1
|
Lim D, Tapella L, Dematteis G, Genazzani AA, Corazzari M, Verkhratsky A. The endoplasmic reticulum stress and unfolded protein response in Alzheimer's disease: a calcium dyshomeostasis perspective. Ageing Res Rev 2023; 87:101914. [PMID: 36948230 DOI: 10.1016/j.arr.2023.101914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Protein misfolding is prominent in early cellular pathology of Alzheimer's disease (AD), implicating pathophysiological significance of endoplasmic reticulum stress/unfolded protein response (ER stress/UPR) and highlighting it as a target for drug development. Experimental data from animal AD models and observations on human specimens are, however, inconsistent. ER stress and associated UPR are readily observed in in vitro AD cellular models and in some AD model animals. In the human brain, components and markers of ER stress as well as UPR transducers are observed at Braak stages III-VI associated with severe neuropathology and neuronal death. The picture, however, is further complicated by the brain region- and cell type-specificity of the AD-related pathology. Terms 'disturbed' or 'non-canonical' ER stress/UPR were used to describe the discrepancies between experimental data and the classic ER stress/UPR cascade. Here we discuss possible 'disturbing' or 'interfering' factors which may modify ER stress/UPR in the early AD pathogenesis. We focus on the dysregulation of the ER Ca2+ homeostasis, store-operated Ca2+ entry, and the interaction between the ER and mitochondria. We suggest that a detailed study of the CNS cell type-specific alterations of Ca2+ homeostasis in early AD may deepen our understanding of AD-related dysproteostasis.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale "Amedeo Avogadro"
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B, Grima N, Shahheydari H, Soo KY, Blair I, Guillemin GJ, Sundaramoorthy V, Atkin JD. Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci 2020; 77:3859-3873. [PMID: 31802140 PMCID: PMC11105036 DOI: 10.1007/s00018-019-03394-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER-Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.
Collapse
Affiliation(s)
- Mark Halloran
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Audrey M G Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Shu Yang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Natalie Grima
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Kai-Ying Soo
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ian Blair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vinod Sundaramoorthy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia.
| |
Collapse
|
3
|
Pérez-Rodriguez S, de Jesús Ramírez-Lira M, Wulff T, Voldbor BG, Ramírez OT, Trujillo-Roldán MA, Valdez-Cruz NA. Enrichment of microsomes from Chinese hamster ovary cells by subcellular fractionation for its use in proteomic analysis. PLoS One 2020; 15:e0237930. [PMID: 32841274 PMCID: PMC7447005 DOI: 10.1371/journal.pone.0237930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022] Open
Abstract
Chinese hamster ovary cells have been the workhorse for the production of recombinant proteins in mammalian cells. Since biochemical, cellular and omics studies are usually affected by the lack of suitable fractionation procedures to isolate compartments from these cells, differential and isopycnic centrifugation based techniques were characterized and developed specially for them. Enriched fractions in intact nuclei, mitochondria, peroxisomes, cis-Golgi, trans-Golgi and endoplasmic reticulum (ER) were obtained in differential centrifugation steps and subsequently separated in discontinuous sucrose gradients. Nuclei, mitochondria, cis-Golgi, peroxisomes and smooth ER fractions were obtained as defined bands in 30-60% gradients. Despite the low percentage represented by the microsomes of the total cell homogenate (1.7%), their separation in a novel sucrose gradient (10-60%) showed enough resolution and efficiency to quantitatively separate their components into enriched fractions in trans-Golgi, cis-Golgi and ER. The identity of these organelles belonging to the classical secretion pathway that came from 10-60% gradients was confirmed by proteomics. Data are available via ProteomeXchange with identifier PXD019778. Components from ER and plasma membrane were the most frequent contaminants in almost all obtained fractions. The improved sucrose gradient for microsomal samples proved being successful in obtaining enriched fractions of low abundance organelles, such as Golgi apparatus and ER components, for biochemical and molecular studies, and suitable for proteomic research, which makes it a useful tool for future studies of this and other mammalian cell lines.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| | - María de Jesús Ramírez-Lira
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Bjørn Gunnar Voldbor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Octavio T. Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, Morelos, México
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de México, México
| |
Collapse
|
4
|
Amodio G, Moltedo O, Fasano D, Zerillo L, Oliveti M, Di Pietro P, Faraonio R, Barone P, Pellecchia MT, De Rosa A, De Michele G, Polishchuk E, Polishchuk R, Bonifati V, Nitsch L, Pierantoni GM, Renna M, Criscuolo C, Paladino S, Remondelli P. PERK-Mediated Unfolded Protein Response Activation and Oxidative Stress in PARK20 Fibroblasts. Front Neurosci 2019; 13:673. [PMID: 31316342 PMCID: PMC6610533 DOI: 10.3389/fnins.2019.00673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
PARK20, an early onset autosomal recessive parkinsonism is due to mutations in the phosphatidylinositol-phosphatase Synaptojanin 1 (Synj1). We have recently shown that the early endosomal compartments are profoundly altered in PARK20 fibroblasts as well as the endosomal trafficking. Here, we report that PARK20 fibroblasts also display a drastic alteration of the architecture and function of the early secretory compartments. Our results show that the exit machinery from the Endoplasmic Reticulum (ER) and the ER-to-Golgi trafficking are markedly compromised in patient cells. As a consequence, PARK20 fibroblasts accumulate large amounts of cargo proteins within the ER, leading to the induction of ER stress. Interestingly, this stressful state is coupled to the activation of the PERK/eIF2α/ATF4/CHOP pathway of the Unfolded Protein Response (UPR). In addition, PARK20 fibroblasts reveal upregulation of oxidative stress markers and total ROS production with concomitant alteration of the morphology of the mitochondrial network. Interestingly, treatment of PARK20 cells with GSK2606414 (GSK), a specific inhibitor of PERK activity, restores the level of ROS, signaling a direct correlation between ER stress and the induction of oxidative stress in the PARK20 cells. All together, these findings suggest that dysfunction of early secretory pathway might contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Marco Oliveti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Barone
- Section of Neuroscience, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Pellecchia
- Section of Neuroscience, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Anna De Rosa
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe De Michele
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
6
|
Amodio G, Margarucci L, Moltedo O, Casapullo A, Remondelli P. Identification of Cysteine Ubiquitylation Sites on the Sec23A Protein of the COPII Complex Required for Vesicle Formation from the ER. Open Biochem J 2017; 11:36-46. [PMID: 28553408 PMCID: PMC5427705 DOI: 10.2174/1874091x01711010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/09/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND COPII is a multiprotein complex that surrounds carrier vesicles budding from the Endoplasmic Reticulum and allows the recruitment of secretory proteins. The Sec23a protein plays a crucial role in the regulation of the dynamics of COPII formation ensuring the proper function of the secretory pathway. OBJECTIVE Since few evidences suggest that ubiquitylation could have a role in the COPII regulation, the present study was aimed to establish whether the Sec23a component of the vesicular envelope COPII could be ubiquitylated. METHOD Sec23a ubiquitylation was revealed by co-immunoprecipitation experiments. Recombinant Sec23a was gel-purified and analyzed by mass spectrometry subjected to trypsin proteolysis. Signature peptides were identified by the presence of Gly-Gly remnants from the C-terminus of the ubiquitin attached to the amino acid residues of the substrate. Recombinant Sec23a proteins bearing mutations in the ubiquitylation sites were used to evaluate the effect of ubiquitylation in the formation of COPII. RESULTS We identified two cysteine ubiquitylation sites showed at position 432 and 449 of the Sec23a protein sequence. Interestingly, we revealed that the amino acid residues of Sec23a joined to ubiquitin were cysteine instead of the conventional lysine residues. This unconventional ubiquitylation consists of the addition of one single ubiquitin moiety that is not required for Sec23a degradation. Immunofluorescence results showed that Sec23a ubiquitylation might influence COPII formation by modulating Sec23a interaction with the ER membrane. Presumably, this regulation could occur throughout continual ubiquitylation/de-ubiquityliation cycles. CONCLUSION Our results suggest a novel regulatory mechanism for the Sec23a function that could be crucial in several pathophysiological events known to alter COPII recycling.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, 84084 Baronissi-Salerno, Italy
| | - Luigi Margarucci
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Ornella Moltedo
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Agostino Casapullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, 84084 Baronissi-Salerno, Italy
| |
Collapse
|
7
|
Yip1B isoform is localized at ER-Golgi intermediate and cis-Golgi compartments and is not required for maintenance of the Golgi structure in skeletal muscle. Histochem Cell Biol 2014; 143:235-43. [PMID: 25208654 DOI: 10.1007/s00418-014-1277-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
The mechanism of endoplasmic reticulum (ER)-Golgi complex (GC) traffic is conserved from yeast to higher animals, but the architectures and the dynamics of vesicles' traffic between ER and GC vary across cell types and species. Skeletal muscle is a unique tissue in which ER and GC undergo a structural reorganization during differentiation that completely remodels the secretory pathway. In mature skeletal muscle, the ER is turned into sarcoplasmic reticulum, which is composed of junctional and longitudinal regions specialized, respectively, in calcium release and uptake during contraction. During skeletal muscle differentiation, GC acquires a particular fragmented organization as it appears as spots both at the nuclear poles and along the fibers. The ubiquitary-expressed Yip1A isoform has been proposed to be involved in anterograde trafficking from the ER exit sites to the cis-side of the GC and in ER and GC architecture organization. We investigated the role of Yip1 in skeletal muscle. Here we report that, following skeletal muscle development, the expression of the Yip1A decreases and is replaced by the muscle-specific Yip1B isoform. Confocal microscope analysis revealed that in adult skeletal muscle the Yip1B isoform is localized in the ER-Golgi intermediate and cis-Golgi compartments. Finally, skeletal muscle knockdown experiments in vitro and in vivo suggested that Yip1B is not involved in GC structure maintenance.
Collapse
|
8
|
Amodio G, Venditti R, De Matteis MA, Moltedo O, Pignataro P, Remondelli P. Endoplasmic reticulum stress reduces COPII vesicle formation and modifies Sec23a cycling at ERESs. FEBS Lett 2013; 587:3261-6. [PMID: 23994533 DOI: 10.1016/j.febslet.2013.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/08/2013] [Indexed: 01/03/2023]
Abstract
Exit from the Endoplasmic Reticulum (ER) of newly synthesized proteins is mediated by COPII vesicles that bud from the ER at the ER Exit Sites (ERESs). Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress. Previously, we demonstrated that ER stress rapidly impairs the formation of COPII vesicles. Here, we show that membrane association of COPII components, and in particular of Sec23a, is impaired by ER stress-inducing agents suggesting the existence of a dynamic interplay between protein folding and COPII assembly at the ER.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano, Salerno, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Sugawara T, Nakatsu D, Kii H, Maiya N, Adachi A, Yamamoto A, Kano F, Murata M. PKCδ and ε regulate the morphological integrity of the ER–Golgi intermediate compartment (ERGIC) but not the anterograde and retrograde transports via the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:861-75. [DOI: 10.1016/j.bbamcr.2012.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 02/03/2023]
|
10
|
Gupta GS. L-Type Lectins in ER-Golgi Intermediate Compartment. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7123055 DOI: 10.1007/978-3-7091-1065-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
11
|
Ronzoni R, Anelli T, Brunati M, Cortini M, Fagioli C, Sitia R. Pathogenesis of ER storage disorders: modulating Russell body biogenesis by altering proximal and distal quality control. Traffic 2010; 11:947-57. [PMID: 20406418 DOI: 10.1111/j.1600-0854.2010.01071.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In many protein storage diseases, detergent-insoluble proteins accumulate in the early secretory compartment (ESC). Protein condensation reflects imbalances between entry into (synthesis/translocation) and exit from (secretion/degradation) ESC, and can be also a consequence of altered quality control (QC) mechanisms. Here we exploit the inducible formation of Russell bodies (RB), dilated ESC cisternae containing mutant Ig-micro chains, as a model to mechanistically dissect protein condensation. Depending on the presence or absence of Ig-L chains, mutant Ig-micro chains lacking their first constant domain (Ch1) accumulate in rough or smooth RB (rRB and sRB), dilations of the endoplasmic reticulum (ER) and ER-Golgi intermediate compartment (ERGIC), respectively, reflecting the proximal and distal QC stations in the stepwise biogenesis of polymeric IgM. Either weakening ERp44-dependent distal QC or facilitating ER-associated degradation (ERAD) inhibits RB formation. Overexpression of PDI or ERp44 inhibits muDeltaCh1 secretion. However, PDI inhibits while ERp44 promotes muDeltaCh1 condensation. Both Ero1alpha silencing and overexpression prevent RB formation, demonstrating a strict redox dependency of the phenomenon. Altogether, our findings identify key controllers of protein condensation along the ESC as potential targets to handle certain storage disorders.
Collapse
Affiliation(s)
- Riccardo Ronzoni
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Amodio G, Renna M, Paladino S, Venturi C, Tacchetti C, Moltedo O, Franceschelli S, Mallardo M, Bonatti S, Remondelli P. Endoplasmic reticulum stress reduces the export from the ER and alters the architecture of post-ER compartments. Int J Biochem Cell Biol 2009; 41:2511-21. [DOI: 10.1016/j.biocel.2009.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/06/2009] [Accepted: 08/08/2009] [Indexed: 11/15/2022]
|
13
|
Kirk SJ, Cliff JM, Thomas JA, Ward TH. Biogenesis of secretory organelles during B cell differentiation. J Leukoc Biol 2009; 87:245-55. [PMID: 19889725 DOI: 10.1189/jlb.1208774] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The differentiation of B cells into Ig-secreting plasma cells requires the expansion of secretory organelles to cope with the increased cargo load. To evaluate the timeline of this process, we have quantitated the kinetics of secretory organelle expansion relative to Ig secretion and examined regulatory components of secretory transport following in vitro activation of human B lymphocytes. Unstimulated B cells contain minimal endomembranes. After activation, ER membrane induction appears as tightly packed spherical structures of 0.5-1 mum diameter concentrated in a juxtanuclear position. When the cells differentiate into plasmablasts, there is dramatic cell-size increase, but the ER remains concentrated close to the nucleus and only later fills the entire cell. In sharp contrast, previous studies in other cell types have found that the ER expands in synchrony with increasing cell size during interphase, by extension of ER tubules under the PM. In this study, the Golgi remains consistently as a single juxtanuclear structure but linearly expands sixfold in volume during B cell activation. Furthermore, following active cell proliferation, ER exit sites proliferate rapidly, increasing almost fourfold in number, in parallel with a sharp increase in Ig secretion. These findings demonstrate that the control of organelle biogenesis and expansion in primary human B cells are differentially regulated by cargo flux caused by Ig synthesis.
Collapse
Affiliation(s)
- Semra J Kirk
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
14
|
D'Angelo G, Prencipe L, Iodice L, Beznoussenko G, Savarese M, Marra P, Di Tullio G, Martire G, De Matteis MA, Bonatti S. GRASP65 and GRASP55 sequentially promote the transport of C-terminal valine-bearing cargos to and through the Golgi complex. J Biol Chem 2009; 284:34849-60. [PMID: 19840934 DOI: 10.1074/jbc.m109.068403] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8alpha and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu Y, Chang A. Heat shock response relieves ER stress. EMBO J 2008; 27:1049-59. [PMID: 18323774 DOI: 10.1038/emboj.2008.42] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 02/15/2008] [Indexed: 11/09/2022] Open
Abstract
Accumulation of misfolded protein in the endoplasmic reticulum (ER) causes stress. The unfolded protein response (UPR), a transcriptional induction pathway, is activated to relieve ER stress. Although UPR is not essential for viability, UPR-deficient cells are more sensitive to ER stress; ire1Delta cells cannot grow when challenged with tunicamycin or by overexpression of misfolded CPY(*). In these cells, multiple functions are defective, including translocation, ER-associated degradation (ERAD), and ER-to-Golgi transport. We tested whether heat shock response (HSR) can relieve ER stress. Using a constitutively active Hsf1 transcription factor to induce HSR without temperature shift, we find that HSR rescues growth of stressed ire1Delta cells, and partially relieves defects in translocation and ERAD. Cargo-specific effects of constitutively active Hsf1 on ER-to-Golgi transport are correlated with enhanced protein levels of the respective cargo receptors. In vivo, HSR is activated by ER stress, albeit to a lower level than that caused by heat. Genomic analysis of HSR targets reveals that >25% have function in common with UPR targets. We propose that HSR can relieve stress in UPR-deficient cells by affecting multiple ER activities.
Collapse
Affiliation(s)
- Yu Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | | |
Collapse
|
16
|
Renna M, Caporaso MG, Bonatti S, Kaufman RJ, Remondelli P. Regulation of ERGIC-53 gene transcription in response to endoplasmic reticulum stress. J Biol Chem 2007; 282:22499-512. [PMID: 17535801 DOI: 10.1074/jbc.m703778200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) activates the unfolded protein response, also known as the ER stress response. We previously demonstrated that ER stress induces transcription of the ER Golgi intermediate compartment protein ERGIC-53. To investigate the molecular events that regulate unfolded protein response-mediated induction of the gene, we have analyzed the transcriptional regulation of ERGIC-53. We found that the ERGIC-53 promoter contains a single cis-acting element that mediates induction of the gene by thapsigargin and other ER stress-causing agents. This ER stress response element proved to retain a novel structure and to be highly conserved in mammalian ERGIC-53 genes. The ER stress response element identified contains a 5'-end CCAAT sequence that constitutively binds NFY/CBF and, 9 nucleotides away, a 3'-end region (5'-CCCTGTTGGCCATC-3') that is equally important for ER stress-mediated induction of the gene. This sequence is the binding site for endogenous YY1 at the 5'-CCCTGTTGG-3' part and for undefined factors at the CCATC 3'-end. ATF6 alpha-YY1, but not XBP1, interacted with the ERGIC-53 regulatory region and activated ERGIC-53 ER stress response element-dependent transcription. A molecular model for the transcriptional regulation of the ERGIC-53 gene is proposed.
Collapse
Affiliation(s)
- Maurizio Renna
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Fisciano-Salerno I-84034, Italy
| | | | | | | | | |
Collapse
|
17
|
Johnston MK, Jacob NP, Brodl MR. Heat shock-induced changes in lipid and protein metabolism in the endoplasmic reticulum of barley aleurone layers. PLANT & CELL PHYSIOLOGY 2007; 48:31-41. [PMID: 17118946 DOI: 10.1093/pcp/pcl037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Heat shock in barley aleurone layers induces heat shock protein synthesis and suppresses secretory protein synthesis by selectively destabilizing their mRNAs. In addition, the endoplasmic reticulum (ER) membranes upon which secretory protein mRNAs are translated become vesiculated during heat shock, leading to the hypothesis that ER dissociation and targeted mRNA destabilization are linked mechanistically. Supporting this, ER can be heat adapted, and heat-adapted ER has higher levels of fatty acid saturation in membrane phospholipids which do not vesiculate upon heat shock. Secretory protein mRNAs are also more stable in heat-adapted cells. To understand better heat shock-induced changes in ER membranes, we examined ER membrane proteins and enzymes involved in phosphatidylcholine biosynthesis and phospholipid turnover in heat-shocked aleurone cells. Heat shock significantly increased the activity of phospholipases A2 and D, and shortly thereafter significant but gradual increases in choline kinase and phosphocholine glyceride transferase activities and a sharp increase in phosphorylcholine citidyl transferase activity were observed. Only minor changes were observed in SDS-PAGE analyses of proteins from sonicated ER membranes fractionated on continuous sucrose gradients. Overall, heat shock reduced total lipid in ER membranes relative to protein, and in intact, ultracentrifuged aleurone cells examined by light and electron microscopy the ER band appeared to increase in density. The changes in phospholipid metabolism coupled with the suppression of secretory protein synthesis indicate that in addition to inducing a classic heat shock response, high temperature also induces a classic unfolded protein response in the ER of this secretory cell.
Collapse
Affiliation(s)
- Mark K Johnston
- Department of Biology, Knox College, Galesburg, IL 61401, USA
| | | | | |
Collapse
|
18
|
Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrin S, Speth M, Diep D, Krauss S, Kozmik Z. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem 2006; 282:1225-37. [PMID: 17090534 DOI: 10.1074/jbc.m605851200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/beta-catenin signaling regulates many processes during vertebrate development. To study transcriptional targets of canonical Wnt signaling, we used the conditional Cre/loxP system in mouse to ectopically activate beta-catenin during central nervous system development. We show that the activation of Wnt/beta-catenin signaling in the embryonic mouse telencephalon results in the up-regulation of Sp5 gene, which encodes a member of the Sp1 transcription factor family. A proximal promoter of Sp5 gene is highly evolutionarily conserved and contains five TCF/LEF binding sites that mediate direct regulation of Sp5 expression by canonical Wnt signaling. We provide evidence that Sp5 works as a transcriptional repressor and has three independent repressor domains, called R1, R2, and R3, respectively. Furthermore, we show that the repression activity of R1 domain is mediated through direct interaction with a transcriptional corepressor mSin3a. Finally, our data strongly suggest that Sp5 has the same DNA binding specificity as Sp1 and represses Sp1 target genes such as p21. We conclude that Sp5 transcription factor mediates the downstream responses to Wnt/beta-catenin signaling by directly repressing Sp1 target genes.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nyfeler B, Zhang B, Ginsburg D, Kaufman RJ, Hauri HP. Cargo Selectivity of the ERGIC-53/MCFD2 Transport Receptor Complex. Traffic 2006; 7:1473-81. [PMID: 17010120 DOI: 10.1111/j.1600-0854.2006.00483.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exit of soluble secretory proteins from the endoplasmic reticulum (ER) can occur by receptor-mediated export as exemplified by blood coagulation factors V and VIII. Their efficient secretion requires the membrane lectin ER Golgi intermediate compartment protein-53 (ERGIC-53) and its soluble luminal interaction partner multiple coagulation factor deficiency protein 2 (MCFD2), which form a cargo receptor complex in the early secretory pathway. ERGIC-53 also interacts with the two lysosomal glycoproteins cathepsin Z and cathepsin C. Here, we tested the subunit interdependence and cargo selectivity of ERGIC-53 and MCFD2 by short interference RNA-based knockdown. In the absence of ERGIC-53, MCFD2 was secreted, whereas knocking down MCFD2 had no effect on the localization of ERGIC-53. Cargo binding properties of the ERGIC-53/MCFD2 complex were analyzed in vivo using yellow fluorescent protein fragment complementation. We found that MCFD2 is dispensable for the binding of cathepsin Z and cathepsin C to ERGIC-53. The results indicate that ERGIC-53 can bind cargo glycoproteins in an MCFD2-independent fashion and suggest that MCFD2 is a recruitment factor for blood coagulation factors V and VIII.
Collapse
Affiliation(s)
- Beat Nyfeler
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Mattioli L, Anelli T, Fagioli C, Tacchetti C, Sitia R, Valetti C. ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies. J Cell Sci 2006; 119:2532-41. [PMID: 16735443 DOI: 10.1242/jcs.02977] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to the impossibility of reaching the Golgi for secretion or the cytosol for degradation, mutant Ig-mu chains that lack the first constant domain (muDeltaCH1) accumulate as detergent-insoluble aggregates in dilated endoplasmic reticulum cisternae, called Russell bodies. The presence of similar structures hallmarks many ER storage diseases, but their pathogenic role(s) remain obscure. Exploiting inducible cellular systems, we show here that Russell bodies form when the synthesis of muDeltaCH1 exceeds the degradation capacity. Condensation occurs in different sub-cellular locations, depending on the interacting molecules present in the host cell: if Ig light chains are co-expressed, detergent-insoluble muDeltaCH1-light chain oligomers accumulate in large ribosome-coated structures (rough Russell bodies). In absence of light chains, instead, aggregation occurs in smooth tubular vesicles and is controlled by N-glycan-dependent interactions with ER-Golgi intermediate compartment 53 (ERGIC-53). In cells containing smooth Russell bodies, ERGIC-53 co-localizes with muDeltaCH1 aggregates in a Ca2+ -dependent fashion. Our findings identify a novel ERGIC-53 substrate, and indicate that interactions with light chains or ERGIC-53 seed muDeltaCH1 condensation in different stations of the early secretory pathway.
Collapse
Affiliation(s)
- Laura Mattioli
- MicroSCoBiO Research Center and IFOM Center of Cell Oncology and Ultrastructure, Department of Experimental Medicine, University of Genova, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Renna M, Faraonio R, Bonatti S, De Stefano D, Carnuccio R, Tajana G, Remondelli P. Nitric oxide-induced endoplasmic reticulum stress activates the expression of cargo receptor proteins and alters the glycoprotein transport to the Golgi complex. Int J Biochem Cell Biol 2006; 38:2040-8. [PMID: 16899390 DOI: 10.1016/j.biocel.2006.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/15/2006] [Accepted: 05/27/2006] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum Golgi intermediate compartment 53 protein recycles continuously between the endoplasmic reticulum and the Golgi complex and ensures the anterograde transport of specific glycoproteins with the assistance of the Multiple Clotting Factor Deficiency adaptor protein. Therefore, to analyze the effect of the endoplasmic reticulum stress on the secretory pathway beyond the endoplasmic reticulum, we analyzed the expression of both proteins in J774 macrophages incubated with the nitric oxide donor DETA NONOate or with thapsigargin. Both proteins accumulated progressively, by a transcriptional mechanism, in response to these inducers. Nitric oxide also induced a higher level of calreticulin and glucose regulated 78 protein, two endoplasmic reticulum proteins controlled by the unfolded protein response. Interestingly, nitric oxide induced the processing of the activating transcription factor 6alpha of the unfolded protein response, while thapsigargin also induced the activation of the transcription factor X-box Binding Protein 1. In addition, we showed that the accumulation of both transporters occurred simultaneously with the activation of endoplasmic reticulum-stress-dependent apoptosis, suggesting that these proteins may participate in the events that will eventually decide the fate of the cell. Induction of endoplasmic reticulum stress affected the rate of anterograde transport of a reporter glycoprotein, indicating that the endoplasmic reticulum to Golgi transport is remarkably impaired. Our results indicate that increased levels of cargo receptor proteins might have a function either in the quality control of protein folding in the endoplasmic reticulum or in the homeostasis of the intermediate compartment and Golgi complex during cell stress.
Collapse
Affiliation(s)
- Maurizio Renna
- Dipartimento di Biochimica e Biotecnologie Mediche, University of Naples Federico II, via S. Pansini 5, 1-80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Neve EPA, Lahtinen U, Pettersson RF. Oligomerization and interacellular localization of the glycoprotein receptor ERGIC-53 is independent of disulfide bonds. J Mol Biol 2005; 354:556-68. [PMID: 16257008 DOI: 10.1016/j.jmb.2005.09.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/21/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
ERGIC-53 is a type I transmembrane lectin facilitating the efficient export of a subset of secretory glycoproteins from the endoplasmic reticulum. Previous results have shown that ERGIC-53 is present as reduction-sensitive homo-oligomers, i.e. as a balanced mixture of disulfide-linked hexamers and dimers, with the two cysteine residues located close to the transmembrane domain playing a crucial role in oligomerization. Here, we demonstrate, using sucrose gradient sedimentation, cross-linking analyses, and non-denaturing gel electrophoresis, that ERGIC-53 is present exclusively as a hexameric complex in cells. However, the hexamers exist in two forms, one as a disulfide-linked, Triton X-100, perfluoro-octanic acid, and SDS-resistant complex, and the other as a non-covalent, Triton X-100, perfluoro-octanoic acid-resistant, but SDS-sensitive, complex made up of three disulfide-linked dimers that are likely to interact through the coiled-coil domains present in the luminal part of the protein. In contrast to what was previously believed, neither of the membrane-proximal cysteine residues plays an essential role in the formation, or maintenance, of the latter form of hexamers. Subcellular fractionation revealed that the double-cysteine mutant was present in the endoplasmic reticulum-Golgi-intermediate compartment, indicating that the two cysteine residues are not essential for the intracellular distribution of ERGIC-53. Based on these results, we present a model for the formation of the two hexameric forms.
Collapse
Affiliation(s)
- Etienne P A Neve
- Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institutet, Box 240, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|