1
|
Khalid T, Malik A, Rasool N, Kanwal A, Nawaz H, Almas I. Cracking the code: the clinical and molecular impact of aminopyridines; a review (2019-2024). RSC Adv 2025; 15:688-711. [PMID: 39781020 PMCID: PMC11708541 DOI: 10.1039/d4ra07438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives. A vast array of biological and pharmacological effects can result from the interaction of aminopyridine rings with different enzymes and receptors, due to their unique structural properties. Aminopyridine research is continually growing, and there are now greater expectations for how it may aid in the treatment of numerous disorders. This review article will serve as an innovative platform for researchers investigating aminopyridine compounds, intending thoroughly to examine both traditional and novel synthesis strategies in addition to investigating the various biological characteristics displayed by these adaptable heterocycles. We attempt to provide valuable insights that will contribute to further progress in the synthesis and utilization of aminopyridines in various fields.
Collapse
Affiliation(s)
- Tahira Khalid
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Malik
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Hamna Nawaz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Iffat Almas
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| |
Collapse
|
2
|
Arrang J, Armand V. Histamine H 1-receptor-mediated modulation of NMDA receptors signaling responses. Pharmacol Res Perspect 2024; 12:e1216. [PMID: 39376050 PMCID: PMC11458884 DOI: 10.1002/prp2.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 10/09/2024] Open
Abstract
This study attempted to clarify the role of histamine H1 receptors in epilepsy by exploring the effects of agonists and inverse agonists on the rundown of the current induced by iterative applications of NMDA or GABA in primary neuronal culture. Mepyramine, a classical H1-receptor antagonist/inverse agonist, increased the NMDA current by about 40% during the first minutes of recording. This effect was concentration-dependent, maximal at 10 nM, and mimicked by triprolidine, another antagonist/inverse agonist. No endogenous histamine was detected in the cultures by a selective immunoassay; both compounds were acting as inverse agonists. Indicating a high constitutive activity of the H1 receptor in this system, histamine did not affect the NMDA rundown, including its settlement, but significantly reversed the effect of mepyramine. A similar pattern was obtained with 2,3 bromophenyl histamine, a selective H1-receptor agonist. The initial increase induced by the two inverse agonists was followed by the same rundown as in controls. H1- and NMDA receptors are colocalized in most cultured neuronal cells. Mepyramine and histamine did not affect the GABA rundown. Our findings suggest an interaction between H1- and NMDA receptors. Inactivation of the H1-receptor by its inverse agonists delays the settlement of the NMDA rundown, which may underlie their proconvulsant effect reported in clinics. Therefore, H1-receptor constitutive activity and the effect of histamine revealed in its absence, tend to facilitate the initiation of the rundown, which is consistent with the anticonvulsant properties of histamine via activation of H1-receptors reported in many studies.
Collapse
Affiliation(s)
- J.‐M. Arrang
- Université de Paris, SPPIN ‐ Saints‐Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - V. Armand
- Université de Paris, SPPIN ‐ Saints‐Pères Paris Institute for the Neurosciences, CNRSParisFrance
| |
Collapse
|
3
|
Wang D, Guo Q, Wu Z, Li M, He B, Du Y, Zhang K, Tao Y. Molecular mechanism of antihistamines recognition and regulation of the histamine H 1 receptor. Nat Commun 2024; 15:84. [PMID: 38167898 PMCID: PMC10762250 DOI: 10.1038/s41467-023-44477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Histamine receptors are a group of G protein-coupled receptors (GPCRs) that play important roles in various physiological and pathophysiological conditions. Antihistamines that target the histamine H1 receptor (H1R) have been widely used to relieve the symptoms of allergy and inflammation. Here, to uncover the details of the regulation of H1R by the known second-generation antihistamines, thereby providing clues for the rational design of newer antihistamines, we determine the cryo-EM structure of H1R in the apo form and bound to different antihistamines. In addition to the deep hydrophobic cavity, we identify a secondary ligand-binding site in H1R, which potentially may support the introduction of new derivative groups to generate newer antihistamines. Furthermore, these structures show that antihistamines exert inverse regulation by utilizing a shared phenyl group that inserts into the deep cavity and block the movement of the toggle switch residue W4286.48. Together, these results enrich our understanding of GPCR modulation and facilitate the structure-based design of novel antihistamines.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Qiong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Binbin He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Kaiming Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China.
| | - Yuyong Tao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China.
| |
Collapse
|
4
|
Carriere JJ, Davies NA, Cunningham MR, Wallace MJ, Seeley A. Co-created in vivo pharmacology practical classes using the novel organism Lumbriculus variegatus. Pharmacol Res Perspect 2023; 11:e01158. [PMID: 38063050 PMCID: PMC10704400 DOI: 10.1002/prp2.1158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Co-creation within higher education emphasizes learner empowerment to promote collaboration between the students and staff, enabling students to become active participants in their learning process and the construction of resources with academic staff. Concurrently, a diminishing number of higher education institutions offer in vivo practical classes, resulting in an in vivo skills shortage. To address this, and to actively engage students in their own learning, we describe the co-creation of a student-led drug trial using Lumbriculus variegatus. Under blinded conditions, final-year undergraduate biomedical science students, under the tutelage of academic staff and fellow students, were involved in the co-creation of an in vivo practical class to determine the effects of histamine and histamine receptor inverse agonists mepyramine and loratadine. Throughout this process, undergraduate- and masters-level students played key roles in every aspect of practical delivery and data analysis. Herein, students demonstrated the test compounds, both in isolation and in combination, resulted in reduced stereotypical movements of L. variegatus (p < .05, n ≥ 6). 15% of students in the class responded to a feedback survey (n = 8) after the class. Students reported the class provided "real life" insights into in vivo research and enabled the development of hands-on skills which would be useful in applying in their future careers. All students reported that they enjoyed the class with 25% (n = 2) reporting concerns about animal use in research, enabling useful discussions about animals in research. Moreover, these student-led in vivo trials add to the pharmacological knowledge of L. variegatus promoting education-led research.
Collapse
Affiliation(s)
- Julanta J. Carriere
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaUK
| | - Nia A. Davies
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaUK
| | - Margaret R. Cunningham
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Melisa J. Wallace
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaUK
| | - Aidan Seeley
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaUK
| |
Collapse
|
5
|
The chronological evolution of fluorescent GPCR probes for bioimaging. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Antihistamines Potentiate Dexamethasone Anti-Inflammatory Effects. Impact on Glucocorticoid Receptor-Mediated Expression of Inflammation-Related Genes. Cells 2021; 10:cells10113026. [PMID: 34831249 PMCID: PMC8617649 DOI: 10.3390/cells10113026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs' anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.
Collapse
|
7
|
Seibel-Ehlert U, Plank N, Inoue A, Bernhardt G, Strasser A. Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors. Int J Mol Sci 2021; 22:9739. [PMID: 34575903 PMCID: PMC8467282 DOI: 10.3390/ijms22189739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such "invasive" techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1-4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1-4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1-4Rs.
Collapse
Affiliation(s)
- Ulla Seibel-Ehlert
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Nicole Plank
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Asuka Inoue
- Department of Pharmacological Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Guenther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Andrea Strasser
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| |
Collapse
|
8
|
Ionov ID, Pushinskaya II, Gorev NP, Shpilevaya LA, Frenkel DD, Severtsev NN. Histamine H 1 receptors regulate anhedonic-like behavior in rats: Involvement of the anterior cingulate and lateral entorhinal cortices. Behav Brain Res 2021; 412:113445. [PMID: 34224764 DOI: 10.1016/j.bbr.2021.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
A decreased H1 receptor activity is observed in the anterior cingulate cortex (aCgCx) of depressed patients. The role of this abnormality in the development of depression-related processes is unstudied. We examined the influence of a decreased brain H1 receptor activity on rat behavior in the sucrose preference test. The H1 receptor deficit was simulated by injection of an H1 antagonist into the aCgCx; also, two aCgCx projection areas, lateral and medial entorhinal cortices were examined. A blockade of H1-receptors in the aCgCx and lateral entorhinal cortex (LEntCx) significantly reduced sucrose preference. These findings suggest the existence of H1 receptor-mediated aCgCx-LEntCx circuitry mechanism regulating anhedonic-like behavior in rats. The presented data suggest that H1 receptor-mediated processes might be a therapeutic target in depressive disorders.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
9
|
Histamine-induced biphasic activation of RhoA allows for persistent RhoA signaling. PLoS Biol 2020; 18:e3000866. [PMID: 32881857 PMCID: PMC7494096 DOI: 10.1371/journal.pbio.3000866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/16/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. Many signal transduction pathways activate RhoA—for instance, Gαq-coupled Histamine 1 Receptor signaling via Gαq-dependent activation of RhoGEFs such as p63. Although multiple upstream regulators of RhoA have been identified, the temporal regulation of RhoA and the coordination of different upstream components in its regulation have not been well characterized. In this study, live-cell measurement of RhoA activation revealed a biphasic increase of RhoA activity upon histamine stimulation. We showed that the first and second phase of RhoA activity are dependent on p63 and Ca2+/PKC, respectively, and further identified phosphorylation of serine 240 on p115 RhoGEF by PKC to be the mechanistic link between PKC and RhoA. Combined approaches of computational modeling and quantitative measurement revealed that the second phase of RhoA activation is insensitive to rapid turning off of the receptor and is required for maintaining RhoA-mediated transcription after the termination of the receptor signaling. Thus, two divergent pathways enable both rapid activation and persistent signaling in receptor-mediated RhoA signaling via intricate temporal regulation. The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. This study shows that histamine induces biphasic activation of RhoA via two divergent signaling pathways, allowing for intricate regulation of cellular processes.
Collapse
|
10
|
Zappia CD, Monczor F. Therapeutic utility of glucocorticoids and antihistamines cotreatment. Rationale and perspectives. Pharmacol Res Perspect 2019; 7:e00530. [PMID: 31859461 PMCID: PMC6923805 DOI: 10.1002/prp2.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
11
|
Zappia CD, Soto A, Granja‐Galeano G, Fenoy I, Fernandez N, Davio CA, Shayo C, Fitzsimons CP, Goldman A, Monczor F. Azelastine potentiates antiasthmatic dexamethasone effect on a murine asthma model. Pharmacol Res Perspect 2019; 7:e00531. [PMID: 31687162 PMCID: PMC6818730 DOI: 10.1002/prp2.531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ariadna Soto
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Gina Granja‐Galeano
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ignacio Fenoy
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Natalia Fernandez
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carlos A. Davio
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental CONICETBuenos AiresArgentina
| | - Carlos P. Fitzsimons
- Center for NeuroscienceSwammerdam Institute for Life SciencesFaculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alejandra Goldman
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
12
|
Schleip R, Gabbiani G, Wilke J, Naylor I, Hinz B, Zorn A, Jäger H, Breul R, Schreiner S, Klingler W. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Front Physiol 2019; 10:336. [PMID: 31001134 PMCID: PMC6455047 DOI: 10.3389/fphys.2019.00336] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/13/2019] [Indexed: 11/19/2022] Open
Abstract
Fascial tissues form a ubiquitous network throughout the whole body, which is usually regarded as a passive contributor to biomechanical behavior. We aimed to answer the question, whether fascia may possess the capacity for cellular contraction which, in turn, could play an active role in musculoskeletal mechanics. Human and rat fascial specimens from different body sites were investigated for the presence of myofibroblasts using immunohistochemical staining for α-smooth muscle actin (n = 31 donors, n = 20 animals). In addition, mechanographic force registrations were performed on isolated rat fascial tissues (n = 8 to n = 18), which had been exposed to pharmacological stimulants. The density of myofibroblasts was increased in the human lumbar fascia in comparison to fasciae from the two other regions examined in this study: fascia lata and plantar fascia [H(2) = 14.0, p < 0.01]. Mechanographic force measurements revealed contractions in response to stimulation by fetal bovine serum, the thromboxane A2 analog U46619, TGF-β1, and mepyramine, while challenge by botulinum toxin type C3–used as a Rho kinase inhibitor– provoked relaxation (p < 0.05). In contrast, fascial tissues were insensitive to angiotensin II and caffeine (p < 0.05). A positive correlation between myofibroblast density and contractile response was found (rs = 0.83, p < 0.001). The hypothetical application of the registered forces to human lumbar tissues predicts a potential impact below the threshold for mechanical spinal stability but strong enough to possibly alter motoneuronal coordination in the lumbar region. It is concluded that tension of myofascial tissue is actively regulated by myofibroblasts with the potential to impact active musculoskeletal dynamics.
Collapse
Affiliation(s)
- Robert Schleip
- Department of Neuroanesthesiology, Neurosurgical Clinic, Ulm University, Günzburg, Germany.,Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany.,Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany
| | - Giulio Gabbiani
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jan Wilke
- Department of Sports Medicine, Institute of Sport Science, Goethe University Frankfurt, Frankfurt, Germany
| | - Ian Naylor
- School of Pharmacy, University of Bradford, Bradford, United Kingdom
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, University of Toronto, Toronto, ON, Canada
| | - Adjo Zorn
- Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany
| | - Heike Jäger
- Division of Neurophysiology, Ulm University, Ulm, Germany
| | - Rainer Breul
- Anatomische Anstalt, Ludwig-Maximilians-Universität, München, Germany
| | | | - Werner Klingler
- Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany.,Faculty of Health School - Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Masuoka T, Ikeda R, Konishi S. Persistent activation of histamine H 1 receptors in the hippocampal CA1 region enhances NMDA receptor-mediated synaptic excitation and long-term potentiation in astrocyte- and D-serine-dependent manner. Neuropharmacology 2019; 151:64-73. [PMID: 30943384 DOI: 10.1016/j.neuropharm.2019.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 01/05/2023]
Abstract
Behavioral studies using pharmacological tools have implicated histamine H1 receptors in cognitive function via their interactions with N-methyl-D-aspartate receptors (NMDARs) in the hippocampus. However, little is known about the neurophysiological mechanism that underlies the interaction between H1 receptors and NMDARs. To explore how H1 receptor activation affects hippocampal excitatory neurotransmission and synaptic plasticity, this study aimed to examine the effect of H1 receptor ligands on both NMDAR-mediated synaptic currents and long-term potentiation (LTP) at synapses between Schaffer collaterals and CA1 pyramidal neurons using acute mouse hippocampal slices. We found that the H1 receptor antagonist/inverse agonists, pyrilamine (0.1 μM) and cetirizine (10 μM), decreased the NMDAR-mediated component of stimulation-induced excitatory postsynaptic currents (EPSCs) recorded from CA1 pyramidal neurons without affecting the AMPA receptor-mediated component of EPSCs and its paired pulse ratio. Pretreatment of slices with either the glial metabolism inhibitor, fluoroacetate (5 mM), or D-serine (100 μM) diminished the pyrilamine- or cetirizine-induced attenuation of the NMDAR-mediated EPSCs. Furthermore, the LTP of field excitatory postsynaptic potentials induced following high frequency stimulation of Schaffer collaterals was attenuated with application of pyrilamine or cetirizine. Pretreatment with D-serine again attenuated the pyrilamine-induced suppression of LTP. Our data suggest that H1 receptors in the CA1 can undergo persistent activation induced by their constitutive receptor activity and/or tonic release of endogenous histamine, resulting in facilitation of the NMDAR activity in a manner dependent of astrocytes and the release of D-serine. This led to the enhancement of NMDA-component EPSC and LTP at the Schaffer collateral-CA1 pyramidal neuron synapses.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan; Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa, 920-0293, Japan.
| | - Ryo Ikeda
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Shiro Konishi
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| |
Collapse
|
14
|
Monczor F, Chatzopoulou A, Zappia CD, Houtman R, Meijer OC, Fitzsimons CP. A Model of Glucocorticoid Receptor Interaction With Coregulators Predicts Transcriptional Regulation of Target Genes. Front Pharmacol 2019; 10:214. [PMID: 30930776 PMCID: PMC6425864 DOI: 10.3389/fphar.2019.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.
Collapse
Affiliation(s)
- Federico Monczor
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonia Chatzopoulou
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Carlos Daniel Zappia
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - René Houtman
- PamGene International B.V., 's-Hertogenbosch, Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlos P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Kamei M, Otani Y, Hayashi H, Nakamura T, Yanai K, Furuta K, Tanaka S. Suppression of IFN-γ Production in Murine Splenocytes by Histamine Receptor Antagonists. Int J Mol Sci 2018; 19:E4083. [PMID: 30562962 PMCID: PMC6321562 DOI: 10.3390/ijms19124083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that histamine synthesis induced in several types of tumor tissues modulates tumor immunity. We found that a transient histamine synthesis was induced in CD11b⁺Gr-1⁺ splenocytes derived from BALB/c mice transplanted with a syngeneic colon carcinoma, CT-26, when they were co-cultured with CT-26 cells. Significant levels of IFN-γ were produced under this co-culture condition. We explored the modulatory roles of histamine on IFN-γ production and found that several histamine receptor antagonists, such as pyrilamine, diphenhydramine, JNJ7777120, and thioperamide, could significantly suppress IFN-γ production. However, suppression of IFN-γ production by these antagonists was also found when splenocytes were derived from the Hdc-/- BALB/c mice. Suppressive effects of these antagonists were found on IFN-γ production induced by concanavalin A or the combination of an anti-CD3 antibody and an anti-CD28 antibody in a histamine-independent manner. Murine splenocytes were found to express H₁ and H₂ receptors, but not H₃ and H₄ receptors. IFN-γ production in the Hh1r-/- splenocytes induced by the combination of an anti-CD3 antibody and an anti-CD28 antibody was significantly suppressed by these antagonists. These findings suggest that pyrilamine, diphenhydramine, JNJ7777120, and thioperamide can suppress IFN-γ production in activated splenocytes in a histamine-independent manner.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Histamine/genetics
- Histamine/metabolism
- Histamine Antagonists/pharmacology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Histamine H2/genetics
- Receptors, Histamine H2/metabolism
- Spleen/metabolism
- Spleen/pathology
Collapse
Affiliation(s)
- Miho Kamei
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Yukie Otani
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Hidenori Hayashi
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| | - Satoshi Tanaka
- Department of Pharmacology, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
16
|
Suzuki Y, Ogasawara T, Tanaka Y, Takeda H, Sawasaki T, Mogi M, Liu S, Maeyama K. Functional G-Protein-Coupled Receptor (GPCR) Synthesis: The Pharmacological Analysis of Human Histamine H1 Receptor (HRH1) Synthesized by a Wheat Germ Cell-Free Protein Synthesis System Combined with Asolectin Glycerosomes. Front Pharmacol 2018; 9:38. [PMID: 29467651 PMCID: PMC5808195 DOI: 10.3389/fphar.2018.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins distributed on the cell surface, and they may be potential drug targets. However, synthesizing GPCRs in vitro can be challenging. Recently, some cell-free protein synthesis systems have been shown to produce a large amount of membrane protein combined with chemical chaperones that include liposomes and glycerol. Liposomes containing high concentrations of glycerol are known as glycerosomes, which are used in new drug delivery systems. Glycerosomes have greater morphological stability than liposomes. Proteoglycerosomes are defined as glycerosomes that contain membrane proteins. Human histamine H1 receptor (HRH1) is one of the most studied GPCRs. In this study, we synthesized wild-type HRH1 (WT-HRH1) proteoglycerosomes and D107A-HRH1, (in which Asp107 was replaced by Ala) in a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. The mutant HRH1 has been reported to have low affinity for the H1 antagonist. In this study, the amount of synthesized WT-HRH1 in one synthesis reaction was 434 ± 66.6 μg (7.75 ± 1.19 × 103pmol). The specific binding of [3H]pyrilamine to the WT-HRH1 proteoglycerosomes became saturated as the concentration of the radioligand increased. The dissociation constant (Kd) and maximum density (Bmax) of the synthesized WT-HRH1 were 9.76 ± 1.25 nM and 21.4 ± 0.936 pmol/mg protein, respectively. However, specific binding to D107A-HRH1 was reduced compared with WT-HRH1 and the binding did not become saturated. The findings of this study highlight that HRH1 synthesized using a wheat germ cell-free protein synthesis system combined with glycerosomes has the ability to bind to H1 antagonists.
Collapse
Affiliation(s)
- Yasuyuki Suzuki
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | | | - Yuki Tanaka
- Advanced Research Support Center, Division of Analytical Bio-Medicine, Ehime University, Toon, Japan
| | | | | | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kazutaka Maeyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
17
|
Granja-Galeano G, Zappia CD, Fabián L, Davio C, Shayo C, Fernández N, Monczor F. Effect of mutation of Phe 243 6.44 of the histamine H 2 receptor on cimetidine and ranitidine mechanism of action. Biochem Pharmacol 2017; 146:117-126. [DOI: 10.1016/j.bcp.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
|
18
|
Tu L, Lu Z, Dieser K, Schmitt C, Chan SW, Ngan MP, Andrews PLR, Nalivaiko E, Rudd JA. Brain Activation by H 1 Antihistamines Challenges Conventional View of Their Mechanism of Action in Motion Sickness: A Behavioral, c-Fos and Physiological Study in Suncus murinus (House Musk Shrew). Front Physiol 2017; 8:412. [PMID: 28659825 PMCID: PMC5470052 DOI: 10.3389/fphys.2017.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Motion sickness occurs under a variety of circumstances and is common in the general population. It is usually associated with changes in gastric motility, and hypothermia, which are argued to be surrogate markers for nausea; there are also reports that respiratory function is affected. As laboratory rodents are incapable of vomiting, Suncus murinus was used to model motion sickness and to investigate changes in gastric myoelectric activity (GMA) and temperature homeostasis using radiotelemetry, whilst also simultaneously investigating changes in respiratory function using whole body plethysmography. The anti-emetic potential of the highly selective histamine H1 receptor antagonists, mepyramine (brain penetrant), and cetirizine (non-brain penetrant), along with the muscarinic receptor antagonist, scopolamine, were investigated in the present study. On isolated ileal segments from Suncus murinus, both mepyramine and cetirizine non-competitively antagonized the contractile action of histamine with pK b values of 7.5 and 8.4, respectively; scopolamine competitively antagonized the contractile action of acetylcholine with pA2 of 9.5. In responding animals, motion (1 Hz, 4 cm horizontal displacement, 10 min) increased the percentage of the power of bradygastria, and decreased the percentage power of normogastria whilst also causing hypothermia. Animals also exhibited an increase in respiratory rate and a reduction in tidal volume. Mepyramine (50 mg/kg, i.p.) and scopolamine (10 mg/kg, i.p.), but not cetirizine (10 mg/kg, i.p.), significantly antagonized motion-induced emesis but did not reverse the motion-induced disruptions of GMA, or hypothermia, or effects on respiration. Burst analysis of plethysmographic-derived waveforms showed mepyramine also had increased the inter-retch+vomit frequency, and emetic episode duration. Immunohistochemistry demonstrated that motion alone did not induce c-fos expression in the brain. Paradoxically, mepyramine increased c-fos in brain areas regulating emesis control, and caused hypothermia; it also appeared to cause sedation and reduced the dominant frequency of slow waves. In conclusion, motion-induced emesis was associated with a disruption of GMA, respiration, and hypothermia. Mepyramine was a more efficacious anti-emetic than cetirizine, suggesting an important role of centrally-located H1 receptors. The ability of mepyramine to elevate c-fos provides a new perspective on how H1 receptors are involved in mechanisms of emesis control.
Collapse
Affiliation(s)
- Longlong Tu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Karolina Dieser
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Christina Schmitt
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher EducationHong Kong, China
| | - Man P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Paul L R Andrews
- Division of Biomedical Sciences, St. George's University of LondonLondon, United Kingdom
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Brain and Mind Institute, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
19
|
DE Luca GMR, Desclos E, Breedijk RMP, Dolz-Edo L, Smits GJ, Nahidiazar L, Bielefeld P, Picavet L, Fitzsimons CP, Hoebe R, Manders EMM. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications. J Microsc 2017; 266:166-177. [PMID: 28257147 DOI: 10.1111/jmi.12526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023]
Abstract
The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The signal-to-noise ratio of Re-scan Confocal Microscopy is improved by a factor of 4 compared to standard confocal microscopy and the lateral resolution of Re-scan Confocal Microscopy is 170 nm (compared to 240 nm for diffraction limited resolution, 488 nm excitation, 1.49 NA). Apart from improved sensitivity and resolution, the optical setup of Re-scan Confocal Microscopy is flexible in its configuration in terms of control of the mirrors, lasers and filters. Because of this flexibility, the Re-scan Confocal Microscopy can be configured to address specific biological applications. In this paper, we explore a number of possible configurations of Re-scan Confocal Microscopy for specific biomedical applications such as multicolour, FRET, ratio-metric (e.g. pH and intracellular Ca2+ measurements) and FRAP imaging.
Collapse
Affiliation(s)
- G M R DE Luca
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E Desclos
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - R M P Breedijk
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - L Dolz-Edo
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - G J Smits
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - L Nahidiazar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - P Bielefeld
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - L Picavet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - C P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - R Hoebe
- Van Leeuwenhoek Centre for Advanced Microscopy, Department of Cell Biology and Histology, Academic Medical Centre, Amsterdam, The Netherlands
| | - E M M Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Nikon Centre of Excellence on Super Resolution Microscopy Development, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Monczor F, Fernandez N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol Pharmacol 2016; 90:640-648. [PMID: 27625037 DOI: 10.1124/mol.116.105981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways. Sci Rep 2015; 5:17476. [PMID: 26635083 PMCID: PMC4669453 DOI: 10.1038/srep17476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration.
Collapse
|
22
|
Presley C, Abidi A, Suryawanshi S, Mustafa S, Meibohm B, Moore BM. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist. Pharmacol Res Perspect 2015. [PMID: 26196013 PMCID: PMC4506688 DOI: 10.1002/prp2.159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.
Collapse
Affiliation(s)
- Chaela Presley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Ammaar Abidi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Satyendra Suryawanshi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Suni Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| |
Collapse
|
23
|
de Almeida DO, Ferreira HS, Pereira LB, Fregoneze JB. Hypertensive response to stress: the role of histaminergic H1 and H2 receptors in the medial amygdala. Physiol Behav 2015; 144:95-102. [PMID: 25748254 DOI: 10.1016/j.physbeh.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/31/2023]
Abstract
Different brain areas seem to be involved in the cardiovascular responses to stress. The medial amygdala (MeA) has been shown to participate in cardiovascular control, and acute stress activates the MeA to a greater extent than any of the other amygdaloid structures. It has been demonstrated that the brain histaminergic system may be involved in behavioral, autonomic and neuroendocrine responses to stressful situations. The aim of the present study was to investigate the role of the histaminergic receptors H1 and H2 in cardiovascular responses to acute restraint stress. Wistar rats (280-320g) received bilateral injections of cimetidine, mepyramine or saline into the MeA and were submitted to 45min of restraint stress. Mepyramine microinjections at doses of 200, 100 and 50nmol promoted a dose-dependent blockade of the hypertensive response induced by the restraint stress. Cimetidine (200 and 100nmol) promoted a partial blockade of the hypertensive response to stress only at the highest dose administered. Neither drugs altered the typical stress-evoked tachycardiac responses. Furthermore, mepyramine and cimetidine were unable to modify the mean arterial pressure or heart rate of freely moving rats under basal conditions (non-stressed rats). The data suggest that in the MeA the histaminergic H1 receptors appear to be more important than H2 receptors in the hypertensive response to stress. Furthermore, there appears to be no histaminergic tonus in the MeA controlling blood pressure during non-stress conditions.
Collapse
Affiliation(s)
| | - Hilda Silva Ferreira
- Life Sciences Department, Bahia State University, 41195-001 Salvador, Bahia, Brazil
| | - Luana Bomfim Pereira
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Josmara Bartolomei Fregoneze
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil.
| |
Collapse
|
24
|
Kasper JM, Booth RG, Peris J. Serotonin-2C receptor agonists decrease potassium-stimulated GABA release in the nucleus accumbens. Synapse 2015; 69:78-85. [PMID: 25382408 PMCID: PMC4275350 DOI: 10.1002/syn.21790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 01/15/2023]
Abstract
The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C -mediated negative modulation of ethanol self-administration.
Collapse
Affiliation(s)
- James M Kasper
- University of Texas - Medical Branch, Department of Pharmacology and Toxicology, 301 University Blvd., Galveston, TX USA 77555
| | - Raymond G Booth
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA USA 02115
| | - Joanna Peris
- University of Florida, Department of Pharmacodynamics, Box 100487, 1600 SW Archer Road, Gainesville, FL USA 32610
| |
Collapse
|
25
|
Antihistaminergics and inverse agonism: potential therapeutic applications. Eur J Pharmacol 2013; 715:26-32. [PMID: 23831018 DOI: 10.1016/j.ejphar.2013.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/19/2022]
Abstract
The accurate characterization of the molecular mechanisms involved in the action of receptor ligands is important for their appropriate therapeutic use and safety. It is well established that ligands acting at the histamine system currently used in the clinic exert their actions by specifically antagonizing G-protein coupled H1 and H2 receptors. However, most of these ligands, assumed to be neutral antagonists, behave as inverse agonists displaying negative efficacy in experimental systems. This suggests that their therapeutic actions may involve not only receptor blockade, but also the decrease of spontaneous receptor activity. The mechanisms whereby inverse agonists achieve negative efficacy are diverse. Theoretical models predict at least three possible mechanisms, all of which are supported by experimental observations. Depending on the mechanism of action engaged, the inverse agonist could interfere specifically with signaling events triggered by unrelated receptors. This possibility opens up new venues to explain the therapeutic actions of inverse agonists of the histamine receptor and perhaps new therapeutic applications.
Collapse
|
26
|
Chee SSA, Menard JL. The histaminergic H1, H2, and H3 receptors of the lateral septum differentially mediate the anxiolytic-like effects of histamine on rats' defensive behaviors in the elevated plus maze and novelty-induced suppression of feeding paradigm. Physiol Behav 2013; 116-117:66-74. [DOI: 10.1016/j.physbeh.2013.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 01/29/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
|
27
|
Alonso N, Fernandez N, Notcovich C, Monczor F, Simaan M, Baldi A, Gutkind JS, Davio C, Shayo C. Cross-desensitization and cointernalization of H1 and H2 histamine receptors reveal new insights into histamine signal integration. Mol Pharmacol 2013; 83:1087-98. [PMID: 23462507 DOI: 10.1124/mol.112.083394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, i.e., signaling networks. In this work we present an exhaustive study of the cross-talk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and Chinese hamster ovary-transfected cells. By desensitization assays we demonstrated the existence of a crossdesensitization between both receptors independent of protein kinase A or C. H1R-agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment of 48 hours. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the cross-talk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. To evaluate potential heterodimerization of the receptors, sensitized emission fluorescence resonance energy transfer experiments were performed in human embryonic kidney 293T cells using H1R-cyan fluorescent protein and H2R-yellow fluorescent protein. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor crossdesensitization, which was mediated by G protein-coupled receptor kinase 2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands.
Collapse
Affiliation(s)
- Natalia Alonso
- Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Humbert-Claude M, Davenas E, Gbahou F, Vincent L, Arrang JM. Involvement of histamine receptors in the atypical antipsychotic profile of clozapine: a reassessment in vitro and in vivo. Psychopharmacology (Berl) 2012; 220:225-41. [PMID: 21912901 DOI: 10.1007/s00213-011-2471-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 08/24/2011] [Indexed: 12/11/2022]
Abstract
RATIONALE The basis of the unique clinical profile of the antipsychotic clozapine is not yet elucidated. Brain histamine receptors may play a role in schizophrenia and its treatment, but their involvement in the profile of clozapine remained unknown. OBJECTIVES We explored the properties of clozapine and its two metabolites, N-desmethylclozapine (NDMC) and clozapine N-oxide, at the four human histaminergic receptors. We compared their active concentrations with their blood concentrations in patients treated by clozapine. We investigated the changes in receptor densities induced in rat brain by repeated administration of a therapeutic dose of clozapine. RESULTS Clozapine and NDMC behaved as very potent, and partial, H(1)-receptor inverse agonists, weak, and full, H(2)-receptor inverse agonists, moderate, and protean, H(3)-receptor agonists, and moderate, and partial, H(4)-receptor agonists. Taking into account their micromolar mean blood concentrations found in 75 treated patients, and assuming that they are enriched in human brain as they are in rat brain, a full occupation of H(1)-, H(3)-, and H(4)-receptors, and a partial occupation of H(2) receptors, is expected. In agreement, repeated administration of clozapine at a therapeutic dose (20 mg/kg/day for 20 days) induced an up-regulation of H(1)- and H(2)-receptors in rat brain. CONCLUSIONS Clozapine and its active metabolite NDMC interact with the four human histamine receptors at clinically relevant concentrations. This interaction may substantiate, at least in part, the atypical antipsychotic profile of clozapine, as well as its central and peripheral side effects such as sedation and weight gain.
Collapse
Affiliation(s)
- Marie Humbert-Claude
- Laboratoire de Neurobiologie et Pharmacologie Moléculaire, Centre de Psychiatrie et Neurosciences (CPN, U 894), INSERM, 2 ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | |
Collapse
|
29
|
Khilnani G, Khilnani AK. Inverse agonism and its therapeutic significance. Indian J Pharmacol 2011; 43:492-501. [PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/10/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023] Open
Abstract
A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H(1) and H(2) antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D(2) receptors antagonist), antihypertensive (AT(1) receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT(2A) inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB(1/2) receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma-a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug-receptor interaction and has immense untapped therapeutic potential.
Collapse
|
30
|
Adjobo-Hermans MJW, Goedhart J, van Weeren L, Nijmeijer S, Manders EMM, Offermanns S, Gadella TWJ. Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol 2011; 9:32. [PMID: 21619590 PMCID: PMC3129320 DOI: 10.1186/1741-7007-9-32] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 12/28/2022] Open
Abstract
Background Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. Results In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Gγ2 subunit and a Gαq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. Conclusions Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Gγ2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity.
Collapse
Affiliation(s)
- Merel J W Adjobo-Hermans
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Increasing numbers of compounds, previously classified as antagonists, were shown to inhibit this spontaneous or constitutive receptor activity, instead of leave it unaffected as expected for a formal antagonist. In addition, some other antagonists did not have any effect by themselves, but prevented the inhibition of constitutive activity induced by thought-to-be antagonists. These thought-to-be antagonists with negative efficacy are now known as "inverse agonists." Inverse agonism at βAR has been evidenced for both subtypes in wild-type GPCRs systems and in engineered systems with high constitutive activity. It is important to mention that native systems are of particular importance for analyzing the in vivo relevance of constitutive activity because these systems have physiological expression levels of target receptors. Studies of inverse agonism of β blockers in physiological setting have also evidenced that pathophysiological conditions can affect pharmacodynamic properties of these ligands. To date, hundreds of clinically well-known drugs have been tested and classified for this property. Prominent examples include the beta-blockers propranolol, alprenolol, pindolol, and timolol used for treating hypertension, angina pectoris, and arrhythmia that act on the β₂ARs, metoprolol, and bisoprolol used for treating hypertension, coronary heart disease, and arrhythmias by acting on β₁ARs. Inverse agonists seem to be useful in the treatment of chronic disease characterized by harmful effects resulting from β₁AR and β₂AR overactivation, such as heart failure and asthma, respectively.
Collapse
Affiliation(s)
- Carlos A Taira
- Cátedra de Farmacología, Instituto de Fisiopatología y Bioquímica Clínica, Universidad de Buenos Aires, CONICET, Junín 956, Buenos Aires, Argentina
| | | | | |
Collapse
|
32
|
Thangapandian S, John S, Sakkiah S, Lee KW. Molecular modelling study on human histamine H1 receptor and its applications in virtual lead identification for designing novel inverse agonists. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.524645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Modulation of G-protein coupled receptor sample quality by modified cell-free expression protocols: a case study of the human endothelin A receptor. J Struct Biol 2010; 172:94-106. [PMID: 20460156 DOI: 10.1016/j.jsb.2010.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022]
Abstract
G-protein coupled receptors still represent one of the most challenging targets in membrane protein research. Here we present a strategic approach for the cell-free synthesis of these complex membrane proteins exemplified by the preparative scale production of the human endothelin A receptor. The versatility of the cell-free expression system was used to modulate sample quality by alteration of detergents hence presenting different solubilization environments to the synthesized protein at different stages of the production process. Sample properties after co-translational and post-translational solubilization have been analysed by evaluation of homogeneity, protein stability and receptor ligand binding competence. This is a first quality evaluation of a membrane protein obtained in two different cell-free expression modes and we demonstrate that both can be used for the production of ligand-binding competent endothelin A receptor in quantities sufficient for structural approaches. The presented strategy of cell-free expression protocol development could serve as basic guideline for the production of related receptors in similar systems.
Collapse
|
34
|
Tubio MR, Fernandez N, Fitzsimons CP, Copsel S, Santiago S, Shayo C, Davio C, Monczor F. Expression of a G protein-coupled receptor (GPCR) leads to attenuation of signaling by other GPCRs: experimental evidence for a spontaneous GPCR constitutive inactive form. J Biol Chem 2010; 285:14990-14998. [PMID: 20299453 DOI: 10.1074/jbc.m109.099689] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The idea of G protein-coupled receptors (GPCRs) coupling to G protein solely in their active form was abolished when it was found that certain ligands induce a G protein-coupled but inactive receptor form. This receptor form interferes with signaling of other receptors by sequestering G protein. However, the spontaneous existence of this receptor species has never been established. The aim of the present work was to evaluate the existence of the spontaneous conformation of the receptor inactively coupled to G protein able to interfere with the response of other GPCRs. According to the law of mass action, receptor overexpression should lead to increased amounts of all spontaneously occurring species. Based on this, we generated Chinese hamster ovary (CHO-K1)-derived cell lines expressing various amounts of the human histamine H2 receptor. In these systems, the signaling of other endogenously and transiently expressed GPCRs was attenuated proportionally to human H2 receptor expression levels. G protein transfection specifically reverted this attenuation, strongly suggesting hijacking of the G protein from a common pool. Similar attenuation effects were observed when the beta(2)- adrenergic receptor was overexpressed, suggesting that this is a more general phenomenon. Moreover, in human mammary MDA-MB-231 cells, a consistent increase in the response of other GPCRs was observed when endogenous expression of beta(2)-adrenergic receptor was knocked down using specific small interfering RNAs. Our findings show that GPCRs may interact with the signaling of other receptors by modulating the availability of the G protein and suggest the existence of GPCR spontaneous coupling to G proteins in an inactive form.
Collapse
Affiliation(s)
- Maria Rosario Tubio
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Natalia Fernandez
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Patricio Fitzsimons
- Medical Pharmacology Department, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 Leiden, The Netherlands
| | - Sabrina Copsel
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sergio Santiago
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Carina Shayo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Monczor
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Notcovich C, Diez F, Tubio MR, Baldi A, Kazanietz MG, Davio C, Shayo C. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Exp Cell Res 2010; 316:401-11. [DOI: 10.1016/j.yexcr.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
|
36
|
|
37
|
Biosse-Duplan M, Baroukh B, Dy M, de Vernejoul MC, Saffar JL. Histamine promotes osteoclastogenesis through the differential expression of histamine receptors on osteoclasts and osteoblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1426-34. [PMID: 19264900 DOI: 10.2353/ajpath.2009.080871] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to the numerous roles of histamine in both the immune and nervous systems, previous studies have suggested that this bioamine might also be involved in bone metabolism. Following our observations of impaired bone resorption in ovariectomized rats after histamine receptor antagonist treatment, we focused in this study on osteoclasts and osteoclast precursors. We looked for a direct action of histamine on these cells using both in vivo and in vitro approaches. In vivo, we triggered a remodeling sequence in rat mandibular bone and treated the animals with either histamine or histamine receptor antagonists. Histamine was shown to increase the number of osteoclasts and osteoclast precursors whereas antagonists of histamine receptor-1 and -2 decreased both osteoclast recruitment and resorption. In vitro, spleen cells from histamine-deficient mice were treated with receptor activator for nuclear factor kappa B ligand and macrophage colony stimulating factor, giving rise to both reduced numbers of osteoclasts and decreased resorption on dentin slices. Histamine enhanced resorption in these cultures in a dose-dependent manner. In addition, we identified osteoclast precursors as a source of histamine. In contrast, histamine increased the receptor activator for nuclear factor kappa B ligand/osteoprotegerin ratio in primary osteoblasts that did not secrete histamine. We observed a differential expression of histamine receptor-1 and -2 mRNAs in both primary osteoclasts and osteoblasts, confirming their functional roles with selective antagonists. Thus, histamine acts directly on osteoclasts, osteoclast precursors, and osteoblasts, promoting osteoclastogenesis through autocrine/paracrine mechanisms.
Collapse
|
38
|
Tsai CC, Yang CC, Shih PY, Wu CS, Chen CD, Pan CY, Chen YT. Exocytosis of a Single Bovine Adrenal Chromaffin Cell: The Electrical and Morphological Studies. J Phys Chem B 2008; 112:9165-73. [DOI: 10.1021/jp803000a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chia-Chang Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Cheng Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Po-Yuan Shih
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Cen-Shawn Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chii-Dong Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Yuan Pan
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 106, Taiwan, Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Department of Physics, Jin-De Campus, National Changhua University of Education, Changhua 500, Taiwan, Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
39
|
Straßer A, Wittmann HJ, Seifert R. Ligand-Specific Contribution of the N Terminus and E2-Loop to Pharmacological Properties of the Histamine H1-Receptor. J Pharmacol Exp Ther 2008; 326:783-91. [DOI: 10.1124/jpet.108.140913] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Sansuk K, Balog CIA, van der Does AM, Booth R, de Grip WJ, Deelder AM, Bakker RA, Leurs R, Hensbergen PJ. GPCR proteomics: mass spectrometric and functional analysis of histamine H1 receptor after baculovirus-driven and in vitro cell free expression. J Proteome Res 2008; 7:621-9. [PMID: 18177001 DOI: 10.1021/pr7005654] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human histamine H1 Receptor (hH1R) belongs to the family of G-protein coupled receptors (GPCRs), an attractive and proven class of drug targets in a wide range of therapeutic areas. However, due to the low amount of available purified protein and the hydrophobic nature of GPCRs, limited structural information is available on ligand-receptor interaction especially for the transmembrane (TM) domain regions where the majority of ligand-receptor interactions occur. During the last decades, proteomic techniques have increasingly become an important tool to reveal detailed information on the individual GPCR class, including post-translational modifications and characterizations of GPCRs binding pocket. Herein, we report the successful functional production and mass spectrometric characterization of the hH1R, after baculovirus-driven and in vitro cell-free expression. Using only MALDI-ToF, sequence coverage of more than 80%, including five hydrophobic TM domains was achieved. Moreover, we have identified an asparagine residue in the hH1R protein that is subject to N-linked glycosylation. This information would be valuable for drug discovery efforts by allowing us to further study H1R-ligand interactions using histaminergic ligands that covalently bind the hH1R, and eventually revealing binding sites of hH1R and other GPCRs.
Collapse
Affiliation(s)
- Kamonchanok Sansuk
- Leiden/Amsterdam Center for Drug Research (LACDR), Vrije Universiteit Amsterdam, Department of Medicinal Chemistry, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wigglesworth M, Lawless K, Standing D, Mackenzie E, Kitchen V, Mckay F, Ward E, Brough S, Stylianou M, Jewitt F, Mclaren-Douglas A, Jowet M, Tamayama N, Finnigan D, Ding J, Wise A. Use of Cryopreserved Cells for Enabling Greater Flexibility in Compound Profiling. ACTA ACUST UNITED AC 2008; 13:354-62. [DOI: 10.1177/1087057108317768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Measurement of intracellular calcium release following agonist challenge within cells expressing the relevant membrane protein is a commonly used format to derive structure-activity relationship (SAR) data within a compound profiling assay. The Fluorometric Imaging Plate Reader (FLIPR) has become the gold standard for this purpose. FLIPR traditionally uses cells that are maintained in continuous culture for compound profiling of iterative chemistry campaigns. This supply dictates that assays can only be run on 4 of 5 weekdays, or alternative cell culture machinery is required such that plating can occur remotely at the weekend. The data reported here demonstrate that high-quality compound profiling data can be generated from the use of cryopreserved cells and that these cells can also be plated at various densities to generate equivalent data between 24 and 72 h post-plating. Hence, the authors report a method that allows data generation throughout the week and without the requirement of highly automated cell culture or continuous culture. ( Journal of Biomolecular Screening 2008:354-362)
Collapse
Affiliation(s)
| | | | - D.J. Standing
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | - E.K. Mackenzie
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | - V.R. Kitchen
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | - F. Mckay
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | | | - S.J. Brough
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | - M. Stylianou
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | - F.R. Jewitt
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | | | - M.I. Jowet
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| | - N. Tamayama
- Biological Reagents and Assay Development, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - D. Finnigan
- Biological Reagents and Assay Development, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - J. Ding
- Discovery Statistics, Upper Providence, Collegeville, PA
| | - A. Wise
- Screening and Compound Profiling, GlaxoSmithKline, Harlow, UK
| |
Collapse
|
42
|
Fitzsimons CP, Ahmed S, Wittevrongel CFW, Schouten TG, Dijkmans TF, Scheenen WJJM, Schaaf MJM, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-62. [PMID: 17975023 PMCID: PMC5419639 DOI: 10.1210/me.2007-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023] Open
Abstract
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Leiden/Amsterdam Center for Drug Research/Medical Pharmacology Department, Einsteinweg 55, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Straßer A, Striegl B, Wittmann HJ, Seifert R. Pharmacological Profile of Histaprodifens at Four Recombinant Histamine H1Receptor Species Isoforms. J Pharmacol Exp Ther 2007; 324:60-71. [DOI: 10.1124/jpet.107.129601] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, Xu X, Abassi YA. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal Chem 2007; 78:35-43. [PMID: 16383308 DOI: 10.1021/ac051695v] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute important targets for drug discovery against a wide range of ailments including cancer, inflammatory, and cardiovascular diseases. Efforts are underway to screen selective modulators of GPCRs and also to deorphanize GPCRs with unidentified natural ligands. Most GPCR-based cellular screens depend on labeling or recombinant expression of receptor or reporter proteins, which may not capture the true physiology or pharmacology of the GPCRs. In this paper, we describe a noninvasive and label-free assay for GPCRs that can be used with both engineered and nonengineered cell lines. The assay is based on using cell-electrode impedance to measure minute changes in cellular morphology as a result of ligand-dependent GPCR activation. We have used this technology to assay the functional activation of GPCRs coupled to different signaling pathways and have compared it to standard assays. We have used pharmacological modulators of GPCR signaling pathways to demonstrate the specificity of impedance-based measurements. Our data indicate that cell-electrode impedance measurements offer a convenient, sensitive, and quantitative method for assessing GPCR function. Moreover, the noninvasive nature of the readout offers the added advantage of performing multiple treatments in the same well to study events such as desensitization and receptor cross-talk.
Collapse
Affiliation(s)
- Naichen Yu
- ACEA Biosciences, 11585 Sorrento Valley Road, San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fernandez N, Monczor F, Tubio MR, Shayo C, Davio C. Regulatory mechanisms underlying GKR2 levels in U937 cells: evidence for GRK3 involvement. Biochem Pharmacol 2007; 73:1758-67. [PMID: 17433264 DOI: 10.1016/j.bcp.2007.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors represent the most diverse group of proteins involved in transmembrane signalling, that participate in the regulation of a wide range of physicochemical messengers through the interaction with heterotrimeric G proteins. In addition, GPCRs stimulation also triggers a negative feedback mechanism, known as desensitization that prevents the potentially harmful effects caused by persistent receptor stimulation. In this adaptative response, G protein-coupled receptor kinases (GRKs) play a key role and alterations in their function are related to diverse pathophysiological situations. Based on the scarce knowledge about the regulation of GRK2 by other kinases of the same family, the aim of the present work was to investigate the regulation of GRK2 levels in systems where other GRKs are diminished by antisense technique. Present findings show that in U937 cells GRK2 levels are regulated by GRK3 and not by GRK6 through a mechanism involving InsP upregulation. This work reports a novel GRK3-mediated GRK2 regulatory mechanism and further suggests that GRK2 may also act as a compensatory kinase tending to counterbalance the reduction in GRK3 levels. This study provides the first evidence for the existence of GRKs cross-regulation.
Collapse
Affiliation(s)
- Natalia Fernandez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
46
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
47
|
Andressen KW, Norum JH, Levy FO, Krobert KA. Activation of adenylyl cyclase by endogenous G(s)-coupled receptors in human embryonic kidney 293 cells is attenuated by 5-HT(7) receptor expression. Mol Pharmacol 2005; 69:207-15. [PMID: 16189297 DOI: 10.1124/mol.105.015396] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human 5-hydroxytryptamine(7) (5-HT(7)) receptors display characteristics shared with receptors believed to form a tight physical coupling with G protein in the absence of ligand. Some receptors apparently preassociated with G(i/o) and G(q/11) are reported to inhibit the signaling of other similarly coupled G protein-coupled receptors by limiting their access to activate a common G protein pool. Therefore, we determined whether 5-HT(7) receptor expression was sufficient to limit signaling of endogenously expressed G(s)-coupled receptors in human embryonic kidney (HEK) 293 cells. Using the ecdysone-inducible expression system, which allows for the titration of increasing receptor density in the same clonal cell line, we compared the effects of 5-HT(4(b)) and 5-HT(7(a,b,d)) receptor expression on adenylyl cyclase (AC) stimulation by the endogenous G(s)-coupled beta-adrenergic (betaAR) and prostanoid EP (EPR) receptors. betaAR- and EPR-stimulated AC activity was attenuated by 5-HT(7) receptor expression in both membrane preparations and intact HEK293 cells. betaAR- and EPR-stimulated AC activity was unaffected by expression of the G(s)-coupled 5-HT(4) receptor. The mechanism of this heterologous desensitization seems independent of protein kinase A activation, nor does it occur at the level of G protein activation because 1) betaAR- and EPR-stimulated AC activity was not restored to control values when Galpha(s) was overexpressed; and 2) beta(1)AR and beta(2)AR activation of Galpha(s) was unaffected by the expression of 5-HT(7) receptors. In addition, overexpression of AC isoforms was unable to rescue betaAR- and EPR-stimulated AC activity. Therefore, 5-HT(7) receptors probably limit access and/or impede activation of AC by betaAR and EP receptors. Although the 5-HT(7) receptor may preassociate with G protein and/or AC, the mechanism of this heterologous desensitization remains elusive.
Collapse
|
48
|
Sakhalkar SP, Patterson EB, Khan MM. Involvement of histamine H1 and H2 receptors in the regulation of STAT-1 phosphorylation: inverse agonism exhibited by the receptor antagonists. Int Immunopharmacol 2005; 5:1299-309. [PMID: 15914334 DOI: 10.1016/j.intimp.2005.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/10/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Signal transducer and activator of transcription-1 (STAT1) is a latent signal transducer protein which, on phosphorylation, is translocated from the cytoplasm to the nucleus and is subsequently activated. This study was designed to determine the involvement of histamine receptors in histamine-mediated effect on STAT1 phosphorylation. It is known that the actions of histamine mediated through H1 and H2 receptors are dependent on their respective downstream pathways, Ca(2+)-PKC and cAMP-PKA. In this study, we investigated the significance of PKA in STAT1 phosphorylation. C57BL/6 mouse splenocytes were isolated and treated with histamine (10(-7)-10(-4) M) and then activated with PMA (phorbol 12 myristate 13-acetate) plus ionomycin. The phosphorylated STAT1 levels were analyzed by immunoblotting. Histamine receptor agonists amthamine and betahistine, histamine receptor antagonists pyrilamine maleate, tripelennamine, ranitidine, cimetidine and thioperamide, cAMP agonists N(6), 2'-0-dibutyryladenosine-3',5'-cyclic monophosphate sodium salt (db-cAMP) and forskolin, protein kinase A inhibitors N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline-sulfonamide (H89) and Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (RpcAMPs) and tyrosine kinase inhibitor tyrphostin were used to identify the upstream signal transduction pathways. We observed that histamine augmented the phosphorylation of STAT1 through both H1 and H2 receptors. Furthermore, H1 and H2 receptor antagonists displayed inverse agonism. Ca(2+)-PKC-induced phosphorylation of STAT1 was completely inhibited by H89 and significantly inhibited by RpcAMPs. DbcAMP and forskolin augmented the Ca(2+)-PKC-induced STAT1 phosphorylation thus suggesting a convergent crosstalk between the two histamine receptor signaling pathways, PKA and PKC.
Collapse
Affiliation(s)
- Shilpa P Sakhalkar
- Department of Pharmaceutical Sciences, Creighton University Medical Center, Omaha, NE 68178, USA
| | | | | |
Collapse
|
49
|
Piñeyro G, Azzi M, deLéan A, Schiller PW, Bouvier M. Reciprocal regulation of agonist and inverse agonist signaling efficacy upon short-term treatment of the human delta-opioid receptor with an inverse agonist. Mol Pharmacol 2004; 67:336-48. [PMID: 15496503 DOI: 10.1124/mol.104.004549] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapid regulation of receptor signaling by agonist ligands is widely accepted, whereas short-term adaptation to inverse agonists has been little documented. In the present study, guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding and cAMP accumulation assays were used to assess the consequences of 30-min exposure to the inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI174864) (1 microM) on delta-opioid receptor signaling efficacy. ICI174864 pretreatment increased maximal effect (E(max)) for the partial agonist Tyr-1,2,3,4-tetrahydroisoquinoline-Phe-Phe-OH (TIPP) at the two levels of the signaling cascade, whereas E(max) values for more efficacious agonists like (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC-80) and bremazocine were increased in [(35)S]GTPgammaS binding but not in cAMP accumulation assays. Pre-exposure to ICI174864 also induced a shift to the left in dose-response curves for bremazocine and TIPP. On the other hand, E(max) for the inverse agonist H-Tyr-TicPsi[CH(2)NH]Cha-Phe-OH was reduced in both assays, but no changes in potency were observed. For the weaker inverse agonist naloxone, E(max) in [(35)S]GTPgammaS binding was drastically modified because the drug turned from inverse agonist to agonist after ICI174864 pretreatment. Likewise, ICI174864 turned from inverse agonist to agonist when tested in cAMP accumulation assays. In both cases, inversion of efficacy was concomitant with marked increase in potency for agonist effects. Together with functional changes, short-term treatment with ICI174864 reduced basal receptor phosphorylation and increased immunoreactivity for Galpha(i3) in membrane preparations. Functional consequences of ICI174864 pretreatment were simulated in the cubic ternary complex model by increasing receptor/G protein coupling or G protein amount available for interaction with the receptor. Taken together, these data show that inverse agonists may induce rapid regulation in receptor signaling efficacy.
Collapse
Affiliation(s)
- Graciela Piñeyro
- Centre de Recherche Fernand Séguin, 7331 Rue Hochelaga, Montréal, Québec, H1N 3V2 Canada.
| | | | | | | | | |
Collapse
|