1
|
Kumar SD, Park J, Radhakrishnan NK, Aryal YP, Jeong GH, Pyo IH, Ganbaatar B, Lee CW, Yang S, Shin Y, Subramaniyam S, Lim YJ, Kim SH, Lee S, Shin SY, Cho SJ. Novel Leech Antimicrobial Peptides, Hirunipins: Real-Time 3D Monitoring of Antimicrobial and Antibiofilm Mechanisms Using Optical Diffraction Tomography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409803. [PMID: 39792785 DOI: 10.1002/advs.202409803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time. Here, a computational analysis of the leech transcriptome using an advanced AI-based peptide screening strategy with ODT to identify potential AMPs is employed. Among the 19 potential AMPs identified, hirunipin 2 demonstrates potent antibacterial activity, low mammalian cytotoxicity, and minimal hemolytic effects. It demonstrates efficacy comparable to melittin, resistance to physiological salts and human serum, and a low likelihood of inducing bacterial resistance. Microscopy and 3D-ODT confirm its disruption of bacterial membranes and intracellular aggregation, leading to cell death. Notably, hirunipin 2 effectively inhibits biofilm formation, eradicates preformed biofilms, and synergizes with antibiotics against multidrug-resistant Acinetobacter baumannii (MDRAB) by enhancing membrane permeability. Additionally, hirunipin 2 significantly suppresses pro-inflammatory cytokine expression in LPS-stimulated macrophages, highlighting its anti-inflammatory properties. These findings highlight hirunipin 2 as a strong candidate for developing novel antibacterial, anti-inflammatory, and antibiofilm therapies, particularly against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- S Dinesh Kumar
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jeongwon Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea
- Department of Animal Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Naveen Kumar Radhakrishnan
- Department of Biomedical Sciences, Graduate School, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yam Prasad Aryal
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Geon-Hwi Jeong
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - In-Hyeok Pyo
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Byambasuren Ganbaatar
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sungtae Yang
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Younhee Shin
- Research and Development Center, Insilicogen Inc, Yongin-si, Gyeonggi-do, 16954, Republic of Korea
| | | | - Yu-Jin Lim
- Research and Development Center, Insilicogen Inc, Yongin-si, Gyeonggi-do, 16954, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
2
|
Jiao C, Ruan J, Sun W, Zhang X, Liu X, Sun G, Liu C, Sun C, Tian X, Yang D, Chen L, Wang Z. Molecular characterization, expression and antibacterial function of a macin, HdMac, from Haliotis discus hannai. J Invertebr Pathol 2024; 204:108113. [PMID: 38631559 DOI: 10.1016/j.jip.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.
Collapse
Affiliation(s)
- Chunli Jiao
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Wei Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xinze Zhang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiaobo Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Guodong Sun
- Tianjin Xiqing District Agriculture and Rural Development Service Center, Tianjin 300380, PR China
| | - Caili Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Chunxiao Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Lizhu Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| | - Zhongquan Wang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| |
Collapse
|
3
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
4
|
Boidin-Wichlacz C, Andersen AC, Jouy N, Hourdez S, Tasiemski A. A single coelomic cell type is involved in both immune and respiratory functions of the coastal bioindicator annelid: Capitella C-Channel1 from the English Channel. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105132. [PMID: 38181832 DOI: 10.1016/j.dci.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
The polychaete Capitella is a typical member of the 'thiobiome', and is commonly used as an eutrophication indicator species in environmental assessment studies. To deal with a sulfide-rich and poisonous surrounding, cells in close contact with the environment, and thus able to play a major role in detoxication and survival, are circulating cells. This work aimed to morpho-functionally describe the circulating coelomic cells of Capitella from the English Channel inhabiting the sulfide-rich mud in Roscoff Harbor. In general, worms have three types of circulating cells, granulocytes involved in bacterial clearance and defense against microorganisms, eleocytes with an essentially trophic role and elimination of cellular waste, and erythrocytes which play a role in detoxification and respiration via their intracellular hemoglobin. By combining diverse microscopic and cellular approaches, we provide evidence that Capitella does not possess granulocytes and eleocytes, but rather a single abundant rounded cell type with the morphological characteristics of erythrocytes i.e. small size and production of intracellular hemoglobin. Surprisingly, our data show that in addition to their respiratory function, these red cells could exert phagocytic activities, and produce an antimicrobial peptide. This latter immune role is usually supported by granulocytes. Our data highlight that the erythrocytes of Capitella from the English Channel differ in morphology and bear more functions than the erythrocytes of other annelids. The simplicity of this multi-task (or polyvalent) single-cell type makes Capitella an interesting model for studies of the impact of the environment on the immunity of this bioindicator species.
Collapse
Affiliation(s)
- Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Ann C Andersen
- Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Place G. Teissier, 29680, Roscoff, France
| | - Nathalie Jouy
- UMS 2014-US 41- PLBS- Plateforme Lilloise en Biologie & Santé, BioImaging Center Lille (BICeL), Univ, Lille, France
| | - Stéphane Hourdez
- Observatoire Oceanologique de Banyuls-sur-Mer, UMR 8222, CNRS-SU Laboratoire d'Ecogéochimie des Environnements Benthiques, avenue Pierre Fabre, 66650, Banyuls-sur-mer, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
5
|
Kaygorodova IA. Role of Antimicrobial Peptides in Immunity of Parasitic Leeches. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 511:183-195. [PMID: 37833572 DOI: 10.1134/s0012496623700436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 10/15/2023]
Abstract
The review summarizes the current state of knowledge about leech immunity, with emphasis on the special role of antimicrobial peptides (AMPs), and highlights the wide variety of primary AMP structures, which seem to correlate with a variety of life strategies and the ecology of ectoparasites. Antimicrobial proteins and AMPs are a diverse class of natural molecules that are produced in all living organisms in response to an attack by a pathogen and are essential components of the immune system. AMPs can have a wide range of antibiotic activities against foreign and opportunistic bacteria, fungi, and viruses. AMPs play an important role in selection of colonizing bacterial symbionts, thus helping multicellular organisms to cope with certain environmental problems. AMPs are especially important for invertebrates, which lack an adaptive immune system. Although many AMPs are similar in physicochemical properties (a total length from 10 to 100 amino acids, a positive total charge, or a high cysteine content), their immunomodulatory activities are specific for each AMP type.
Collapse
Affiliation(s)
- I A Kaygorodova
- Limnological Institute, Siberian Branch, Russian Acedemy of Sciences, Irkutsk, Russia.
| |
Collapse
|
6
|
Bruno R, Boidin-Wichlacz C, Melnyk O, Zeppilli D, Landon C, Thomas F, Cambon MA, Lafond M, Mabrouk K, Massol F, Hourdez S, Maresca M, Jollivet D, Tasiemski A. The diversification of the antimicrobial peptides from marine worms is driven by environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162875. [PMID: 36933721 DOI: 10.1016/j.scitotenv.2023.162875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Antimicrobial peptides (AMPs) play a key role in the external immunity of animals, offering an interesting model for studying the influence of the environment on the diversification and evolution of immune effectors. Alvinellacin (ALV), arenicin (ARE) and polaricin (POL, a novel AMP identified here), characterized from three marine worms inhabiting contrasted habitats ('hot' vents, temperate and polar respectively), possess a well conserved BRICHOS domain in their precursor molecule despite a profound amino acid and structural diversification of the C-terminal part containing the core peptide. Data not only showed that ARE, ALV and POL display an optimal bactericidal activity against the bacteria typical of the habitat where each worm species lives but also that this killing efficacy is optimal under the thermochemical conditions encountered by their producers in their environment. Moreover, the correlation between species habitat and the cysteine contents of POL, ARE and ALV led us to investigate the importance of disulfide bridges in their biological efficacy as a function of abiotic pressures (pH and temperature). The construction of variants using non-proteinogenic residues instead of cysteines (α-aminobutyric acid variants) leading to AMPs devoid of disulfide bridges, provided evidence that the disulfide pattern of the three AMPs allows for a better bactericidal activity and suggests an adaptive way to sustain the fluctuations of the worm's environment. This work shows that the external immune effectors exemplified here by BRICHOS AMPs are evolving under strong diversifying environmental pressures to be structurally shaped and more efficient/specific under the ecological niche of their producer.
Collapse
Affiliation(s)
- Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Daniela Zeppilli
- Univ. Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, UPR 4301, Orleans, France
| | - Frédéric Thomas
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Marie-Anne Cambon
- Univ. Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Mickael Lafond
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille F-13013, France
| | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR 7273, ICR, Marseille F-13013, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphane Hourdez
- Sorbonne Université, LECOB, UMR 8222, Observatoire Océanologique de Banyuls, 1 Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille F-13013, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, Roscoff F-29688, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
7
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
8
|
Zakian A, Ahmadi HA, Keleshteri MH, Madani A, Tehrani-Sharif M, Rezaie A, Davoodi F, Kish GF, Raisi A, Langerudi MT, Pasha MBM. Study on the effect of medicinal leech therapy (Hirudo medicinalis) on full-thickness excisional wound healing in the animal model. Res Vet Sci 2022; 153:153-168. [PMID: 36395588 DOI: 10.1016/j.rvsc.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
The possible impacts of alternative and conventional medicines on wound healing are now of growing interest. This study aimed to evaluate and elucidate the wound healing activity of medicinal leech therapy in wound excision of the rat model. After a round, full-thickness excision was made in the dorsal region of the body, the animals (n = 30) were randomly divided into three equal groups: I) the treatment group (MLT), where the wounds received leech treatment; II) the positive control group (PC), where the wounds received 1% sodium phenytoin treatment; and III) the negative control group (NC), where the wounds did not receive any treatment. On days 6 and 16, wound biopsy specimens were taken, and prepared sections were stained using various methods. The contraction rate differed significantly (P < 0.05) between the NC group and the other groups. The histopathological evaluation revealed that MLT group showed an accelerated healing process and lower inflammatory response compared to other groups. In ML-treated group maturation and remodeling of collagen had occurred, while in 1% sodium phenytoin treated group, proliferation was the prominent feature. Results showed that the fibroblast was significantly lower in the NC group in comparison to other groups. The number of MNC, s, and PMN, s was significantly higher in the NC group compared to other groups (P < 0.0001). In our study, medicinal leech therapy had a higher success rate in healing for the treatment of excisional wounds in animal models.
Collapse
Affiliation(s)
- Amir Zakian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Hamid Amir Ahmadi
- DVM, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran
| | | | - Amir Madani
- DVM, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran
| | - Meysam Tehrani-Sharif
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran
| | - Annahita Rezaie
- Department of Pathobiology, College of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran
| | - Farshid Davoodi
- Resident in Veterinary Surgery, Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ghasem Farjani Kish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Matin Taghipour Langerudi
- DVM, Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar Branch, Shabestar, Iran
| | - Milad Babaii Moghadam Pasha
- DVM, Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| |
Collapse
|
9
|
Proteomic and Transcriptomic Responses Enable Clams to Correct the pH of Calcifying Fluids and Sustain Biomineralization in Acidified Environments. Int J Mol Sci 2022; 23:ijms232416066. [PMID: 36555707 PMCID: PMC9781830 DOI: 10.3390/ijms232416066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.
Collapse
|
10
|
Canesi L, Auguste M, Balbi T, Prochazkova P. Soluble mediators of innate immunity in annelids and bivalve mollusks: A mini-review. Front Immunol 2022; 13:1051155. [PMID: 36532070 PMCID: PMC9756803 DOI: 10.3389/fimmu.2022.1051155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Annelids and mollusks, both in the superphylum of Lophotrochozoa (Bilateria), are important ecological groups, widespread in soil, freshwater, estuarine, and marine ecosystems. Like all invertebrates, they lack adaptive immunity; however, they are endowed with an effective and complex innate immune system (humoral and cellular defenses) similar to vertebrates. The lack of acquired immunity and the capacity to form antibodies does not mean a lack of specificity: invertebrates have evolved genetic mechanisms capable of producing thousands of different proteins from a small number of genes, providing high variability and diversity of immune effector molecules just like their vertebrate counterparts. This diversity allows annelids and mollusks to recognize and eliminate a wide range of pathogens and respond to environmental stressors. Effector molecules can kill invading microbes, reduce their pathogenicity, or regulate the immune response at cellular and systemic levels. Annelids and mollusks are "typical" lophotrochozoan protostome since both groups include aquatic species with trochophore larvae, which unite both taxa in a common ancestry. Moreover, despite their extensive utilization in immunological research, no model systems are available as there are with other invertebrate groups, such as Caenorhabditis elegans or Drosophila melanogaster, and thus, their immune potential is largely unexplored. In this work, we focus on two classes of key soluble mediators of immunity, i.e., antimicrobial peptides (AMPs) and cytokines, in annelids and bivalves, which are the most studied mollusks. The mediators have been of interest from their first identification to recent advances in molecular studies that clarified their role in the immune response.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Petra Prochazkova,
| |
Collapse
|
11
|
Amparyup P, Sungkaew S, Charoensapsri W, Chumtong P, Yocawibun P, Tapaneeyaworawong P, Wongpanya R, Imjongjirak C. RNA-seq transcriptome analysis and identification of the theromacin antimicrobial peptide of the copepod Apocyclops royi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104464. [PMID: 35691054 DOI: 10.1016/j.dci.2022.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Copepods, including Apocyclops royi, are small aquatic crustaceans and one of the important foods for fish and shellfish larvae. However, studies of the host-pathogen interactions and understanding of infectious disease in copepods are still very limited, yet they are likely to be a significant factor in the sustainable development of copepod aquaculture. In the present study, we performed de novo RNA sequence analysis of A. royi-TH (a Thai isolate of A. royi), which yielded 4.80 Gb bases of clean data and a total of 29,786 unigenes. Annotation was then performed by comparison against seven functional databases, yielding 17,617 (NR: 59.15%), 2,969 (NT: 9.97%), 15,023 (SwissProt: 50.44%), 14,543 (KOG: 48.82%), 15,077 (KEGG: 50.62%), 6,763(GO: 22.71%), and 15,841 (InterPro: 53.18%) unigenes. In comparison to the components of the shrimp Toll pathway, LGBP, Spätzle, Toll receptors, MyD88, Pelle, TRAF6, Dorsal, and Cactus homologs were successfully identified in A. royi-TH. Additionally, a novel antimicrobial peptide (Theromacin-like) was characterized in A. royi (ArTM-like). The ArTM-like ORF was 279 bp and predicted to encode for 92 amino acid residues, with a mature peptide of 75 amino acids and a molecular mass of 8.56 kDa. The genomic organization of the ArTM-like gene consisted of three exons and two introns. Expression analysis indicated that ArTM-like mRNA was abundantly expressed in copepodid and adult stages as an immune responsive gene after infection with the pathogenic Vibrio parahaemolyticus-(AHPND)-causing strain. Altogether, the knowledge obtained in this study will provide a basis for future functional studies of the molecular mechanisms in copepod immunity that may eventually be applied for disease prevention in copepod aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Supakarn Sungkaew
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Paveena Tapaneeyaworawong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Antimicrobial peptides from freshwater invertebrate species: potential for future applications. Mol Biol Rep 2022; 49:9797-9811. [PMID: 35716292 DOI: 10.1007/s11033-022-07483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Invertebrates are a significant source of antimicrobial peptides because they lack an adaptive immune system and must rely on their innate immunity to survive in a pathogen-infested environment. Various antimicrobial peptides that represent major components of invertebrate innate immunity have been described in a number of investigations over the last few decades. In freshwater invertebrates, antimicrobial peptides have been identified in arthropods, annelids, molluscs, crustaceans, and cnidarians. Freshwater invertebrate species contain antimicrobial peptides from the families astacidin, macin, defensin, and crustin, as well as other antimicrobial peptides that do not belong to these families. They show broad spectrum activities greatly directed against bacteria and to a less extent against fungi and viruses. This review focuses on antimicrobial peptides found in freshwater invertebrates, highlighting their features, structure-activity connections, antimicrobial processes, and possible applications in the food industry, animal husbandry, aquaculture, and medicine. The methods for their synthesis, purification, and characterization, as well as the obstacles and strategies for their development and application, are also discussed.
Collapse
|
13
|
Xue R, Han Y, Li F, Chen L, Yang D, Zhao J. Identification, antibacterial activities and action mode of two macins from manila clam Venerupis philippinarum. FISH & SHELLFISH IMMUNOLOGY 2021; 118:411-420. [PMID: 34571157 DOI: 10.1016/j.fsi.2021.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, two macins were identified from clam Venerupis philippinarum (designated as VpMacin-1 and VpMacin-2). They showed 64.71% similarity with each other. The highest mRNA expression of VpMacin-1 and VpMacin-2 was detected in gills and hepatopancreas, respectively, in non-stimulated clams, and their expression could be induced significantly in hemocytes after Vibrio anguillarum infection. Silencing of VpMacin-1 and VpMacin-2 led to 22% and 49% mortality 6 days post infection. Escherichia coli cells were killed by recombinant protein rVpMacin-1 and rVpMacin-2 within 1000 and 400 min, respectively, at a concentration of 1.0 × MIC. Compared with rVpMacin-1, rVpMacin-2 not only showed higher broad-spectrum antimicrobial activities towards Vibrio strains, but possessed stronger abilities to inhibit the formation of bacterial biofilm. Both membrane integrity and electrochemical assay indicated that rVpMacins were capable of causing bacterial membrane permeabilization, especially for rVpMacin-2. Besides, rVpMacin-1 significantly induced both phagocytic (0.1 and 1.0 × MIC, p < 0.05) and chemotactic effects (0.1 × MIC, p < 0.01) of hemocytes, while there was no significant increase for rVpMacin-2. Overall, our results suggested that VpMacin-1 and VpMacin-2 play important roles in host defense against invasive pathogens.
Collapse
Affiliation(s)
- Rui Xue
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai, Shandong, 264117, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Yijing Han
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai, Shandong, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
14
|
Sharma R, Shrivastava S, Kumar Singh S, Kumar A, Saxena S, Kumar Singh R. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom. Brief Bioinform 2021; 22:6320952. [PMID: 34259329 DOI: 10.1093/bib/bbab242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
With advancements in genomics, there has been substantial reduction in the cost and time of genome sequencing and has resulted in lot of data in genome databases. Antimicrobial host defense proteins provide protection against invading microbes. But confirming the antimicrobial function of host proteins by wet-lab experiments is expensive and time consuming. Therefore, there is a need to develop an in silico tool to identify the antimicrobial function of proteins. In the current study, we developed a model AniAMPpred by considering all the available antimicrobial peptides (AMPs) of length $\in $[10 200] from the animal kingdom. The model utilizes a support vector machine algorithm with deep learning-based features and identifies probable antimicrobial proteins (PAPs) in the genome of animals. The results show that our proposed model outperforms other state-of-the-art classifiers, has very high confidence in its predictions, is not biased and can classify both AMPs and non-AMPs for a diverse peptide length with high accuracy. By utilizing AniAMPpred, we identified 436 PAPs in the genome of Helobdella robusta. To further confirm the functional activity of PAPs, we performed BLAST analysis against known AMPs. On detailed analysis of five selected PAPs, we could observe their similarity with antimicrobial proteins of several animal species. Thus, our proposed model can help the researchers identify PAPs in the genome of animals and provide insight into the functional identity of different proteins. An online prediction server is also developed based on the proposed approach, which is freely accessible at https://aniamppred.anvil.app/.
Collapse
Affiliation(s)
- Ritesh Sharma
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Sanjay Kumar Singh
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Abhinav Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Raj Kumar Singh
- Former Director & Vice Chancellor, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| |
Collapse
|
15
|
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021; 11:668632. [PMID: 34195099 PMCID: PMC8238046 DOI: 10.3389/fcimb.2021.668632] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms. Antibiotic resistance is a serious challenge and has led to the need for new alternative molecules less prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest as potential next-generation antibiotics, since they are bioactive small proteins, naturally produced by all living organisms, and representing the first line of defense against fungi, viruses and bacteria. AMPs are commonly classified according to their sources, which are represented by microorganisms, plants and animals, as well as to their secondary structure, their biosynthesis and their mechanism of action. They find application in different fields such as agriculture, food industry and medicine, on which we focused our attention in this review. Particularly, we examined AMP potential applicability in wound healing, skin infections and metabolic syndrome, considering their ability to act as potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and pharmacodynamic approaches to develop new antibiotics, the drug development strategies and the formulation approaches which need to be taken into account in developing clinically suitable AMP applications.
Collapse
Affiliation(s)
- Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Antonio Franco
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Vassallo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| |
Collapse
|
16
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
17
|
|
18
|
Joo MS, Choi KM, Cho DH, Choi HS, Min EY, Han HJ, Cho MY, Bae JS, Park CI. The molecular characterization, expression analysis and antimicrobial activity of theromacin from Asian polychaeta (Perinereis linea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103773. [PMID: 32634521 DOI: 10.1016/j.dci.2020.103773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Antimicrobial peptides (AMPs) are molecular factors in innate immunity and are believed to play a key role in invertebrate host defence. We identified theromacin (TM) from an Asian polychaeta, Perinereis linea, using de novo RNA-seq analysis. TM, a typical AMP of invertebrates, is a cysteine-rich AMP with five disulfide bonds consisting of ten cysteine residues. In gene expression analysis, TM genes were constantly upregulated after lipopolysaccharide (LPS) stimulation. In contrast, after peptidoglycan (PGN) stimulation, it was upregulated initially and downregulated after 12 h. We synthesized a peptide based on the macin AMP in the TM amino acid sequence. The synthetic peptide showed antibacterial activity against some Gram-positive and Gram-negative bacteria. Therefore, the AMPs of P. linea might have broad roles in host defence and exhibit different degrees of activity.
Collapse
Affiliation(s)
- Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hye-Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jin-Sol Bae
- National Fishery Products Quality Management Service (NFQS), 337, Yeongdo-gu, Busan, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
19
|
Sousa H, Hinzmann M. Review: Antibacterial components of the Bivalve's immune system and the potential of freshwater bivalves as a source of new antibacterial compounds. FISH & SHELLFISH IMMUNOLOGY 2020; 98:971-980. [PMID: 31676427 DOI: 10.1016/j.fsi.2019.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Antibacterial research is reaching new heights due to the increasing demand for the discovery of new substances capable of inhibiting bacteria, especially to respond to the appearance of more and more multi-resistant strains. Bivalves show enormous potential for the finding of new antibacterial compounds, although for that to be further explored, more research needs to be made regarding the immune system of these organisms. Beyond their primary cellular component responsible for bacterial recognition and destruction, the haemocytes, bivalves have various other antibacterial units dissolved in the haemolymph that intervene in the defense against bacterial infections, from the recognition factors that detect different bacteria to the effector molecules carrying destructive properties. Moreover, to better comprehend the immune system, it is important to understand the different survival strategies that bacteria possess in order to stay alive from the host's defenses. This work reviews the current literature regarding the components that intervene in a bacterial infection, as well as discussing the enormous potential that freshwater bivalves have in the discovery of new antibacterial compounds.
Collapse
Affiliation(s)
- Henrique Sousa
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Mariana Hinzmann
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
20
|
Abstract
The coelomic cavity is part of the main body plan of annelids. This fluid filled space takes up a considerable volume of the body and serves as an important site of exchange of both metabolites and proteins. In addition to low molecular substances such as amino acids and glucose and lactate, the coelomic fluid contains different proteins that can arise through release from adjacent tissues (intestine) or from secretion by coelomic cells. In this chapter, we will review the current knowledge about the proteins in the annelid coelomic fluid. Given the number of more than 20,000 extant annelid species, existing studies are confined to a relatively few species. Most studies on the oligochaetes are confined to the earthworms-clearly because of their important role in soil biology. In the polychaetes (which might represent a paraphyletic group) on the other hand, studies have focused on a few species of the Nereidid family. The proteins present in the coelomic fluid serve different functions and these have been studied in different taxonomic groups. In oligochaetes, proteins involved antibacterial defense such as lysenin and fetidin have received much attention in past and ongoing studies. In polychaetes, in contrast, proteins involved in vitellogenesis and reproduction, and the vitellogenic function of coelomic cells have been investigated in more detail. The metal binding metallothioneins as well as antimicrobial peptides, have been investigated in both oligochaetes and polychaetes. In the light of the literature available, this review will focus on lipoproteins, especially vitellogenin, and proteins involved in defense reactions. Other annelid groups such as the Pogonophora, Echiura, and Sipuncula (now considered polychaetes), have not received much attention and therefore, this overview is far from being complete.
Collapse
|
21
|
Yang D, Han Y, Chen L, Cao R, Wang Q, Dong Z, Liu H, Zhang X, Zhang Q, Zhao J. A macin identified from Venerupis philippinarum: Investigation on antibacterial activities and action mode. FISH & SHELLFISH IMMUNOLOGY 2019; 92:897-904. [PMID: 31302284 DOI: 10.1016/j.fsi.2019.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a macin was cloned and characterized from clam Venerupis philippinarum (designed as VpMacin). The full-length cDNA of VpMacin was of 579 bp, encoding a peptide of 87 amino acids with the predicted molecular weight of 9.7 kDa. Analysis of the conserved domain suggested that VpMacin was a new member of the macin family. In non-stimulated clams, VpMacin transcripts exhibited different tissue expression pattern, and highly expressed in the tissues of gills and hepatopancreas. Generally, the temporal expression of VpMacin transcripts was significantly induced in hemocytes of clams post Vibrio anguillarum challenge. Moreover, the recombinant VpMacin protein (rVpMacin) showed obvious antimicrobial activities against Gram-positive and Gram-negative bacteria. After incubated with 40 μM rVpMacin, all detected Escherichia coli could be killed within 60 min. Membrane integrity analysis revealed that rVpMacin could increase the membrane permeability of bacteria and then resulted in cell death. Overall, our results suggested that VpMacin had an important function in host defense against invasive pathogens.
Collapse
Affiliation(s)
- Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hui Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
22
|
Bruno R, Maresca M, Canaan S, Cavalier JF, Mabrouk K, Boidin-Wichlacz C, Olleik H, Zeppilli D, Brodin P, Massol F, Jollivet D, Jung S, Tasiemski A. Worms' Antimicrobial Peptides. Mar Drugs 2019; 17:md17090512. [PMID: 31470685 PMCID: PMC6780910 DOI: 10.3390/md17090512] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.
Collapse
Affiliation(s)
- Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13013 Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, F-13009 Marseille, France
| | | | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR7273, ICR, F-13013Marseille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Hamza Olleik
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13013 Marseille, France
| | - Daniela Zeppilli
- IFREMER Centre Brest REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, F-29280Plouzané, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, F-29688 Roscoff, France
| | - Sascha Jung
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
23
|
Tissue distribution and functional characterization of mytimacin-4 in Mytilus galloprovincialis. J Invertebr Pathol 2019; 166:107215. [PMID: 31299225 DOI: 10.1016/j.jip.2019.107215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
Antimicrobial peptides (AMPs) play fundamental roles in the innate immunity of invertebrates. Mytimacin-4 is a kind of AMP gene previously sequenced from Mytilus galloprovincialis based on an identified EST sequence in our lab. In the present study, the tissue distribution and antimicrobial activities of mytimacin-4 were further investigated. A qRT-PCR analysis revealed that mytimacin-4 transcripts were constitutively expressed in all of the tested tissues of M. galloprovincialis, with the highest expression level in the posterior adductor muscle. After challenge by Vibrio anguillarum, the expression level of mytimacin-4 gene was significantly increased at 24 h (P < 0.05) in the mantle and increased at 48 h (P < 0.05) in the posterior adductor muscle. This finding suggested that mytimacin-4 transcripts were inducible upon pathogen infection. A minimal inhibitory concentration (MIC) assay indicated that recombinant mytimacin-4 protein had potent antimicrobial activities against gram-positive and gram-negative bacteria. Among the tested microorganisms, mytimacin-4 protein exhibited strong inhibition activities against Bacillus subtilis and Vibrio parahaemolyticus with MICs of 0.315 μM and 0.62 μM, respectively. This study provides for the first time direct evidence of antimicrobial action of mytimacin-4 in M. galloprovincialis.
Collapse
|
24
|
Grafskaia EN, Nadezhdin KD, Talyzina IA, Polina NF, Podgorny OV, Pavlova ER, Bashkirov PV, Kharlampieva DD, Bobrovsky PA, Latsis IA, Manuvera VA, Babenko VV, Trukhan VM, Arseniev AS, Klinov DV, Lazarev VN. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens. Eur J Med Chem 2019; 180:143-153. [PMID: 31302447 DOI: 10.1016/j.ejmech.2019.06.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/25/2022]
Abstract
The rise of antibiotic resistance has necessitated the development of alternative strategies for the treatment of infectious diseases. Antimicrobial peptides (AMPs), components of the innate immune response in various organisms, are promising next-generation drugs against bacterial infections. The ability of the medicinal leech Hirudo medicinalis to store blood for months with little change has attracted interest regarding the identification of novel AMPs in this organism. In this study, we employed computational algorithms to the medicinal leech genome assembly to identify amino acid sequences encoding potential AMPs. Then, we synthesized twelve candidate AMPs identified by the algorithms, determined their secondary structures, measured minimal inhibitory concentrations against three bacterial species (Escherichia coli, Bacillus subtilis, and Chlamydia thrachomatis), and assayed cytotoxic and haemolytic activities. Eight of twelve candidate AMPs possessed antimicrobial activity, and only two of them, 3967 (FRIMRILRVLKL) and 536-1 (RWRLVCFLCRRKKV), exhibited inhibition of growth of all tested bacterial species at a minimal inhibitory concentration of 10 μmol. Thus, we evidence the utility of the developed computational algorithms for the identification of AMPs with low toxicity and haemolytic activity in the medicinal leech genome assembly.
Collapse
Affiliation(s)
- E N Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia.
| | - K D Nadezhdin
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia; M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I A Talyzina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Federal State Budget Educational Institution of Higher Education, M.V.Lomonosov Moscow State University (Lomonosov MSU), Moscow, 119991, Russia
| | - N F Polina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - O V Podgorny
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - E R Pavlova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia
| | - P V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - D D Kharlampieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - P A Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - I A Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia
| | - V V Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V M Trukhan
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - A S Arseniev
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia; M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - D V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia
| |
Collapse
|
25
|
Liu Z, Tong X, Su Y, Wang D, Du X, Zhao F, Wang D, Zhao F. In-depth profiles of bioactive large molecules in saliva secretions of leeches determined by combining salivary gland proteome and transcriptome data. J Proteomics 2019; 200:153-160. [DOI: 10.1016/j.jprot.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
|
26
|
Ding A, Shi H, Guo Q, Liu F, Wang J, Cheng B, Wei W, Xu C. Gene cloning and expression of a partial sequence of Hirudomacin, an antimicrobial protein that is increased in leech (Hirudo nipponica Whitman) after a blood meal. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:75-86. [PMID: 30794960 DOI: 10.1016/j.cbpb.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
The novel antimicrobial gene Hirudomacin (Hmc), with a 249-bp cDNA, encodes a mature protein of 61 amino acids and a 22-amino acid signal peptide. Hmc exhibits the highest similarity, at 90.1%, with macin family members found in the salivary gland of the leech Hirudo nipponica Whitman. A mature Hmc protein concentration of 219 μg/mL was detected using the Bradford method. The mature Hmc protein is 6862.82 Da and contains 8 cysteine residues. Antimicrobial assays showed a minimum bactericidal concentration and 50% lethal dose of 1.56 μg/mL and 0.78 μg/mL, respectively, for Staphylococcus aureus and 0.39 μg/mL and 0.195 μg/mL, respectively, for Bacillus subtilis. Transmission electron microscopy revealed membrane integrity disruption in S. aureus and B. subtilis, which resulted in bacterial lysis. The level of Hmc mRNA in the salivary gland during three blood meal stages indicated a remarkable trend of increase (P < .05), and western blotting demonstrated that among the three blood meal stages, expression of the mature Hmc protein was highest in both the salivary gland and intestine at the fed stage (P < .05). Immunofluorescence further showed the mature Hmc protein to be localized outside the cell nucleus, with the signal intensity in the salivary gland peaking at the fed stage (P < .05). In conclusion, the mature Hmc protein exhibits broad-spectrum antimicrobial effects against gram-positive and gram-negative bacteria, and a blood meal upregulates Hmc gene and protein expression in H. nipponica.
Collapse
Affiliation(s)
- Andong Ding
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Liu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jia Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Boxing Cheng
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Wei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengfeng Xu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Lu Z, Shi P, You H, Liu Y, Chen S. Transcriptomic analysis of the salivary gland of medicinal leech Hirudo nipponia. PLoS One 2018; 13:e0205875. [PMID: 30339694 PMCID: PMC6195274 DOI: 10.1371/journal.pone.0205875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
Hirudo nipponia (known as Shui Zhi in Chinese) is a well-known Chinese medicine with numerous active ingredients in its body, especially in its saliva. This native Chinese blood-sucking leech has been used for therapeutic purposes since before 100 AD. Modern Chinese physicians use it for a wide range of diseases. Genomic data and molecular information about the pharmacologically active substances produced by this medicinal leech are presently unavailable despite this organism’s medicinal importance. In this study, we performed transcriptome profiling of the salivary glands of medicinal leech H. nipponia using the Illumina platform. In total, 84,657,362 clean reads were assembled into 50,535 unigenes. The obtained unigenes were compared to public databases. Furthermore, a unigene sequence similarity search and comparisons with the whole transcriptome of medical leech were performed to identify potential proteins. Finally, more than 21 genes were predicted to be involved in anticoagulatory, antithrombotic, antibacterial, anti-inflammatory and antitumor processes, which might play important roles in the treatment of various diseases. This study is the first analysis of a sialotranscriptome in H. nipponia. The transcriptome profile will shed light on its genetic background and provide a useful tool to deepen our understanding of the medical value of H. nipponia.
Collapse
Affiliation(s)
- Zenghui Lu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- Chongqing Key Laboratory of Chinese Medicine Resources, Chongqing, China
| | - Ping Shi
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Huajian You
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Key Laboratory of Chinese Medicine Resources, Chongqing, China
| | - Yanqi Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Key Laboratory of Chinese Medicine Resources, Chongqing, China
| | - Shijiang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- Chongqing Key Laboratory of Chinese Medicine Resources, Chongqing, China
- * E-mail:
| |
Collapse
|
28
|
Sleight VA, Peck LS, Dyrynda EA, Smith VJ, Clark MS. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata. Cell Stress Chaperones 2018; 23:1003-1017. [PMID: 29754331 PMCID: PMC6111077 DOI: 10.1007/s12192-018-0910-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Acclimation, via phenotypic flexibility, is a potential means for a fast response to climate change. Understanding the molecular mechanisms underpinning phenotypic flexibility can provide a fine-scale cellular understanding of how organisms acclimate. In the last 30 years, Mya truncata populations around the UK have faced an average increase in sea surface temperature of 0.7 °C and further warming of between 1.5 and 4 °C, in all marine regions adjacent to the UK, is predicted by the end of the century. Hence, data are required on the ability of M. truncata to acclimate to physiological stresses, and most notably, chronic increases in temperature. Animals in the present study were exposed to chronic heat-stress for 2 months prior to shell damage and subsequently, only 3, out of 20 damaged individuals, were able to repair their shells within 2 weeks. Differentially expressed genes (between control and damaged animals) were functionally enriched with processes relating to cellular stress, the immune response and biomineralisation. Comparative transcriptomics highlighted genes, and more broadly molecular mechanisms, that are likely to be pivotal in this lack of acclimation. This study demonstrates that discovery-led transcriptomic profiling of animals during stress-response experiments can shed light on the complexity of biological processes and changes within organisms that can be more difficult to detect at higher levels of biological organisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- British Antarctic Survey, Natural Environment Research Council (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity & Biotechnology, Institute of Life & Earth Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
29
|
Liu Z, Zhao F, Tong X, Liu K, Wang B, Yang L, Ning T, Wang Y, Zhao F, Wang D, Wang D. Comparative transcriptomic analysis reveals the mechanism of leech environmental adaptation. Gene 2018; 664:70-77. [DOI: 10.1016/j.gene.2018.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 03/09/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
|
30
|
Comparative immunological study of the snail Physella acuta (Hygrophila, Pulmonata) reveals shared and unique aspects of gastropod immunobiology. Mol Immunol 2018; 101:108-119. [PMID: 29920433 DOI: 10.1016/j.molimm.2018.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
The freshwater snail Physella acuta was selected to expand the perspective of comparative snail immunology. Analysis of Physella acuta, belonging to the Physidae, taxonomic sister family to Planorbidae, affords family-level comparison of immune features characterized from Biomphalaria glabrata, the model snail often used to interpret general gastropod immunity. To capture constitutive and induced immune sequences, transcriptomes of an individual Physella acuta snail, 12 h post injection with bacteria (Gram -/+) and one sham-exposed snail were recorded with 454 pyrosequencing. Assembly yielded a combined reference transcriptome containing 24,288 transcripts. Additionally, genomic Illumina reads were obtained (∼15-fold coverage). Recovery of transcripts for two macin-like antimicrobial peptides (AMPs), 12 aplysianins, four LBP/BPIs and three physalysins indicated that Physella acuta shares a similar organization of antimicrobial defenses with Biomphalaria glabrata, contrasting a modest AMP arsenal with a diverse set of antimicrobial proteins. The lack of predicted transmembrane domains in all seven Physella acuta PGRP transcripts supports the notion that gastropods do not employ cell-bound PGRP receptors, different from ecdysozoan invertebrates yet similar to mammals (vertebrate deuterostomes). The well-documented sequence diversification by Biomphalaria glabrata FREPs (immune lectins comprising immunoglobulin superfamily domains and fibrinogen domains), resulting from somatic mutations of a large FREP gene family is hypothesized to be unique to Planorbidae; Physella acuta revealed just two bonafide FREP genes and these were not diversified. Furthermore, the flatworm parasite Echinostoma paraensei, confirmed here to infect both snail species, did not evoke from Physella acuta the abundant expression of FREP proteins at 2, 4 and 8 days post exposure that was previously observed from Biomphalaria glabrata. The Physella acuta reference transcriptome also revealed 24 unique transcripts encoding proteins consisting of a single fibrinogen-related domain (FReDs), with a short N-terminal sequence encoding either a signal peptide, transmembrane domain or no predicted features. The Physella acuta FReDs are candidate immune genes based on implication of similar sequences in immunity of bivalve molluscs. Overall, comparative analysis of snails of sister families elucidated the potential for taxon-specific immune features and investigation of strategically selected species will provide a more comprehensive view of gastropod immunity.
Collapse
|
31
|
Jeżowska-Bojczuk M, Stokowa-Sołtys K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem 2017; 143:997-1009. [PMID: 29232589 DOI: 10.1016/j.ejmech.2017.11.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022]
Abstract
Peptide antibiotics are produced by bacterial, mammalian, insect or plant organisms in defense against invasive microbial pathogens. Therefore, they are gaining importance as anti-infective agents. There are a number of antibiotics that require metal ions to function properly. Metal ions play a key role in their action and are involved in specific interactions with proteins, nucleic acids and other biomolecules. On the other hand, it is well known that some antimicrobial agents possess functional groups that enable them interacting with metal ions present in physiological fluids. Some findings support a hypothesis that they may alter the serum metal ions concentration in humans. Complexes usually have a higher positive charge than uncomplexed compounds. This means that they might interact more tightly with polyanionic DNA and RNA molecules. It has been shown that several metal ion complexes with antibiotics promote degradation of DNA. Some of them, such as bleomycin, form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. However, this is not a rule. For example blasticidin does not cause DNA damage. This indicates that some peptide antibiotics can be considered as ligands that effectively lower the oxidative activity of transition metal ions.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
32
|
Xia X, Cheng L, Zhang S, Wang L, Hu J. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek 2017; 111:5-26. [PMID: 28856473 DOI: 10.1007/s10482-017-0929-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Natural antimicrobial peptides (AMPs), a family of small polypeptides that are produced by constitutive or inducible expression in organisms, are integral components of the host innate immune system. In addition to their broad-spectrum antibacterial activity, natural AMPs also have many biological activities against fungi, viruses and parasites. Natural AMPs exert multiple immunomodulatory roles that may predominate under physiological conditions where they lose their microbicidal properties in serum and tissue environments. Increased drug resistance among microorganisms is occurring far more quickly than the discovery of new antibiotics. Natural AMPs have shown promise as 'next generation antibiotics' due to their broad-spectrum curative effects, low toxicity, the fact that they are not residual in animals, and the low rates of resistance exhibited by many pathogens. Many types of synthetic AMPs are currently being tested in clinical trials for the prevention and treatment of various diseases such as chemotherapy-associated infections, diabetic foot ulcers, catheter-related infections, and other conditions. Here, we provide an overview of the types and functions of natural AMPs and their role in combating microorganisms and different infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Likun Cheng
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, People's Republic of China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
33
|
Medicinal leech therapy-an overall perspective. Integr Med Res 2017; 6:337-343. [PMID: 29296560 PMCID: PMC5741396 DOI: 10.1016/j.imr.2017.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
Complementary medicine methods have a long history, but modern medicine has just recently focused on their possible modes of action. Medicinal leech therapy (MLT) or hirudotherapy, an old technique, has been studied by many researchers for possible effects on various diseases such as inflammatory diseases, osteoarthritis, and after different surgeries. Hirudo medicinalis has widest therapeutic usage among the leeches, but worldwide, many different species were tested and studied. Leeches secrete more than 20 identified bioactive substances such as antistasin, eglins, guamerin, hirudin, saratin, bdellins, complement, and carboxypeptidase inhibitors. They have analgesic, anti-inflammatory, platelet inhibitory, anticoagulant, and thrombin regulatory functions, as well as extracellular matrix degradative and antimicrobial effects, but with further studies, the spectrum of effects may widen. The technique is cheap, effective, easy to apply, and its modes of action have been elucidated for certain diseases. In conclusion, for treatment of some diseases, MLT is not an alternative, but is a complementary and/or integrative choice. MLT is a part of multidisciplinary treatments, and secretes various bioactive substances. These substances vary among species and different species should be evaluated for both treatment capability and their particular secreted molecules. There is huge potential for novel substances and these could be future therapeutics.
Collapse
|
34
|
Affiliation(s)
- Francesca L. Ware
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | - Martin R. Luck
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| |
Collapse
|
35
|
Tasiemski A, Salzet M. Neuro-immune lessons from an annelid: The medicinal leech. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:33-42. [PMID: 27381717 DOI: 10.1016/j.dci.2016.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/09/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
An important question that remains unanswered is how the vertebrate neuroimmune system can be both friend and foe to the damaged nervous tissue. Some of the difficulty in obtaining responses in mammals probably lies in the conflation in the central nervous system (CNS), of the innate and adaptive immune responses, which makes the vertebrate neuroimmune response quite complex and difficult to dissect. An alternative strategy for understanding the relation between neural immunity and neural repair is to study an animal devoid of adaptive immunity and whose CNS is well described and regeneration competent. The medicinal leech offers such opportunity. If the nerve cord of this annelid is crushed or partially cut, axons grow across the lesion and conduction of signals through the damaged region is restored within a few days, even when the nerve cord is removed from the animal and maintained in culture. When the mammalian spinal cord is injured, regeneration of normal connections is more or less successful and implies multiple events that still remain difficult to resolve. Interestingly, the regenerative process of the leech lesioned nerve cord is even more successful under septic than under sterile conditions suggesting that a controlled initiation of an infectious response may be a critical event for the regeneration of normal CNS functions in the leech. Here are reviewed and discussed data explaining how the leech nerve cord sensu stricto (i.e. excluding microglia and infiltrated blood cells) recognizes and responds to microbes and mechanical damages.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Université de Lille, CNRS UMR8198, Unité d'Evolution, Ecologie et Paléontologie (EEP), Species Interactions and Comparative Immunology (SPICI) Team, 59655 Villeneuve d'Ascq, France.
| | - Michel Salzet
- Université de Lille, INSERM U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), 59655 Villeneuve d'Ascq, France
| |
Collapse
|
36
|
Tarr DEK. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res Notes 2016; 9:490. [PMID: 27863510 PMCID: PMC5116183 DOI: 10.1186/s13104-016-2291-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND "Invertebrate defensins" belong to the cysteine-stabilized alpha-beta (CS-αβ), also known as the scorpion toxin-like, superfamily. Some other peptides belonging to this superfamily of defensive peptides are indistinguishable from "defensins," but have been assigned other names, making it unclear what, if any, criteria must be met to qualify as an "invertebrate defensin." In addition, there are other groups of defensins in invertebrates and vertebrates that are considered to be evolutionarily unrelated to those in the CS-αβ superfamily. This complicates analyses and discussions of this peptide group. This paper investigates the criteria for classifying a peptide as an invertebrate defensin, suggests a reference cysteine array that may be helpful in discussing peptides in this superfamily, and proposes that the superfamily (rather than the name "defensin") is the appropriate context for studying the evolution of invertebrate defensins with the CS-αβ fold. METHODS CS-αβ superfamily sequences were identified from previous literature and BLAST searches of public databases. Sequences were retrieved from databases, and the relevant motifs were identified and used to create a conceptual alignment to a ten-cysteine reference array. Amino acid sequences were aligned in MEGA6 with manual adjustments to ensure accurate alignment of cysteines. Phylogenetic analyses were performed in MEGA6 (maximum likelihood) and MrBayes (Bayesian). RESULTS Across invertebrate taxa, the term "defensin" is not consistently applied based on number of cysteines, cysteine spacing pattern, spectrum of antimicrobial activity, or phylogenetic relationship. The analyses failed to reveal any criteria that unify "invertebrate defensins" and differentiate them from other defensive peptides in the CS-αβ superfamily. Sequences from various groups within the CS-αβ superfamily of defensive peptides can be described by a ten-cysteine reference array that aligns their defining structural motifs. CONCLUSIONS The proposed ten-cysteine reference array can be used in addition to current nomenclature to compare sequences in the CS-αβ superfamily and clarify their features relative to one another. This will facilitate analysis and discussion of "invertebrate defensins" in an appropriate evolutionary context, rather than relying on nomenclature.
Collapse
Affiliation(s)
- D Ellen K Tarr
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
37
|
Marden JN, McClure EA, Beka L, Graf J. Host Matters: Medicinal Leech Digestive-Tract Symbionts and Their Pathogenic Potential. Front Microbiol 2016; 7:1569. [PMID: 27790190 PMCID: PMC5061737 DOI: 10.3389/fmicb.2016.01569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022] Open
Abstract
Digestive-tract microbiota exert tremendous influence over host health. Host-symbiont model systems are studied to investigate how symbioses are initiated and maintained, as well as to identify host processes affected by resident microbiota. The medicinal leech, Hirudo verbana, is an excellent model to address such questions owing to a microbiome that is consistently dominated by two species, Aeromonas veronii and Mucinivorans hirudinis, both of which are cultivable and have sequenced genomes. This review outlines current knowledge about the dynamics of the H. verbana microbiome. We discuss in depth the factors required for A. veronii colonization and proliferation in the leech crop and summarize the current understanding of interactions between A. veronii and its annelid host. Lastly, we discuss leech usage in modern medicine and highlight how leech-therapy associated infections, often attributable to Aeromonas spp., are of growing clinical concern due in part to an increased prevalence of fluoroquinolone resistant strains.
Collapse
Affiliation(s)
- Jeremiah N Marden
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Emily A McClure
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Lidia Beka
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, StorrsCT, USA; Institute for Systems Genomics, University of Connecticut, StorrsCT, USA
| |
Collapse
|
38
|
Ponnappan N, Budagavi DP, Yadav BK, Chugh A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob Proteins 2016; 7:75-89. [PMID: 25559972 DOI: 10.1007/s12602-014-9182-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.
Collapse
Affiliation(s)
- Nisha Ponnappan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | | |
Collapse
|
39
|
Qiao K, Xu WF, Chen HY, Peng H, Zhang YQ, Huang WS, Wang SP, An Z, Shan ZG, Chen FY, Wang KJ. A new antimicrobial peptide SCY2 identified in Scylla Paramamosain exerting a potential role of reproductive immunity. FISH & SHELLFISH IMMUNOLOGY 2016; 51:251-262. [PMID: 26911409 DOI: 10.1016/j.fsi.2016.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
A new antimicrobial peptide named SCY2 with 65.08% identity in amino acid sequence to the known scygonadin (SCY1) was first characterized in Scylla paramamosain based on its cloned full-length cDNA and genomic DNA sequences. The SCY2 gene was dominantly expressed in the ejaculatory duct of male crabs and its mRNA transcripts were discerned mainly in the glandular epithelium of the inner wall and the secretion inside the ejaculatory duct. Although the SCY2 gene could not be induced with the challenge of the bacteria and fungi tested, its induction reached the highest level at the peak period of mating in mature male crabs either in June or November, suggesting its induction was likely related to seasonal reproduction changes. Moreover, it was interesting to note that, from analysis of its transcripts and protein, SCY2 was significantly expressed only in the ejaculatory duct of pre-copulatory males before mating, however it was clearly detected in the spermatheca of post-copulatory females after mating accompanied by the decreased level of SCY2 expression in the ejaculatory duct. These results suggested that the SCY2 was probably transferred from the male during mating action with the female for the purpose of protecting fertilization. The recombinant SCY2 was more active against the Gram-positive than the Gram-negative bacteria tested. It was further observed that the SCY2 transcripts were significantly increased with addition of exogenous progesterone in tissue cultures whereas the several other hormones tested had no any effect on SCY2 expression, indicating that there might be a relationship between the SCY2 expression and the induction of hormones in vivo. In summary, this study demonstrated that one role of SCY2 was likely to be involved in crab reproduction and it exerted its reproductive immune function through the mating action and the maintenance of inner sterility in the spermatheca of the female, thus leading to successful fertilization of S. paramamosain.
Collapse
Affiliation(s)
- Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wan-Fang Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ya-Qun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-Shu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Shu-Ping Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhe An
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhong-Guo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
40
|
Natarajan SB, Kim YS, Hwang JW, Park PJ. Immunomodulatory properties of shellfish derivatives associated with human health. RSC Adv 2016. [DOI: 10.1039/c5ra26375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Some vital components of marine shellfish are documented as an important source for both nutritional and pharmacological applications.
Collapse
Affiliation(s)
| | - Yon-Suk Kim
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Jin-Woo Hwang
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Pyo-Jam Park
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| |
Collapse
|
41
|
Tasiemski A, Massol F, Cuvillier-Hot V, Boidin-Wichlacz C, Roger E, Rodet F, Fournier I, Thomas F, Salzet M. Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii. Sci Rep 2015; 5:17498. [PMID: 26635240 PMCID: PMC4669451 DOI: 10.1038/srep17498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023] Open
Abstract
The medicinal leech has established a long-term mutualistic association with Aeromonas veronii, a versatile bacterium which can also display free-living waterborne and fish- or human-pathogenic lifestyles. Here, we investigated the role of antibiotics in the dynamics of interaction between the leech and its gut symbiont Aeromonas. By combining biochemical and molecular approaches, we isolated and identified for the first time the antimicrobial peptides (AMPs) produced by the leech digestive tract and by its symbiont Aeromonas. Immunohistochemistry data and PCR analyses evidenced that leech AMP genes are induced in the gut epithelial cells when Aeromonas load is low (starved animals), while repressed when Aeromonas abundance is the highest (post blood feeding). The asynchronous production of AMPs by both partners suggests that these antibiotic substances (i) provide them with reciprocal protection against invasive bacteria and (ii) contribute to the unusual simplicity of the gut microflora of the leech. This immune benefit substantially reinforces the evidence of an evolutionarily stable association between H. verbana and A. veronii. Altogether these data may provide insights into the processes making the association with an Aeromonas species in the digestive tract either deleterious or beneficial.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - François Massol
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - Virginie Cuvillier-Hot
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - Emmanuel Roger
- Univ. Lille, Centre d'infections et d'immunité de Lille, CNRS UMR 8204, INSERM U 1019, F-59 000 Lille, France
| | - Franck Rodet
- Univ. Lille, Unité Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), INSERM U 1192, F-59 000 Lille, France
| | - Isabelle Fournier
- Univ. Lille, Unité Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), INSERM U 1192, F-59 000 Lille, France
| | - Frédéric Thomas
- MIVEGEC, UMR IRD/CNRS/UM5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Michel Salzet
- Univ. Lille, Unité Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), INSERM U 1192, F-59 000 Lille, France
| |
Collapse
|
42
|
Gerdol M, Venier P. An updated molecular basis for mussel immunity. FISH & SHELLFISH IMMUNOLOGY 2015; 46:17-38. [PMID: 25700785 DOI: 10.1016/j.fsi.2015.02.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Non-self recognition with the consequent tolerance or immune reaction is a crucial process to succeed as living organisms. At the same time the interactions between host species and their microbiome, including potential pathogens and parasites, significantly contribute to animal life diversity. Marine filter-feeding bivalves, mussels in particular, can survive also in heavily anthropized coastal waters despite being constantly surrounded by microorganisms. Based on the first outline of the Mytilus galloprovincialis immunome dated 2011, the continuously growing transcript data and the recent release of a draft mussel genome, we explored the available sequence data and scientific literature to reinforce our knowledge on the main gene-encoded elements of the mussel immune responses, from the pathogen recognition to its clearance. We carefully investigated molecules specialized in the sensing and targeting of potential aggressors, expected to show greater molecular diversification, and outlined, whenever relevant, the interconnected cascades of the intracellular signal transduction. Aiming to explore the diversity of extracellular, membrane-bound and intracellular pattern recognition receptors in mussel, we updated a highly complex immune system, comprising molecules which are described here in detail for the first time (e.g. NOD-like receptors) or which had only been partially characterized in bivalves (e.g. RIG-like receptors). Overall, our comparative sequence analysis supported the identification of over 70 novel full-length immunity-related transcripts in M. galloprovincialis. Nevertheless, the multiplicity of gene functions relevant to immunity, the involvement of part of them in other vital processes, and also the lack of a refined mussel genome make this work still not-exhaustive and support the development of more specific studies.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via L. Giorgeri 5, 34127 Trieste, Italy.
| | - Paola Venier
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35131 Padua, Italy.
| |
Collapse
|
43
|
Maltseva AL, Kotenko ON, Kokryakov VN, Starunov VV, Krasnodembskaya AD. Expression pattern of arenicins-the antimicrobial peptides of polychaete Arenicola marina. Front Physiol 2014; 5:497. [PMID: 25566093 PMCID: PMC4271772 DOI: 10.3389/fphys.2014.00497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/02/2014] [Indexed: 11/13/2022] Open
Abstract
Immune responses of invertebrate animals are mediated through innate mechanisms, among which production of antimicrobial peptides play an important role. Although evolutionary Polychaetes represent an interesting group closely related to a putative common ancestor of other coelomates, their immune mechanisms still remain scarcely investigated. Previously our group has identified arenicins-new antimicrobial peptides of the lugworm Arenicola marina, since then these peptides were thoroughly characterized in terms of their structure and inhibitory potential. In the present study we addressed the question of the physiological functions of arenicins in the lugworm body. Using molecular and immunocytochemical methods we demonstrated that arencins are expressed in the wide range of the lugworm tissues-coelomocytes, body wall, extravasal tissue and the gut. The expression of arenicins is constitutive and does not depend on stimulation of various infectious stimuli. Most intensively arenicins are produced by mature coelomocytes where they function as killing agents inside the phagolysosome. In the gut and the body wall epithelia arenicins are released from producing cells via secretion as they are found both inside the epithelial cells and in the contents of the cuticle. Collectively our study showed that arenicins are found in different body compartments responsible for providing a first line of defense against infections, which implies their important role as key components of both epithelial and systemic branches of host defense.
Collapse
Affiliation(s)
- Arina L. Maltseva
- Department of Invertebrate Zoology, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Olga N. Kotenko
- Department of Invertebrate Zoology, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Vladimir N. Kokryakov
- Department of Biochemistry, Saint Petersburg State UniversitySaint Petersburg, Russia
- Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Russian Academy of Medical SciencesSaint Petersburg, Russia
| | - Viktor V. Starunov
- Department of Invertebrate Zoology, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Anna D. Krasnodembskaya
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queens University BelfastUK
| |
Collapse
|
44
|
Liang Y, Guan RZ, Huang WS. Effect of pH on Separation Performances in High-Performance Liquid Chromatography of Antibacterial Peptides from the Spleen of Japanese eel, Anguilla japonica. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.867350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Hibsh D, Schori H, Efroni S, Shefi O. Spatial regulation dominates gene function in the ganglia chain. ACTA ACUST UNITED AC 2013; 30:310-6. [PMID: 24085568 DOI: 10.1093/bioinformatics/btt570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MOTIVATION To understand the molecular mechanisms of neurons, it is imperative to identify genomic dissimilarities within the heterogeneity of the neural system. This is especially true for neuronal disorders in which spatial considerations are of critical nature. For this purpose, Hirudo medicinalis provides here an ideal system in which we are able to follow gene expression along the central nervous system, to affiliate location with gene behavior. RESULTS In all, 221.1 million high-quality short reads were sequenced on the Illumina Hiseq2000 platform at the single ganglion level. Thereafter, a de novo assembly was performed using two state-of-the-art assemblers, Trinity and Trans-ABySS, to reconstruct a comprehensive de novo transcriptome. Classification of Trinity and Trans-ABySS transcripts produced a non-redundant set of 76 845 and 268 355 transcripts (>200 bp), respectively. Remarkably, using Trinity, 82% of the published medicinal leech messenger RNAs was identified. For the innexin family, all of the 21 recently reported genes were identified. Spatial regulation analysis across three ganglia throughout the entire central nervous system revealed distinct patterns of gene expression. These transcriptome data were combined with expression distribution to produce a spatio-transcripto map along the ganglia chain. This study provides a resource for gene discovery and gene regulation in future studies.
Collapse
Affiliation(s)
- Dror Hibsh
- Faculty of Life Sciences, Faculty of Engineering and Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel 52900
| | | | | | | |
Collapse
|
46
|
Zhong J, Wang W, Yang X, Yan X, Liu R. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 2013; 39:1-5. [PMID: 23103587 DOI: 10.1016/j.peptides.2012.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/01/2012] [Accepted: 09/02/2012] [Indexed: 12/01/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks.
Collapse
Affiliation(s)
- Jian Zhong
- Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
47
|
Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 2012; 10:815-27. [PMID: 23147708 DOI: 10.1038/nrmicro2894] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The innate immune system is present in all animals and is a crucial first line of defence against pathogens. However, animals also harbour large numbers of beneficial microorganisms that can be housed in the digestive tract, in specialized organs or on tissue surfaces. Although invertebrates lack conventional antibody-based immunity, they are capable of eliminating pathogens and, perhaps more importantly, discriminating them from other microorganisms. This Review examines the interactions between the innate immune systems of several model invertebrates and the symbionts of these organisms, and addresses the central question of how these long-lived and specific associations are established and maintained.
Collapse
|
48
|
Bomar L, Graf J. Investigation into the physiologies of Aeromonas veronii in vitro and inside the digestive tract of the medicinal leech using RNA-seq. THE BIOLOGICAL BULLETIN 2012; 223:155-166. [PMID: 22983040 PMCID: PMC3732745 DOI: 10.1086/bblv223n1p155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Host-associated microbial communities are widespread in nature and vital to the health and fitness of the host. Deciphering the physiology of the microbiome in vivo is critical to understanding the molecular basis of the symbiosis. Recently, the development and application of high-throughput sequencing techniques, particularly RNA-seq, for studying microbial communities has enabled researchers to address not only which microbes are present in a given community but also how the community functions. For microbes that can also be cultivated in the laboratory, RNA-seq provides the opportunity to identify genes that are differentially expressed during symbiosis by comparing in vitro to in vivo transcriptomes. In the current study, we used RNA-seq to identify genes expressed by the digestive-tract microbiome of the medicinal leech, Hirudo verbana, and by one of the two dominant symbionts, Aeromonas veronii, in a rich medium. We used a comparative approach to identify genes differentially expressed during symbiosis and gain insight into the symbiont's physiology in vivo. Notable findings include evidence for the symbionts experiencing environmental stress, performing arginine catabolism, and expressing noncoding RNAs that are implicated in stationary phase survival, a state in which A. veronii persists for months within the host.
Collapse
Affiliation(s)
| | - Joerg Graf
- To whom correspondence should be addressed.
| |
Collapse
|
49
|
Boidin-Wichlacz C, Vergote D, Slomianny C, Jouy N, Salzet M, Tasiemski A. Morphological and functional characterization of leech circulating blood cells: role in immunity and neural repair. Cell Mol Life Sci 2012; 69:1717-31. [PMID: 22159559 PMCID: PMC11115165 DOI: 10.1007/s00018-011-0897-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
Abstract
Unlike most invertebrates, annelids possess a closed vascular system distinct from the coelomic liquid. The morphology and the function of leech blood cells are reported here. We have demonstrated the presence of a unique cell type which participates in various immune processes. In contrast to the mammalian spinal cord, the leech CNS is able to regenerate and restore function after injury. The close contact of the blood with the nerve cord also led us to explore the participation of blood in neural repair. Our data evidenced that, in addition to exerting peripheral immune functions, leech blood optimizes CNS neural repair through the release of neurotrophic substances. Circulating blood cells also appeared able to infiltrate the injured CNS where, in conjunction with microglia, they limit the formation of a scar. In mammals, CNS injury leads to the generation of a glial scar that blocks the mechanism of regeneration by preventing axonal regrowth. The results presented here constitute the first description of neuroimmune functions of invertebrate blood cells. Understanding the basic function of the peripheral circulating cells and their interactions with lesioned CNS in the leech would allow us to acquire insights into the complexity of the neuroimmune response of the injured mammalian brain.
Collapse
Affiliation(s)
- Céline Boidin-Wichlacz
- Laboratoire de Neuroimmunologie et Neurochimie Evolutive, CNRS, FRE3249, Université de Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
50
|
Jung S, Sönnichsen FD, Hung CW, Tholey A, Boidin-Wichlacz C, Haeusgen W, Gelhaus C, Desel C, Podschun R, Waetzig V, Tasiemski A, Leippe M, Grötzinger J. Macin family of antimicrobial proteins combines antimicrobial and nerve repair activities. J Biol Chem 2012; 287:14246-58. [PMID: 22396551 DOI: 10.1074/jbc.m111.336495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tertiary structures of theromacin and neuromacin confirmed the macin protein family as a self-contained family of antimicrobial proteins within the superfamily of scorpion toxin-like proteins. The macins, which also comprise hydramacin-1, are antimicrobially active against Gram-positive and Gram-negative bacteria. Despite high sequence identity, the three proteins showed distinct differences with respect to their biological activity. Neuromacin exhibited a significantly stronger capacity to permeabilize the cytoplasmic membrane of Bacillus megaterium than theromacin and hydramacin-1. Accordingly, it is the only macin that displays pore-forming activity and that was potently active against Staphylococcus aureus. Moreover, neuromacin and hydramacin-1 led to an aggregation of bacterial cells that was not observed with theromacin. Analysis of the molecular surface properties of macins allowed confirmation of the barnacle model as the mechanistic model for the aggregation effect. Besides being antimicrobially active, neuromacin and theromacin, in contrast to hydramacin-1, were able to enhance the repair of leech nerves ex vivo. Notably, all three macins enhanced the viability of murine neuroblastoma cells, extending their functional characteristics. As neuromacin appears to be both a functional and structural chimera of hydramacin-1 and theromacin, the putative structural correlate responsible for the nerve repair capacity in leech was located to a cluster of six amino acid residues using the sequence similarity of surface-exposed regions.
Collapse
Affiliation(s)
- Sascha Jung
- Institute of Biochemistry, Zoophysiology, Christian Albrechts University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|