1
|
Guo C, Sharp A, Gurel B, Crespo M, Figueiredo I, Jain S, Vogl U, Rekowski J, Rouhifard M, Gallagher L, Yuan W, Carreira S, Chandran K, Paschalis A, Colombo I, Stathis A, Bertan C, Seed G, Goodall J, Raynaud F, Ruddle R, Swales KE, Malia J, Bogdan D, Tiu C, Caldwell R, Aversa C, Ferreira A, Neeb A, Tunariu N, Westaby D, Carmichael J, Fenor de la Maza MD, Yap C, Matthews R, Badham H, Prout T, Turner A, Parmar M, Tovey H, Riisnaes R, Flohr P, Gil J, Waugh D, Decordova S, Schlag A, Calì B, Alimonti A, de Bono JS. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 2023; 623:1053-1061. [PMID: 37844613 PMCID: PMC10686834 DOI: 10.1038/s41586-023-06696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.
Collapse
Affiliation(s)
- Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | | | - Suneil Jain
- Northern Ireland Cancer Centre, Belfast, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | | | | | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | | | - Khobe Chandran
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Ilaria Colombo
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | | | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | - Ruth Ruddle
- The Institute of Cancer Research, London, UK
| | | | - Jason Malia
- The Institute of Cancer Research, London, UK
| | | | - Crescens Tiu
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Nina Tunariu
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Daniel Westaby
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Juliet Carmichael
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | | | - Toby Prout
- The Institute of Cancer Research, London, UK
| | | | - Mona Parmar
- The Institute of Cancer Research, London, UK
| | - Holly Tovey
- The Institute of Cancer Research, London, UK
| | | | - Penny Flohr
- The Institute of Cancer Research, London, UK
| | - Jesus Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Waugh
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | | | - Anna Schlag
- The Institute of Cancer Research, London, UK
| | - Bianca Calì
- Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Alimonti
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Institute of Oncology Research, Bellinzona, Switzerland
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
- Department of Medicine, Veneto Institute of Molecular Medicine, University of Padova, Padua, Italy
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
2
|
Pawnikar S, Akhter S, Miao Y. Structural dynamics of chemokine receptors. VITAMINS AND HORMONES 2023; 123:645-662. [PMID: 37718001 DOI: 10.1016/bs.vh.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Membrane proteins such as G protein-coupled receptors (GPCRs) are involved in awide range of physiological and pathological cellular processes. Binding of extracellular signals to GPCRs, including hormones, neurotransmitters, peptides and proteins, can activate intracellular signaling cascades via G protein interaction. Chemokine receptors are key GPCRs implicated in cancers, immune responses, cell migration and inflammation. Specifically, the CCR5 and CXCR4 chemokine receptors serve as important therapeutic targets against Human Immunodeficiency virus (HIV) entry into human cells. Maraviroc and Vicriviroc, two clinically used HIV entry inhibitors, are antagonists of the CCR5 receptor. These drugs block HIV entry, but ultimately resistance develops, due to emergence of viruses that can utilize the CXCR4 co-receptor. Unfortunately, development of chemokine receptor antagonists as selective drugs of HIV infection has been greatly hindered as their target orthosteric site is conserved among different receptor subtypes. Accordingly, it is important to understand the structural dynamics of these receptors to develop more effective therapeutics. In this chapter, we describe the latest advances in studies of these two key chemokine receptors with respect to their structures, dynamics and function.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
3
|
Epithelial and Neutrophil Interactions and Coordinated Response to Shigella in a Human Intestinal Enteroid-Neutrophil Coculture Model. mBio 2022; 13:e0094422. [PMID: 35652591 PMCID: PMC9239269 DOI: 10.1128/mbio.00944-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are recruited to the gastrointestinal mucosa in response to inflammation, injury, and infection. Here, we report the development and the characterization of an ex vivo tissue coculture model consisting of human primary intestinal enteroid monolayers and PMN, and a mechanistic interrogation of PMN-epithelial cell interaction and response to Shigella, a primary cause of childhood dysentery. Cellular adaptation and tissue integration, barrier function, PMN phenotypic and functional attributes, and innate immune responses were examined. PMN within the enteroid monolayers acquired a distinct activated/migratory phenotype that was influenced by direct epithelial cell contact as well as by molecular signals. Seeded on the basal side of the intestinal monolayer, PMN were intercalated within the epithelial cells and moved paracellularly toward the apical side. Cocultured PMN also increased basal secretion of interleukin 8 (IL-8). Shigella added to the apical surface of the monolayers evoked additional PMN phenotypic adaptations, including increased expression of cell surface markers associated with chemotaxis and cell degranulation (CD47, CD66b, and CD88). Apical Shigella infection triggered rapid transmigration of PMN to the luminal side, neutrophil extracellular trap (NET) formation, and bacterial phagocytosis and killing. Shigella infection modulated cytokine production in the coculture; apical monocyte chemoattractant protein (MCP-1), tumor necrosis factor alpha (TNF-α), and basolateral IL-8 production were downregulated, while basolateral IL-6 secretion was increased. We demonstrated, for the first time, PMN phenotypic adaptation and mobilization and coordinated epithelial cell-PMN innate response upon Shigella infection in the human intestinal environment. The enteroid monolayer-PMN coculture represents a technical innovation for mechanistic interrogation of gastrointestinal physiology, host-microbe interaction, innate immunity, and evaluation of preventive/therapeutic tools.
Collapse
|
4
|
Sonawani A, Kharche S, Dasgupta D, Sengupta D. Insights into the dynamic interactions at chemokine-receptor interfaces and mechanistic models of chemokine binding. J Struct Biol 2022; 214:107877. [PMID: 35750237 DOI: 10.1016/j.jsb.2022.107877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Chemokine receptors are the central signaling hubs of several processes such as cell migration, chemotaxis and cell positioning. In this graphical review, we provide an overview of the structural and mechanistic principles governing chemokine recognition that are currently emerging. Structural models of chemokine-receptor co-complexes with endogenous chemokines, viral chemokines and therapeutics have been resolved that highlight multiple interaction sites, termed as CRS1, CRS1.5 etc. The first site of interaction has been shown to be the N-terminal domain of the receptors (CRS1 site). A large structural flexibility of the N-terminal domain has been reported that was supported by both experimental and simulation studies. Upon chemokine binding, the N-terminal domain appears to show constricted dynamics and opens up to interact with the chemokine via a large interface. The subsequent sites such as CRS1.5 and CRS2 sites have been structurally well resolved although differences arise such as the localization of the N-terminus of the ligand to a major or minor pocket of the orthosteric binding site. Several computational studies have highlighted the dynamic protein-protein interface at the CRS1 site that seemingly appears to resolve the differences in NMR and mutagenesis studies. Interestingly, the differential dynamics at the CRS1 site suggests a mixed model of binding with complex signatures of both conformational selection and induced fit models. Integrative experimental and computational approaches could help unravel the structural basis of promiscuity and specificity in chemokine-receptor binding and open up new avenues of therapeutic design.
Collapse
Affiliation(s)
- Archana Sonawani
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai 400614, India
| | - Shalmali Kharche
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Debjani Dasgupta
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai 400614, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| |
Collapse
|
5
|
Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022; 206:812-822. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022]
Abstract
The chemokine receptor CXCR4 and its cognate ligand CXCL12 mediate pathways that lead to cell migration and chemotaxis. Although the structural details of related receptor-ligand complexes have been resolved, the roles of the N-terminal domain of the receptor and post-translational sulfation that are determinants of ligand selectivity and affinity remain unclear. Here, we analyze the structural dynamics induced by receptor sulfation by combining molecular dynamics, docking and network analysis. The sulfotyrosine residues, 7YsN-term, 12YsN-term and 21YsN-term allow the N-terminal domain of the apo-sulfated receptor to adopt an "open" conformation that appears to facilitate ligand binding. The overall topology of the CXCR4-CXCL12 complex is independent of the sulfation state, but an extensive network of protein-protein interactions characterizes the sulfated receptor, in line with its increased ligand affinity. The altered interactions of sulfotyrosine residues, such as 21YsN-term-47RCXCL12 replacing the 21YN-term-13FCXCL12 interaction, propagate via allosteric pathways towards the receptor lumen. In particular, our results suggest that the experimentally-reported receptor-ligand interactions 262D6.58-8RCXCL12 and 277E7.28-12RCXCL12 could be dependent on the sulfation state of the receptor and need to be carefully analyzed. Our work is an important step in understanding chemokine-receptor interactions and how post-translational modifications could modulate receptor-ligand complexes.
Collapse
|
6
|
Pawnikar S, Miao Y. Mechanism of Peptide Agonist Binding in CXCR4 Chemokine Receptor. Front Mol Biosci 2022; 9:821055. [PMID: 35359589 PMCID: PMC8963245 DOI: 10.3389/fmolb.2022.821055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Chemokine receptors are key G-protein-coupled receptors (GPCRs) that control cell migration in immune system responses, development of cardiovascular and central nervous systems, and numerous diseases. In particular, the CXCR4 chemokine receptor promotes metastasis, tumor growth and angiogenesis in cancers. CXCR4 is also used as one of the two co-receptors for T-tropic HIV-1 entry into host cells. Therefore, CXCR4 serves as an important therapeutic target for treating cancers and HIV infection. Apart from the CXCL12 endogenous peptide agonist, previous studies suggested that the first 17 amino acids of CXCL12 are sufficient to activate CXCR4. Two 17-residue peptides with positions 1-4 mutated to RSVM and ASLW functioned as super and partial agonists of CXCR4, respectively. However, the mechanism of peptide agonist binding in CXCR4 remains unclear. Here, we have investigated this mechanism through all-atom simulations using a novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) method. The Pep-GaMD simulations have allowed us to explore representative binding conformations of each peptide and identify critical low-energy states of CXCR4 activated by the super versus partial peptide agonists. Our simulations have provided important mechanistic insights into peptide agonist binding in CXCR4, which are expected to facilitate rational design of new peptide modulators of CXCR4 and other chemokine receptors.
Collapse
|
7
|
Tsoi H, Shi L, Leung MH, Man EPS, So ZQ, Chan WL, Khoo US. Overexpression of BQ323636.1 Modulated AR/IL-8/CXCR1 Axis to Confer Tamoxifen Resistance in ER-Positive Breast Cancer. Life (Basel) 2022; 12:93. [PMID: 35054486 PMCID: PMC8778777 DOI: 10.3390/life12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
NCOR2 is a co-repressor for estrogen receptor (ER) and androgen receptor (AR). Our group previously identified a novel splice variant of NCOR2, BQ323636.1 (BQ), that mediates tamoxifen resistance via interference of NCOR2 repression on ER. Luciferase reporter assay showed BQ overexpression could enhance the transcriptional activity of androgen response element (ARE). We proposed that BQ employs both AR and ER to confer tamoxifen resistance. Through in silico analysis, we identified interleukin-8 (IL-8) as the sole ERE and ARE containing gene responsiveness to ER and AR activation. We confirmed that BQ overexpression enhanced the expression of IL-8 in ER+ve breast cancer cells, and AR inhibition reduced IL-8 expression in the BQ overexpressing cell lines, suggesting that AR was involved in the modulation of IL-8 expression by BQ. Moreover, we demonstrated that IL-8 could activate both AKT and ERK1/2 via CXCR1 to confer tamoxifen resistance. Targeting CXCR1/2 by a small inhibitor repertaxin reversed tamoxifen resistance of BQ overexpressing breast cancer cells in vitro and in vivo. In conclusion, BQ overexpression in ER+ve breast cancer can enhance IL-8 mediated signaling to modulate tamoxifen resistance. Targeting IL-8 signaling is a promising approach to overcome tamoxifen resistance in ER+ve breast cancer.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Ling Shi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Man-Hong Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Ellen P. S. Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Zi-Qing So
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| | - Wing-Lok Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.T.); (L.S.); (M.-H.L.); (E.P.S.M.); (Z.-Q.S.)
| |
Collapse
|
8
|
Yang E, Chua W, Ng W, Roberts TL. Peripheral Cytokine Levels as a Prognostic Indicator in Gastric Cancer: A Review of Existing Literature. Biomedicines 2021; 9:1916. [PMID: 34944729 PMCID: PMC8698340 DOI: 10.3390/biomedicines9121916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Although strong connections exist between the carcinogenesis of gastric cancer and chronic inflammation, gastric cancer is unique in that the chronic gastritis which frequently precedes carcinogenesis is strongly associated with H. pylori infection. The interplay between H. pylori virulence factors and host immune cells is complex but culminates in the activation of inflammatory pathways and transcription factors such as NF-κB, STAT3, and AP-1, all of which upregulate cytokine production. Due to the key role of cytokines in modulating the immune response against tumour cells as well as possibly stimulating tumour growth and proliferation, different patterns of cytokine secretion may be associated with varying patient outcomes. In relation to gastric cancer, interleukin-6, 8, 10, 17A, TNF, and IFN-γ may have pro-tumour properties, although interleukin-10, TNF, and IFN-γ may have anti-tumour effects. However, due to the lack of studies investigating patient outcomes, only a link between higher interleukin-6 levels and poorer prognosis has been demonstrated. Further investigations which link peripheral cytokine levels to patient prognosis may elucidate important pathological mechanisms in gastric cancer which adversely impact patient survival and allow treatments targeting these processes to be developed.
Collapse
Affiliation(s)
- Elton Yang
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Medical Oncology, Liverpool Hospital, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| | - Weng Ng
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Medical Oncology, Liverpool Hospital, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| | - Tara Laurine Roberts
- School of Medicine, Western Sydney University, Campbelltown 2560, Australia; (E.Y.); (W.C.); (W.N.)
- Ingham Institute for Applied Medical Research, Liverpool 2170, Australia
- Southwest Sydney Clinical School, University of New South Wales, Liverpool 2170, Australia
| |
Collapse
|
9
|
Geng S, Xu T, Sun Y. Genome-wide identification and analysis of chemokine receptor superfamily in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2021; 118:343-353. [PMID: 34555531 DOI: 10.1016/j.fsi.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The chemokine receptor (ChemR) superfamily, which is divided into 4 subfamilies (CXCR, CCR, XCR, and CX3CR), is the main receptors of chemokines in innate immune responses. In the current study, we have identified 27 ChemRs in miiuy croaker: 13 CCR genes, 11 CXCR genes, and 3 XCR genes. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, chromosome locations, evolutionary mechanism, and expression levels upon the bacterial challenge were analyzed. Gene structure and location analysis showed that all ChemR genes contain fewer introns (≤4) and they are unevenly distributed on the 12 chromosomes. And the XCR subfamily of miiuy croaker don't have the DRY motif of ChemR. Phylogenetic and synteny analysis showed that these genes experienced tandem and segmental duplication event in several species, and tandem duplication might be the main expansion way in miiuy croaker. The major ChemRs of each orthologous group in vertebrates were selected for molecular evolution analysis, the results of which indicated that compared with vertebrates, ChemRs of teleost fishes may have a relatively high evolutionary dynamic. In addition, a total of 21 positively selected codons were detected in vertebrate ChemRs under Model 8. RNA-Seq analysis and qRT-PCR verification demonstrated that CXCR3.2, CXCR5, and XCR1 genes were up-regulated significantly upon the Vibrio harveyi infection. These results provide valuable information for investigating the evolutionary relationships of chemokine receptor superfamily in miiuy croaker and laid the basis for further functional analysis.
Collapse
Affiliation(s)
- Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
10
|
McKenna S, Giblin SP, Bunn RA, Xu Y, Matthews SJ, Pease JE. A highly efficient method for the production and purification of recombinant human CXCL8. PLoS One 2021; 16:e0258270. [PMID: 34653205 PMCID: PMC8519433 DOI: 10.1371/journal.pone.0258270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Chemokines play diverse and fundamental roles in the immune system and human disease, which has prompted their structural and functional characterisation. Production of recombinant chemokines that are folded and bioactive is vital to their study but is limited by the stringent requirements of a native N-terminus for receptor activation and correct disulphide bonding required to stabilise the chemokine fold. Even when expressed as fusion proteins, overexpression of chemokines in E. coli tends to result in the formation of inclusion bodies, generating the additional steps of solubilisation and refolding. Here we present a novel method for producing soluble chemokines in relatively large amounts via a simple two-step purification procedure with no requirements for refolding. CXCL8 produced by this method has the correct chemokine fold as determined by NMR spectroscopy and in chemotaxis assays was indistinguishable from commercially available chemokines. We believe that this protocol significantly streamlines the generation of recombinant chemokines.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sean Patrick Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rosemarie Anne Bunn
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Zhao B, Diao J, Li L, Kondo H, Li L, Hirono I. Molecular characterization and expression analysis of Japanese flounder (Paralichthys olivaceus) chemokine receptor CXCR2 in comparison with CXCR1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104047. [PMID: 33647308 DOI: 10.1016/j.dci.2021.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Chemokines are categorized into five families; one of the families is the CXC chemokines, which are critical in the pro-inflammatory process. CXC chemokines transmit signals and mediate a cell's biological activities by binding to cell surface receptors known as chemokine receptors (CXCRs). In this study, the CXCR2 from Japanese flounder (Paralichthys olivaceus) (JfCXCR2) was identified and characterized at the molecular level. The JfCXCR2 gene has a 1077 bp open reading frame that encodes a protein of 359 amino acid residues with seven transmembrane domains. Phylogenetic analysis of JfCXCR2 revealed that it belonged to the fish CXCR2 subfamily. Furthermore, JfCXCR2 was compared with the previously identified Japanese flounder CXCR1 (JfCXCR1). The expression analysis of uninfected Japanese flounder showed that JfCXCR1 and JfCXCR2 were expressed in all the tissues and organs tested but mainly in immune-related organs, including the kidney and spleen. Infection by Streptococcus iniae significantly increased the level of JfCXCR1 and JfCXCR2 mRNA in the kidney at days 1 and 3 post-infection. On the other hand, VHSV (viral hemorrhagic septicemia virus) and Edwardsiella tarda infection significantly increased JfCXCR2 mRNA levels in the kidney at days 3 and 6 post-infection, respectively. Conversely, JfCXCR1 expression was not significantly changed by either E. tarda or VHSV infection. Additionally, the peripheral blood leukocytes (PBLs) stimulated by recombinant proteins rCXCL8_L1a and rCXCL8_L1b were found to have significantly increased levels of JfCXCR1 and JfCXCR2 mRNA. Interestingly, even higher levels of JfCXCR1 and JfCXCR2 expression were observed in PBLs stimulated with rCXCL8_L1a and rCXCL8_L1b than in PBLs stimulated with either recombinant protein. These data suggest that bacterial infections may activate JfCXCR1. By contrast, JfCXCR2 may be activated by both bacterial and viral infection to mediate the immune response. These data can contribute to further understanding the functions of CXCR1 and CXCR2 in the fish immune system.
Collapse
Affiliation(s)
- Beibei Zhao
- Laboratory of Healthy and Safe Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; Shandong Key Laboratory of Disease Control in Mariculture, Qingdao, 266104, China.
| | - Jing Diao
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China; Shandong Key Laboratory of Disease Control in Mariculture, Qingdao, 266104, China
| | - Le Li
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China; Shandong Key Laboratory of Disease Control in Mariculture, Qingdao, 266104, China
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lei Li
- Laboratory of Healthy and Safe Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
12
|
Kharche S, Joshi M, Chattopadhyay A, Sengupta D. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1. PLoS Comput Biol 2021; 17:e1008593. [PMID: 34014914 PMCID: PMC8172051 DOI: 10.1371/journal.pcbi.1008593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/02/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The dynamic interactions between G protein-coupled receptors (GPCRs) and their cognate protein partners are central to several cell signaling pathways. For example, the association of CXC chemokine receptor 1 (CXCR1) with its cognate chemokine, interleukin-8 (IL8 or CXCL8) initiates pathways leading to neutrophil-mediated immune responses. The N-terminal domain of chemokine receptors confers ligand selectivity, but unfortunately the conformational dynamics of this intrinsically disordered region remains unresolved. In this work, we have explored the interaction of CXCR1 with IL8 by microsecond time scale coarse-grain simulations, complemented by atomistic models and NMR chemical shift predictions. We show that the conformational plasticity of the apo-receptor N-terminal domain is restricted upon ligand binding, driving it to an open C-shaped conformation. Importantly, we corroborated the dynamic complex sampled in our simulations against chemical shift perturbations reported by previous NMR studies and show that the trends are similar. Our results indicate that chemical shift perturbation is often not a reporter of residue contacts in such dynamic associations. We believe our results represent a step forward in devising a strategy to understand intrinsically disordered regions in GPCRs and how they acquire functionally important conformational ensembles in dynamic protein-protein interfaces.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | | | - Durba Sengupta
- CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Strong MJ, Rocco S, Taichman R, Clines GA, Szerlip NJ. Dura promotes metastatic potential in prostate cancer through the CXCR2 pathway. J Neurooncol 2021; 153:33-42. [PMID: 33835371 DOI: 10.1007/s11060-021-03752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Spinal metastases are common in cancer. This preferential migration/growth in the spine is not fully understood. Dura has been shown to affect the surrounding microenvironment and promote cancer growth. Here, we investigate the role of dural cytokines in promoting the metastatic potential of prostate cancer (PCa) and the involvement of the CXCR2 signaling pathway. METHODS The role of dural conditioned media (DCM) in proliferation, migration and invasion of five PCa cell lines with various hormone sensitivities was assessed in the presence or absence of the CXCR2 inhibitor, SB225002. CXCR2 surface protein was examined by FACS. Cytokine levels were measured using a mouse cytokine array. RESULTS We observed high levels of cytokines produced by dura and within the vertebral body bone marrow, namely CXCL1 and CXCL2, that act on the CXCR2 receptor. All prostate cell lines treated with DCM demonstrated significant increase in growth, migration and invasion regardless of androgen sensitivity, except PC3, which did not significantly increase in invasiveness. When treated with SB225002, the growth response to DCM by cells expressing the highest levels of CXCR2 as measured by FACS (LNCaP and 22Rv1) was blunted. The increase in migration was significantly decreased in all lines in the presence of SB225002. Interestingly, the invasion increase seen with DCM was unchanged when these cells were treated with the CXCR2 inhibitor, except PC3 did demonstrate a significant decrease in invasion. CONCLUSION DCM enhances the metastatic potential of PCa with increased proliferation, migration and invasion. This phenomenon is partly mediated through the CXCR2 pathway.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Sabrina Rocco
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Russell Taichman
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Nicholas J Szerlip
- Department of Neurosurgery, University of Michigan, 3552 Taubman Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
- Veterans Affairs Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Modification of N-terminal α-amine of proteins via biomimetic ortho-quinone-mediated oxidation. Nat Commun 2021; 12:2257. [PMID: 33859198 PMCID: PMC8050078 DOI: 10.1038/s41467-021-22654-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Naturally abundant quinones are important molecules, which play essential roles in various biological processes due to their reduction potential. In contrast to their universality, the investigation of reactions between quinones and proteins remains sparse. Herein, we report the development of a convenient strategy to protein modification via a biomimetic quinone-mediated oxidation at the N-terminus. By exploiting unique reactivity of an ortho-quinone reagent, the α-amine of protein N-terminus is oxidized to generate aldo or keto handle for orthogonal conjugation. The applications have been demonstrated using a range of proteins, including myoglobin, ubiquitin and small ubiquitin-related modifier 2 (SUMO2). The effect of this method is further highlighted via the preparation of a series of 17 macrophage inflammatory protein 1β (MIP-1β) analogs, followed by preliminary anti-HIV activity and cell viability assays, respectively. This method offers an efficient and complementary approach to existing strategies for N-terminal modification of proteins. Methods for selective modification of the N-terminus of proteins are of high interest, but mostly require specific amino acid residues. Here, the authors report a selective and fast method for N-terminal modification of proteins based on quinone-mediated oxidation of the alpha-amine to aldehyde or ketone, and apply it to diverse proteins.
Collapse
|
15
|
Narla S, Azzam M, Townsend S, Vellaichamy G, Marzano AV, Alavi A, Lowes MA, Hamzavi IH. Identifying key components and therapeutic targets of the immune system in hidradenitis suppurativa with an emphasis on neutrophils. Br J Dermatol 2021; 184:1004-1013. [PMID: 32893875 DOI: 10.1111/bjd.19538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Hidradenitis suppurativa (HS) is a chronic, inflammatory, recurrent and debilitating skin disease of the hair follicle unit that typically develops after puberty. The disorder is characterized by comedones, painful inflammatory nodules, abscesses, dermal tunnels and scarring, with a predilection for intertriginous areas of the body (axillae, inguinal and anogenital regions). Recruitment of neutrophils to HS lesion sites may play an essential role in the development of the painful inflammatory nodules and abscesses that characterize the disease. This is a review of the major mediators involved in the recruitment of neutrophils to sites of active inflammation, including bacterial components (endotoxins, exotoxins, capsule fragments, etc.), the complement pathway anaphylatoxins C3a and C5a, tumour necrosis factor-alpha, interleukin (IL)-17, IL-8 (CXCL8), IL-36, IL-1, lipocalin-2, leukotriene B4, platelet-activating factor, kallikreins, matrix metalloproteinases, and myeloperoxidase inhibitors. Pharmacological manipulation of the various pathways involved in the process of neutrophil recruitment and activation could allow for successful control and stabilization of HS lesions and the remission of active, severe flares.
Collapse
Affiliation(s)
- S Narla
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| | - M Azzam
- University of Nevada School of Medicine, Reno, NV, USA
| | - S Townsend
- Wayne State School of Medicine, Detroit, MI, USA
| | | | - A V Marzano
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - A Alavi
- Division of Dermatology, Department of Medicine, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - M A Lowes
- The Rockefeller University, New York, NY, USA
| | - I H Hamzavi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
16
|
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK, Stiene J, Cruise M, Hwang TH, Shen X, Spence JR, Huang EH. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 2021; 12:262. [PMID: 33431859 PMCID: PMC7801686 DOI: 10.1038/s41467-020-20351-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO). Notably, iHUCOs recapitulated histological and functional features of primary colitic tissues, including the absence of acidic mucus secretion and aberrant adherens junctions in the epithelial barrier both in vitro and in vivo. We demonstrate that the CXCL8/CXCR1 axis was overexpressed in iHUCO but not in iHNO. As proof-of-principle, we show that inhibition of CXCL8 receptor by the small-molecule non-competitive inhibitor repertaxin attenuated the progression of UC phenotypes in vitro and in vivo. This patient-derived organoid model, containing both epithelial and stromal compartments, will generate new insights into the underlying pathogenesis of UC while offering opportunities to tailor interventions to the individual patient.
Collapse
Affiliation(s)
- Samaneh K Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Steven Signs
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - David R Hill
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert C Fisher
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Sylvain Ferrandon
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Reece K DeHaan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jennifer Stiene
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emina H Huang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
17
|
Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ. Internal water channel formation in CXCR4 is crucial for G i-protein coupling upon activation by CXCL12. Commun Chem 2020; 3:133. [PMID: 36703316 PMCID: PMC9814148 DOI: 10.1038/s42004-020-00383-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2020] [Indexed: 01/29/2023] Open
Abstract
Chemokine receptor CXCR4 is a major drug target for numerous diseases because of its involvement in the regulation of cell migration and the developmental process. In this study, atomic-level molecular dynamics simulations were used to determine the activation mechanism and internal water formation of CXCR4 in complex with chemokine CXCL12 and Gi-protein. The results indicated that CXCL12-bound CXCR4 underwent transmembrane 6 (TM6) outward movement and a decrease in tyrosine toggle switch by eliciting the breakage of hydrophobic layer to form a continuous internal water channel. In the GDP-bound Gαi-protein state, the rotation and translation of the α5-helix of Gαi-protein toward the cytoplasmic pocket of CXCR4 induced an increase in interdomain distance for GDP leaving. Finally, an internal water channel formation model was proposed based on our simulations for CXCL12-bound CXCR4 in complex with Gαi-protein upon activation for downstream signaling. This model could be useful in anticancer drug development.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | | | - Ya-Tzu Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Sheng-Feng Pan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Chen Yeh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan.
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
18
|
Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020; 18:e3000656. [PMID: 32271748 PMCID: PMC7173943 DOI: 10.1371/journal.pbio.3000656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 04/21/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Chemokines and their receptors are orchestrators of cell migration in humans. Because dysregulation of the receptor-chemokine system leads to inflammation and cancer, both chemokines and receptors are highly sought therapeutic targets. Yet one of the barriers for their therapeutic targeting is the limited understanding of the structural principles behind receptor-chemokine recognition and selectivity. The existing structures do not include CXC subfamily complexes and lack information about the receptor distal N-termini, despite the importance of the latter in signaling, regulation, and bias. Here, we report the discovery of the geometry of the complex between full-length CXCR4, a prototypical CXC receptor and driver of cancer metastasis, and its endogenous ligand CXCL12. By comprehensive disulfide cross-linking, we establish the existence and the structure of a novel interface between the CXCR4 distal N-terminus and CXCL12 β1-strand, while also recapitulating earlier findings from nuclear magnetic resonance, modeling and crystallography of homologous receptors. A cross-linking-informed high-resolution model of the CXCR4-CXCL12 complex pinpoints the interaction determinants and reveals the occupancy of the receptor major subpocket by the CXCL12 proximal N terminus. This newly found positioning of the chemokine proximal N-terminus provides a structural explanation of CXC receptor-chemokine selectivity against other subfamilies. Our findings challenge the traditional two-site understanding of receptor-chemokine recognition, suggest the possibility of new affinity and signaling determinants, and fill a critical void on the structural map of an important class of therapeutic targets. These results will aid the rational design of selective chemokine-receptor targeting small molecules and biologics with novel pharmacology.
Collapse
Affiliation(s)
- Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Bryan S. Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lauren G. Holden
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
19
|
Wiegand P, Lupu L, Hüttmann N, Wack J, Rawer S, Przybylski M, Schmitz K. Epitope Identification and Affinity Determination of an Inhibiting Human Antibody to Interleukin IL8 (CXCL8) by SPR- Biosensor-Mass Spectrometry Combination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:109-116. [PMID: 32881511 DOI: 10.1021/jasms.9b00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The polypeptide chemokine Interleukin-8 (IL8) plays a crucial role in inflammatory processes in humans. IL8 is involved in chronic inflammatory lung diseases, rheumatoid arthritis, and cancer. Previous studies have shown that the interaction of IL8 with its natural receptors CXCR1 and CXCR2 is critical in these diseases. Antibodies have been used to study the receptor interaction of IL8; however, the binding epitopes were hitherto unknown. Identification of the antibody epitope(s) could lead to a molecular understanding of the inhibiting mechanism and development of improved inhibitors. Here, we report the epitope identification and the affinity characterization of IL8 to a monoclonal anti-human IL8 antibody inhibiting the receptor binding by a combination of surface plasmon resonance (SPR) biosensor analysis and MALDI-mass spectrometry. SPR determination of IL8 with the immobilized antibody revealed high affinity (KD, 82.2 nM). Epitope identification of IL-8 was obtained by proteolytic epitope-extraction mass spectrometry of the peptide fragments upon high pressure trypsin digestion, using an affinity microcolumn with immobilized anti-IL-8 antibody. MALDI-MS of the affinity-bound peptide elution fraction revealed an assembled (discontinuous) epitope comprising two specific peptides, IL8 [12-20] and IL8 [55-60]. Identical epitope peptides were identified by direct MALDI-MS of the eluted epitope fraction from the immobilized anti-IL8 antibody on the SPR chip. SPR determination of the synthetic epitope peptides provided high affinities confirming their binding specificity. The previously reported finding that the anti-Il8 antibody is inhibiting the IL8-CXCR1 interaction is well consistent with the overlapping region of epitope interactions identified in the present study.
Collapse
Affiliation(s)
- Pascal Wiegand
- Steinbeis Centre for Biopolymer Analysis & Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
- Techn. Universität Darmstadt, Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Loredana Lupu
- Steinbeis Centre for Biopolymer Analysis & Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Nico Hüttmann
- Steinbeis Centre for Biopolymer Analysis & Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Julia Wack
- Techn. Universität Darmstadt, Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Stephan Rawer
- Steinbeis Centre for Biopolymer Analysis & Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Michael Przybylski
- Steinbeis Centre for Biopolymer Analysis & Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany
| | - Katja Schmitz
- Techn. Universität Darmstadt, Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
20
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Jablonski CL, Leonard C, Salo P, Krawetz RJ. CCL2 But Not CCR2 Is Required for Spontaneous Articular Cartilage Regeneration Post-Injury. J Orthop Res 2019; 37:2561-2574. [PMID: 31424112 DOI: 10.1002/jor.24444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
The role of the inflammatory response in articular cartilage degeneration and/or repair is often debated. Chemokine networks play a critical role in directing the recruitment of immune cells to sites of injury and have been shown to regulate cell behavior. In this study, we investigated the role of the CCL2/CCR2 signaling axis in cartilage regeneration and degeneration. CCL2-/- , CCR2-/- , CCL2-/- CCR2-/- , and control (C57) mice were subjected to full-thickness cartilage defect (FTCD) injuries (n = 9/group) within the femoral groove. Cartilage regeneration at 4 and 12 weeks post-FTCD was assessed using a 14-point histological scoring scale. Mesenchymal stem cells (MSCs) (Sca-1+ , CD140a+ ), macrophages (M1:CD38+ , M2:CD206+ , and M0:F4/80+ ) and proliferating cells (Ki67+ ) were quantified within joints using immunofluorescence. The multi-lineage differentiation capacity of Sca1+ MSCs was determined for all mouse strains. ACL transection (ACL-x) was employed to determine if CCL2-/- CCR2-/- mice were protected against osteoarthritis (OA) (n = 6/group). Absence of CCR2, but not CCL2 nor both (CCL2 and CCR2), enhanced spontaneous articular cartilage regeneration by 4 weeks post-FTCD. Furthermore, increased chondrogenesis was observed in MSCs derived from CCR2-/- mice. CCL2 deficiency promoted MSC homing to the adjacent synovium and FTCD at both 4 and 12 weeks post-injury; with no MSCs present at the surface of the FTCD in the remaining strains. Lower OA scores were observed in CCL2-/- CCR2-/- mice at 12 weeks post-ACL-x compared with C57 mice. Our findings demonstrate an inhibitory role for CCR2 in cartilage regeneration after injury, while CCL2 is required for regeneration, acting through a CCR2 independent mechanism. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2561-2574, 2019.
Collapse
Affiliation(s)
- Christina L Jablonski
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Catherine Leonard
- McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Salo
- McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman J Krawetz
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone & Joint Health, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead. Eur J Med Chem 2019; 185:111853. [PMID: 31732253 DOI: 10.1016/j.ejmech.2019.111853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Immune suppression in the tumor microenvironment (TME) is an intractable issue in anti-cancer immunotherapy. The chemokine receptors CXCR1 and CXCR2 recruit immune suppressive cells such as the myeloid derived suppressor cells (MDSCs) to the TME. Therefore, CXCR1/2 antagonists have aroused pharmaceutical interest in recent years. In this review, the medicinal chemistry of CXCR1/2 antagonists and their relevance in cancer immunotherapy have been summarized. The development of the drug candidates, along with their design rationale, clinical status and current challenges have also been discussed.
Collapse
|
23
|
Pal S, Chattopadhyay A. Extramembranous Regions in G Protein-Coupled Receptors: Cinderella in Receptor Biology? J Membr Biol 2019; 252:483-497. [DOI: 10.1007/s00232-019-00092-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
|
24
|
Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019; 294:12370-12379. [PMID: 31235521 PMCID: PMC6699855 DOI: 10.1074/jbc.ra119.008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus. Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8–Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17–56 and cyclic tcEv3 16–56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17–56 and tcEv3 16–56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany; German Center for Cardiovascular Research, 13316, Berlin, Germany; Partner Site Munich Heart Alliance, 80802 Munich, Germany; Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tilman M Hackeng
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Jiang Z, Gao B, Hu M, Ding L, Lan Z, Yu M, Yu H, Cui Q, Lin J, Li M. Conserved structure and function of chemokine CXCL8 between Chinese tree shrews and humans. Gene 2018; 677:149-162. [DOI: 10.1016/j.gene.2018.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
26
|
Joseph PRB, Spyracopoulos L, Rajarathnam K. Dynamics-Derived Insights into Complex Formation between the CXCL8 Monomer and CXCR1 N-Terminal Domain: An NMR Study. Molecules 2018; 23:E2825. [PMID: 30384436 PMCID: PMC6278376 DOI: 10.3390/molecules23112825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022] Open
Abstract
Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs. dimer affinity. Here, using backbone 15N-relaxation nuclear magnetic resonance (NMR) data, we characterized the dynamic properties of the CXCL8 monomer and the CXCR1 N-domain in the free and bound states. The main chain of CXCL8 appears largely rigid on the picosecond time scale as evident from high order parameters (S²). However, on average, S² are higher in the bound state. Interestingly, several residues show millisecond-microsecond (ms-μs) dynamics only in the bound state. The CXCR1 N-domain is unstructured in the free state but structured with significant dynamics in the bound state. Isothermal titration calorimetry (ITC) data indicate that both enthalpic and entropic factors contribute to affinity, suggesting that increased slow dynamics in the bound state contribute to affinity. In sum, our data indicate a critical and complex role for dynamics in driving CXCL8 monomer-CXCR1 Site-I interactions.
Collapse
Affiliation(s)
- Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
27
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
28
|
Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2018; 113:2695-2705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe 1H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions. Cross-polarization experiments demonstrate that most backbone amide sites of IL-8 (1-66) are immobilized and that their chemical shifts are perturbed upon binding to CXCR1, demonstrating that the dynamics and environments of chemokine residues are affected by interactions with the chemokine receptor. Comparisons of spectra of IL-8 (1-66) bound to full-length CXCR1 (1-350) and to N-terminal truncated construct NT-CXCR1 (39-350) identify specific chemokine residues involved in interactions with binding sites associated with N-terminal residues (binding site-I) and extracellular loop and helical residues (binding site-II) of the receptor. Intermolecular paramagnetic relaxation enhancement broadening of IL-8 (1-66) signals results from interactions of the chemokine with CXCR1 (1-350) containing Mn2+ chelated to an unnatural amino acid assists in the characterization of the receptor-bound form of the chemokine.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Jasmina Radoicic
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
29
|
Berkamp S, Park SH, De Angelis AA, Marassi FM, Opella SJ. Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2017; 69:111-121. [PMID: 29143165 PMCID: PMC5869024 DOI: 10.1007/s10858-017-0128-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
The structure of monomeric human chemokine IL-8 (residues 1-66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1-72), with the main differences being the location of the N-loop (residues 10-22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67-72). NMR was used to analyze the interactions of monomeric IL-8 (1-66) with ND-CXCR1 (residues 1-38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1-72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs. The presence of neither the first transmembrane helix of the receptor nor the lipid bilayer significantly affected the interactions of IL-8 with Binding Site-I of CXCR1.
Collapse
Affiliation(s)
- Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, San Diego, CA, 92093-0307, USA.
| |
Collapse
|
30
|
Weng WH, Li YT, Hsu HJ. Activation-Induced Conformational Changes of Dopamine D3 Receptor Promote the Formation of the Internal Water Channel. Sci Rep 2017; 7:12792. [PMID: 28986565 PMCID: PMC5630584 DOI: 10.1038/s41598-017-13155-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023] Open
Abstract
The atomic-level dopamine activation mechanism for transmitting extracellular ligand binding events through transmembrane helices to the cytoplasmic G protein remains unclear. In the present study, the complete dopamine D3 receptor (D3R), with a homology-modeled N-terminus, was constructed to dock different ligands to simulate conformational alterations in the receptor’s active and inactive forms during microsecond-timescale molecular dynamic simulations. In agonist-bound systems, the D3R N-terminus formed a “lid-like” structure and lay flat on the binding site opening, whereas in antagonist and inverse agonist-bound systems, the N-terminus exposed the binding cavity. Receptor activation was characterized using the different molecular switch residue distances, and G protein-binding site volumes. A continuous water pathway was observed only in the dopamine-Gαi-bound system. In the inactive D3Rs, water entry was hindered by the hydrophobic layers. Finally, a complete activation mechanism of D3R was proposed. Upon agonist binding, the “lid-like” conformation of the N-terminus induces a series of molecular switches to increase the volume of the D3R cytoplasmic binding part for G protein association. Meanwhile, water enters the transmembrane region inducing molecular switches to assist in opening the hydrophobic layers to form a continuous water channel, which is crucial for maintaining a fully active conformation for signal transduction.
Collapse
Affiliation(s)
- Wei-Hsiang Weng
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Ya-Tzu Li
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
31
|
Kharche S, Joshi M, Sengupta D, Chattopadhyay A. Membrane-induced organization and dynamics of the N-terminal domain of chemokine receptor CXCR1: insights from atomistic simulations. Chem Phys Lipids 2017; 210:142-148. [PMID: 28939366 DOI: 10.1016/j.chemphyslip.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
The CXC chemokine receptor 1 (CXCR1) is an important member of the G protein-coupled receptor (GPCR) family in which the extracellular N-terminal domain has been implicated in ligand binding and selectivity. The structure of this domain has not yet been elucidated due to its inherent dynamics, but experimental evidence points toward membrane-dependent organization and dynamics. To gain molecular insight into the interaction of the N-terminal domain with the membrane bilayer, we performed a series of microsecond time scale atomistic simulations of the N-terminal domain of CXCR1 in the presence and absence of POPC bilayers. Our results show that the peptide displays a high propensity to adopt a β-sheet conformation in the presence of the membrane bilayer. The interaction of the peptide with the membrane bilayer was found to be transient in our simulations. Interestingly, a scrambled peptide, containing the same residues in a randomly varying sequence, did not exhibit membrane-modulated structural dynamics. These results suggest that sequence-dependent electrostatics, modulated by the membrane, could play an important role in folding of the N-terminal domain. We believe that our results reinforce the emerging paradigm that cellular membranes could be important modulators of function of G protein-coupled receptors such as CXCR1.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Manali Joshi
- Bioinformatics Center, S.P. Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | | |
Collapse
|
32
|
Brown AJ, Joseph PRB, Sawant KV, Rajarathnam K. Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions. Int J Mol Sci 2017; 18:ijms18040748. [PMID: 28368308 PMCID: PMC5412333 DOI: 10.3390/ijms18040748] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022] Open
Abstract
Chemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG). However, very little is known regarding heterodimer structural features and receptor and GAG interactions. Solution nuclear magnetic resonance (NMR) and molecular dynamics characterization of platelet-derived chemokine CXCL7 heterodimerization with chemokines CXCL1, CXCL4, and CXCL8 indicated that packing interactions promote CXCL7-CXCL1 and CXCL7-CXCL4 heterodimers, and electrostatic repulsive interactions disfavor the CXCL7-CXCL8 heterodimer. As characterizing the native heterodimer is challenging due to interference from monomers and homodimers, we engineered a “trapped” disulfide-linked CXCL7-CXCL1 heterodimer. NMR and modeling studies indicated that GAG heparin binding to the heterodimer is distinctly different from the CXCL7 monomer and that the GAG-bound heterodimer is unlikely to bind the receptor. Interestingly, the trapped heterodimer was highly active in a Ca2+ release assay. These data collectively suggest that GAG interactions play a prominent role in determining heterodimer function in vivo. Further, this study provides proof-of-concept that the disulfide trapping strategy can serve as a valuable tool for characterizing the structural and functional features of a chemokine heterodimer.
Collapse
Affiliation(s)
- Aaron J Brown
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kirti V Sawant
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
33
|
Brown AJ, Sepuru KM, Rajarathnam K. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin. Int J Mol Sci 2017; 18:ijms18030508. [PMID: 28245630 PMCID: PMC5372524 DOI: 10.3390/ijms18030508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 11/23/2022] Open
Abstract
CXCL7, a chemokine highly expressed in platelets, orchestrates neutrophil recruitment during thrombosis and related pathophysiological processes by interacting with CXCR2 receptor and sulfated glycosaminoglycans (GAG). CXCL7 exists as monomers and dimers, and dimerization (~50 μM) and CXCR2 binding (~10 nM) constants indicate that CXCL7 is a potent agonist as a monomer. Currently, nothing is known regarding the structural basis by which receptor and GAG interactions mediate CXCL7 function. Using solution nuclear magnetic resonance (NMR) spectroscopy, we characterized the binding of CXCL7 monomer to the CXCR2 N-terminal domain (CXCR2Nd) that constitutes a critical docking site and to GAG heparin. We found that CXCR2Nd binds a hydrophobic groove and that ionic interactions also play a role in mediating binding. Heparin binds a set of contiguous basic residues indicating a prominent role for ionic interactions. Modeling studies reveal that the binding interface is dynamic and that GAG adopts different binding geometries. Most importantly, several residues involved in GAG binding are also involved in receptor interactions, suggesting that GAG-bound monomer cannot activate the receptor. Further, this is the first study that describes the structural basis of receptor and GAG interactions of a native monomer of the neutrophil-activating chemokine family.
Collapse
Affiliation(s)
- Aaron J Brown
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
34
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
35
|
Sepuru KM, Rajarathnam K. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: STRUCTURAL EVIDENCE FOR TWO DISTINCT NON-OVERLAPPING BINDING DOMAINS. J Biol Chem 2015; 291:4247-55. [PMID: 26721883 DOI: 10.1074/jbc.m115.697888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
In humans, the chemokine CXCL1/MGSA (hCXCL1) plays fundamental and diverse roles in pathophysiology, from microbial killing to cancer progression, by orchestrating the directed migration of immune and non-immune cells. Cellular trafficking is highly regulated and requires concentration gradients that are achieved by interactions with sulfated glycosaminoglycans (GAGs). However, very little is known regarding the structural basis underlying hCXCL1-GAG interactions. We addressed this by characterizing the binding of GAG heparin oligosaccharides to hCXCL1 using NMR spectroscopy. Binding experiments under conditions at which hCXCL1 exists as monomers and dimers indicate that the dimer is the high-affinity GAG ligand. NMR experiments and modeling studies indicate that lysine and arginine residues mediate binding and that they are located in two non-overlapping domains. One domain, consisting of N-loop and C-helical residues (defined as α-domain) has also been identified previously as the GAG-binding domain for the related chemokine CXCL8/IL-8. The second domain, consisting of residues from the N terminus, 40s turn, and third β-strand (defined as β-domain) is novel. Eliminating β-domain binding by mutagenesis does not perturb α-domain binding, indicating two independent GAG-binding sites. It is known that N-loop and N-terminal residues mediate receptor activation, and we show that these residues are also involved in extensive GAG interactions. We also show that the GAG-bound hCXCL1 completely occlude receptor binding. We conclude that hCXCL1-GAG interactions provide stringent control over regulating chemokine levels and receptor accessibility and activation, and that chemotactic gradients mediate cellular trafficking to the target site.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- From the Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Krishna Rajarathnam
- From the Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
36
|
Jiang SJ, Liou JW, Chang CC, Chung Y, Lin LF, Hsu HJ. Peptides derived from CXCL8 based on in silico analysis inhibit CXCL8 interactions with its receptor CXCR1. Sci Rep 2015; 5:18638. [PMID: 26689258 PMCID: PMC4686899 DOI: 10.1038/srep18638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Chemokine CXCL8 is crucial for regulation of inflammatory and immune responses via activating its cognate receptor CXCR1. In this study, molecular docking and binding free energy calculations were combined to predict the initial binding event of CXCL8 to CXCR1 for peptide drug design. The simulations reveal that in the initial binding, the N-loop of CXCL8 interacts with the N-terminus of CXCR1, which is dominated by electrostatic interactions. The derived peptides from the binding region of CXCL8 are synthesized for further confirmation. Surface plasmon resonance analyses indicate that the CXCL8 derived peptide with 14 residues is able to bind to the receptor CXCR1 derived peptide with equilibrium KD of 252 μM while the peptide encompassing a CXCL8 K15A mutation hardly binds to CXCR1 derived peptide (KD = 1553 μM). The cell experiments show that the designed peptide inhibits CXCL8-induced and LPS-activated monocytes adhesion and transmigration. However, when the peptides were mutated on two lysine residues (K15 and K20), the inhibition effects were greatly reduced indicating these two amino acids are key residues for the initial binding of CXCL8 to CXCR1. This study demonstrates that in silico prediction based functional peptide design can be effective for developing anti-inflammation drugs.
Collapse
Affiliation(s)
- Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Laboratory Medicine, Tzu Chi Medical Center, Hualien 97004, Taiwan
| | - Yi Chung
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Lee-Fong Lin
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
37
|
Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. Biochem J 2015; 472:121-33. [PMID: 26371375 PMCID: PMC4692082 DOI: 10.1042/bj20150059] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
Structural plasticity plays a major role in determining differential binding of CXCL8 monomer and dimer to glycosaminoglycans (GAGs) and that dimer is the high-affinity GAG ligand. We propose that these properties play important roles in orchestrating in vivo chemokine-mediated neutrophil function. Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function.
Collapse
|
38
|
Herring CA, Singer CM, Ermakova EA, Khairutdinov BI, Zuev YF, Jacobs DJ, Nesmelova IV. Dynamics and thermodynamic properties of CXCL7 chemokine. Proteins 2015; 83:1987-2007. [PMID: 26297927 DOI: 10.1002/prot.24913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022]
Abstract
Chemokines form a family of signaling proteins mainly responsible for directing the traffic of leukocytes, where their biological activity can be modulated by their oligomerization state. We characterize the dynamics and thermodynamic stability of monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines, using experimental methods that include circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, and computational methods that include the anisotropic network model (ANM), molecular dynamics (MD) simulations and the distance constraint model (DCM). A consistent picture emerges for the effects of dimerization and Cys5-Cys31 and Cys7-Cys47 disulfide bonds formation. The presence of disulfide bonds is not critical for maintaining structural stability in the monomer or dimer, but the monomer is destabilized more than the dimer upon removal of disulfide bonds. Disulfide bonds play a key role in shaping the characteristics of native state dynamics. The combined analysis shows that upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present, and the homodimer is least stable relative to its two monomers. These results suggest that the highly conserved disulfide bonds in chemokines facilitate a structural mechanism that is tuned to optimally distinguish functional characteristics between monomer and dimer.
Collapse
Affiliation(s)
- Charles A Herring
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina, 28223
| | - Christopher M Singer
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina, 28223
| | - Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, Kazan, 40111, Russia
| | | | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, Kazan, 40111, Russia
| | - Donald J Jacobs
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina, 28223.,Center for Biomedical Engineering, University of North Carolina, Charlotte, North Carolina, 28223
| | - Irina V Nesmelova
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina, 28223.,Center for Biomedical Engineering, University of North Carolina, Charlotte, North Carolina, 28223
| |
Collapse
|
39
|
Girrbach M, Meliciani I, Waterkotte B, Berthold S, Oster A, Brurein F, Strunk T, Wadhwani P, Berensmeier S, Wenzel W, Schmitz K. A fluorescence polarization assay for the experimental validation of an in silico model of the chemokine CXCL8 binding to receptor-derived peptides. Phys Chem Chem Phys 2015; 16:8036-43. [PMID: 24647967 DOI: 10.1039/c3cp53850h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide based inhibitors of protein-protein interactions are of great interest in proteomics, structural biology and medicinal chemistry. Optimized inhibitors can be designed by experimental approaches or by computational prediction. Ideally, computational models are adjusted to the peptide-protein complex of interest according to experimental data obtained in specific binding experiments. The chemokine CXCL8 (interleukin-8) is an interesting target for drug discovery due to its role in inflammatory diseases. Given the available structural data and information on its receptor interactions it constitutes a basis for the rational design of inhibitor peptides. Starting from the reported structure of CXCL8 in complex with a peptide derived from its receptor CXCR1 we developed a computational docking procedure to estimate the changes in binding energy as a function of individual amino acid exchanges. This indicates whether the respective amino acid residue must be preserved or can be substituted to maintain or improve affinity, respectively. To validate and improve the assumptions made in this docking simulation we established a fluorescence polarization assay for receptor-derived peptides binding to CXCL8. A peptide library was tested comprising selected mutants characterized by docking simulations. A number of predictions regarding electrostatic interactions were confirmed by these experiments and it was revealed that the model needed to be corrected for backbone flexibility. Therefore, the assay presented here is a promising tool to systematically improve the computational model by iterative cycles of modeling, experimental validation and refinement of the algorithm, leading to a more reliable model and peptides with improved affinity.
Collapse
Affiliation(s)
- Maria Girrbach
- Karlsruhe Institute of Technology, Centre for Functional Nanostructures, Haid-und-Neu-Straße 6, 76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Helmer D, Rink I, Dalton JAR, Brahm K, Jöst M, Nargang TM, Blum W, Wadhwani P, Brenner-Weiss G, Rapp BE, Giraldo J, Schmitz K. Rational design of a peptide capture agent for CXCL8 based on a model of the CXCL8:CXCR1 complex. RSC Adv 2015. [DOI: 10.1039/c4ra13749c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A CXCL8-binding peptide designed from the interaction sites of CXCR1 with CXCL8 serves as a capture agent and inhibits neutrophil migration.
Collapse
|
41
|
Singh JK, Simões BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res 2014; 15:210. [PMID: 24041156 PMCID: PMC3978717 DOI: 10.1186/bcr3436] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival.
Collapse
|
42
|
Joseph PRB, Rajarathnam K. Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Protein Sci 2014; 24:81-92. [PMID: 25327289 DOI: 10.1002/pro.2590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/03/2014] [Accepted: 10/10/2014] [Indexed: 01/24/2023]
Abstract
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites - the N-terminal domain (Site-I) and the extracellular/transmembrane domain (Site-II). Therefore, higher monomer affinity could be due to stronger binding at Site-I or Site-II or both. We have now characterized the binding of a human CXCR1 N-terminal domain peptide (hCXCR1Ndp) to WT CXCL8 under conditions where it exists as both monomers and dimers. We show that the WT monomer binds the CXCR1 N-domain with much higher affinity and that binding is coupled to dimer dissociation. We also characterized the binding of two CXCL8 monomer variants and a trapped dimer to two different hCXCR1Ndp constructs, and observe that the monomer binds with ∼10- to 100-fold higher affinity than the dimer. Our studies also show that the binding constants of monomer and dimer to the receptor peptides, and the dimer dissociation constant, can vary significantly as a function of pH and buffer, and so the ability to observe WT monomer peaks is critically dependent on NMR experimental conditions. We conclude that the monomer is the high affinity CXCR1 agonist, that Site-I interactions play a dominant role in determining monomer vs. dimer affinity, and that the dimer plays an indirect role in regulating monomer function.
Collapse
Affiliation(s)
- Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, 77555
| | | |
Collapse
|
43
|
Abstract
OBJECTIVE Monocyte inflammatory processes are fundamental events in AIDS pathogenesis. HIV-1 matrix protein p17, released from infected cells, was found to exert an interleukin (IL)-8 chemokine-like activity on human monocytes, promoting their trafficking and sustaining inflammatory processes, after binding to CXCR1. A haplotype of the CXCR1 gene (CXCR1_300_142) has been associated with slow HIV disease progression. Here, we determine how CXCR1 genetic variations impact on p17 biological activity. DESIGN/METHODS/RESULTS Our results show that Jurkat cells overexpressing CXCR1 or the receptor carrying single polymorphism CXCR1_300 or CXCR1_142 are able to adhere and migrate in response to both IL-8 and p17. On the contrary, Jurkat cells overexpressing CXCR1_300_142 and monocytes of individuals with such CXCR1 polymorphisms lose the capacity to adhere and migrate in response to p17, but not to their physiological ligand IL-8. Surface plasmon resonance (SPR) and multispectral imaging flow cytometry showed that p17 bound with similar affinity to CXCR1 and CXCR1_300_142. Moreover, whereas p17 was able to activate CXCR1, it was incapable of functionally interacting with CXCR1_300_142 by phosphorylating extracellular signal-regulated kinase 1/2, which regulates chemokine-induced cellular responses. Finally, mutagenesis studies showed that, unlike IL-8, p17 does not use Glu-Leu-Arg-like motifs to activate CXCR1. CONCLUSIONS Our results, showing the inability of p17 to activate CXCR1_300_142, a receptor found to be expressed on immune cells of patients with a low progression of HIV disease, point to a crucial role of p17 in AIDS pathogenesis. Our findings herein call for an exploration of the therapeutic potential of blocking the p17/CXCR1 axis in HIV infection.
Collapse
|
44
|
N-terminal region of human chemokine receptor CXCR3: Structural analysis of CXCR3(1–48) by experimental and computational studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1868-80. [DOI: 10.1016/j.bbapap.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
|
45
|
Xu T, Zhu Z, Sun Y, Ren L, Wang R. Characterization and expression of the CXCR1 and CXCR4 in miiuy croaker and evolutionary analysis shows the strong positive selection pressures imposed in mammal CXCR1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:133-144. [PMID: 24333436 DOI: 10.1016/j.dci.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
The innate immune system can recognize non-self, danger signals, and pathogen associated molecular patterns and provides a first line of antimicrobial host defense. Therefore, it plays an instructive role and is pretty important in vertebrates. In innate immune responses, CXCRs act as the main receptors of CXC chemokines and play a vital role in host defense and inflammation. In present study, we cloned two cDNA molecules of CXCR1 and CXCR4 in Miichthys miiuy (miiuy croaker). In these two genes, we found the most highly conserved DRY motif in the second intracellular loop adjacent to the third transmembrane domain. The expressions of CXCR1 and CXCR4 showed that they were ubiquitously expressed in ten normal tissues. After infection with Vibrio anguillarum and Vibrio harveyi, the expressions of CXCRs in the immune tissues were significantly regulated in most of tissues except that of CXCR1 in the kidney after V. harveyi injection. Evolutionary analysis showed that only the ancestral lineages of CXCR4 in amphibians underwent positive selection, indicating that the ancestors of amphibians boarded the land and had to further evolve to adapt to terrestrial environments. Multiple ML methods were implemented to detect the robust positively selected candidates for sites. In total, we detected 12 and 3 positively selected sites in the subsets of current mammal and fish CXCR1 genes, and only one site under positive selection was found in mammalian CXCR4 subsets. These positively selected sites were mainly located in the extracellular domains of CXCRs. The sliding window analysis and evolution test tended to favor positive selection acting on the N-terminal domain of CXCR1, which was the critical region for ligand/receptor signaling for neutrophils and receptor-ligand interaction, indicating that the N-terminal of CXCR1 in mammals underwent more positive selection than that of fish.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China.
| | - Zhihuang Zhu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Liping Ren
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| |
Collapse
|
46
|
Joseph PRB, Poluri KM, Gangavarapu P, Rajagopalan L, Raghuwanshi S, Richardson RM, Garofalo RP, Rajarathnam K. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins. Biophys J 2014; 105:1491-501. [PMID: 24048001 DOI: 10.1016/j.bpj.2013.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins.
Collapse
Affiliation(s)
- Prem Raj B Joseph
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Liou JW, Chang FT, Chung Y, Chen WY, Fischer WB, Hsu HJ. In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1. PLoS One 2014; 9:e94178. [PMID: 24705928 PMCID: PMC3976404 DOI: 10.1371/journal.pone.0094178] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Chemokine CXCL-8 plays a central role in human immune response by binding to and activate its cognate receptor CXCR1, a member of the G-protein coupled receptor (GPCR) family. The full-length structure of CXCR1 is modeled by combining the structures of previous NMR experiments with those from homology modeling. Molecular docking is performed to search favorable binding sites of monomeric and dimeric CXCL-8 with CXCR1 and a mutated form of it. The receptor-ligand complex is embedded into a lipid bilayer and used in multi ns molecular dynamics (MD) simulations. A multi-steps binding mode is proposed: (i) the N-loop of CXCL-8 initially binds to the N-terminal domain of receptor CXCR1 driven predominantly by electrostatic interactions; (ii) hydrophobic interactions allow the N-terminal Glu-Leu-Arg (ELR) motif of CXCL-8 to move closer to the extracellular loops of CXCR1; (iii) electrostatic interactions finally dominate the interaction between the N-terminal ELR motif of CXCL-8 and the EC-loops of CXCR1. Mutation of CXCR1 abrogates this mode of binding. The detailed binding process may help to facilitate the discovery of agonists and antagonists for rational drug design.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Nanotechnology Research Center, National Dong Hwa University, Hualien, Taiwan
| | - Fang-Tzu Chang
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yi Chung
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yi Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang Ming University, Taipei, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Kendrick AA, Holliday MJ, Isern NG, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G, Eisenmesser EZ. The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Protein Sci 2014; 23:464-80. [PMID: 24442768 PMCID: PMC3970897 DOI: 10.1002/pro.2430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 01/13/2023]
Abstract
Interleukin-8 (CXCL8, IL-8) is a proinflammatory chemokine important for the regulation of inflammatory and immune responses via its interaction with G-protein coupled receptors, including CXC receptor 1 (CXCR1). CXCL8 exists as both a monomer and as a dimer at physiological concentrations, yet the molecular basis of CXCL8 interaction with its receptor as well as the importance of CXCL8 dimer formation remain poorly characterized. Although several biological studies have indicated that both the CXCL8 monomer and dimer are active, biophysical studies have reported conflicting results regarding the binding of CXCL8 to CXCR1. To clarify this problem, we expressed and purified a peptide (hCXCR1pep) corresponding to the N-terminal region of human CXCR1 (hCXCR1) and utilized nuclear magnetic resonance (NMR) spectroscopy to interrogate the binding of wild-type CXCL8 and a previously reported mutant (CXCL8M) that stabilizes the monomeric form. Our data reveal that the CXCL8 monomer engages hCXCR1pep with a slightly higher affinity than the CXCL8 dimer, but that the CXCL8 dimer does not dissociate upon binding hCXCR1pep. These investigations also showed that CXCL8 is dynamic on multiple timescales, which may help explain the versatility in this interleukin for engaging its target receptors.
Collapse
Affiliation(s)
- Agnieszka A Kendrick
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| | - Michael J Holliday
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| | - Nancy G Isern
- WR Wiley Environmental Molecular Sciences Laboratory, High Filed NMR Facility, RichlandWashington, 99532
| | - Fengli Zhang
- National High Magnetics Field LaboratoryTallahassee, Florida, 32310
| | - Carlo Camilloni
- Department of Chemistry, University of CambridgeCambridge, CB2 1EW, United Kingdom
| | - Chi Huynh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| | - Michele Vendruscolo
- Department of Chemistry, University of CambridgeCambridge, CB2 1EW, United Kingdom
| | - Geoffrey Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at BoulderBoulder, Colorado, 80309
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado DenverAurora, Colorado, 80224
| |
Collapse
|
49
|
Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation. Biochem J 2014; 456:241-51. [PMID: 24032673 DOI: 10.1042/bj20130148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. GP mutants showed large differences from native-like to complete loss of function that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity.
Collapse
|
50
|
Abstract
Chemokines are low-molecular-weight, secreted proteins that act as leukocyte-specific chemoattractants. The chemokine family has more than 40 members. Based on the position of two conserved cysteines in the N-terminal domain, chemokines can be divided into the CXC, C, CC, and CX3C subfamilies. The interaction of chemokines with their receptors mediates signaling pathways that play critical roles in cell migration, differentiation, and proliferation. The receptors for chemokines are G protein-coupled receptors (GPCRs), and thus far, seven CXC receptors have been cloned and are designated CXCR1-7. Constitutively active GPCRs are present in several human immune-mediated diseases and in tumors, and they have provided valuable information in understanding the molecular mechanism of GPCR activation. Several constitutively active CXC chemokine receptors include the V6.40A and V6.40N mutants of CXCR1; the D3.49V variant of CXCR2; the N3.35A, N3.35S, and T2.56P mutants of CXCR3; the N3.35 mutation of CXCR4; and the naturally occurring KSHV-GPCR. Here, we review the regulation of CXC chemokine receptor signaling, with a particular focus on the constitutive activation of these receptors and the implications in physiological conditions and in pathogenesis. Understanding the mechanisms behind the constitutive activation of CXC chemokine receptors may aid in pharmaceutical design and the screening of inverse agonists and allosteric modulators for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Xinbing Han
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|