1
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023; 12:cells12050709. [PMID: 36899844 PMCID: PMC10000661 DOI: 10.3390/cells12050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
2
|
Nouri N, Mehrzad V, Khalaj Z, Zaker E, Zare F, Abbasi E, Khosravi M, Kalantar SM, Salehi M. Effects of ABCG2 C421A and ABCG2 G34A genetic polymorphisms on clinical outcome and response to imatinib mesylate, in Iranian chronic myeloid leukemia patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Chronic myeloid leukemia (CML) is a multifactorial clonal myeloid neoplasm that mainly arises from the Philadelphia chromosome. Even though imatinib mesylate (IM) is considered the gold standard for first-line treatment, a number of CML patients have shown IM resistance that can be influenced by many factors, including pharmacogenetic variability. The present study examined whether two common single nucleotide polymorphisms (SNPs) of ABCG2 (G34A and C421A) contribute to IM resistance and/or good responses.
Material and methods
A total of 72 CML patients were genotyped with high-resolution melting (HRM) and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR). We also determined the cytogenetic and hematological response, as evaluable factors for measuring response to imatinib.
Results
In the current study, we explored the relationship between the different variants of ABCG2 G34A and C421A and clinical response to imatinib among CML patients. There were no statistically significant differences between genotypes of C421A and G34A and allele frequencies among the resistant and responder groups, with response to IM (P > 0.05). Also, we found no statistically significant association between genotypes and cytogenetic and hematological responses.
Conclusion
This is the first study to investigate the association between genotypes of the G34A and C421A SNPs and the outcome of IM treatment in Iranian population. As a whole, genotyping of these SNPs is unhelpful in predicting IM response in CML patients.
Collapse
|
3
|
Wang W, Sun Y, Liu X, Kumar SK, Jin F, Dai Y. Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Front Oncol 2022; 12:859455. [PMID: 35574302 PMCID: PMC9093074 DOI: 10.3389/fonc.2022.859455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
The introduction of various targeted agents into the armamentarium of cancer treatment has revolutionized the standard care of patients with cancer. However, like conventional chemotherapy, drug resistance, either preexisting (primary or intrinsic resistance) or developed following treatment (secondary or acquired resistance), remains the Achilles heel of all targeted agents with no exception, via either genetic or non-genetic mechanisms. In the latter, emerging evidence supports the notion that intracellular signaling pathways for tumor cell survival act as a mutually interdependent network via extensive cross-talks and feedback loops. Thus, dysregulations of multiple signaling pathways usually join forces to drive oncogenesis, tumor progression, invasion, metastasis, and drug resistance, thereby providing a basis for so-called "bypass" mechanisms underlying non-genetic resistance in response to targeted agents. In this context, simultaneous interruption of two or more related targets or pathways (an approach called dual-targeted therapy, DTT), via either linear or parallel inhibition, is required to deal with such a form of drug resistance to targeted agents that specifically inhibit a single oncoprotein or oncogenic pathway. Together, while most types of tumor cells are often addicted to two or more targets or pathways or can switch their dependency between them, DTT targeting either intrinsically activated or drug-induced compensatory targets/pathways would efficiently overcome drug resistance caused by non-genetic events, with a great opportunity that those resistant cells might be particularly more vulnerable. In this review article, we discuss, with our experience, diverse mechanisms for non-genetic resistance to targeted agents and the rationales to circumvent them in the treatment of cancer, emphasizing hematologic malignancies.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shaji K. Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
The Downregulation of Both Giant HERCs, HERC1 and HERC2, Is an Unambiguous Feature of Chronic Myeloid Leukemia, and HERC1 Levels Are Associated with Leukemic Cell Differentiation. J Clin Med 2022; 11:jcm11020324. [PMID: 35054018 PMCID: PMC8778248 DOI: 10.3390/jcm11020324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Large HERC E3 ubiquitin ligase family members, HERC1 and HERC2, are staggeringly complex proteins that can intervene in a wide range of biological processes, such as cell proliferation, DNA repair, neurodevelopment, and inflammation. Therefore, mutations or dysregulation of large HERCs is associated with neurological disorders, DNA repair defects, and cancer. Though their role in solid tumors started to be investigated some years ago, our knowledge about HERCs in non-solid neoplasm is greatly lagging behind. Chronic Myeloid Leukemia (CML) is a model onco-hematological disorder because of its unique and unambiguous relation between genotype and phenotype due to a single genetic alteration. In the present study, we ascertained that the presence of the BCR-ABL fusion gene was inversely associated with the expression of the HERC1 and HERC2 genes. Upon the achievement of remission, both HERC1 and HERC2 mRNAs raised again to levels comparable to those of the healthy donors. Additionally, our survey unveiled that their gene expression is sensitive to different Tyrosine Kinases Inhibitors (TKIs) in a time-dependent fashion. Interestingly, for the first time, we also observed a differential HERC1 expression when the leukemic cell lines were induced to differentiate towards different lineages revealing that HERC1 protein expression is associated with the differentiation process in a lineage-specific manner. Taken together, our findings suggest that HERC1 might act as a novel potential player in blood cell differentiation. Overall, we believe that our results are beneficial to initiate exploring the role/s of large HERCs in non-solid neoplasms.
Collapse
|
5
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
6
|
Chen X, Huang Z, Wu W, Xia R. Inhibition of Skp2 Sensitizes Chronic Myeloid Leukemia Cells to Imatinib. Cancer Manag Res 2020; 12:4777-4787. [PMID: 32606967 PMCID: PMC7319929 DOI: 10.2147/cmar.s253367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Skp2 is an E3 ubiquitin ligase that plays an important role in modulating tumor progression. The mechanisms underlying Skp2 in the promotion of proliferation and its function in the primary resistance to tyrosine kinase inhibitors (TKIs) in human CML remain to be determined. This study aimed to investigate the function of Skp2 in CML progression as well as its effects on TKI sensitivity. Methods Expression of Skp2 in leukocytes from patients with CML and normal blood samples was analyzed by qRT-PCR. Cell proliferation was analyzed by EdU incorporation and cell counting assays. Luciferase reporter and chromatin immunoprecipitation assays were used for examination of the effects of CREB on Skp2 expression. The apoptosis in vitro of K562 cells was analyzed by MTT and caspase 3/7 activity assays. Results The present study demonstrates that Skp2 was expressed at a higher level in patients with CML compared with healthy donors, and the elevated expression of Skp2 is critical for CML cell proliferation. Mechanistically, Skp2 was transcriptionally upregulated by CREB responsive to the PI3K/Akt signaling pathway. Furthermore, inhibition of Skp2 expression by shRNAs or blocking the PI3K/Akt/CREB pathway greatly enhances the sensitivity of CML cells to Imatinib treatment. Conclusion We conclude that the PI3K/Akt/CREB axis regulates the sensitivity of K562 cells to Imatinib via mediating Skp2 expression. The present study revealed an unknown role of Skp2 in CML progression and provided new aspects on the Skp2-modulated TKI sensitivity in CML, contributing to the development of potential therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Wei Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| |
Collapse
|
7
|
Fouda AM, Okasha RM, Alblewi FF, Mora A, Afifi TH, El-Agrody AM. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg Chem 2019; 95:103549. [PMID: 31887476 DOI: 10.1016/j.bioorg.2019.103549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/17/2022]
Abstract
In our endeavors to develop novel and powerful agents with antiproliferative activities, a series of β-enamionitriles, linked to the 8-bromo-1H-benzo[f]chromene moieties (4a-m), was designed and synthesized under microwave irradiation conditions. The structures of the target compounds were established on the basis of their spectral data: IR, 1H NMR, 13C NMR, 13C NMR-DEPT/APT, 19F NMR and MS. Furthermore, the antiproliferative properties were evaluated against the human cancer cell lines MCF-7, HCT-116, and HepG-2 in comparison to the positive controls Vinblastine and Doxorubicin, employing the viability assay. The obtained results confirmed that most of the tested molecules revealed strong and selective cytotoxic activities against the three cancer cell lines. The most potent cytotoxic compounds 4b, 4d, 4e, 4i, and 4k were elected for further examination, such as the cell cycle analysis, the apoptosis assay, the Caspase production, and the DNA fragmentation. This study also revealed that the desired compounds stimulate cell cycle arrest at the G2/M phases, increase the production of Caspases 3, 8, and 9, and finally cause intrinsic and extrinsic apoptotic cell death. Moreover, these compounds suppress the action of the topoisomerase II enzyme and also disrupt the microtubule functions. The SAR study of the synthesized compounds verified that the substitution on the phenyl ring of the 1H-benzo[f]chromene nucleus, accompanied with the presence of the bromine atom at the 8-position, increases the ability of these molecules against different cell lines.
Collapse
Affiliation(s)
- Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Rawda M Okasha
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Fawzia F Alblewi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
8
|
Lyn regulates creatine uptake in an imatinib-resistant CML cell line. Biochim Biophys Acta Gen Subj 2019; 1864:129507. [PMID: 31881245 DOI: 10.1016/j.bbagen.2019.129507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Imatinib mesylate (imatinib) is the first-line treatment for newly diagnosed chronic myeloid leukemia (CML) due to its remarkable hematologic and cytogenetic responses. We previously demonstrated that the imatinib-resistant CML cells (Myl-R) contained elevated Lyn activity and intracellular creatine pools compared to imatinib-sensitive Myl cells. METHODS Stable isotope metabolic labeling, media creatine depletion, and Na+/K+-ATPase inhibitor experiments were performed to investigate the origin of creatine pools in Myl-R cells. Inhibition and shRNA knockdown were performed to investigate the specific role of Lyn in regulating the Na+/K+-ATPase and creatine uptake. RESULTS Inhibition of the Na+/K+-ATPase pump (ouabain, digitoxin), depletion of extracellular creatine or inhibition of Lyn kinase (ponatinib, dasatinib), demonstrated that enhanced creatine accumulation in Myl-R cells was dependent on uptake from the growth media. Creatine uptake was independent of the Na+/creatine symporter (SLC6A8) expression or de novo synthesis. Western blot analyses showed that phosphorylation of the Na+/K+-ATPase on Tyr 10 (Y10), a known regulatory phosphorylation site, correlated with Lyn activity. Overexpression of Lyn in HEK293 cells increased Y10 phosphorylation (pY10) of the Na+/K+-ATPase, whereas Lyn inhibition or shRNA knockdown reduced Na+/K+-ATPase pY10 and decreased creatine accumulation in Myl-R cells. Consistent with enhanced uptake in Myl-R cells, cyclocreatine (Ccr), a cytotoxic creatine analog, caused significant loss of viability in Myl-R compared to Myl cells. CONCLUSIONS These data suggest that Lyn can affect creatine uptake through Lyn-dependent phosphorylation and regulation of the Na+/K+-ATPase pump activity. GENERAL SIGNIFICANCE These studies identify kinase regulation of the Na+/K+-ATPase as pivotal in regulating creatine uptake and energy metabolism in cells.
Collapse
|
9
|
A dynamic N 6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res 2018; 28:1062-1076. [PMID: 30297871 PMCID: PMC6218444 DOI: 10.1038/s41422-018-0097-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
N6-methyladenosine (m6A) on mRNAs is critical for various biological processes, yet whether m6A regulates drug resistance remains unknown. Here we show that developing resistant phenotypes during tyrosine kinase inhibitor (TKI) therapy depends on m6A reduction resulting from FTO overexpression in leukemia cells. This deregulated FTO-m6A axis pre-exists in naïve cell populations that are genetically homogeneous and is inducible/reversible in response to TKI treatment. Cells with mRNA m6A hypomethylation and FTO upregulation demonstrate more TKI tolerance and higher growth rates in mice. Either genetic or pharmacological restoration of m6A methylation through FTO deactivation renders resistant cells sensitive to TKIs. Mechanistically, the FTO-dependent m6A demethylation enhances mRNA stability of proliferation/survival transcripts bearing m6A and subsequently leads to increased protein synthesis. Our findings identify a novel function for the m6A methylation in regulating cell fate decision and demonstrate that dynamic m6A methylome is an additional epigenetic driver of reversible TKI-tolerance state, providing a mechanistic paradigm for drug resistance in cancer.
Collapse
|
10
|
Lu L, Kok CH, Saunders VA, Wang J, McLean JA, Hughes TP, White DL. Modelling ponatinib resistance in tyrosine kinase inhibitor-naïve and dasatinib resistant BCR-ABL1+ cell lines. Oncotarget 2018; 9:34735-34747. [PMID: 30410673 PMCID: PMC6205183 DOI: 10.18632/oncotarget.26187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022] Open
Abstract
TKI resistance remains a major impediment to successful treatment of CML. In this study, we investigated the emerging modes of ponatinib resistance in TKI-naïve and dasatinib resistant BCR-ABL1+ cell lines. To investigate potential resistance mechanisms, ponatinib resistance was generated in BCR-ABL1+ cell-lines by long-term exposure to increasing concentrations of ponatinib. Two cell lines with prior dasatinib resistance demonstrated BCR-ABL1 kinase domain (KD) mutation(s) upon exposure to ponatinib. In one of these cell lines the T315I mutation had emerged during dasatinib exposure. When further cultured with ponatinib, the T315I mutation level and BCR-ABL1 mRNA expression level were increased. In the other cell line, compound mutations G250E/E255K developed with ponatinib exposure. In contrast, the ponatinib resistant cell lines that had no prior exposure to other TKIs (TKI-naïve) did not develop BCR-ABL1 KD mutations. Rather, both of these cell lines demonstrated Bcr-Abl-independent resistance via Axl overexpression. Axl, a receptor tyrosine kinase, has previously been associated with imatinib and nilotinib resistance. Ponatinib sensitivity was restored following Axl inhibition or shRNA-mediated-knockdown of Axl, suggesting that Axl was the primary driver of resistance and a potential target for therapy in this setting.
Collapse
Affiliation(s)
- Liu Lu
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chung Hoow Kok
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Verity Ann Saunders
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia
| | - Jueqiong Wang
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jennifer Anne McLean
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia
| | - Timothy Peter Hughes
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Deborah Lee White
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Bermejo M, Ambrosioni J, Bautista G, Climent N, Mateos E, Rovira C, Rodríguez-Mora S, López-Huertas MR, García-Gutiérrez V, Steegmann JL, Duarte R, Cervantes F, Plana M, Miró JM, Alcamí J, Coiras M. Evaluation of resistance to HIV-1 infection ex vivo of PBMCs isolated from patients with chronic myeloid leukemia treated with different tyrosine kinase inhibitors. Biochem Pharmacol 2018; 156:248-264. [PMID: 30142322 DOI: 10.1016/j.bcp.2018.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Current antiretroviral treatment (ART) may control HIV-1 replication but it cannot cure the infection due to the formation of a reservoir of latently infected cells. CD4+ T cell activation during HIV-1 infection eliminates the antiviral function of the restriction factor SAMHD1, allowing proviral integration and the reservoir establishment. The role of tyrosine kinases during T-cell activation is essential for these processes. Therefore, the inhibition of tyrosine kinases could control HIV-1 infection and restrict the formation of the reservoir. A family of tyrosine kinase inhibitors (TKIs) is successfully used in clinic for treating chronic myeloid leukemia (CML). The safety and efficacy against HIV-1 infection of five TKIs was assayed in PBMCs isolated from CML patients on prolonged treatment with these drugs that were infected ex vivo with HIV-1. We determined that the most potent and safe TKI against HIV-1 infection was dasatinib, which preserved SAMHD1 antiviral function and avoid T-cell activation through TCR engagement and homeostatic cytokines. Imatinib and nilotinib showed lower potency and bosutinib was quite toxic in vitro. Ponatinib presented similar profile to dasatinib but as it has been associated with higher incidence of arterial ischemic events, dasatinib would be the better choice of TKI to be used as adjuvant of ART in order to avoid the establishment and replenishment of HIV-1 reservoir and move forward towards an HIV cure.
Collapse
Affiliation(s)
- Mercedes Bermejo
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Ambrosioni
- Infectious Diseases Service, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Guiomar Bautista
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Núria Climent
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Rovira
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Division of Infection and Immunity, University College of London, UK
| | - María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) - Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Juan Luis Steegmann
- Hematology Department, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-IP), Madrid, Spain
| | - Rafael Duarte
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco Cervantes
- Hematology Department, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José M Miró
- Infectious Diseases Service, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Chen CW, Lee YL, Liou JP, Liu YH, Liu CW, Chen TY, Huang HM. A novel tubulin polymerization inhibitor, MPT0B206, downregulates Bcr-Abl expression and induces apoptosis in imatinib-sensitive and imatinib-resistant CML cells. Apoptosis 2018; 21:1008-18. [PMID: 27344662 DOI: 10.1007/s10495-016-1264-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Imatinib, a Bcr-Abl-specific inhibitor, is effective for treating chronic myeloid leukemia (CML), but drug resistance has emerged for this disease. In this study, we synthesized a novel tubulin polymerization inhibitor, MPT0B206 (N-[1-(4-methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-formamide), and demonstrated its apoptotic effect and mechanism in imatinib-sensitive K562 and imatinib-resistant K562R CML cells. Western blotting and immunofluorescence microscopy showed that MPT0B206 induced microtubule depolymerization in K562 and K562R cells. MPT0B206 inhibited the growth of these cells in a concentration- and time-dependent manner. It did not affect the viability of normal human umbilical vein endothelial cells. MPT0B206 induced G2/M cell cycle arrest and the appearance of the mitotic marker MPM-2 in K562 and K562R cells, which is associated with the upregulation of cyclin B1 and the dephosphorylation of Cdc2. Treatment of K562 and K562R cells with MPT0B206 induced apoptosis and reduced the protein levels of procaspase-9 and procaspase-3 and increased caspase-3 activity and PARP cleavage. MPT0B206 also reduced the levels of the antiapoptotic proteins Mcl-1 and Bcl-2 and increased the level of the apoptotic protein Bax. Additional experiments showed that MPT0B206 markedly downregulated Bcr-Abl mRNA expression and total and phosphorylated Bcr-Abl protein levels and inhibited the phosphorylation of its downstream proteins STAT5, MAPK, and AKT, and the protein level of c-Myc in K562 and K562R cells. Furthermore, MPT0B206 triggered viability reduction and apoptosis in CML cells carrying T315I-mutated Bcr-Abl. Together, these results suggest that MPT0B206 is a promising alternative for treating imatinib-resistant CML.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Neurosurgery Department, Chi Mei Medical Center, No. 901, Zhonghua Rd., Tainan, 710, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Yu-Hsiu Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Chin-Wei Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan
| | - Tsai-Yun Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 701, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
13
|
Kumar R, Kapoor R. Primary imatinib failure rescued by dasatinib and maintained by reintroduction of imatinib. Rev Bras Hematol Hemoter 2017; 39:360-363. [PMID: 29150111 PMCID: PMC5693385 DOI: 10.1016/j.bjhh.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022] Open
Affiliation(s)
- Rajiv Kumar
- Army Hospital (Research & Referral), New Delhi, India.
| | - Rajan Kapoor
- Army Hospital (Research & Referral), New Delhi, India
| |
Collapse
|
14
|
BCR-ABL1-induced downregulation of WASP in chronic myeloid leukemia involves epigenetic modification and contributes to malignancy. Cell Death Dis 2017; 8:e3114. [PMID: 29022901 PMCID: PMC5680580 DOI: 10.1038/cddis.2017.458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 01/26/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by the BCR–ABL1 tyrosine kinase (TK). The development of TK inhibitors (TKIs) revolutionized the treatment of CML patients. However, TKIs are not effective to those at advanced phases when amplified BCR–ABL1 levels and increased genomic instability lead to secondary oncogenic modifications. Wiskott–Aldrich syndrome protein (WASP) is an important regulator of signaling transduction in hematopoietic cells and was shown to be an endogenous inhibitor of the c-ABL TK. Here, we show that the expression of WASP decreases with the progression of CML, inversely correlates with the expression of BCR–ABL1 and is particularly low in blast crisis. Enforced expression of BCR–ABL1 negatively regulates the expression of WASP. Decreased expression of WASP is partially due to DNA methylation of the proximal WASP promoter. Importantly, lower levels of WASP in CML advanced phase patients correlate with poorer overall survival (OS) and is associated with TKI response. Interestingly, enforced expression of WASP in BCR–ABL1-positive K562 cells increases the susceptibility to apoptosis induced by TRAIL or chemotherapeutic drugs and negatively modulates BCR–ABL1-induced tumorigenesis in vitro and in vivo. Taken together, our data reveal a novel molecular mechanism that operates in BCR–ABL1-induced tumorigenesis that can be used to develop new strategies to help TKI-resistant, CML patients in blast crisis (BC).
Collapse
|
15
|
Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 2017; 35:463-474. [PMID: 28319085 PMCID: PMC5557292 DOI: 10.1038/nbt.3834] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Identification of effective combination therapies is critical to address the emergence of drug-resistant cancers, but direct screening of all possible drug combinations is infeasible. Here we introduce a CRISPR-based double knockout (CDKO) system that improves the efficiency of combinatorial genetic screening using an effective strategy for cloning and sequencing paired single guide RNA (sgRNA) libraries and a robust statistical scoring method for calculating genetic interactions (GIs) from CRISPR-deleted gene pairs. We applied CDKO to generate a large-scale human GI map, comprising 490,000 double-sgRNAs directed against 21,321 pairs of drug targets in K562 leukemia cells and identified synthetic lethal drug target pairs for which corresponding drugs exhibit synergistic killing. These included the BCL2L1 and MCL1 combination, which was also effective in imatinib-resistant cells. We further validated this system by identifying known and previously unidentified GIs between modifiers of ricin toxicity. This work provides an effective strategy to screen synergistic drug combinations in high-throughput and a CRISPR-based tool to dissect functional GI networks.
Collapse
Affiliation(s)
- Kyuho Han
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Edwin E. Jeng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaelen T. Hess
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - David W. Morgens
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification. J Biomed Inform 2017; 67:11-20. [DOI: 10.1016/j.jbi.2017.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
|
17
|
El-Moghazy SM, George RF, Osman EEA, Elbatrawy AA, Kissova M, Colombo A, Crespan E, Maga G. Novel pyrazolo[3,4- d ]pyrimidines as dual Src-Abl inhibitors active against mutant form of Abl and the leukemia K-562 cell line. Eur J Med Chem 2016; 123:1-13. [DOI: 10.1016/j.ejmech.2016.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
|
18
|
ABCB1 Overexpression Is a Key Initiator of Resistance to Tyrosine Kinase Inhibitors in CML Cell Lines. PLoS One 2016; 11:e0161470. [PMID: 27536777 PMCID: PMC4990177 DOI: 10.1371/journal.pone.0161470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/06/2016] [Indexed: 02/06/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) imatinib has resulted in excellent responses in the majority of Chronic Myeloid Leukaemia (CML) patients; however, resistance is observed in 20–30% of patients. More recently, resistance to the second generation TKIs, nilotinib and dasatinib, has also been observed albeit at a lower incidence. ABCB1 has previously been implicated in TKI export and its overexpression linked to TKI resistance. In this study the dynamics of nilotinib resistance was studied in CML cell lines with particular focus on ABCB1 expression levels during development of resistance. Results revealed ABCB1 overexpression is likely an important initiator of nilotinib resistance in vitro. ABCB1 overexpression was also observed in cell lines as an intermediate step during development of resistance to imatinib and dasatinib in vitro. We conclude that ABCB1 overexpression may provide an initial platform to facilitate development of additional mechanisms for resistance to TKIs. This provides a rationale for investigating this phenomenon in patients undergoing TKI therapy.
Collapse
|
19
|
Zhou W, Xu J, Gelston E, Wu X, Zou Z, Wang B, Zeng Y, Wang H, Liu A, Xu L, Liu Q. Inhibition of Bcl-xL overcomes polyploidy resistance and leads to apoptotic cell death in acute myeloid leukemia cells. Oncotarget 2016; 6:21557-71. [PMID: 26188358 PMCID: PMC4673286 DOI: 10.18632/oncotarget.4306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/13/2015] [Indexed: 11/28/2022] Open
Abstract
Small molecular inhibitors or drugs targeting specific molecular alterations are widely used in clinic cancer therapy. Despite the success of targeted therapy, the development of drug resistance remains a challenging problem. Identifying drug resistance mechanisms for targeted therapy is an area of intense investigation, and recent evidence indicates that cellular polyploidy may be involved. Here, we demonstrate that the cell cycle kinase inhibitor, Oxindole-1 (Ox-1), induces mitotic slippage, causing resistant polyploidy in acute myeloid leukemia (AML) cells. Indeed, Ox-1 decreases the kinase activity of CDK1 (CDC2)/cyclin B1, leading to inhibition of Bcl-xL phosphorylation and subsequent resistance to apoptosis. Addition of ABT-263, a Bcl-2 family inhibitor, to Ox-1, or the other polyploidy-inducer, ZM447439 (ZM), produces a synergistic loss of cell viability with greater sustained tumor growth inhibition in AML cell lines and primary AML blasts. Furthermore, genetic knockdown of Bcl-xL, but not Bcl-2, exhibited synergistic inhibition of cell growth in combination with Ox-1 or ZM. These data demonstrate that Bcl-xL is a key factor in polyploidization resistance in AML, and that suppression of Bcl-xL by ABT-263, or siRNAs, may hold therapeutic utility in drug-resistant polyploid AML cells.
Collapse
Affiliation(s)
- Weihua Zhou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Oncology, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jie Xu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Department of Oncology, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Elise Gelston
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Xing Wu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bin Wang
- Department of Ultrasound, Union Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, Wuhan, China
| | - Yunxin Zeng
- Department of Hematology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Wang
- Department of Hematological Oncology, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Anwen Liu
- Department of Oncology, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Wong SM, Liu FH, Lee YL, Huang HM. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells. PLoS One 2016; 11:e0148093. [PMID: 26815740 PMCID: PMC4729476 DOI: 10.1371/journal.pone.0148093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Sarcosine/analogs & derivatives
- Sarcosine/pharmacology
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Shuit-Mun Wong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fu-Hwa Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Ko TK, Chin HS, Chuah CT, Huang JW, Ng KP, Khaw SL, Huang DC, Ong ST. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget 2016; 7:2721-33. [PMID: 26517680 PMCID: PMC4823067 DOI: 10.18632/oncotarget.5436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.
Collapse
Affiliation(s)
- Tun Kiat Ko
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Hui San Chin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Charles T.H. Chuah
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
| | - John W.J. Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Present address: Singapore Institute for Clinical Sciences (SICS), Brenner Centre for Molecular Medicine, Singapore
| | - King-Pan Ng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Present address: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Seong Lin Khaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Rajendran N, Subramaniam S, Charan Raja MR, Venkata Subbarao HM, Raghunandan S, Venkatasubramanian U, Pemaiah B, Mahapatra SK, Sivasubramanian A. Design, synthesis and “in vitro” anti-leukemic evaluation of ferulic acid analogues as BCR-Abl inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra10106b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of ferulic acid derivatives was synthesized and evaluated for anti-proliferative activity against K562, U937 and Hep G2 cells. The compounds were further tested for BCR-Abl kinase inhibition.
Collapse
Affiliation(s)
- Narendran Rajendran
- Centre for Advanced Research in Indian System of Medicine (CARISM)
- SASTRA University
- Thanjavur 613401
- India
| | | | | | | | | | | | - Brindha Pemaiah
- Centre for Advanced Research in Indian System of Medicine (CARISM)
- SASTRA University
- Thanjavur 613401
- India
| | | | | |
Collapse
|
23
|
Abstract
The introduction of protein tyrosine kinase inhibitors (TKIs) in 1998 transformed the management of chronic myeloid leukemia (CML), leading to significantly reduced mortality and improved 5 year survival rates. However, the CML community is faced with several clinical issues that need to be addressed. Ten to 15% of CML patients are diagnosed in advanced phase, and small numbers of chronic phase (CP) cases experience disease progression each year during treatment. For these patients, TKIs induce only transient responses and alternative treatment strategies are urgently required. Depending on choice of first line TKI, approximately 30% of CML CP cases show suboptimal responses, due to a combination of poor compliance, drug intolerance, and drug resistance, with approximately 50% of TKI-resistance caused by kinase domain mutations and the remainder due to unknown mechanisms. Finally, the chance of successful treatment discontinuation is on the order of only 10-20% related to disease persistence. Disease persistence is a poorly understood phenomenon; all CML patients have functional Philadelphia positive (Ph+) stem and progenitor cells in their bone marrows and continue to express BCR-ABL1 by DNA PCR, even when in very deep remission and following treatment discontinuation. What controls the maintenance of these persisting cells, whether it is necessary to fully eradicate the malignant clone to achieve cure, and how that might be approached therapeutically are open questions.
Collapse
Affiliation(s)
- Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
24
|
Inokuchi K, Kumagai T, Matsuki E, Ohashi K, Shinagawa A, Hatta Y, Takeuchi J, Yoshida C, Wakita H, Kozai Y, Shirasugi Y, Fujisawa S, Iwase O, Yano S, Okamoto S, Oba K, Sakamoto J, Sakamaki H. Efficacy of molecular response at 1 or 3 months after the initiation of dasatinib treatment can predict an improved response to dasatinib in imatinib-resistant or imatinib-intolerant Japanese patients with chronic myelogenous leukemia during the chronic phase. J Clin Exp Hematop 2015; 54:197-204. [PMID: 25501110 DOI: 10.3960/jslrt.54.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Dasatinib is a BCR-ABL kinase inhibitor with improved potency compared with imatinib, for which efficacy and safety in imatinib-resistant and imatinib-intolerant patients with chronic myelogenous leukemia (CML) have been established. Here, an open-label phase II study evaluated the efficacy and safety of dasatinib in 50 Japanese patients with imatinib-resistant or imatinib-intolerant CML during the chronic phase (CML-CP). Dasatinib was effective in imatinib-resistant and imatinib-intolerant patients. After 12 months of dasatinib therapy, 35 patients (70%) had achieved a major molecular response (MMR) and 16 patients (32%) had achieved a complete molecular response (CMR). Among the imatinib-resistant CML-CP cohort, 21 and 8 patients had achieved an MMR and a CMR after 12 months of dasatinib therapy, respectively. Among the imatinib-intolerant CML-CP cohort, 14 and 8 patients had achieved an MMR and a CMR after 12 months of dasatinib therapy, respectively. After 18 months of dasatinib therapy, 38 out of 50 patients (76.0%) had achieved an MMR and 19 patients (38.0%) had achieved a CMR. A lower level of BCR-ABL transcript at 1 or 3 months after the initiation of dasatinib treatment was more strongly correlated with the BCR-ABL transcript level at 12 and 18 months (p < 0.001) than a higher level of BCR-ABL. The T315I mutation was identified in two patients receiving dasatinib therapy. Dasatinib was generally well tolerated, with only 3 patients (5%) having treatment discontinuation as a result of adverse hematologic events (thrombocytopenia, anemia, neutropenia) and/or non-hematologic events at a 12-month follow-up evaluation. Dasatinib was a safe and effective treatment for Japanese patients with imatinib-resistant or imatinib-intolerant CML. In addition, the molecular response at 1 or 3 months predicted a response to dasatinib at 12 or 18 months.
Collapse
Affiliation(s)
- Koiti Inokuchi
- Division of Hematology, Department of Internal Medicine, Nippon Medical School
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Korfi K, Mandal A, Furney SJ, Wiseman D, Somervaille TCP, Marais R. A personalised medicine approach for ponatinib-resistant chronic myeloid leukaemia. Ann Oncol 2015; 26:1180-1187. [PMID: 25712455 PMCID: PMC4516045 DOI: 10.1093/annonc/mdv110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic myeloid leukaemia (CML) is characterised by the presence of a fusion driver oncogene, BCR-ABL1, which is a constitutive tyrosine kinase. Tyrosine kinase inhibitors (TKIs) are the central treatment strategy for CML patients and have significantly improved survival rates, but the T315I mutation in the kinase domain of BCR-ABL1 confers resistance to all clinically approved TKIs, except ponatinib. However, compound mutations can mediate resistance even to ponatinib and remain a clinical challenge in CML therapy. Here, we investigated a ponatinib-resistant CML patient through whole-genome sequencing (WGS) to identify the cause of resistance and to find alternative therapeutic targets. PATIENTS AND METHODS We carried out WGS on a ponatinib-resistant CML patient and demonstrated an effective combination therapy against the primary CML cells derived from this patient in vitro. RESULTS Our findings demonstrate the emergence of compound mutations in the BCR-ABL1 kinase domain following ponatinib treatment, and chromosomal structural variation data predicted amplification of BCL2. The primary CD34(+) CML cells from this patient showed increased sensitivity to the combination of ponatinib and ABT-263, a BCL2 inhibitor with a negligible effect against the normal CD34(+) cells. CONCLUSION Our results show the potential of personalised medicine approaches in TKI-resistant CML patients and provide a strategy that could improve clinical outcomes for these patients.
Collapse
MESH Headings
- Aged
- Aniline Compounds/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- DNA Mutational Analysis
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Genome-Wide Association Study
- Humans
- Imidazoles/adverse effects
- Imidazoles/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Mutation
- Precision Medicine
- Predictive Value of Tests
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Pyridazines/adverse effects
- Pyridazines/therapeutic use
- Sulfonamides/therapeutic use
- Treatment Failure
- Tumor Cells, Cultured
Collapse
Affiliation(s)
| | | | | | - D Wiseman
- Leukaemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - T C P Somervaille
- Leukaemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | | |
Collapse
|
26
|
Buchner M, Park E, Geng H, Klemm L, Flach J, Passegué E, Schjerven H, Melnick A, Paietta E, Kopanja D, Raychaudhuri P, Müschen M. Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nat Commun 2015; 6:6471. [PMID: 25753524 PMCID: PMC4366523 DOI: 10.1038/ncomms7471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/30/2015] [Indexed: 01/19/2023] Open
Abstract
Despite recent advances in the cure rate of acute lymphoblastic leukaemia (ALL), the prognosis for patients with relapsed ALL remains poor. Here we identify FOXM1 as a candidate responsible for an aggressive clinical course. We show that FOXM1 levels peak at the pre-B-cell receptor checkpoint but are dispensable for normal B-cell development. Compared with normal B-cell populations, FOXM1 levels are 2- to 60-fold higher in ALL cells and are predictive of poor outcome in ALL patients. FOXM1 is negatively regulated by FOXO3A, supports cell survival, drug resistance, colony formation and proliferation in vitro, and promotes leukemogenesis in vivo. Two complementary approaches of pharmacological FOXM1 inhibition-(i) FOXM1 transcriptional inactivation using the thiazole antibiotic thiostrepton and (ii) an FOXM1 inhibiting ARF-derived peptide-recapitulate the findings of genetic FOXM1 deletion. Taken together, our data identify FOXM1 as a novel therapeutic target, and demonstrate feasibility of FOXM1 inhibition in ALL.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Eugene Park
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
- Department of Haematology, University of Cambridge, Cambridge CB2 OAH, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Lars Klemm
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Johanna Flach
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hem/Onc Division, University of California San Francisco, San Francisco, California 94143, USA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hem/Onc Division, University of California San Francisco, San Francisco, California 94143, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Elisabeth Paietta
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10466, USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
- Department of Haematology, University of Cambridge, Cambridge CB2 OAH, UK
| |
Collapse
|
27
|
Bernusso VA, Machado-Neto JA, Pericole FV, Vieira KP, Duarte AS, Traina F, Hansen MD, Olalla Saad ST, Barcellos KS. Imatinib restores VASP activity and its interaction with Zyxin in BCR–ABL leukemic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:388-95. [DOI: 10.1016/j.bbamcr.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022]
|
28
|
Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, Khoury HJ, Larson RA, Konopleva M, Cortes JE, Kantarjian H, Jabbour EJ, Kornblau SM, Lipton JH, Rea D, Stenke L, Barbany G, Lange T, Hernández-Boluda JC, Ossenkoppele GJ, Press RD, Chuah C, Goldberg SL, Wetzler M, Mahon FX, Etienne G, Baccarani M, Soverini S, Rosti G, Rousselot P, Friedman R, Deininger M, Reynolds KR, Heaton WL, Eiring AM, Pomicter AD, Khorashad JS, Kelley TW, Baron R, Druker BJ, Deininger MW, O'Hare T. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell 2014; 26:428-442. [PMID: 25132497 PMCID: PMC4160372 DOI: 10.1016/j.ccr.2014.07.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/30/2014] [Accepted: 07/10/2014] [Indexed: 12/20/2022]
Abstract
Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Catalytic Domain
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imidazoles/chemistry
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Molecular Dynamics Simulation
- Mutation, Missense
- Philadelphia Chromosome
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyridazines/chemistry
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
- Treatment Failure
Collapse
Affiliation(s)
- Matthew S Zabriskie
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Srinivas K Tantravahi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| | - Nadeem A Vellore
- Department of Medicinal Chemistry, College of Pharmacy and The Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Johanna Estrada
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Franck E Nicolini
- Hematology Department 1F, Centre Hospitalier Lyon Sud, Pierre Bénite, INSERM U1052, CRCL, Lyon 69495, France
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | - Marina Konopleva
- Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jorge E Cortes
- Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hagop Kantarjian
- Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elias J Jabbour
- Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Departments of Leukemia and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey H Lipton
- Department of Medical Oncology and Hematology, Allogeneic Blood and Marrow Transplantation Program, Princess Margaret Hospital, University of Toronto, Toronto ON M5G 2M9, Canada
| | - Delphine Rea
- Service des Maladies du Sang, Hospital Saint-Louis, 75010 Paris, France
| | - Leif Stenke
- Department of Hematology, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Thoralf Lange
- Hematology and Oncology, University of Leipzig, 04103 Leipzig, Germany
| | | | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Amsterdam 1081HV, the Netherlands
| | - Richard D Press
- Department of Pathology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles Chuah
- Department of Hematology, Singapore General Hospital, Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 169856 Singapore, Singapore
| | - Stuart L Goldberg
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Meir Wetzler
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Francois-Xavier Mahon
- Laboratoire d'Hematologie, Centre Hospitalier Universitaire de Bordeaux and Laboratoire Hematopoïese Leucemique et Cible Therapeutique, Inserm U1035, Universite Bordeaux, 33076 Bordeaux, France
| | - Gabriel Etienne
- Departement d'Oncologie Medicale, Centre Regional de Lutte Contre le Cancer de Bordeaux et du Sud-Ouest, Institut Bergonie, 33076 Bordeaux, France
| | - Michele Baccarani
- Department of Experimental, Diagnostic, and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, 40138 Bologna, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic, and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, 40138 Bologna, Italy
| | - Gianantonio Rosti
- Department of Experimental, Diagnostic, and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, 40138 Bologna, Italy
| | - Philippe Rousselot
- Service d'Hématologie et d'Oncologie, Université de Versailles, 75010 Paris, France
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences and Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Marie Deininger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kimberly R Reynolds
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - William L Heaton
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna M Eiring
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamshid S Khorashad
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Riccardo Baron
- Department of Medicinal Chemistry, College of Pharmacy and The Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA.
| | - Thomas O'Hare
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
29
|
Giansanti P, Preisinger C, Huber KVM, Gridling M, Superti-Furga G, Bennett KL, Heck AJR. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics. ACS Chem Biol 2014; 9:1490-8. [PMID: 24804581 DOI: 10.1021/cb500116c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer.
Collapse
Affiliation(s)
- Piero Giansanti
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Christian Preisinger
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Manuela Gridling
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
30
|
The multidrug resistance pumps are inhibited by silibinin and apoptosis induced in K562 and KCL22 leukemia cell lines. Leuk Res 2014; 38:575-80. [DOI: 10.1016/j.leukres.2013.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/12/2013] [Accepted: 10/25/2013] [Indexed: 12/22/2022]
|
31
|
Xiao Q, Hu Y, Liu Y, Wang Z, Geng H, Hu L, Xu D, Wang K, Zheng L, Zheng S, Ding K. BEX1 promotes imatinib-induced apoptosis by binding to and antagonizing BCL-2. PLoS One 2014; 9:e91782. [PMID: 24626299 PMCID: PMC3953594 DOI: 10.1371/journal.pone.0091782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/14/2014] [Indexed: 12/21/2022] Open
Abstract
An enhanced anti-apoptotic capacity of tumor cells plays an important role in the process of breakpoint cluster region/Abelson tyrosine kinase gene (BCR/ABL)-independent imatinib resistance. We have previously demonstrated that brain expressed X-linked 1 (BEX1) was silenced in secondary imatinib-resistant K562 cells and that re-expression of BEX1 can restore imatinib sensitivity resulting in the induction of apoptosis. However, the mechanism by which BEX1 executes its pro-apoptotic function remains unknown. We identified B-cell lymphoma 2 (BCL-2) as a BEX1-interacting protein using a yeast two-hybrid screen. The interaction between BEX1 and BCL-2 was subsequently confirmed by co-immunoprecipitation assays. Like BCL-2, BEX1 was localized to the mitochondria. The region between 33K and 64Q on BEX1 is important for its localization to the mitochondria and its ability to interact with BCL-2. Additionally, we found that this region is essential for BEX1-regulated imatinib-induced apoptosis. Furthermore, we demonstrated that the interaction between BCL-2 and BEX1 promotes imatinib-induced apoptosis by suppressing the formation of anti-apoptotic BCL-2/BCL-2-associated X protein (BAX) heterodimers. Our results revealed an interaction between BEX1 and BCL-2 and a novel mechanism of imatinib resistance mediated by the BEX1/BCL-2 pathway.
Collapse
Affiliation(s)
- Qian Xiao
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yeting Hu
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Liu
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhanhuai Wang
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haitao Geng
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifeng Hu
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dengyong Xu
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Oncology and Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (KD); (SZ); (LZ)
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (KD); (SZ); (LZ)
| | - Kefeng Ding
- The Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, The Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang Province, Cancer Institute, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (KD); (SZ); (LZ)
| |
Collapse
|
32
|
Ranjan K, Sharma A, Surolia A, Pathak C. Regulation of HA14-1 mediated oxidative stress, toxic response, and autophagy by curcumin to enhance apoptotic activity in human embryonic kidney cells. Biofactors 2014; 40:157-69. [PMID: 23559532 DOI: 10.1002/biof.1098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Abstract
An alteration in susceptibility to apoptosis not only contributes to promotion of malignancy but can also enhance drug resistance in response to anticancer therapies. HA14-1 is a small molecule which has the potential of inducing apoptosis in cancerous cells. HA14-1 manifests an antagonistic effect on antiapoptotic protein Bcl-2 and consequently induces cell death in various cancerous cell lines. However, it is also known to generate ROS and toxic response in the cells upon decomposition. Elevated level of ROS is responsible for oxidative stress and other pathological consequences, if not metabolized properly. The aim of the present study was to examine the synergistic effect of curcumin in promoting apoptosis by regulating the HA14-1 mediated ROS generation, toxicity, oxidative stress, and autophagy in human embryonic kidney cells. Our study demonstrates that curcumin efficiently scavenges HA14-1 mediated generation of ROS and toxic response resulting in augmentation of apoptosis in HEK 293T cells by promoting inhibition of antiapoptotic proteins and process of autophagy. Thus curcumin along with HA14-1 regulates cell proliferation by disruption of the antiapoptotic signaling mechanism. This approach could serve as a promising strategy for therapeutic potential to overcome their adverse effects.
Collapse
Affiliation(s)
- Kishu Ranjan
- Cell Biology Department, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | | | | | | |
Collapse
|
33
|
Silveira RA, Fachel AA, Moreira YB, De Souza CA, Costa FF, Verjovski-Almeida S, Pagnano KBB. Protein-coding genes and long noncoding RNAs are differentially expressed in dasatinib-treated chronic myeloid leukemia patients with resistance to imatinib. ACTA ACUST UNITED AC 2013; 19:31-41. [PMID: 23676950 DOI: 10.1179/1607845413y.0000000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Dasatinib has demonstrated efficacy in patients with chronic-phase chronic myeloid leukemia (CML) who had resistance or intolerance to imatinib. However, some patients also develop resistance or intolerance to dasatinib. To identify potential molecular pathways involved in primary resistance to dasatinib in CML, we analyzed gene expression profiles of mononuclear cells of 7 imatinib-resistant patients, collected before and after 1-year dasatinib treatment. Large-scale gene expression was measured with Agilent microarrays covering protein-coding genes and long (>200 nt) noncoding RNAs (lncRNAs). Sets of genes and lncRNAs significantly differentially expressed (>1.5 fold-change; q value ≤10%) were identified. Ingenuity Pathway Analysis pointed to a number of functions, canonical pathways and gene networks that were significantly enriched with differentially expressed genes. In addition to protein-coding genes, lncRNAs have been recently implicated in pathways leading to tumorigenesis. Our data point to new possible regulatory elements involved in dasatinib resistance in CML.
Collapse
|
34
|
Vakana E, Arslan AD, Szilard A, Altman JK, Platanias LC. Regulatory effects of sestrin 3 (SESN3) in BCR-ABL expressing cells. PLoS One 2013; 8:e78780. [PMID: 24260131 PMCID: PMC3832611 DOI: 10.1371/journal.pone.0078780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs) results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3), a unique cellular inhibitor of mTOR complex 1 (mTORC1). Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3. Catalytic mTOR inhibition also results in upregulation of SESN3 expression in cells harboring the TKI-insensitive T315I-BCR-ABL mutant, which is resistant to imatinib mesylate. Overexpression of SESN3 results in inhibitory effects on different Ph+ leukemic cell lines including KT-1-derived leukemic precursors, indicating that SESN3 mediates anti-leukemic responses in Ph+ cells. Altogether, our findings suggest the existence of a novel mechanism for the generation of antileukemic responses in CML cells, involving upregulation of SESN3 expression.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic
- Heat-Shock Proteins/biosynthesis
- Heat-Shock Proteins/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Multiprotein Complexes/antagonists & inhibitors
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Eliza Vakana
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Ahmet Dirim Arslan
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Amy Szilard
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Jessica K. Altman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois, United States of America
- Division of Hematology-Oncology, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois, United States of America
- Division of Hematology-Oncology, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Baran Y, Ural AU, Gunduz U. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 2013; 12:497-503. [PMID: 17852433 DOI: 10.1080/10245330701384179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A major advancement in the treatment of chronic myeloid leukemia (CML) has been the development of imatinib, which has shown striking activity in the chronic phase and the accelerated phase, but less so in the blast phase of the disease. Despite high rates of hematologic and cytogenetic responses to therapy, the emergence of resistance to imatinib has been recognized as a major problem in the treatment of patients with CML. Various cellular mechanisms may be involved in the nature of cellular resistance. Increased amount of target, alteration in structure of target proteins, decreased drug uptake and increased detoxification are well-known mechanisms of resistance. On the other hand, in some cases, even if anticancer drugs reach their sites of action, bypassing drug efflux system of the cells, some cells still may survive via the dysregulation of apoptotic signalling. In this study, mechanisms of resistance to imatinib-induced apoptosis in human Meg-01 CML cells were examined. Continuous exposure of cells to step-wise increasing concentrations of imatinib resulted in the selection of 200- and 1000 nM imatinib-resistant sub-lines referred to as Meg-01/IMA-0,2 and Meg-01/IMA-1, respectively. MTT cell proliferation, cell cycle analyses and trypan blue dye exclusion analyses showed that Meg-01/IMA-1 cells were resistant to imatinib-induced apoptosis as compared to parental sensitive cells. There was an increased expression of BCR/ABL, Bcl-2 and an increase in mitochondrial membrane potential (MMP) detected in resistant cells comparing to parental sensitive cells. There was no mutation detected in imatinib binding site of ABL kinase region. Various diverse mechanisms have been reported for their involvement in the multidrug resistance. In this study, it has been shown that the degree of BCR/ABL expression appears to be directly proportional to the levels of imatinib resistance. In addition, there have been BCR/ABL-independent mechanisms reported for deriving resistance against imatinib. Our results revealed that besides BCR/ABL overexpression, imatinib resistance also depends on the inhibition of apoptosis as a result of up-regulation of anti-apoptotic stimuli and down-regulation of pro-apoptotic stimuli through MMP but does not depend on any mutation on imatinib binding site of ABL kinase.
Collapse
Affiliation(s)
- Yusuf Baran
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | |
Collapse
|
36
|
Zou H, Lai Y, Zhao X, Yan G, Ma D, Cardenes N, Shiva S, Liu Y, Bai X, Jiang Y, Jiang Y. Regulation of mammalian target of rapamycin complex 1 by Bcl-2 and Bcl-XL proteins. J Biol Chem 2013; 288:28824-30. [PMID: 23960074 DOI: 10.1074/jbc.m113.505370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth and metabolism. Its activity is controlled by various types of signals, including growth factors, nutrients, and stresses. In this study, we show that changes in expression levels of two antiapoptotic proteins, Bcl-2 and Bcl-XL, also affect mTORC1 signaling activity. In cells overexpressing Bcl-XL, mTORC1 activity is increased and becomes less sensitive to growth factor or nutrient conditions. In contrast, reduction in expression levels of the two antiapoptotic proteins inhibits mTORC1 signaling activity. Our results suggest that the effect of Bcl-2 and Bcl-XL on mTORC1 is mediated by FKBP38, an inhibitor of mTORC1. The two proteins compete with mTORC1 for FKBP38 binding and hence alter mTORC1 activity. This study reveals a novel cross-talk between Bcl-2/XL and mTORC1 signaling, which is likely to contribute to cancer development.
Collapse
Affiliation(s)
- Huafei Zou
- From the Department of Pharmacology and Chemical Biology and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Halbach S, Rigbolt KT, Wöhrle FU, Diedrich B, Gretzmeier C, Brummer T, Dengjel J. Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Commun Signal 2013; 11:30. [PMID: 23607741 PMCID: PMC3640961 DOI: 10.1186/1478-811x-11-30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/25/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The Gab2 docking protein acts as an important signal amplifier downstream of various growth factor receptors and Bcr-Abl, the driver of chronic myeloid leukaemia (CML). Despite the success of Bcr-Abl tyrosine kinase inhibitors (TKI) in the therapy of CML, TKI-resistance remains an unsolved problem in the clinic. We have recently shown that Gab2 signalling counteracts the efficacy of four distinct Bcr-Abl inhibitors. In the course of that project, we noticed that two clinically relevant drugs, imatinib and dasatinib, provoke distinct alterations in the electrophoretic mobility of Gab2, its signalling output and protein interactions. As the signalling potential of the docking protein is highly modulated by its phosphorylation status, we set out to obtain more insights into the impact of TKIs on Gab2 phosphorylation. FINDINGS Using stable isotope labelling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry (MS), we show now that imatinib and dasatinib provoke distinct effects on the phosphorylation status and interactome of Gab2. This study identifies several new phosphorylation sites on Gab2 and confirms many sites previously known from other experimental systems. At equimolar concentrations, dasatinib is more effective in preventing Gab2 tyrosine and serine/threonine phosphorylation than imatinib. It also affects the phosphorylation status of more residues than imatinib. In addition, we also identify novel components of the Gab2 signalling complex, such as casein kinases, stathmins and PIP1 as well as known interaction partners whose association with Gab2 is disrupted by imatinib and/or dasatinib. CONCLUSIONS By using MS-based proteomics, we have identified new and confirmed known phosphorylation sites and interaction partners of Gab2, which may play an important role in the regulation of this docking protein. Given the growing importance of Gab2 in several tumour entities we expect that our results will help to understand the complex regulation of Gab2 and how this docking protein can contribute to malignancy.
Collapse
Affiliation(s)
- Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str, 17, Freiburg 79104, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, Leu H, Low-Marchelli J, Ma W, Shih AY, Wei J, Zhai D, Geron I, Pu M, Bao L, Chuang R, Balaian L, Gotlib J, Minden M, Martinelli G, Rusert J, Dao KH, Shazand K, Wentworth P, Smith KM, Jamieson CAM, Morris SR, Messer K, Goldstein LSB, Hudson TJ, Marra M, Frazer KA, Pellecchia M, Reed JC, Jamieson CHM. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell 2013; 12:316-28. [PMID: 23333150 DOI: 10.1016/j.stem.2012.12.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/09/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Leukemia stem cells (LSCs) play a pivotal role in the resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) and its progression to blast crisis (BC), in part, through the alternative splicing of self-renewal and survival genes. To elucidate splice-isoform regulators of human BC LSC maintenance, we performed whole-transcriptome RNA sequencing, splice-isoform-specific quantitative RT-PCR (qRT-PCR), nanoproteomics, stromal coculture, and BC LSC xenotransplantation analyses. Cumulatively, these studies show that the alternative splicing of multiple prosurvival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSCS that are quiescent in the marrow niche and that contribute to therapeutic resistance. Notably, sabutoclax, a pan-BCL2 inhibitor, renders marrow-niche-resident BC LSCs sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice-isoform expression in BC LSC maintenance and suggest that the combinatorial inhibition of prosurvival BCL2 family proteins and BCR-ABL may eliminate dormant LSCs and obviate resistance.
Collapse
Affiliation(s)
- Daniel J Goff
- Stem Cell Program, Department of Medicine, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Deadman BJ, Hopkin MD, Baxendale IR, Ley SV. The synthesis of Bcr-Abl inhibiting anticancer pharmaceutical agents imatinib, nilotinib and dasatinib. Org Biomol Chem 2013; 11:1766-800. [DOI: 10.1039/c2ob27003j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Wickramasekera NT, Gebremedhin D, Carver KA, Vakeel P, Ramchandran R, Schuett A, Harder DR. Role of dual-specificity protein phosphatase-5 in modulating the myogenic response in rat cerebral arteries. J Appl Physiol (1985) 2012; 114:252-61. [PMID: 23172031 DOI: 10.1152/japplphysiol.01026.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study examined the role of the dual-specificity protein phosphatase-5 (DUSP-5) in the pressure-induced myogenic responses of organ-cultured cerebral arterial segments. In these studies, we initially compared freshly isolated and organ-cultured cerebral arterial segments with respect to responses to step increases in intravascular pressure, vasodilator and vasoconstrictor stimuli, activities of the large-conductance arterial Ca(2+)-activated K(+) (K(Ca)) single-channel current, and stable protein expression of DUSP-5 enzyme. The results demonstrate maintained pressure-dependent myogenic vasoconstriction, DUSP-5 protein expression, endothelium-dependent and -independent dilations, agonist-induced constriction, and unitary K(Ca) channel conductance in organ-cultured cerebral arterial segments similar to that in freshly isolated cerebral arteries. Furthermore, using a permeabilization transfection technique in organ-cultured cerebral arterial segments, gene-specific small interfering RNA (siRNA) induced knockdown of DUSP-5 mRNA and protein, which were associated with enhanced pressure-dependent cerebral arterial myogenic constriction and increased phosphorylation of PKC-βII. In addition, siRNA knockdown of DUSP-5 reduced levels of phosphorylated ROCK and ERK1 with no change in the level of phosphorylated ERK2. Pharmacological inhibition of ERK1/2 phosphorylation significantly attenuated pressure-induced myogenic constriction in cerebral arteries. The findings within the present studies illustrate that DUSP-5, native in cerebral arterial muscle cells, appears to regulate signaling of pressure-dependent myogenic cerebral arterial constriction, which is crucial for the maintenance of constant cerebral blood flow to the brain.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Physiology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Camgoz A, Gencer EB, Ural AU, Baran Y. Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leuk Lymphoma 2012; 54:1279-87. [PMID: 23098068 DOI: 10.3109/10428194.2012.737919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multidrug resistance remains a significant obstacle to successful chemotherapy. The ability to determine the possible resistance mechanisms and surmount the resistance is likely to improve chemotherapy. Nilotinib is a very effective drug in the treatment of imatinib-sensitive or -resistant patients. Although very successful hematologic and cytogenetic responses have been obtained in nilotinib-treated patients, in recent years cases showing resistance to nilotinib have been observed. We aimed to examine the mechanisms underlying nilotinib resistance and to provide new targets for the treatment of chronic myeloid leukemia (CML). There was an up-regulation of antiapoptotic BCR/ABL, GCS and SK-1 genes and MRP1 transporter gene and down-regulation of apoptotic Bax and CerS1 genes in nilotinib-resistant cells. There was no mutation in the nilotinib-binding region of BCR/ABL in resistant cells. Inhibiton of GCS and SK-1 restored nilotinib sensitivity. Targeting the proteins that are involved in nilotinib resistance in addition to the inhibition of BCR/ABL could be a better method of treatment in CML.
Collapse
Affiliation(s)
- Aylin Camgoz
- Department of Molecular Biology and Genetics, Faculty of Science, İ zmir Institute of Technology, Izmir, Turkey
| | | | | | | |
Collapse
|
42
|
Smith PG, Tanaka H, Chantry A. A novel co-operative mechanism linking TGFβ and Lyn kinase activation to imatinib resistance in chronic myeloid leukaemia cells. Oncotarget 2012; 3:518-24. [PMID: 22643838 PMCID: PMC3388181 DOI: 10.18632/oncotarget.500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The advent of a mechanism specific inhibitor imatinib, targeting Bcr-Abl kinase, has paved the way for new treatment strategies in chronic myeloid leukaemia (CML). However, resistance to imatinib is common in patients and has recently been linked to both transforming growth factor-β (TGFβ) and elevated Lyn kinase activity, although molecular mechanisms remain largely unknown. Here, using leukaemic MYL cell lines derived from CML patients, we show that TGFβ plays a key role in imatinib-resistance via direct effects on Lyn ubiquitination and turnover that results in bursts of Lyn kinase activity, and identify c-cbl is a candidate E3 ubiquitin ligase. Furthermore, blockade of TGFβ signalling activity with the TGFβ receptor kinase inhibitor SB431542 significantly reduces Lyn turnover and activation, and subsequently enhances imatinib-mediated CML cell death in a proteasomal-dependent manner. Collectively, our data reveals novel co-operative mechanisms in CML involving TGFβ and Lyn kinase linked to proteasome function and ubiquitination, and thus supports therapeutic approaches that target TGFβ pathway activity as a strategy for overcoming imatinib-resistance in CML.
Collapse
Affiliation(s)
- Paul G Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
43
|
Shimada K, Tomita A, Minami Y, Abe A, Hind CK, Kiyoi H, Cragg MS, Naoe T. CML cells expressing the TEL/MDS1/EVI1 fusion are resistant to imatinib-induced apoptosis through inhibition of BAD, but are resensitized with ABT-737. Exp Hematol 2012; 40:724-737.e2. [PMID: 22634393 DOI: 10.1016/j.exphem.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/02/2012] [Accepted: 05/19/2012] [Indexed: 11/16/2022]
Abstract
Chronic myeloid leukemia is the first disease in which the potential of molecular targeted therapy with tyrosine kinase inhibitors (TKIs) was realized. Despite this success, a proportion of patients, particularly with advanced disease, are, or become, resistant to this treatment. Overcoming resistance and uncovering the underlying mechanisms is vital for further improvement of clinical outcomes. Here we report the identification, development, and characterization of a novel chronic myeloid leukemia cell line carrying the additional chromosomal aberration t(3;12)(q26;p13) resulting in expression of the TEL/MDS1/EVI1 fusion protein, which is resistant to TKIs. Resistance to TKIs was overcome by the co-administration of the BH3-mimetic, ABT-737. In addition, application of EVI1-specific small interfering RNA decreased expression of the TEL/MDS1/EVI1 fusion, reduced resistance to imatinib, and increased sensitivity to ABT-737. Subsequent studies revealed a role for the BH3-only protein BAD, probably via a phosphoinositide 3-kinase/AKT-dependent pathway, as pharmacological inhibition of AKT could also resensitize cells to death from TKIs. These findings indicate a novel pathway of TKI resistance regulated by EVI1 proteins and provide a promising means for overcoming resistance in chronic myeloid leukemia and other hematological malignancies displaying EVI1 overexpression.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Benzamides
- Biphenyl Compounds/pharmacology
- Cell Line, Tumor
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 3/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Imatinib Mesylate
- Immunoblotting
- K562 Cells
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MDS1 and EVI1 Complex Locus Protein
- Nitrophenols/pharmacology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Proto-Oncogenes/genetics
- Pyrimidines/pharmacology
- RNA Interference
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sulfonamides/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Translocation, Genetic
- bcl-Associated Death Protein/antagonists & inhibitors
- bcl-Associated Death Protein/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Kazuyuki Shimada
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The deregulated tyrosine kinase activity of BCR-ABL is necessary and sufficient to induce chronic myelogenous leukemia (CML). This observation has paved the way for the development of small-molecule inhibitors specifically targeting the kinase activity of the BCR-ABL protein. Indeed, the amazing success of imatinib has revolutionized the whole area of targeted cancer therapeutics. However, enthusiasm for the striking efficacy of imatinib has been tempered by the development of clinical resistance. In essentially all cases, resistance results from kinase domain mutations and/or overexpression of the BCR-ABL gene. To overcome resistance, several novel BCR-ABL inhibitors have been developed and are in clinical trials, though it is inevitable that resistance to second-generation inhibitors will occur as well. Nonetheless, kinases represent an attractive target for therapeutic intervention in several diseases and, at present, some 50 different kinase inhibitors are in clinical trials. We anticipate that resistance to these compounds will follow mechanisms similar to those observed with imatinib. Resistance mutations cause their effect either by direct steric hindrance to drug binding or by allosterically modulating kinase dynamics. This review highlights the principal mechanisms underlying point mutations from these two different classes to confer drug resistance.
Collapse
Affiliation(s)
- Mohammad Azam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
45
|
Wöhrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P, Schramek D, Penninger JM, Laßmann S, Werner M, Waller CF, Pahl HL, Zeiser R, Daly RJ, Brummer T. Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 2012; 27:118-29. [DOI: 10.1038/leu.2012.222] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Soverini S, Martinelli G, Rosti G, Iacobucci I, Baccarani M. Advances in treatment of chronic myeloid leukemia with tyrosine kinase inhibitors: the evolving role of Bcr–Abl mutations and mutational analysis. Pharmacogenomics 2012; 13:1271-84. [DOI: 10.2217/pgs.12.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Over the last decade, the treatment of chronic myeloid leukemia has progressed tremendously. The first-generation tyrosine kinase inhibitor imatinib is now flanked by two second-generation molecules, dasatinib and nilotinib – and others are in advanced clinical development. One of the reasons for such intensive research on novel compounds is the problem of resistance, that is thought to be caused, in a proportion of cases, by point mutations in Bcr–Abl. In this article, the authors review how the biological and clinical relevance of Bcr–Abl mutations has evolved in parallel with the availability of more and more therapeutic options. The authors also discuss the practical relevance of Bcr–Abl mutation analysis and how this tool should best be integrated in the optimal clinical management of chronic myeloid leukemia patients.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Gianantonio Rosti
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Ilaria Iacobucci
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| | - Michele Baccarani
- Department of Hematology/Oncology “L. e A. Seragnoli”, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Liu L, Wang S, Chen R, Wu Y, Zhang B, Huang S, Zhang J, Xiao F, Wang M, Liang Y. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem Biophys Res Commun 2012; 425:368-73. [DOI: 10.1016/j.bbrc.2012.07.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/19/2012] [Indexed: 01/29/2023]
|
48
|
Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines--lessons for design of combination targeted therapy. Cancer Lett 2012; 320:104-10. [PMID: 22306341 DOI: 10.1016/j.canlet.2012.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 11/21/2022]
Abstract
Molecularly targeted therapies have emerged as the leading theme in cancer therapeutics. Multi-cytotoxic drug regimens have been highly successful, yet many studies in targeted therapeutics have centered on a single agent. We investigated whether the Src/Abl kinase inhibitor dasatinib displays synergy with other agents in molecularly heterogeneous breast cancer cell lines. MCF-7, SKBR-3, and MDA-MB-231 display different signaling and gene signatures profiles due to expression of the estrogen receptor, ErbB2, or neither. Cell proliferation was measured following treatment with dasatinib±cytotoxic (paclitaxel, ixabepilone) or molecularly targeted agents (tamoxifen, rapamycin, sorafenib, pan PI3K inhibitor LY294002, and MEK/ERK inhibitor U0126). Dose-responses for single or combination drugs were calculated and analyzed by the Chou-Talalay method. The drugs with the greatest level of synergy with dasatinib were rapamycin, ixabepilone, and sorafenib, for the MDA-MB-231, MCF-7, and SK-BR-3 cell lines respectively. However, dasatinib synergized with both cytotoxic and molecularly targeted agents in all three molecularly heterogeneous breast cancer cell lines. These results suggest that effectiveness of rationally designed therapies may not entirely rest on precise identification of gene signatures or molecular profiling. Since a systems analysis that reveals emergent properties cannot be easily performed for each cancer case, multi-drug regimens in the near future will still involve empirical design.
Collapse
|
49
|
Xing H, Yang X, Liu T, Lin J, Chen X, Gong Y. The study of resistant mechanisms and reversal in an imatinib resistant Ph+ acute lymphoblastic leukemia cell line. Leuk Res 2012; 36:509-13. [PMID: 22285507 DOI: 10.1016/j.leukres.2011.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/16/2011] [Accepted: 12/22/2011] [Indexed: 02/05/2023]
Abstract
In this study, we established an imatinib resistant Ph+ acute lymphoblastic leukemia (ALL) cell line SUP-B15/RI in vitro and studied the mechanism of imatinib resistance. Our results showed that the BCR-ABL1 fusion gene and the mdr1 gene were 6.1 times and 1.7 times, respectively, as high as that of parental SUP-B15 cell line. We found no mutation in the Abl kinase domain of SUP-B15/RI. Furthermore, the detection of cell signaling pathway of PI3K/AKT/mTOR, RAS/RAF, NF-κB, JNK and STAT showed the up-regulation of phosphorylation of AKT, mTOR, P70S6K, and RAF, ERK, and MEK, down-regulation of PTEN and 4EBP-1, and no change in other cell signaling pathways in SUP-B15/RI. However, dasatinib and nilotinib showed partial resistance. Interestingly, bortezomib had no resistance. Imatinib combination with rapamycin had synergistic effect on overcoming the resistance. Altogether, over-expression of BCR-ABL1 and mdr1 gene were involved in the resistance mechanisms, and up-regulation of the cell signaling pathways of PI3K/AKT/mTOR, RAS/RAF in SUP-B15/RI cell line may be correlated with them. The SUP-B15/RI cell line was also resistant to the second generation tyrosine kinase, dasatinib, and nilotinib, not bortezomib. The combination of imatinib with rapamycin can partially overcome the resistance and blockade of the ubiquitin-proteasome can be also a promising pathway to overcome imatinib resistance.
Collapse
Affiliation(s)
- Hongyun Xing
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
50
|
Kharas MG, Daley GQ. From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes Cancer 2011; 1:1164-9. [PMID: 21779439 DOI: 10.1177/1947601911407327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the Src oncogene was the first step on a long journey toward improved cancer chemotherapy. In this review, we explore Src and BCR-ABL, signal transduction, and recent advances in oncogene addiction and celebrate Hidesaboro Hanafusa and the many researchers who ushered in the age of target-directed therapy against tyrosine kinase oncoproteins.
Collapse
Affiliation(s)
- Michael G Kharas
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|