1
|
Jarzab M, Skorko-Glonek J. There Are No Insurmountable Barriers: Passage of the Helicobacter pylori VacA Toxin from Bacterial Cytoplasm to Eukaryotic Cell Organelle. MEMBRANES 2023; 14:11. [PMID: 38248700 PMCID: PMC10821523 DOI: 10.3390/membranes14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
The Gram-negative bacterium Helicobacter pylori is a very successful pathogen, one of the most commonly identified causes of bacterial infections in humans worldwide. H. pylori produces several virulence factors that contribute to its persistence in the hostile host habitat and to its pathogenicity. The most extensively studied are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA). VacA is present in almost all H. pylori strains. As a secreted multifunctional toxin, it assists bacterial colonization, survival, and proliferation during long-lasting infections. To exert its effect on gastric epithelium and other cell types, VacA undergoes several modifications and crosses multiple membrane barriers. Once inside the gastric epithelial cell, VacA disrupts many cellular-signaling pathways and processes, leading mainly to changes in the efflux of various ions, the depolarization of membrane potential, and perturbations in endocytic trafficking and mitochondrial function. The most notable effect of VacA is the formation of vacuole-like structures, which may lead to apoptosis. This review focuses on the processes involved in VacA secretion, processing, and entry into host cells, with a particular emphasis on the interaction of the mature toxin with host membranes and the formation of transmembrane pores.
Collapse
Affiliation(s)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
2
|
Holland RL, Bosi KD, Seeger AY, Blanke SR. Restoration of mitochondrial structure and function within Helicobacter pylori VacA intoxicated cells. ADVANCES IN MICROBIOLOGY 2023; 13:399-419. [PMID: 37654621 PMCID: PMC10470862 DOI: 10.4236/aim.2023.138026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells.
Collapse
Affiliation(s)
- Robin L. Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Kristopher D. Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
3
|
Intracellular Degradation of Helicobacter pylori VacA Toxin as a Determinant of Gastric Epithelial Cell Viability. Infect Immun 2019; 87:IAI.00783-18. [PMID: 30692181 DOI: 10.1128/iai.00783-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori VacA is a secreted pore-forming toxin that induces cell vacuolation in vitro and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NH4Cl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NH4Cl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NH4Cl, indicating that NH4Cl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NH4Cl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during H. pylori infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.
Collapse
|
4
|
Abstract
Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.
Collapse
|
5
|
Fahimi F, Tohidkia MR, Fouladi M, Aghabeygi R, Samadi N, Omidi Y. Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy. ACTA ACUST UNITED AC 2017; 7:59-71. [PMID: 28546954 PMCID: PMC5439391 DOI: 10.15171/bi.2017.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
Abstract
![]()
Introduction: In the recent decades, a number of studies have highlighted the importance of Helicobacter pylori in the initiation and development of peptic ulcer and gastric cancer. Some potential virulence factors (e.g., urease, CagA, VacA, BabA) are exploited by this microorganism, facilitating its persistence through evading human defense mechanisms. Among these toxins and enzymes, vacuolating toxin A (VacA) is of a great importance in the pathogenesis of H. pylori. VacA toxin shows different pattern of cytotoxicity through binding to different cell surface receptors in various cells.
Methods: To highlight attempts in treatment for H. pylori infection, here, we discussed the VacA potential as a candidate for development of vaccine and targeted immunotherapy. Furthermore, we reviewed the related literature to provide key insights on association of the genetic variants of VacA with the toxicity of the toxin in cells.
Results: A number of investigations on the receptor(s) binding of VacA toxin confirmed the pleiotropic nature of VacA that uses a unique mechanism for internalization through some membrane components such as lipid rafts and glycophosphatidylinositol (GPI)-anchored proteins (GPI-AP). Considering the high potency of VacA toxin in the clinical presentations in infection and assisting persistence and colonization of H. pylori, it is considered as one of the pivotal components in production vaccines and monoclonal antibodies (mAbs).
Conclusion: It is possible to generate mAbs with a considerable potential to convert into secretory immunoglobulins that could penetrate into the niche of H. pylori and inhibit its normal functionalities. Further, conjugation of H. pylori targeting Ab fragments with the toxic agents or drug delivery systems (DDSs) offers new generation of H. pylori treatments.
Collapse
Affiliation(s)
- Farnaz Fahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Fouladi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aghabeygi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ricci V. Relationship between VacA Toxin and Host Cell Autophagy in Helicobacter pylori Infection of the Human Stomach: A Few Answers, Many Questions. Toxins (Basel) 2016; 8:toxins8070203. [PMID: 27376331 PMCID: PMC4963836 DOI: 10.3390/toxins8070203] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about half the global population and represents the greatest risk factor for gastric malignancy. The relevance of H. pylori for gastric cancer development is equivalent to that of tobacco smoking for lung cancer. VacA toxin seems to play a pivotal role in the overall strategy of H. pylori towards achieving persistent gastric colonization. This strategy appears to involve the modulation of host cell autophagy. After an overview of autophagy and its role in infection and carcinogenesis, I critically review current knowledge about the action of VacA on host cell autophagy during H. pylori infection of the human stomach. Although VacA is a key player in modulation of H. pylori-induced autophagy, a few discrepancies in the data are also evident and many questions remain to be answered. We are thus still far from a definitive understanding of the molecular mechanisms through which VacA affects autophagy and the consequences of this toxin action on the overall pathogenic activity of H. pylori.
Collapse
Affiliation(s)
- Vittorio Ricci
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia Medical School, Via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins (Basel) 2016; 8:toxins8060173. [PMID: 27271669 PMCID: PMC4926140 DOI: 10.3390/toxins8060173] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.
Collapse
Affiliation(s)
- Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
8
|
Kern B, Jain U, Utsch C, Otto A, Busch B, Jiménez-Soto L, Becher D, Haas R. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes. Cell Microbiol 2015; 17:1811-32. [PMID: 26078003 DOI: 10.1111/cmi.12474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.
Collapse
Affiliation(s)
- Beate Kern
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Utkarsh Jain
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ciara Utsch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Luisa Jiménez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
9
|
Yount JS, Karssemeijer RA, Hang HC. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem 2012; 287:19631-41. [PMID: 22511783 DOI: 10.1074/jbc.m112.362095] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that inhibits infection by influenza virus and many other pathogenic viruses. IFITM3 prevents endocytosed virus particles from accessing the host cytoplasm although little is known regarding its regulatory mechanisms. Here we demonstrate that IFITM3 localization to and antiviral remodeling of endolysosomes is differentially regulated by S-palmitoylation and lysine ubiquitination. Although S-palmitoylation enhances IFITM3 membrane affinity and antiviral activity, ubiquitination decreases localization with endolysosomes and decreases antiviral activity. Interestingly, autophagy reportedly induced by IFITM3 expression is also negatively regulated by ubiquitination. However, the canonical ATG5-dependent autophagy pathway is not required for IFITM3 activity, indicating that virus trafficking from endolysosomes to autophagosomes is not a prerequisite for influenza virus restriction. Our characterization of IFITM3 ubiquitination sites also challenges the dual-pass membrane topology predicted for this protein family. We thus evaluated topology by N-linked glycosylation site insertion and protein lipidation mapping in conjunction with cellular fractionation and fluorescence imaging. Based on these studies, we propose that IFITM3 is predominantly an intramembrane protein where both the N and C termini face the cytoplasm. In sum, by characterizing S-palmitoylation and ubiquitination of IFITM3, we have gained a better understanding of the trafficking, activity, and intramembrane topology of this important IFN-induced effector protein.
Collapse
Affiliation(s)
- Jacob S Yount
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
10
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
11
|
Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol 2012; 20:165-74. [PMID: 22364673 DOI: 10.1016/j.tim.2012.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 02/09/2023]
Abstract
VacA toxin from the cancer-inducing bacterium Helicobacter pylori is currently classified as a pore-forming toxin but is also considered a multifunctional toxin, apparently causing many pleiotropic cell effects. However, an increasing body of evidence suggests that VacA could be the prototype of a new class of monofunctional A-B toxins in which the A subunit exhibits pore-forming instead of enzymatic activity. Thus, VacA may use a peculiar mechanism of action, allowing it to intoxicate the human stomach. By combining the action of a cell-binding domain, a specific intracellular trafficking pathway and a novel mitochondrion-targeting sequence, the VacA pore-forming domain is selectively delivered to the inner mitochondrial membrane to efficiently kill target epithelial cells by apoptosis.
Collapse
Affiliation(s)
- Patrice Boquet
- Department of Clinical Bacteriology, Nice University Hospital, 151 Route de Saint Antoine de Ginestière, 06202 Nice Cedex 03, France.
| | | |
Collapse
|
12
|
Ceramide and Toll-like receptor 4 are mobilized into membrane rafts in response to Helicobacter pylori infection in gastric epithelial cells. Infect Immun 2012; 80:1823-33. [PMID: 22354030 DOI: 10.1128/iai.05856-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection is thought to be involved in the development of several gastric diseases. Two H. pylori virulence factors (vacuolating cytotoxin A and cytotoxin-associated gene A) reportedly interact with lipid rafts in gastric epithelial cells. The role of Toll-like receptor (TLR)-mediated signaling in response to H. pylori infection has been investigated extensively in host cells. However, the receptor molecules in lipid rafts that are involved in H. pylori-induced innate sensing have not been well characterized. This study investigated whether lipid rafts play a role in H. pylori-induced ceramide secretion and TLR4 expression and thereby contribute to inflammation in gastric epithelial cells. We observed that both TLR4 and MD-2 mRNA and protein levels were significantly higher in H. pylori-infected AGS cells than in mock-infected cells. Moreover, significantly more TLR4 protein was detected in detergent-resistant membranes extracted from H. pylori-infected AGS cells than in those extracted from mock-infected cells. However, this effect was attenuated by the treatment of cells with cholesterol-usurping agents, suggesting that H. pylori-induced TLR4 signaling is dependent on cholesterol-rich microdomains. Similarly, the level of cellular ceramide was elevated and ceramide was translocated into lipid rafts after H. pylori infection, leading to interleukin-8 (IL-8) production. Using the sphingomyelinase inhibitor imipramine, we observed that H. pylori-induced TLR4 expression was ceramide dependent. These results indicate the mobilization of ceramide and TLR4 into lipid rafts by H. pylori infection in response to inflammation in gastric epithelial cells.
Collapse
|
13
|
Opota O, Gauthier NC, Doye A, Berry C, Gounon P, Lemichez E, Pauron D. Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication. PLoS One 2011; 6:e14682. [PMID: 21339824 PMCID: PMC3038859 DOI: 10.1371/journal.pone.0014682] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 01/14/2011] [Indexed: 02/06/2023] Open
Abstract
Bacillus sphaericus strains that produce the binary toxin (Bin) are highly toxic to Culex and Anopheles mosquitoes, and have been used since the late 1980s as a biopesticide for the control of these vectors of infectious disease agents. The Bin toxin produced by these strains targets mosquito larval midgut epithelial cells where it binds to Cpm1 (Culex pipiens maltase 1) a digestive enzyme, and causes severe intracellular damage, including a dramatic cytoplasmic vacuolation. The intoxication of mammalian epithelial MDCK cells engineered to express Cpm1 mimics the cytopathologies observed in mosquito enterocytes following Bin ingestion: pore formation and vacuolation. In this study we demonstrate that Bin-induced vacuolisation is a transient phenomenon that affects autolysosomes. In addition, we show that this vacuolisation is associated with induction of autophagy in intoxicated cells. Furthermore, we report that after internalization, Bin reaches the recycling endosomes but is not localized either within the vacuolating autolysosomes or within any other degradative compartment. Our observations reveal that Bin elicits autophagy as the cell's response to intoxication while protecting itself from degradation through trafficking towards the recycling pathways.
Collapse
Affiliation(s)
- Onya Opota
- Institut National de la Recherche Agronomique, UMR Interactions Biotiques et Santé Végétale, INRA 1301-CNRS 6243-Université de Nice Sophia Antipolis, Sophia Antipolis, France
- * E-mail: (OO); (DP)
| | - Nils C. Gauthier
- INSERM, U895, UNSA, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la relation hôte pathogènes, Nice, France
| | - Anne Doye
- INSERM, U895, UNSA, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la relation hôte pathogènes, Nice, France
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Pierre Gounon
- Centre Commun de Microscopie Electronique Appliquée, Faculté des Sciences, Université de Nice Sophia Antipolis, Nice, France
| | - Emmanuel Lemichez
- INSERM, U895, UNSA, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la relation hôte pathogènes, Nice, France
| | - David Pauron
- Institut National de la Recherche Agronomique, UMR Interactions Biotiques et Santé Végétale, INRA 1301-CNRS 6243-Université de Nice Sophia Antipolis, Sophia Antipolis, France
- * E-mail: (OO); (DP)
| |
Collapse
|
14
|
Gupta VR, Wilson BA, Blanke SR. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell Microbiol 2010; 12:1517-33. [PMID: 20545942 DOI: 10.1111/j.1462-5822.2010.01487.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasma membrane sphingomyelin (SM) binds the Helicobacter pylori vacuolating toxin (VacA) to the surface of epithelial cells. To evaluate the importance of SM for VacA cellular entry, we characterized toxin uptake and trafficking within cells enriched with synthetic variants of SM, whose intracellular trafficking properties are strictly dependent on the acyl chain lengths of their sphingolipid backbones. While toxin binding to the surface of cells was independent of acyl chain length, cells enriched with 12- or 18-carbon acyl chain variants of SM (e.g. C12-SM or C18-SM) were more sensitive to VacA, as indicated by toxin-induced cellular vacuolation, than those enriched with shorter 2- or 6-carbon variants (e.g. C2-SM or C6-SM). In C18-SM-enriched cells, VacA was taken into cells by a previously described Cdc42-dependent pinocytic mechanism, localized initially to GPI-enriched vesicles, and ultimately trafficked to Rab7/Lamp1 compartments. In contrast, within C2-SM-enriched cells, VacA was taken up at a slower rate by a Cdc42-independent mechanism and trafficked to Rab11 compartments. VacA-associated predominantly with detergent-resistant membranes (DRMs) in cells enriched with C18-SM, but predominantly with non-DRMs in C2-SM-enriched cells. These results suggest that SM is required for targeting VacA to membrane rafts important for subsequent Cdc42-dependent pinocytic cellular entry.
Collapse
Affiliation(s)
- Vijay R Gupta
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
15
|
Tegtmeyer N, Zabler D, Schmidt D, Hartig R, Brandt S, Backert S. Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA. Cell Microbiol 2008; 11:488-505. [PMID: 19046339 DOI: 10.1111/j.1462-5822.2008.01269.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori is the causative agent of gastric pathologies ranging from chronic gastritis to peptic ulcers and even cancer. Virulent strains carrying both the cag pathogenicity island (cagPAI) and the vacuolating cytotoxin VacA are key players in disease development. The cagPAI encodes a type IV secretion system (T4SS) which forms a pilus for injection of the CagA protein into gastric epithelial cells. Injected CagA undergoes tyrosine phosphorylation and induces actin-cytoskeletal rearrangements involved in host cell scattering and elongation. We show here that the CagA-induced responses can be inhibited in strains expressing highly active VacA. Further investigations revealed that VacA does not interfere with known activities of phosphorylated CagA such as inactivation of Src kinase and cortactin dephosphorylation. Instead, we demonstrate that VacA exhibits inactivating activities on the epidermal growth factor receptor EGFR and HER2/Neu, and subsequently Erk1/2 MAP kinase which are important for cell scattering and elongation. Inactivation of vacA gene, downregulation of the VacA receptor RPTP-alpha, addition of EGF or expression of constitutive-active MEK1 kinase restored the capability of H. pylori to induce the latter phenotypes. These data demonstrate that VacA can downregulate CagA's effects on epithelial cells, a novel molecular mechanism showing how H. pylori can avoid excessive cellular damage.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Medical Microbiology, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog 2008; 4:e1000073. [PMID: 18497859 PMCID: PMC2374909 DOI: 10.1371/journal.ppat.1000073] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/15/2008] [Indexed: 12/18/2022] Open
Abstract
The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells. Sensitivity to toxins produced by pathogenic bacteria is largely dictated by the presence or absence of toxin receptors on the plasma membrane of host cells. VacA is an important toxin produced by the pathogenic bacterium Helicobacter pylori, which infects the human stomach and causes gastric ulcer disease and stomach cancer. VacA binds and enters human cells, and induces several changes resulting ultimately in the death of the intoxicated cells. However, the identity of the VacA receptor responsible for toxin binding and function has remained a topic of debate. In this paper, we demonstrate that sphingomyelin, a lipid on the surface of cells with important membrane structural and signaling properties, functions as a VacA receptor. We demonstrate that VacA binds to sphingomyelin, and that presence or absence of sphingomyelin on the plasma membrane dictates how much VacA binds to the cell surface, and therefore, how sensitive cells are to the toxin. The identification of sphingomyelin also provides a conceptual framework for how VacA may enter cells through specialized functional domains on the surface of cells. This is the first example of a bacterial toxin that exploits sphingomyelin as a receptor, and future work will focus on developing strategies to block VacA interactions with sphingomyelin, thereby protecting cells from the downstream consequences of toxin action.
Collapse
Affiliation(s)
- Vijay R. Gupta
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Hetal K. Patel
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Sean S. Kostolansky
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Roberto A. Ballivian
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Joseph Eichberg
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun 2008; 76:3293-303. [PMID: 18443091 DOI: 10.1128/iai.00365-08] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with Helicobacter pylori cagA-positive strains is associated with gastritis, ulcerations, and gastric cancer. CagA is translocated into infected epithelial cells by a type IV secretion system and can be tyrosine phosphorylated, inducing signal transduction and motogenic responses in epithelial cells. Cellular cholesterol, a vital component of the membrane, contributes to membrane dynamics and functions and is important in VacA intoxication and phagocyte evasion during H. pylori infection. In this investigation, we showed that cholesterol extraction by methyl-beta-cyclodextrin reduced the level of CagA translocation and phosphorylation. Confocal microscope visualization revealed that a significant portion of translocated CagA was colocalized with the raft marker GM1 and c-Src during infection. Moreover, GM1 was rapidly recruited into sites of bacterial attachment by live-cell imaging analysis. CagA and VacA were cofractionated with detergent-resistant membranes (DRMs), suggesting that the distribution of CagA and VacA is associated with rafts in infected cells. Upon cholesterol depletion, the distribution shifted to non-DRMs. Accordingly, the CagA-induced hummingbird phenotype and interleukin-8 induction were blocked by cholesterol depletion. Raft-disrupting agents did not influence bacterial adherence but did significantly reduce internalization activity in AGS cells. Together, these results suggest that delivery of CagA into epithelial cells by the bacterial type IV secretion system is mediated in a cholesterol-dependent manner.
Collapse
|
18
|
Ki MR, Lee HR, Goo MJ, Hong IH, Do SH, Jeong DH, Yang HJ, Yuan DW, Park JK, Jeong KS. Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G635-47. [PMID: 18096609 DOI: 10.1152/ajpgi.00281.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori vacuolating cytotoxin A (VacA) has been considered as an apoptosis-inducing factor. Here, we investigated the mechanism of VacA-induced apoptosis in relation to the defense mechanism and MAP kinases pathway in gastric epithelial cells. AGS cells exposed to enriched VacA extracts affected the level of SOD-1 and villin. We further investigated the role of VacA in those inductions using a functional recombinant VacA (rVacA). Activation of p38 MAPK and Bax dimerization by rVacA were increased in a dose-dependent manner. rVacA-induced ERK1/2 MAPK activation was maximal at 30 min and 4 h and 1-4 microg/ml of rVacA. rVacA-induced SOD-1 expression was considerably diminished by inhibiting ERK1/2 MAPK and it was slightly increased by inhibiting p38 MAPK. rVacA increased or decreased villin expression depending on dose and exposure time and its expression was mainly appeared in the contractile actin ring of the dividing cells. Despite its cytoprotective effect, SB-203580, a p38 inhibitor, was unlikely to reduce VacA-induced Bax dimerization and rather inhibited villin and Bcl2 expression, indicating that p38 may also play a role in cell proliferation or differentiation for survival after VacA intoxication. Furthermore, p38 inhibitor accelerated rVacA-induced cell death after exposure of AGS cells to H(2)O(2) but ERK1/2 inhibitor protected cells from H(2)O(2) insult. These results suggest that SOD-1 and villin are expressed differentially upon VacA insult depending on dose and exposure time via ERK and p38 MAP kinases; decrease in SOD-1 and villin expression coupled with Bax dimerization leads to apoptosis of gastric epithelial cells.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Buk-ku, Daegu City, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nishi K, Saigo K. Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J Biol Chem 2007; 282:27503-27517. [PMID: 17644515 DOI: 10.1074/jbc.m703810200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
VP22 is a structural protein of the herpes simplex virus and has been reported to possess unusual trafficking properties. Here we examined the mechanism of cellular uptake of VP22 using a fusion protein between the C-terminal half of VP22 and green fluorescent protein (GFP). Adsorption of VP22-GFP onto a cell surface required heparan sulfate proteoglycans and basic amino acids, in particular, Arg-164 of VP22. Inhibitor treatment, RNA interference, expression of dominant-negative mutant genes, and confocal microscopy all indicated that VP22-GFP enters cells through an endocytic pathway independent of clathrin and caveolae but dependent on dynamin and Arf6 activity. As with CD59 (a lipid raft marker), cell-surface VP22-GFP signals were resistant to Triton X-100 treatment but only partially overlapped cell-surface CD59 signals. Furthermore, unlike other lipid raft-mediated endocytic pathways, no Rho family GTPase was required for VP22-GFP internalization. Internalized VP22 initially entered early endosomes and then moved to lysosomes and possibly recycling endosomes.
Collapse
Affiliation(s)
- Kenji Nishi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Gauthier NC, Monzo P, Gonzalez T, Doye A, Oldani A, Gounon P, Ricci V, Cormont M, Boquet P. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. ACTA ACUST UNITED AC 2007; 177:343-54. [PMID: 17438076 PMCID: PMC2064141 DOI: 10.1083/jcb.200609061] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed by a clathrin- independent pathway into vesicles named GPI-AP–enriched early endosomal compartments (GEECs). We recently showed that the vacuolating toxin VacA secreted by Helicobacter pylori is endocytosed into the GEECs (Gauthier, N.C., P. Monzo, V. Kaddai, A. Doye, V. Ricci, and P. Boquet. 2005. Mol. Biol. Cell. 16:4852–4866). Unlike GPI-APs that are mostly recycled back to the plasma membrane, VacA reaches early endosomes (EEs) and then late endosomes (LEs), where vacuolation occurs. In this study, we used VacA to study the trafficking pathway between GEECs and LEs. We found that VacA routing from GEECs to LEs required polymerized actin. During this trafficking, VacA was transferred from GEECs to EEs associated with polymerized actin structures. The CD2-associated protein (CD2AP), a docking protein implicated in intracellular trafficking, bridged the filamentous actin (F-actin) structures with EEs containing VacA. CD2AP regulated those F-actin structures and was required to transfer VacA from GEECs to LEs. These results demonstrate that sorting from GEECs to LEs requires dynamic F-actin structures on EEs.
Collapse
Affiliation(s)
- Nils C Gauthier
- Unité 627 and 2Unité 568, Institut National de la Santé et de la Recherche Medicale, Faculty of Medicine, 06107 Nice, Cedex 02, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schmitt HP. Profiling the culprit in Alzheimer's disease (AD): bacterial toxic proteins - Will they be significant for the aetio-pathogenesis of AD and the transmissible spongiform encephalopathies? Med Hypotheses 2007; 69:596-609. [PMID: 17337124 DOI: 10.1016/j.mehy.2007.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/02/2007] [Indexed: 11/25/2022]
Abstract
The aetiology of Alzheimer's disease (AD) and the transmissible spongiform encephalopathies (tSEs) is still elusive. The concept that prion protein (PrP(Sc)) is the aetiological agent (infectious protein) in the tSEs has recently been questioned. In AD, the cause of the aberrant cleavage of the beta-amyloid precursor protein (APP), resulting in the production of amyloidogenic Abeta fragments, has yet remained obscure. Moreover, the amyloid hypothesis of AD has been seriously challenged. In both AD and the tSEs, pathogens of various nature, including bacteria, have been discussed as possible causal factors. However, aetiological considerations have completely neglected microbial products such as the bacterial toxic proteins (BTPs). The present paper is aimed at drawing a "culprit profile" of these toxic molecules that can exert, at low-dosage, neuro-degeneration through various effects. Clearly, BTPs may affect cell-surface receptors including modulatory amine transmitter receptor expression, block neuro-transmitter release, increase intra-cellular Ca(2+) levels, affect intra-cellular signal transduction, change cyto-skeletal processing, alter synaptic transmission, influence APP proteolysis, interact with cell surface proteins like PrP(C) or their GPI anchors, act as chaperones inducing conformational change in proteins (e.g., PrP(C) to PrP(Sc)), alter lipid membrane integrity by affecting phospholipases or forming pores and channels, induce vacuolar (spongiform) change and elicit inflammatory reactions with cytokine production including cytokines that were demonstrated in the AD brain. Like PrP(Sc), BTPs can be heat-stable and acid-resistant. BTPs can meet the key-proteins of AD and tSEs in the lipid-rich domains of the plasma membrane called rafts. Basically, this might enable them to initiate a large variety of unfavourable molecular events, eventually resulting in pathogenetic cascades as in AD and the tSEs. All in all, their profile lends support to the hypothesis that BTPs might represent relevant culprits capable to cue and/or promote neuro-degeneration in both AD and the tSEs.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Germany.
| |
Collapse
|
22
|
Brest P, Hofman V, Lassalle S, Césaro A, Ricci V, Selva E, Auberger P, Hofman P. Human polymorphonuclear leukocytes are sensitive in vitro to Helicobacter pylori vaca toxin. Helicobacter 2006; 11:544-55. [PMID: 17083376 DOI: 10.1111/j.1523-5378.2006.00457.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Interactions between bacterial components and polymorphonuclear leukocytes (PMNL) play a major pathogenic role in Helicobacter pylori-associated diseases. Activation of PMNL can be induced by contact with whole bacteria or by different H. pylori products released in the extracellular space either by active secretion or by bacterial autolysis. Among these products, H. pylori VacA is a secreted toxin inducing vacuolation and apoptosis of epithelial cells. METHODS AND RESULTS We found that non-opsonic human PMNL were sensitive to the vacuolating effect of VacA+ broth culture filtrate (BCF) and of purified VacA toxin. PMNL incubated with VacA+ BCF showed Rab7-positive large intracytoplasmic vacuoles. PMNL preincubation with H. pylori BCF of different phenotypes dramatically potentialized the oxidative burst induced by zymosan, increased phagocytosis of opsonized fluorescent beads, and up-regulated CD11b cell surface expression, but independently of the BCF VacA phenotype. Moreover, by using purified VacA toxin we showed that vacuolation induced in PMNL did not modify the rate of spontaneous PMNL apoptosis measured by caspase 3 activity. CONCLUSIONS Taken together, these data showed that human PMNL is a sensitive cell population to H. pylori VacA toxin. However, activation of PMNL (i.e., oxidative burst, phagocytosis, CD11b up-regulation) and PMNL apoptosis are not affected by VacA, raising question about the role of VacA toxin on PMNL in vivo.
Collapse
Affiliation(s)
- Patrick Brest
- INSERM ERI-21, Pasteur'Hospital and Faculty of Medicine, University of Nice, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakayama M, Hisatsune J, Yamasaki E, Nishi Y, Wada A, Kurazono H, Sap J, Yahiro K, Moss J, Hirayama T. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells. Infect Immun 2006; 74:6571-80. [PMID: 17030583 PMCID: PMC1698068 DOI: 10.1128/iai.00356-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase beta (RPTPbeta) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPbeta, VacA, after binding to RPTPbeta in non-lipid raft microdomains on the cell surface, is localized with RPTPbeta in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-beta-cyclodextrin (MCD) did not block binding to RPTPbeta but inhibited translocation of VacA with RPTPbeta to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPbeta. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reig N, van der Goot FG. About lipids and toxins. FEBS Lett 2006; 580:5572-9. [PMID: 16962591 DOI: 10.1016/j.febslet.2006.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/25/2022]
Abstract
Many mono or multicellular organisms secrete soluble proteins, referred to as protein toxins, which alter the behavior of foreign, or target cells, possibly leading to their death. These toxins affect either the cell membrane by forming pores or modifying lipids, or some intracellular target. To reach this target, they must cross one of the cellular membranes, generally that of an intracellular organelle. As described in this minireview, lipids play crucial roles in the intoxication process of most if not all toxins, by allowing/promoting binding, endocytosis, trafficking and/or translocation into the cytoplasm.
Collapse
Affiliation(s)
- Núria Reig
- Ecole Polytechnique de Lausanne, Institute of Global Health, 1015 Lausanne, Switzerland
| | | |
Collapse
|
25
|
Radosz-Komoniewska H, Bek T, Jóźwiak J, Martirosian G. Pathogenicity of Helicobacter pylori infection. Clin Microbiol Infect 2005; 11:602-10. [PMID: 16008611 DOI: 10.1111/j.1469-0691.2005.01207.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous Helicobacter pylori virulence factors, including various enzymes (urease, catalase, lipase, phospholipase and proteases), vacuolating cytotoxin (a product of expression of the vacA gene), and the immunogenic protein CagA, encoded by the cagA gene localised in the H. pylori pathogenicity island, are involved in the pathomechanism of infection caused by these organisms. This review presents the current state of knowledge concerning the molecular mechanisms and epidemiology of H. pylori infection, based on the published literature and recent unpublished observations.
Collapse
Affiliation(s)
- H Radosz-Komoniewska
- Department of Medical Microbiology, Medical University of Silesia, Katowice, Poland
| | | | | | | |
Collapse
|
26
|
Czajkowsky DM, Iwamoto H, Szabo G, Cover TL, Shao Z. Mimicry of a host anion channel by a Helicobacter pylori pore-forming toxin. Biophys J 2005; 89:3093-101. [PMID: 16100263 PMCID: PMC1366806 DOI: 10.1529/biophysj.105.066746] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial pore-forming toxins have traditionally been thought to function either by causing an essentially unrestricted flux of ions and molecules across a membrane or by effecting the transmembrane transport of an enzymatically active bacterial peptide. However, the Helicobacter pylori pore-forming toxin, VacA, does not appear to function by either of these mechanisms, even though at least some of its effects in cells are dependent on its pore-forming ability. Here we show that the VacA channel exhibits two of the most characteristic electrophysiological properties of a specific family of cellular channels, the ClC channels: an open probability dependent on the molar ratio of permeable ions and single channel events resolvable as two independent, voltage-dependent transitions. The sharing of such peculiar properties by VacA and host ClC channels, together with their similar magnitudes of conductance, ion selectivities, and localization within eukaryotic cells, suggests a novel mechanism of toxin action in which the VacA pore largely mimics the electrophysiological behavior of a host channel, differing only in the membrane potential at which it closes. As a result, VacA can perturb, but not necessarily abolish, the homeostatic ionic imbalance across a membrane and so change cellular physiology without necessarily jeopardizing vitality.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
27
|
Gauthier NC, Monzo P, Kaddai V, Doye A, Ricci V, Boquet P. Helicobacter pylori VacA cytotoxin: a probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Mol Biol Cell 2005; 16:4852-66. [PMID: 16055501 PMCID: PMC1237088 DOI: 10.1091/mbc.e05-05-0398] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The vacuolating cytotoxin VacA is a major virulence factor of Helicobacter pylori, a bacterium responsible for gastroduodenal ulcers and cancer. VacA associates with lipid rafts, is endocytosed, and reaches the late endocytic compartment where it induces vacuolation. We have investigated the endocytic and intracellular trafficking pathways used by VacA, in HeLa and gastric AGS cells. We report here that VacA was first bound to plasma-membrane domains localized above F-actin structures that were controlled by the Rac1 GTPase. VacA was subsequently pinocytosed by a clathrin-independent mechanism into cell peripheral early endocytic compartments lacking caveolin 1, the Rab5 effector early endosomes antigen-1 (EEA1) and transferrin. These compartments took up fluid-phase (as evidenced by the accumulation of fluorescent dextran) and glycosylphosphatidylinositol-anchored proteins (GPI-APs). VacA pinocytosis was controlled by Cdc42 and did not require cellular tyrosine kinases, dynamin 2, ADP-ribosylating factor 6, or RhoA GTPase activities. VacA was subsequently routed to EEA1-sorting endosomes and then sorted to late endosomes. During all these different endocytic steps, VacA was continuously associated with detergent resistant membrane domains. From these results we propose that VacA might be a valuable probe to study raft-associated molecules, pinocytosed by a clathrin-independent mechanism, and routed to the degradative compartment.
Collapse
Affiliation(s)
- Nils C Gauthier
- INSERM U 627, IFR 50, Faculté de Médecine, 06107 Nice, France
| | | | | | | | | | | |
Collapse
|
28
|
Fitchen N, Letley DP, O'Shea P, Atherton JC, Williams P, Hardie KR. All subtypes of the cytotoxin VacA adsorb to the surface of Helicobacter pylori post-secretion. J Med Microbiol 2005; 54:621-630. [PMID: 15947426 DOI: 10.1099/jmm.0.45946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major secreted virulence factor of Helicobacter pylori, the vacuolating cytotoxin VacA, is known to insert into eukaryotic membranes and has been observed in association with the surface of H. pylori cells that are actively producing it. Here, it is demonstrated that VacA is capable of interacting with the surface of H. pylori and Escherichia coli after secretion. It is shown that this interaction is resistant to disruption of electrostatic and hydrophobic forces, and that it appears to occur despite truncation of LPS and the removal of trypsin-accessible surface proteins. Adsorption to bacterial cell surfaces was independent of the VacA subtype, suggesting that it is not mediated through recognition of a known receptor by the VacA p58 subunit. Similarly, adsorption to bacterial cell surfaces is unlikely to be instigated by the extreme N-terminus of VacA, since a hydrophilic extension at this location that is known to disrupt VacA-induced vacuolation did not interfere with adsorption to H. pylori cells.
Collapse
Affiliation(s)
- Nicola Fitchen
- Institute of Infection, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RH, UK 2Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK 3School of Biomedical Sciences, Queen's Medical School, Nottingham NG7 2UH, UK
| | - Darren P Letley
- Institute of Infection, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RH, UK 2Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK 3School of Biomedical Sciences, Queen's Medical School, Nottingham NG7 2UH, UK
| | - Paul O'Shea
- Institute of Infection, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RH, UK 2Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK 3School of Biomedical Sciences, Queen's Medical School, Nottingham NG7 2UH, UK
| | - John C Atherton
- Institute of Infection, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RH, UK 2Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK 3School of Biomedical Sciences, Queen's Medical School, Nottingham NG7 2UH, UK
| | - Paul Williams
- Institute of Infection, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RH, UK 2Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK 3School of Biomedical Sciences, Queen's Medical School, Nottingham NG7 2UH, UK
| | - Kim R Hardie
- Institute of Infection, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RH, UK 2Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK 3School of Biomedical Sciences, Queen's Medical School, Nottingham NG7 2UH, UK
| |
Collapse
|
29
|
Pauchet Y, Luton F, Castella C, Charles JF, Romey G, Pauron D. Effects of a mosquitocidal toxin on a mammalian epithelial cell line expressing its target receptor. Cell Microbiol 2005; 7:1335-44. [PMID: 16098220 DOI: 10.1111/j.1462-5822.2005.00560.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The spread of diseases transmitted by Anopheles and Culex mosquitoes, such as malaria and West Nile fever, is a growing concern for human health. Bacillus sphaericus binary toxin (Bin) is one of the few available bioinsecticides able to control populations of these mosquitoes efficiently. We previously showed that Bin binds to Cpm1, an alpha-glucosidase located on the apical side of Culex larval midgut epithelium. We analysed the effects of Bin by expressing a construct encoding Cpm1 in the mammalian epithelial MDCK cell line. Cpm1 is targeted to the apical side of polarized MDCK, where it is anchored by glycosylphosphatidylinositol (GPI) and displays alpha-glucosidase activity. Bin bound to transfected cells and induced a non-specific current presumably related to the opening of pores. The formation of these pores may be related to the location of the toxin/receptor complex in lipid raft microdomains. Finally, Bin promoted the time-dependent appearance of intracytoplasmic vacuoles but did not drive cell lysis. Thus, the dual functionality (enzyme/toxin receptor) of Cpm1 is fully conserved in MDCK cells and Cpm1 is an essential target protein for Bin cytotoxicity in Culex mosquitoes.
Collapse
Affiliation(s)
- Yannick Pauchet
- Institut National de la Recherche Agronomique, UMR 1112 Réponses des Organismes aux Stress Environnementaux, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Bacterial protein toxins alter eukaryotic cellular processes and enable bacteria to successfully colonize their hosts. In recent years, there has been increased recognition that many bacterial toxins are multifunctional proteins that can have pleiotropic effects on mammalian cells and tissues. In this review, we examine a multifunctional toxin (VacA) that is produced by the bacterium Helicobacter pylori. The actions of H. pylori VacA represent a paradigm for how bacterial secreted toxins contribute to colonization and virulence in multiple ways.
Collapse
Affiliation(s)
- Timothy L Cover
- Departments of Medicine, and Microbiology and Immunology, Division of Infectious Diseases, Vanderbilt University School of Medicine and Veterans Administration Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
31
|
Abstract
Research in the last year has provided new insights into the function of the the cag-associated type IV secretion system and the vacuolating toxin VacA. A quite new aspect was disclosed by the finding that Helicobacter pylori in Mongolian gerbils colonizes a very distinct topology in the gastric mucous layer, obviously providing optimal conditions for long-term survival. Further research activities focused on H. pylori ammonia and metal metabolism as well as on bacterial stress defence mechanisms. Differential expression of approximately 7% of the bacterial genome was found at low pH suggesting that H. pylori has evolved a multitude of acid-adaptive mechanisms. VacA was shown to interrupt phagosome maturation in macrophage cell lines as well as to modulate and interfere with T lymphocyte immunological functions. Gastric mucosa as well as the H. pylori-infected epithelial cell line AGS strongly express IL-8 receptor A and B, which might contribute to the augmentation of the inflammatory response. Accumulating evidence implicates genetic variation in the inflammatory response to H. pylori in the etiology of the increased risk of gastric cancer after H. pylori infection. The chronic imbalance between apoptosis and cell proliferation is the first step of gastric carcinogenesis. In this regard, it was demonstrated that coexpression of two H. pylori proteins, CagA and HspB, in AGS cells, caused an increase in E2F transcription factor, cyclin D3, and phosphorylated retinoblastoma protein. Taken together, we now have a better understanding of the role of different virulence factors of H. pylori. There is still a lot to be learned, but the promising discoveries summarized here, demonstrate that the investigation of the bacterial survival strategies will give novel insights into pathogenesis and disease development.
Collapse
Affiliation(s)
- Paul Hofman
- INSERM 0215 and Laboratory of Clinical and Experimental Pathology, Faculty of Medicine and Pasteur Hospital, University of Nice, 06002 Nice, France.
| | | | | | | | | | | |
Collapse
|
32
|
Gebert B, Fischer W, Haas R. The Helicobacter pylori vacuolating cytotoxin: from cellular vacuolation to immunosuppressive activities. Rev Physiol Biochem Pharmacol 2004; 152:205-20. [PMID: 15549607 DOI: 10.1007/s10254-004-0027-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori is a highly successful bacterial pathogen of humans, infecting the stomach of more than half of the world's population. The H. pylori infection results in chronic gastritis, eventually followed by peptic ulceration and, more rarely, gastric cancer. H. pylori has developed a unique set of virulence factors, actively supporting its survival in the special ecological niche of the human stomach. Vacuolating cytotoxin (VacA) and cytotoxin-associated antigen A (CagA) are two major bacterial virulence factors involved in host cell modulation. VacA, so far mainly regarded as a cytotoxin of the gastric epithelial cell layer, now turns out to be a potent immunomodulatory toxin, targeting the adapted immune system. Thus, in addition to the well-known vacuolating activity, VacA has been reported to induce apoptosis in epithelial cells, to affect B lymphocyte antigen presentation, to inhibit the activation and proliferation of T lymphocytes, and to modulate the T cell-mediated cytokine response.
Collapse
Affiliation(s)
- B Gebert
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, LMU München Pettenkoferstr., München, Germany
| | | | | |
Collapse
|