
Collapse
Affiliation(s)
- Svenja Hartmann
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Susanne Lutz
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|
45
|
Zhao Z, Manser E. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 2015; 6:81-8. [PMID: 26090570 DOI: 10.1080/21541248.2014.1000699] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase protein family that plays key roles in local F-actin organization through a number of kinase and non-kinase effector proteins. The myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), and the RhoA binding coiled-coil containing kinases (ROCKs) are widely expressed members of the Dystrophia myotonica protein kinase (DMPK) family. The MRCK proteins are ∼190 kDa multi-domain proteins expressed in all cells and coordinate certain acto-myosin networks. Notably MRCK is a key regulator of myosin18A and myosin IIA/B, and through phosphorylation of their common regulatory light chains (MYL9 or MLC2) to promote actin stress fiber contractility. The MRCK kinases are regulated by Cdc42, which is required for cell polarity and directional migration; MRCK links to the acto-myosin complex through interaction with a coiled-coil containing adaptor proteins LRAP35a/b. The biological activities of MRCK in model organisms such as worms and flies confirm it as a myosin II activator. In mammalian cell culture MRCK can be critical for cancer cell migration and neurite outgrowth. We review the current literatures regarding MRCK and highlight the similarities and differences between MRCK and ROCK kinases.
Collapse
Affiliation(s)
- Zhuoshen Zhao
- a sGSK Group; Institute of Molecular and Cell Biology (IMCB) ; Singapore
| | | |
Collapse
|
46
|
Mott HR, Owen D. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Crit Rev Biochem Mol Biol 2015; 50:85-133. [PMID: 25830673 DOI: 10.3109/10409238.2014.999191] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras superfamily small G proteins are master regulators of a diverse range of cellular processes and act via downstream effector molecules. The first structure of a small G protein-effector complex, that of Rap1A with c-Raf1, was published 20 years ago. Since then, the structures of more than 60 small G proteins in complex with their effectors have been published. These effectors utilize a diverse array of structural motifs to interact with the G protein fold, which we have divided into four structural classes: intermolecular β-sheets, helical pairs, other interactions, and pleckstrin homology (PH) domains. These classes and their representative structures are discussed and a contact analysis of the interactions is presented, which highlights the common effector-binding regions between and within the small G protein families.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
47
|
Boucher J, Simard É, Froehlich U, D'Orléans-Juste P, Grandbois M. Using carboxyfluorescein diacetate succinimidyl ester to monitor intracellular protein glycation. Anal Biochem 2015; 478:73-81. [PMID: 25800564 DOI: 10.1016/j.ab.2015.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 11/17/2022]
Abstract
Protein glycation is a ubiquitous process involved in vascular complications observed in diabetes. Glyoxal (GO), an intracellular reactive oxoaldehyde that is one of the most potent glycation agents, readily reacts with amines present on proteins to produce the lysine-derived adduct carboxymethyllysine, which is a prevalent advanced glycation end-product (AGE). Our group previously showed that cell exposure to GO leads to an alteration in the cell contractile activity that could occur as a result of the glycation of various proteins regulating the cell contractile machinery. Here, we measured the extent of glycation on three functionally distinct proteins known to participate in cell contraction and cytoskeletal organization-Rho-kinase (ROCK), actin, and gelsolin (GSN)-using an assay based on the reaction of the cell membrane-permeable fluorescent probe carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), which reacts with primary amine groups of proteins. By combining CFDA-SE fluorescence and Western blot detection, we observed (following GO incubation) increased glycation of actin and ROCK as well as an increased interaction between actin and GSN as observed by co-immunoprecipitation. Thus, we conclude that the use of the fluorescent probe CFDA-SE offers an interesting alternative to perform a comparative analysis of the extent of intracellular protein glycation in live cells.
Collapse
Affiliation(s)
- Julie Boucher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Élie Simard
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Froehlich
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pedro D'Orléans-Juste
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Michel Grandbois
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
48
|
Kolodziejek AM, Miller SI. Salmonella modulation of the phagosome membrane, role of SseJ. Cell Microbiol 2015; 17:333-41. [PMID: 25620407 DOI: 10.1111/cmi.12420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/15/2022]
Abstract
Salmonellae have the ability to invade, persist and replicate within an intracellular phagosome termed the Salmonella-containing vacuole (SCV). Salmonellae alter lipid and protein content of the SCV membrane and manipulate cytoskeletal elements in contact with the SCV using the Salmonella pathogenicity island 1 (SPI-2) type III secretion system effectors. These modifications result in microtubular-based movement and morphological changes, which include endosomal tubulation of the SCV membrane. SseJ is a SPI-2 effector that localizes to the cytoplasmic face of the SCV and esterifies cholesterol through its glycerophospholipid : cholesterol acyltransferase activity. SseJ enzymatic activity as well as localization to the SCV are determined by binding to the small mammalian GTPase, RhoA. This review will focus on current knowledge about the role of SseJ in SCV membrane modification and will discuss how the hypothesis that a major role of SPI-2 effectors is to modify SCV protein and lipid content to promote bacterial intracellular survival.
Collapse
|
49
|
Rämisch S, Lizatović R, André I. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling. Proteins 2014; 83:235-47. [PMID: 25402423 DOI: 10.1002/prot.24729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
Homomeric coiled-coils can self-assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled-coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled-coils. Collectively, our results demonstrate that high-resolution structure of coiled-coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled-coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled-coils. The computational methods developed here should be broadly applicable to studies of sequence-structure relationships in coiled-coils and the design of higher order assemblies with improved oligomerization specificity.
Collapse
Affiliation(s)
- Sebastian Rämisch
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
50
|
Generation of a single chain antibody variable fragment (scFv) to sense selectively RhoB activation. PLoS One 2014; 9:e111034. [PMID: 25365345 PMCID: PMC4218836 DOI: 10.1371/journal.pone.0111034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/26/2014] [Indexed: 11/27/2022] Open
Abstract
Determining the cellular level of activated form of RhoGTPases is of key importance to understand their regulatory functions in cell physiopathology. We previously reported scFvC1, that selectively bind to the GTP-bound form of RhoA, RhoB and RhoC. In this present study we generate, by molecular evolution, a new phage library to isolate scFvs displaying high affinity and selectivity to RhoA and RhoB. Using phage display affinity maturation against the GTP-locked mutant RhoAL63, we isolated scFvs against RhoA active conformation that display Kd values at the nanomolar range, which corresponded to an increase of affinity of three orders of magnitude compared to scFvC1. Although a majority of these evolved scFvs remained selective towards the active conformation of RhoA, RhoB and RhoC, we identified some scFvs that bind to RhoA and RhoC but not to RhoB activated form. Alternatively, we performed a substractive panning towards RhoB, and isolated the scFvE3 exhibiting a 10 times higher affinity for RhoB than RhoA activated forms. We showed the peculiar ability of scFvE3 to detect RhoB but not RhoA GTP-bound form in cell extracts overexpressing Guanine nucleotide Exchange Factor XPLN as well as in EGF stimulated HeLa cells. Our results demonstrated the ability of scFvs to distinguish RhoB from RhoA GTP-bound form and provide new selective tools to analyze the cell biology of RhoB GTPase regulation.
Collapse
|