1
|
Esrafili A, Thumsi A, Jaggarapu MMCS, Nile RG, Kupfer J, Dugoni M, Suresh AP, Khodaei T, Qian H, Mathis A, Kim B, Swaminathan SJ, Sun W, Seo YW, Lintecum K, Pathak S, Tong X, Holloway JL, Jin K, Acharya AP. Crystallinity of covalent organic frameworks controls immune responses. Nat Commun 2024; 15:9739. [PMID: 39528477 PMCID: PMC11555212 DOI: 10.1038/s41467-024-54227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Biomaterials can act as pro- or anti-inflammatory agents. However, effects of biomaterials crystallinity on immune responses are poorly understood. We demonstrate that the adjuvant-like behaviour of covalent organic framework (COF) biomaterial is dependent on its crystallinity. COF crystallinity is inversely correlated with the activation of mouse and human dendritic cells (DC), but with antigen presentation by mouse DCs only. Amorphous COFs upregulates NFkB, TNF, and RIG-I signalling pathways, as well as the chemotaxis-associated gene Unc5c, when compared to crystalline COFs. Meanwhile, Unc5c inhibition disrupts the correlation between crystallinity and DC activation. Furthermore, COFs with the lowest crystallinity admixed with chicken ovalbumin (OVA) antigen prevent OVA-expressing B16F10 tumour growth in 60% of mice, with this protection associated with the induction of antigen-specific, pro-inflammatory T cell. The lowest crystalline COFs admixed with TRP2 antigen can also prevent non-immunogenic YUMM1.1 tumour growth in 50% of mice. These findings demonstrate that the crystallinity of biomaterials is an important aspect to consider when designing immunotherapy for pro- or anti-inflammatory applications.
Collapse
Affiliation(s)
- Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Abhirami Thumsi
- Department of Pathology, School of Medicine, Case Western Reserve University, Ohio, OH, USA
| | | | - Richard G Nile
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Joshua Kupfer
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Margaret Dugoni
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Abhirami P Suresh
- Department of Pathology, School of Medicine, Case Western Reserve University, Ohio, OH, USA
| | - Taravat Khodaei
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | - Huikang Qian
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | - Anna Mathis
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | - Brandon Kim
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | | | - Wei Sun
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | - Yeo Weon Seo
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | - Kelly Lintecum
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sanmoy Pathak
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA
| | - Xinbo Tong
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Julianne L Holloway
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Kailong Jin
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Abhinav P Acharya
- Department of Pathology, School of Medicine, Case Western Reserve University, Ohio, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, OH, USA.
- Case Comprehensive Cancer Centre, Case Western Reserve University, Ohio, OH, USA.
| |
Collapse
|
2
|
Zhou C, Liang T, Jiang J, Zhang Z, Chen J, Chen T, Chen L, Sun X, Huang S, Zhu J, Wu S, Zhan X, Liu C. Immune cell infiltration-related clinical diagnostic model for Ankylosing Spondylitis. Front Genet 2022; 13:949882. [PMID: 36263434 PMCID: PMC9575679 DOI: 10.3389/fgene.2022.949882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background: The pathogenesis and diagnosis of Ankylosing Spondylitis (AS) has remained uncertain due to several reasons, including the lack of studies on the local and systemic immune response in AS. To construct a clinical diagnostic model, this study identified the micro RNA-messenger RNA (miRNA-mRNA) interaction network and immune cell infiltration-related hub genes associated with AS. Materials and Methods: Total RNA was extracted and purified from the interspinous ligament tissue samples of three patients with AS and three patients without AS; miRNA and mRNA microarrays were constructed using the extracted RNA. Bioinformatic tools were used to construct an miRNA-mRNA network, identify hub genes, and analyze immune infiltration associated with AS. Next, we collected the blood samples and clinical characteristics of 359 patients (197 with AS and 162 without AS). On the basis of the clinical characteristics and results of the routine blood tests, we selected immune-related cells whose numbers were significantly different in patients with AS and patients without AS. Univariate and multivariate logistic regression analysis was performed to construct a nomogram. Immunohistochemistry staining analysis was utilized to verify the differentially expression of LYN in AS and controls. Results: A total of 225 differentially expressed miRNAs (DE miRNAs) and 406 differentially expressed mRNAs (DE mRNAs) were identified from the microarray. We selected 15 DE miRNAs and 38 DE mRNAs to construct a miRNA-mRNA network. The expression of LYN, an immune-related gene, correlated with the counts of monocytes, neutrophils, and dendritic cells. Based on the independent predictive factors of sex, age, and counts of monocytes, neutrophils, and white blood cells, a nomogram was established. Receiver operating characteristic (ROC) analysis was performed to evaluate the nomogram, with a C-index of 0.835 and AUC of 0.855. Conclusion:LYN, an immune-related hub gene, correlated with immune cell infiltration in patients with AS. In addition, the counts of monocytes and neutrophils were the independent diagnostic factors for AS. If verified in future studies, a diagnostic model based on these findings may be used to predict AS effectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xinli Zhan
- *Correspondence: Xinli Zhan, ; Chong Liu,
| | - Chong Liu
- *Correspondence: Xinli Zhan, ; Chong Liu,
| |
Collapse
|
3
|
Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol 2022; 13:866097. [PMID: 35479074 PMCID: PMC9038211 DOI: 10.3389/fimmu.2022.866097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, β2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of β2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Rosely Oliveira Godinho,
| |
Collapse
|
4
|
Chinn AM, Salmerón C, Lee J, Sriram K, Raz E, Insel PA. PDE4B Is a Homeostatic Regulator of Cyclic AMP in Dendritic Cells. Front Pharmacol 2022; 13:833832. [PMID: 35387344 PMCID: PMC8977838 DOI: 10.3389/fphar.2022.833832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic decreases in the second messenger cyclic AMP (cAMP) occur in numerous settings, but how cells compensate for such decreases is unknown. We have used a unique system-murine dendritic cells (DCs) with a DC-selective depletion of the heterotrimeric GTP binding protein Gαs-to address this issue. These mice spontaneously develop Th2-allergic asthma and their DCs have persistently lower cAMP levels. We found that phosphodiesterase 4B (PDE4B) is the primary phosphodiesterase expressed in DCs and that its expression is preferentially decreased in Gαs-depleted DCs. PDE4B expression is dynamic, falling and rising in a protein kinase A-dependent manner with decreased and increased cAMP concentrations, respectively. Treatment of DCs that drive enhanced Th2 immunity with a PDE4B inhibitor ameliorated DC-induced helper T cell response. We conclude that PDE4B is a homeostatic regulator of cellular cAMP concentrations in DCs and may be a target for treating Th2-allergic asthma and other settings with low cellular cAMP concentrations.
Collapse
Affiliation(s)
- Amy M. Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Jihyung Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Eyal Raz
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Paul A. Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Differential signaling patterns of stimulated bone marrow-derived dendritic cells under α1-antitrypsin-enriched conditions. Cell Immunol 2021; 361:104281. [PMID: 33453508 DOI: 10.1016/j.cellimm.2020.104281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/17/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) mature upon an inflammatory trigger. However, an inflammatory trigger can lead to a semi-mature phenotype, allowing DCs to evoke tolerance and expedite the resolution of inflammation. This duality likely involves context-dependent modulation of inflammatory signaling. Human α1-antitrypsin (hAAT) promotes semimature DCs. We examined changes in a wide spectrum of signaling cascades in stimulated murine bone marrow-derived cells with hAAT. Upon stimulation by IL-1β+IFNγ, hAAT-treated cells depicted an attenuated calcium flux. Disrupting PKA or NF-κB pathways revoked only some hAAT-mediated outcomes. hAAT-treated cells exhibited a distict pattern of kinase phosphorylation. hAAT-mediated increase in Treg cells in-vitro required intact inflammatory signaling pathways. Taken together, hAAT appears to require a stimulated microenvironment to promote inflammatory resolution, setting it aside from classical anti-inflammatory agents. Further studies are required to identify the specific molecules targeted by hAAT that mediate these and other outcomes.
Collapse
|
6
|
Espinosa-Cárdenas R, Arce-Sillas A, Álvarez-Luquin D, Leyva-Hernández J, Montes-Moratilla E, González-Saavedra I, Boll MC, Garcia-Garcia E, Ángeles-Perea S, Fragoso G, Sciutto E, Adalid-Peralta L. Immunomodulatory effect and clinical outcome in Parkinson's disease patients on levodopa-pramipexole combo therapy: A two-year prospective study. J Neuroimmunol 2020; 347:577328. [PMID: 32721557 DOI: 10.1016/j.jneuroim.2020.577328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), the second most frequent neurodegenerative disease, has been linked to increased central and peripheral inflammation. Although the response of the immune system to dopaminergic treatment remains to be fully understood, dopaminergic agonists are known to exhibit immunoregulatory properties which may, at least in part, explain their therapeutic effect in PD. This highlights the need of analyzing immune parameters in longitudinal studies on PD patients receiving specific therapeutic regimes. In this work, PD patients were included in a two-year prospective study comparing the effect of levodopa alone and a levodopa/pramipexole combo therapy on several regulatory and pro-inflammatory immune cell populations. We demonstrated that PD patients show decreased circulating levels of several important regulatory subpopulations, as determined by flow cytometry. Notably, when administered alone, levodopa decreased the levels of functional Bregs and SLAMF1+ tolerogenic DCs and increased the levels of total and HLA-DR+ classical monocytes, while the pramipexole/levodopa combo may promote Treg- and tolerogenic DC-mediated regulatory responses. These results suggest that a regime based on levodopa alone may promote a pro-inflammatory-type response in PD patients, but when combined with pramipexole, it promotes a clinically beneficial regulatory-type environment.
Collapse
Affiliation(s)
- Raquel Espinosa-Cárdenas
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Asiel Arce-Sillas
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Diana Álvarez-Luquin
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Jaquelin Leyva-Hernández
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Esteban Montes-Moratilla
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Israel González-Saavedra
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Marie Catherine Boll
- Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico
| | - Elizabeth Garcia-Garcia
- Department of Pharmaceutical Nanotechnology, Psicofarma, S.A. de C.V, Ciudad de México, Mexico
| | - Sandra Ángeles-Perea
- Department of Pharmaceutical Nanotechnology, Psicofarma, S.A. de C.V, Ciudad de México, Mexico
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Adalid-Peralta
- Unidad Periférica para el estudio de la Neuroinflamación en patologías neurológicas del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico; Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269 Ciudad de México, Mexico.
| |
Collapse
|
7
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, Milone MR, Budillon A, Santopaolo M, Mazzoccoli G, Matarese G, Sabatino L, Colantuoni V. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis 2016; 7:e2108. [PMID: 26913599 PMCID: PMC4849155 DOI: 10.1038/cddis.2016.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
Immunogenic cell death (ICD) evoked by chemotherapeutic agents implies emission of selected damage-associated molecular patterns (DAMP) such as cell surface exposure of calreticulin, secretion of ATP and HMGB1. We sought to verify whether miR-27a is implicated in ICD, having demonstrated that it directly targets calreticulin. To this goal, we exposed colorectal cancer cell lines, genetically modified to express high or low miR-27a levels, to two bona fide ICD inducers (mitoxantrone and oxaliplatin). Low miR-27a-expressing cells displayed more ecto-calreticulin on the cell surface and increased ATP and HMGB1 secretion than high miR-27a-expressing ones in time-course experiments upon drug exposure. A calreticulin target protector counteracted the miR-27a effects while specific siRNAs mimicked them, confirming the results reported. In addition, miR-27a negatively influenced the PERK-mediated route and the late PI3K-dependent secretory step of the unfolded protein response to endoplasmic reticulum stress, suggesting that miR-27a modulates the entire ICD program. Interestingly, upon chemotherapeutic exposure, low miR-27a levels associated with an earlier and stronger induction of apoptosis and with morphological and molecular features of autophagy. Remarkably, in ex vivo setting, under the same chemotherapeutic induction, the conditioned media from high miR-27a-expressing cells impeded dendritic cell maturation while increased the secretion of specific cytokines (interleukin (IL)-4, IL-6, IL-8) and negatively influenced CD4+ T-cell interferon γ production and proliferation, all markers of a tumor immunoevasion strategy. In conclusion, we provide the first evidence that miR-27a impairs the cell response to drug-induced ICD through the regulatory axis with calreticulin.
Collapse
Affiliation(s)
- T Colangelo
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| | - G Polcaro
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| | - P Ziccardi
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| | - L Muccillo
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| | - M Galgani
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| | - B Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Mercogliano (AV) 83013, Italy
| | - M Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Mercogliano (AV) 83013, Italy
| | - A Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Mercogliano (AV) 83013, Italy
| | - M Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", Napoli 80131, Italy
| | - G Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, IRCCS - "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG) 71013, Italy
| | - G Matarese
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", Napoli 80131, Italy
| | - L Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| | - V Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento 82100, Italy
| |
Collapse
|
9
|
Lysophosphatidylcholine exacerbates Leishmania major-dendritic cell infection through interleukin-10 and a burst in arginase1 and indoleamine 2,3-dioxygenase activities. Int Immunopharmacol 2015; 25:1-9. [DOI: 10.1016/j.intimp.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/01/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
|
10
|
Arshad N, Visweswariah SS. Cyclic nucleotide signaling in intestinal epithelia: getting to the gut of the matter. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:409-24. [PMID: 23610087 DOI: 10.1002/wsbm.1223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The intestine is the primary site of nutrient absorption, fluid-ion secretion, and home to trillions of symbiotic microbiota. The high turnover of the intestinal epithelia also renders it susceptible to neoplastic growth. These diverse processes are carefully regulated by an intricate signaling network. Among the myriad molecules involved in intestinal epithelial cell homeostasis are the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP). These cyclic nucleotides are synthesized by nucleotidyl cyclases whose activities are regulated by extrinsic and intrinsic cues. Downstream effectors of cAMP and cGMP include protein kinases, cyclic nucleotide gated ion channels, and transcription factors, which modulate key processes such as ion-balance, immune response, and cell proliferation. The web of interaction involving the major signaling pathways of cAMP and cGMP in the intestinal epithelial cell, and possible cross-talk among the pathways, are highlighted in this review. Deregulation of these pathways occurs during infection by pathogens, intestinal inflammation, and cancer. Thus, an appreciation of the importance of cyclic nucleotide signaling in the intestine furthers our understanding of bowel disease, thereby aiding in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
11
|
Racioppi L. CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med 2013; 19:83-8. [PMID: 23332598 PMCID: PMC3565098 DOI: 10.1016/j.molmed.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 01/03/2023]
Abstract
The androgen receptor (AR) is pivotal in the biology of sex hormone-regulated malignancies, with prostate cancer (PC) the most affected tumor. AR signals control the growth, survival, and migration of cancer cells, and they regulate the activation of macrophages, a cell type pivotal to the tumor ecosystem. Intriguingly, CaMKK2 has recently been identified as both an important AR-regulated gene in the context of PC and as a critical regulator of macrophage activation. By contrast, CaMKK2 is barely detectable in normal prostate or immune cells that mediate the response against tumorigenesis. These novel findings suggest that CaMKK2 resides at a critical molecular node that shapes the cancer ecosystem, and identifies this kinase as a novel therapeutic target for sex hormone-regulated cancers.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Medicine, Duke University, Durham, NC 27707, USA.
| |
Collapse
|
12
|
Roach JM, Racioppi L, Jones CD, Masci AM. Phylogeny of Toll-like receptor signaling: adapting the innate response. PLoS One 2013; 8:e54156. [PMID: 23326591 PMCID: PMC3543326 DOI: 10.1371/journal.pone.0054156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023] Open
Abstract
The Toll-like receptors represent a largely evolutionarily conserved pathogen recognition machinery responsible for recognition of bacterial, fungal, protozoan, and viral pathogen associated microbial patterns and initiation of inflammatory response. Structurally the Toll-like receptors are comprised of an extracellular leucine rich repeat domain and a cytoplasmic Toll/Interleukin 1 receptor domain. Recognition takes place in the extracellular domain where as the cytoplasmic domain triggers a complex signal network required to sustain appropriate immune response. Signal transduction is regulated by the recruitment of different intracellular adaptors. The Toll-like receptors can be grouped depending on the usage of the adaptor, MyD88, into MyD88-dependent and MyD88 independent subsets. Herein, we present a unique phylogenetic analysis of domain regions of these receptors and their cognate signaling adaptor molecules. Although previously unclear from the phylogeny of full length receptors, these analyses indicate a separate evolutionary origin for the MyD88-dependent and MyD88-independent signaling pathway and provide evidence of a common ancestor for the vertebrate and invertebrate orthologs of the adaptor molecule MyD88. Together these observations suggest a very ancient origin of the MyD88-dependent pathway Additionally we show that early duplications gave rise to several adaptor molecule families. In some cases there is also strong pattern of parallel duplication between adaptor molecules and their corresponding TLR. Our results further support the hypothesis that phylogeny of specific domains involved in signaling pathway can shed light on key processes that link innate to adaptive immune response.
Collapse
Affiliation(s)
- Jeffrey M. Roach
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Luigi Racioppi
- Department of Medicine, Duke University, Durham, North Carolina; United States of America
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, Naples, Italy
| | - Corbin D. Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anna Maria Masci
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
14
|
Krebs DL, Chehal MK, Sio A, Huntington ND, Da ML, Ziltener P, Inglese M, Kountouri N, Priatel JJ, Jones J, Tarlinton DM, Anderson GP, Hibbs ML, Harder KW. Lyn-Dependent Signaling Regulates the Innate Immune Response by Controlling Dendritic Cell Activation of NK Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5094-105. [DOI: 10.4049/jimmunol.1103395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Shirshev SV. Role of Epac proteins in mechanisms of cAMP-dependent immunoregulation. BIOCHEMISTRY (MOSCOW) 2012; 76:981-98. [PMID: 22082266 DOI: 10.1134/s000629791109001x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents observations on the role of Epac proteins (exchange protein directly activated by cAMP) in immunoregulation mechanisms. Signaling pathways that involve Epac proteins and their domain organization and functions are considered. The role of Epac1 protein expressed in the immune system cells is especially emphasized. Molecular mechanisms of the cAMP-dependent signal via Epac1 are analyzed in monocytes/macrophages, T-cells, and B-lymphocytes. The role of Epac1 is shown in the regulation of adhesion, leukocyte chemotaxis, as well as in phagocytosis and bacterial killing. The molecular cascade initiated by Epac1 is examined under conditions of antigen activation of T-cells and immature B-lymphocytes.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| |
Collapse
|
16
|
Li K, Fazekasova H, Wang N, Peng Q, Sacks SH, Lombardi G, Zhou W. Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology 2011; 217:65-73. [PMID: 21855168 PMCID: PMC3234345 DOI: 10.1016/j.imbio.2011.07.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/29/2011] [Indexed: 10/24/2022]
Abstract
Anaphylatoxins C3a and C5a are important modulators for dendritic cell activation and function in mice. In order to verify the significance of these observations in man, we have investigated the functional modulation of human monocytes derived DCs by C3a and C5a. Here we report that engagement of C3aR or C5aR on human monocytes derived DCs (moDCs) enhances the cell activation and their capacity for allostimulation. In addition, we show that intracellular production of cAMP is reduced and PI3K/AKT, ERK and NF-κB signalling is increased following stimulation with C3a or C5a, identifying intracellular signalling pathways that could convert cell surface C3aR and C5aR engagement into changes in moDC functions. Our data provide evidence that human DCs are equipped to react to C3a/C5a and undergo phenotypic change as well as functional modulation. Complement offers a potential route to modulate human DC function and regulate T cell mediated immunity.
Collapse
Affiliation(s)
- Ke Li
- King's College London, MRC Centre for Transplantation, NIHR Comprehensive Biomedical Research Centre, Guy's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages. Infect Immun 2011; 79:3302-8. [PMID: 21576335 DOI: 10.1128/iai.05070-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anthrax edema toxin (ET) is one of two binary toxins produced by Bacillus anthracis that contributes to the virulence of this pathogen. ET is an adenylate cyclase that generates high levels of cyclic AMP (cAMP), causing alterations in multiple host cell signaling pathways. We previously demonstrated that ET increases cell surface expression of the anthrax toxin receptors (ANTXR) in monocyte-derived cells and promotes dendritic cell (DC) migration toward the lymph node-homing chemokine MIP-3β. In this work, we sought to determine if glycogen synthase kinase 3 (GSK-3) is important for ET-induced modulation of macrophage and DC function. We demonstrate that inhibition of GSK-3 dampens ET-induced maturation and migration processes of monocyte-derived dendritic cells (MDDCs). Additional studies reveal that the ET-induced expression of ANTXR in macrophages was decreased when GSK-3 activity was disrupted with chemical inhibitors or with small interfering RNA (siRNA) targeting GSK-3. Further examination of the ET induction of ANTXR revealed that a dominant negative form of CREB could block the ET induction of ANTXR, suggesting that CREB or a related family member was involved in the upregulation of ANTXR. Because CREB and GSK-3 activity appeared to be important for ET-induced ANTXR expression, the impact of GSK-3 on ET-induced CREB activity was examined in RAW 264.7 cells possessing a CRE-luciferase reporter. As with ANTXR expression, the ET induction of the CRE reporter was decreased by reducing GSK-3 activity. These studies not only provide insight into host pathways targeted by ET but also shed light on interactions between GSK-3 and CREB pathways in host immune cells.
Collapse
|
18
|
Bussmann C, Xia J, Allam JP, Maintz L, Bieber T, Novak N. Early markers for protective mechanisms during rush venom immunotherapy. Allergy 2010; 65:1558-65. [PMID: 20584008 DOI: 10.1111/j.1398-9995.2010.02430.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Allergen-specific venom immunotherapy (VIT) represents the only rational-based option to treat allergic sensitizations against bee and wasp venom. So far, there is not much knowledge about early induction of protective and tolerogenic pathways during VIT. OBJECTIVES To identify the earliest markers for protective mechanisms against allergic reactions in the peripheral blood during the build-up phase of VIT. METHODS PBMC and monocytes were isolated, and serum samples were taken before and during a five day build-up phase from 65 hymenoptera venom allergic patients. Expression level of tolerogenic markers was analyzed on mRNA and protein level. Serum levels of different soluble tolerogenic factors were measured. RESULTS We observed significantly enhanced tryptophan degradation, elevated ILT4 expression of monocytes as well as IL-10 production of CD3(+) T cells only a few hours after the first injection on day 1, followed by increased IL-10 serum levels, monocyte apoptosis and elevated intracellular cAMP levels of monocytes on day 3 combined with a higher ILT3 protein expression and IL-10 secretion of monocytes on day 5. CONCLUSION From these data, we conclude that tryptophan depletion, ILT3/4-mediated inhibition, higher IL-10 production as well as intracellular cAMP might contribute to early induction of protective mechanisms against allergic reactions during the build-up phase of VIT.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Bee Venoms/immunology
- Bee Venoms/therapeutic use
- Cell Separation
- Desensitization, Immunologic
- Fas Ligand Protein/blood
- Fas Ligand Protein/immunology
- Fas Ligand Protein/metabolism
- Female
- Flow Cytometry
- Gene Expression
- Humans
- Hypersensitivity/immunology
- Hypersensitivity/prevention & control
- Indoleamine-Pyrrole 2,3,-Dioxygenase/blood
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interleukin-10/biosynthesis
- Interleukin-10/immunology
- Male
- Membrane Glycoproteins
- Middle Aged
- Monocytes/immunology
- Monocytes/metabolism
- RNA, Messenger/analysis
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Toll-Like Receptor 4/blood
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/metabolism
- Up-Regulation
- Wasp Venoms/immunology
- Wasp Venoms/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- C Bussmann
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Bopp T, Radsak M, Schmitt E, Schild H. New strategies for the manipulation of adaptive immune responses. Cancer Immunol Immunother 2010; 59:1443-8. [PMID: 20361184 PMCID: PMC11030961 DOI: 10.1007/s00262-010-0851-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 12/19/2022]
Abstract
The maintenance of peripheral tolerance is largely based on thymus-derived CD4(+)CD25(+) naturally occurring regulatory T cells (Tregs). While on the one hand being indispensable for the perpetuation of tolerance to self-antigens, the immune suppressive properties of Tregs contribute to cancer pathogenesis and progression. Thus, modulation of Treg function represents a promising strategy to support tumor eradication in immunotherapy of cancer. Here, we discuss potential therapeutic applications of our observation that Tregs contain high concentrations of the second messenger cyclic adenosine monophosphate, which is transferred from Tregs via gap junctions to suppress the function of T cells and dendritic cells.
Collapse
Affiliation(s)
- Tobias Bopp
- Institute for Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Markus Radsak
- Institute for Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- III-Medical Clinic, University Medical Centre of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Edgar Schmitt
- Institute for Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Centre of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
20
|
Fassbender M, Gerlitzki B, Ullrich N, Lupp C, Klein M, Radsak MP, Schmitt E, Bopp T, Schild H. Cyclic adenosine monophosphate and IL-10 coordinately contribute to nTreg cell-mediated suppression of dendritic cell activation. Cell Immunol 2010; 265:91-6. [PMID: 20728078 DOI: 10.1016/j.cellimm.2010.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022]
Abstract
In humans and mice naturally occurring regulatory T cells (nTregs) are crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Here we show that co-culture of murine dendritic cells (DC) and nTregs results in an immediate increase of cAMP in DC, responsible for a rapid down-regulation of co-stimulatory molecules (CD80, CD86). In addition, the inhibitory surface molecule B7-H3 on DC is up-regulated. Subsequently, nTreg-derived IL-10 inhibits the cytokine production (IL-6, IL-12) of suppressed DC therewith preserving their silent phenotype. Hence, our data indicate that nTregs effectively control exuberant immune responses by directly limiting the stimulatory capacity of DC via a sophisticated chronologic action of inhibitory signals.
Collapse
Affiliation(s)
- Melanie Fassbender
- Institute for Immunology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Bacterial toxins damage the host at the site of bacterial infection or distant from the site. Bacterial toxins can be single proteins or oligomeric protein complexes that are organized with distinct AB structure-function properties. The A domain encodes a catalytic activity. ADP ribosylation of host proteins is the earliest post-translational modification determined to be performed by bacterial toxins; other modifications include glucosylation and proteolysis. Bacterial toxins also catalyze the non-covalent modification of host protein function or can modify host cell properties through direct protein-protein interactions. The B domain includes two functional domains: a receptor-binding domain, which defines the tropism of a toxin for a cell and a translocation domain that delivers the A domain across a lipid bilayer, either on the plasma membrane or the endosome. Bacterial toxins are often characterized based upon the secretion mechanism that delivers the toxin out of the bacterium, termed types I-VII. This review summarizes the major families of bacterial toxins and also describes the specific structure-function properties of the botulinum neurotoxins.
Collapse
Affiliation(s)
- James S Henkel
- Medical College of Wisconsin, Department of Microbiology and Molecular Genetics, Milwaukee, WI 53151, USA.
| | | | | |
Collapse
|
22
|
Maldonado-Arocho FJ, Bradley KA. Anthrax edema toxin induces maturation of dendritic cells and enhances chemotaxis towards macrophage inflammatory protein 3beta. Infect Immun 2009; 77:2036-42. [PMID: 19273556 PMCID: PMC2681763 DOI: 10.1128/iai.01329-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/03/2008] [Accepted: 03/02/2009] [Indexed: 01/25/2023] Open
Abstract
Bacillus anthracis secretes two bipartite toxins, edema toxin (ET) and lethal toxin (LT), which impair immune responses and contribute directly to the pathology associated with the disease anthrax. Edema factor, the catalytic subunit of ET, is an adenylate cyclase that impairs host defenses by raising cellular cyclic AMP (cAMP) levels. Synthetic cAMP analogues and compounds that raise intracellular cAMP levels lead to phenotypic and functional changes in dendritic cells (DCs). Here, we demonstrate that ET induces a maturation state in human monocyte-derived DCs (MDDCs) similar to that induced by lipopolysaccharide (LPS). ET treatment results in downregulation of DC-SIGN, a marker of immature DCs, and upregulation of DC maturation markers CD83 and CD86. Maturation of DCs by ET is accompanied by an increased ability to migrate toward the lymph node-homing chemokine macrophage inflammatory protein 3beta, like LPS-matured DCs. Interestingly, cotreating with LT differentially affects the ET-induced maturation of MDDCs while not inhibiting ET-induced migration. These findings reveal a mechanism by which ET impairs normal innate immune function and may explain the reported adjuvant effect of ET.
Collapse
Affiliation(s)
- Francisco J Maldonado-Arocho
- Department of Microbiology, Immunology, & Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | |
Collapse
|
23
|
Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev 2009; 228:23-40. [PMID: 19290919 DOI: 10.1111/j.1600-065x.2008.00758.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|
24
|
Relationship between the in vitro response of dendritic cells to Lactobacillus and prevention of tumorigenesis in the mouse. J Gastroenterol 2009; 43:661-9. [PMID: 18807127 DOI: 10.1007/s00535-008-2212-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/30/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Some strains of lactobacilli stimulate immune cells, yet little is known about their potency in cancer prevention. We have previously reported that Lactobacillus casei Shirota (LcS) suppresses murine tumorigenesis through immune modulation. In this study, differences were compared among six representative strains of lactobacilli in regard to their ability to stimulate bone marrow cell-derived dendritic cells (BMDCs) in vitro and tumor suppression in vivo. METHODS BM-DCs were cocultured with a Lactobacillus strain in vitro, and the interleukin (IL)-12 released into the culture supernatant was measured by enzyme-linked immunosorbent assay. Tumors were chemically induced by a single subcutaneous injection of 3-methylcholanthrene (MC) in BALB/c mice. The test diets containing Lactobacillus were given from the day of the MC injection, and the tumor incidences were monitored. Peyer's patches were dissected from Lactobacillus-fed mice, and the status of c-Src, a regulator of DCs, in Peyer's patch cells was examined by Western blotting. RESULTS In the coculture system, L. fermentum FERM P-13857 and LcS potently elicited IL-12 production. LcS but not the other strains of lactobacilli showed tumor suppression. The inactive form of c-Src, phosphorylated at Tyr527, was dominantly detected in Peyer's patches resected from L. fermentum FERM P-13857-fed mice compared with LcS-fed mice. CONCLUSIONS The responses of DCs may be associated with tumor suppression by an ingested Lactobacillus strain.
Collapse
|
25
|
Ruggiero G, Sica M, Luciano L, Savoia F, Cosentini E, Alfinito F, Terrazzano G. A case of myelodysplastic syndrome associated with CD14(+)CD56(+) monocytosis, expansion of NK lymphocytes and defect of HLA-E expression. Leuk Res 2009; 33:181-5. [PMID: 18440633 DOI: 10.1016/j.leukres.2008.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 02/26/2008] [Accepted: 03/19/2008] [Indexed: 11/27/2022]
|
26
|
Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5587-97. [PMID: 18832717 DOI: 10.4049/jimmunol.181.8.5587] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenylate cyclase toxin (CyaA or ACT) is a key virulence factor of pathogenic Bordetellae. It penetrates phagocytes expressing the alpha(M)beta(2) integrin (CD11b/CD18, Mac-1 or CR3) and paralyzes their bactericidal capacities by uncontrolled conversion of ATP into a key signaling molecule, cAMP. Using pull-down activity assays and transfections with mutant Rho family GTPases, we show that cAMP signaling of CyaA causes transient and selective inactivation of RhoA in mouse macrophages in the absence of detectable activation of Rac1, Rac2, or RhoG. This CyaA/cAMP-induced drop of RhoA activity yielded dephosphorylation of the actin filament severing protein cofilin and massive actin cytoskeleton rearrangements, which were paralleled by rapidly manifested macrophage ruffling and a rapid and unexpected loss of macropinocytic fluid phase uptake. As shown in this study for the first time, CyaA/cAMP signaling further caused a rapid and near-complete block of complement-mediated phagocytosis. Induction of unproductive membrane ruffling, hence, represents a novel sophisticated mechanism of down-modulation of bactericidal activities of macrophages and a new paradigm for action of bacterial toxins that hijack host cell signaling by manipulating cellular cAMP levels.
Collapse
Affiliation(s)
- Jana Kamanova
- Cellular and Molecular Microbiology Division, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang CY, Staniforth V, Chiao MT, Hou CC, Wu HM, Yeh KC, Chen CH, Hwang PI, Wen TN, Shyur LF, Yang NS. Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genomics 2008; 9:479. [PMID: 18847511 PMCID: PMC2571112 DOI: 10.1186/1471-2164-9-479] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 10/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Echinacea spp. extracts and the derived phytocompounds have been shown to induce specific immune cell activities and are popularly used as food supplements or nutraceuticals for immuno-modulatory functions. Dendritic cells (DCs), the most potent antigen presenting cells, play an important role in both innate and adaptive immunities. In this study, we investigated the specific and differential gene expression in human immature DCs (iDCs) in response to treatment with a butanol fraction containing defined bioactive phytocompounds extracted from stems and leaves of Echinacea purpurea, that we denoted [BF/S+L/Ep]. Results Affymetrix DNA microarray results showed significant up regulation of specific genes for cytokines (IL-8, IL-1β, and IL-18) and chemokines (CXCL 2, CCL 5, and CCL 2) within 4 h after [BF/S+L/Ep] treatment of iDCs. Bioinformatics analysis of genes expressed in [BF/S+L/Ep]-treated DCs revealed a key-signaling network involving a number of immune-modulatory molecules leading to the activation of a downstream molecule, adenylate cyclase 8. Proteomic analysis showed increased expression of antioxidant and cytoskeletal proteins after treatment with [BF/S+L/Ep] and cichoric acid. Conclusion This study provides information on candidate target molecules and molecular signaling mechanisms for future systematic research into the immune-modulatory activities of an important traditional medicinal herb and its derived phytocompounds.
Collapse
Affiliation(s)
- Chien-Yu Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Randolph GJ, Ochando J, Partida-Sánchez S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 2008; 26:293-316. [PMID: 18045026 DOI: 10.1146/annurev.immunol.26.021607.090254] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of dendritic cells (DCs) to initiate and orchestrate immune responses is a consequence of their localization within tissues and their specialized capacity for mobilization. The migration of a given DC subset is typified by a restricted capacity for recirculation, contrasting markedly with T cells. Routes of DC migration into lymph nodes differ notably for distinct DC subsets. Here, we compare the distinct migratory patterns of plasmacytoid DCs (pDCs), CD8alpha(+) DCs, Langerhans cells, and conventional myeloid DCs and discuss how the highly regulated patterns of DC migration in vivo may affect their roles in immunity. Finally, to gain a more molecular appreciation of the specialized migratory properties of DCs, we review the signaling cascades that govern the process of DC migration.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- Department of Gene and Cell Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
29
|
Illario M, Giardino-Torchia ML, Sankar U, Ribar TJ, Galgani M, Vitiello L, Masci AM, Bertani FR, Ciaglia E, Astone D, Maulucci G, Cavallo A, Vitale M, Cimini V, Pastore L, Means AR, Rossi G, Racioppi L. Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells. Blood 2007; 111:723-31. [PMID: 17909078 PMCID: PMC2200860 DOI: 10.1182/blood-2007-05-091173] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbial products, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4), regulate the lifespan of dendritic cells (DCs) by largely undefined mechanisms. Here, we identify a role for calcium-calmodulin-dependent kinase IV (CaMKIV) in this survival program. The pharmacologic inhibition of CaMKs as well as ectopic expression of kinase-inactive CaMKIV decrease the viability of monocyte-derived DCs exposed to bacterial LPS. The defect in TLR4 signaling includes a failure to accumulate the phosphorylated form of the cAMP response element-binding protein (pCREB), Bcl-2, and Bcl-xL. CaMKIV null mice have a decreased number of DCs in lymphoid tissues and fail to accumulate mature DCs in spleen on in vivo exposure to LPS. Although isolated Camk4-/- DCs are able to acquire the phenotype typical of mature cells and release normal amounts of cytokines in response to LPS, they fail to accumulate pCREB, Bcl-2, and Bcl-xL and therefore do not survive. The transgenic expression of Bcl-2 in CaMKIV null mice results in full recovery of DC survival in response to LPS. These results reveal a novel link between TLR4 and a calcium-dependent signaling cascade comprising CaMKIV-CREB-Bcl-2 that is essential for DC survival.
Collapse
Affiliation(s)
- Maddalena Illario
- Department of Molecular and Cellular Biology and Pathology, Federico II University of Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tsai IF, Lin CY, Huang CT, Lin YC, Yang CM, Lin YC, Liao CH. Modulation of human monocyte-derived dendritic cells maturation by a soluble guanylate cyclase activator, YC-1, in a cyclic nucleotide independent manner. Int Immunopharmacol 2007; 7:1299-310. [PMID: 17673145 DOI: 10.1016/j.intimp.2007.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/07/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
This study evaluated how YC-1, a guanylate cyclase activator, affects the maturation of human monocyte-derived dendritic cells. Maturation markers and intracellular signaling pathways were evaluated. YC-1 inhibited the lipopolysaccharide up-regulation of mature markers, including CD40, CD80 or CD86 in a concentration-dependent manner with IC(50) values of 4.6+/-0.4, 4.9+/-0.6 or 4.5+/-0.5 microM, respectively. YC-1, at a higher concentration, inhibited lipopolysaccharide-induced HLADR expression. These effects of YC-1 were not reversed by ODQ (10 microM), which is a soluble guanylate cyclase inhibitor, nor by KT5823 (1 microM), which is a PKG inhibitor. Additionally, YC-1 did not increase levels of cyclic nucleotides in dendritic cells, supporting the claim that YC-1 affects dendritic cells maturation in a cGMP-independent manner. YC-1, in a cGMP-independent manner, inhibited lipopolysaccharide-induced Akt activation, IkappaBalpha degradation and NF-kappaB translocation, all of which are associated with co-stimulatory molecules expression. YC-1 inhibited the capacity of dendritic cell to activate allogenic T cells with an IC(50) value of 1.2+/-0.3 microM. YC-1-treated dendritic cells have mature phenotypes that exhibit up-regulated CCR7, enhanced IL-10 release and low phagocytosis activity in the presence of lipopolysaccharide. In conclusion, YC-1 inhibited the lipopolysaccharide-induced co-stimulatory molecular expression of dendritic cells by inhibiting Akt activation, IkappaBalpha degradation and NF-kappaB translocation. These inhibitory effects on co-stimulatory molecules suppressed the capacity of dendritic cells to activate allogenic T cells. Additionally, YC-1 treated dendritic cells exhibit the up-regulation of CCR7, enhanced IL-10 release and the down-regulation of phagocytosis in the presence of lipopolysaccharide. Accordingly, YC-1 might be a useful tool for evaluation of dendritic cells on autoimmune or allergic disease.
Collapse
Affiliation(s)
- I-Fang Tsai
- Graduate Institute of Natural Products, Chang Gung Medical College and University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333 Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
31
|
Ferrari D, Gorini S, Callegari G, la Sala A. Shaping immune responses through the activation of dendritic cells' P2 receptors. Purinergic Signal 2006; 3:99-107. [PMID: 18404423 PMCID: PMC2096769 DOI: 10.1007/s11302-006-9024-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/30/2006] [Accepted: 06/19/2006] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) activate and shape the adaptive immune response by capturing antigens, migrating to peripheral lymphoid organs where naïve T cells reside, expressing high levels of MHC and costimulatory molecules and secreting cytokines and chemokines. DCs are endowed with a high degree of functional plasticity and their functions are tightly regulated. Besides initiating adaptive immune responses, DCs play a key role in maintaining peripheral tolerance toward self-antigens. On the basis of the information gathered from the tissue where they reside, DCs adjust their functional activity to ensure that protective immunity is favoured while unwanted or exaggerated immune responses are prevented. A wide variety of signals from neighbouring cells affecting DC functional activity have been described. Here we will discuss the complex role of extracellular nucleotides in the regulation of DC function and the role of P2 receptors as possible tools to manipulate immune responses.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | | | | | | |
Collapse
|
32
|
Spensieri F, Fedele G, Fazio C, Nasso M, Stefanelli P, Mastrantonio P, Ausiello CM. Bordetella pertussis inhibition of interleukin-12 (IL-12) p70 in human monocyte-derived dendritic cells blocks IL-12 p35 through adenylate cyclase toxin-dependent cyclic AMP induction. Infect Immun 2006; 74:2831-8. [PMID: 16622221 PMCID: PMC1459734 DOI: 10.1128/iai.74.5.2831-2838.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, possesses an array of virulence factors, including adenylate cyclase toxin (ACT), relevant in the establishment of infection. Here we better define the impact of cyclic AMP (cAMP) intoxication due to the action of ACT on dendritic cell (DC)-driven immune response, by infecting monocyte-derived DC (MDDC) with an ACT-deficient B. pertussis mutant (ACT- 18HS19) or its parental strain (WT18323). Both strains induced MDDC maturation and antigen-presenting cell functions; however, only ACT- 18HS19 infected MDDC-induced production of interleukin-12 (IL-12) p70. Gene expression analysis of the IL-12 cytokine family subunits revealed that both strains induced high levels of p40 (protein chain communal to IL-12 p70 and IL-23) as well as p19, a subunit of IL-23. Conversely only ACT- 18HS19 infection induced consistent transcription of IL-12 p35, a subunit of IL-12 p70. Addition of the cAMP analogous D-butyril-cAMP (D-cAMP) abolished IL-12 p70 production and IL-12 p35 expression in ACT- 18HS19-infected MDDC. ACT- 18HS19 infection induced the expression of the transcription factors interferon regulatory factor 1 (IRF-1) and IRF-8 and of beta interferon, involved in IL-12 p35 regulation, and the expression of these genes was inhibited by D-cAMP addition and in WT18323-infected MDDC. The concomitant expression of IL-12 p70 and IL-23 allowed ACT- 18HS19 to trigger a more pronounced T helper 1 polarization compared to WT18323. The present study suggests that ACT-dependent cAMP induction leads to the inhibition of pathways ultimately leading to IL-12 p35 production, thus representing a mechanism for B. pertussis to escape the host immune response.
Collapse
Affiliation(s)
- Fabiana Spensieri
- Istituto Superiore di Sanità, Department of Infectious, Parasitic, and Immune-Mediated Diseases, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Fujita S, Seino KI, Sato K, Sato Y, Eizumi K, Yamashita N, Taniguchi M, Sato K. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood 2006; 107:3656-64. [PMID: 16410444 DOI: 10.1182/blood-2005-10-4190] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial infection triggers host inflammation through the activation of immune cells, leading to the elimination of bacteria. However, the regulatory mechanisms of the host inflammatory response remain unknown. Here we report that a subset of potent tolerogenic dendritic cells (DCs), regulatory DCs (DCregs), control the systemic inflammatory response. Unlike normal DCs, which produced proinflammatory cytokines in response to bacterial lipopolysaccharide (LPS), DCregs produced fewer proinflammatory cytokines and instead preferentially produced interleukin-10 (IL-10), and these events involved the expression of IκBNS and Bcl-3 as well as cyclic AMP (cAMP)-mediated activation of protein kinase A (PKA). In addition, DCregs not only suppressed LPS-induced production of proinflammatory cytokines in macrophages, but also reduced their serum levels in mice. Furthermore, DCregs protected mice against the lethality induced by experimental endotoxemia and bacterial peritonitis. The inhibitory effect of DCregs against inflammatory responses involved the production of IL-10. On the other hand, naturally existing tolerogenic DC subsets producing IL-10, CD11clowCD45RBhigh DCs, also suppressed LPS-induced host inflammatory responses. Thus, a subset of tolerogenic DCs act as potential regulators of the host inflammatory response, and they might have preventive and therapeutic potential for the treatment of systemic as well as local inflammatory diseases.
Collapse
Affiliation(s)
- Shigeharu Fujita
- Laboratory for Dendritic Cell Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045 Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pace A, Tapia JA, Garcia-Marin LJ, Jensen RT. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:356-365. [PMID: 16713446 DOI: 10.1016/j.bbamcr.2006.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK-stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | |
Collapse
|
35
|
Luft T, Rodionova E, Maraskovsky E, Kirsch M, Hess M, Buchholtz C, Goerner M, Schnurr M, Skoda R, Ho AD. Adaptive functional differentiation of dendritic cells: integrating the network of extra- and intracellular signals. Blood 2006; 107:4763-9. [PMID: 16527899 DOI: 10.1182/blood-2005-04-1501] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic maturation, cytokine secretion, and migration are distinct functional characteristics of dendritic cells (DCs). These functions are independently regulated by a number of extracellular variables, such as type, strength, and persistence of an array of soluble and membrane-bound mediators. Since the exact composition of these variables in response to infection may differ between individuals, the intracellular signaling pathways activated by these extracellular networks may more closely correlate with DC function and predict the course of adaptive immunity. We found that activation of p38 kinase (p38K), extracellular signal-related kinase 1/2 (ERK1/2), and phosphatidylcholine-specific phospholipase C (PC-PLC) enhanced cytokine secretion, whereas p38K, cyclic adenosine monophosphate (cAMP), and PC-PLC enhanced migration. In contrast, phosphatidylinositol 3-kinase (PI3K)/Akt-1 and cAMP inhibited cytokine secretion while ERK1/2 inhibited migration. Migration and cytokine secretion further differed in their sensitivity to inhibition over time. However, although DCs could be manipulated to express migration, cytokine secretion, or both, the level of activation or persistence of intracellular pathway signaling was not predictive. Our results suggest a modular organization of function. We hypothesize that the expression of specific DC functions integrates a large variety of activating and inhibitory variables, and is represented by the formation of a functional unit of molecular networks-the signal response module (SRM). The combined activities of these modules define the functional outcome of DC activation.
Collapse
Affiliation(s)
- Thomas Luft
- The German Cancer Research Center, Dept of Molecular Oncology/Hematology, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Leu TH, Charoenfuprasert S, Yen CK, Fan CW, Maa MC. Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNFalpha secretion in macrophages. Mol Immunol 2006; 43:308-16. [PMID: 15869794 DOI: 10.1016/j.molimm.2005.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 11/26/2022]
Abstract
As tyrosine kinases are indispensable in lipopolysaccharide (LPS)-induced macrophage activation, the myeloid-specific Src members (i.e. Lyn, Fgr and Hck) are speculated to play important roles in this process. However, the normal LPS responsiveness in lyn(-/-)fgr(-/-)hck(-/-) macrophages implicates the presence of an elusive, compensating tyrosine kinase(s). In this study, we demonstrate the upregulation of c-Src in Raw264.7 and peritoneal macrophages (PEMs) by LPS, which is inhibited by PP2 (an inhibitor for Src family kinases), pyrrolidinedithiocarbamate (PDTC; NF-kappaB inhibitor) and LY294002 (PI3K inhibitor). And this LPS-mediated c-Src induction is also observed in macrophages recovered from LPS-challenged rats. Intriguingly, PP2 attenuates the ability of PEMs to elicit COX-2 expression and nitric oxide production in response to LPS. Similar results are also observed when macrophages recovered from rats receiving either LPS alone or LPS and PP2 both are compared. Furthermore, administration of PP2 in Raw264.7 and animal models of sepsis greatly suppresses TNFalpha secretion and serum TNFalpha level, respectively. Therefore, we conclude that c-Src, with its LPS induction, has an unperceived role in transmitting LPS signaling in macrophages.
Collapse
Affiliation(s)
- Tzeng-Horng Leu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Chu CL, Lowell CA. The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2880-9. [PMID: 16116174 DOI: 10.4049/jimmunol.175.5.2880] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Src family kinase Lyn plays both stimulatory and inhibitory roles in hemopoietic cells. In this report we provide evidence that Lyn is involved in dendritic cell (DC) generation and maturation. Loss of Lyn promoted DC expansion in vitro from bone marrow precursors due to enhanced generation and accelerated differentiation of Lyn-deficient DC progenitors. Differentiated Lyn-deficient DCs also had a higher survival rate. Similarly, the CD11c-positive cell number was increased in aged Lyn-deficient mice in vivo. In contrast to their enhanced generation, lyn-/- DCs failed to mature appropriately in response to innate stimuli, resulting in DCs with lower levels of MHC class II and costimulatory molecules. In addition, IL-12 production and Ag-specific T cell activation were reduced in lyn-/- DCs after maturation, resulting in impaired Th1 responses. This is the first study to characterize Lyn-deficient DCs. Our results suggest that Lyn kinase plays uniquely negative and positive regulatory roles in DC generation and maturation, respectively.
Collapse
Affiliation(s)
- Ching-Liang Chu
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | | |
Collapse
|
38
|
Wang W, Masu K, Tamura G, Suzuki K, Ohwada K, Okuyama K, Shirato K, Takayanagi M, Ohno I. Inhibition of eosinophil survival by a selective inhibitor of phosphodiesterase 4 via the induction of apoptosis. Biol Pharm Bull 2005; 28:515-9. [PMID: 15744080 DOI: 10.1248/bpb.28.515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective inhibitors of phosphodiesterases (PDEs) have been suggested to have anti-inflammatory effects on bronchial asthma through the inhibition of chemotaxis, adhesion, degranulation, the respiratory burst, and survival prolongation of eosinophils. However, the mechanisms by which these agents inhibit eosinophil survival remain unclear. We therefore investigated the possible mechanisms of inhibitory effects of selective inhibitors of PDE 3 (cilostazol) and PDE 4 (rolipram) on granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated eosinophil survival. Purified blood eosinophils were cultured with medium alone or GM-CSF (0.01 ng/ml) in the presence or absence of the agents for up to 6 d. DNA was extracted from freshly isolated eosinophils and eosinophils cultured for 2 d with medium alone, GM-CSF, or GM-CSF in the presence of the agents, and analyzed using agarose gel electrophoresis. The presence of rolipram (10(-4), 10(-5), 10(-6) M), but not cilostazol, significantly inhibited eosinophil survival at days 2, 4, and 6. A laddering pattern was observed in the DNA of eosinophils cultured with medium alone and with GM-CSF in the presence of rolipram. The results reveal that selective PDE 4 inhibitors inhibit GM-CSF-mediated eosinophil survival through the induction of apoptosis.
Collapse
Affiliation(s)
- Way Wang
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hwang JI, Choi S, Fraser IDC, Chang MS, Simon MI. Silencing the expression of multiple Gbeta-subunits eliminates signaling mediated by all four families of G proteins. Proc Natl Acad Sci U S A 2005; 102:9493-8. [PMID: 15983374 PMCID: PMC1172260 DOI: 10.1073/pnas.0503503102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Gbetagamma-subunit complex derived from heterotrimeric G proteins can act to regulate the function of a variety of protein targets. We established lentiviral-based RNA interference in J774A.1 mouse macrophages to characterize the role of Gbeta in G protein-coupled receptor signaling. The expression of Gbeta1 and Gbeta2, the major subtypes present in J774A.1 cells, was eliminated by sequential treatment with small hairpin RNA expressing lentivirus. These betagamma complex-deficient cells lost the ability to respond to G protein-mediated signals. Chemotaxis and the phosphorylation of Akt in response to C5a were both blocked. Similarly, C5a-mediated actin polymerization, C5a- and UTP-stimulated intracellular calcium mobilization, and the stimulation of cAMP formation by isoproterenol were all eliminated in the absence of the Gbeta-subunits. In addition, stabilization and membrane localization of several Galpha- and Ggamma-subunit proteins was strongly effected. Furthermore, in DNA microarray analysis, regulation of gene expression stimulated by prostaglandin E2 and UTP was not observed in cells lacking Gbeta-subunits. In contrast, phagocytotic activity, serum-dependent cell growth and the patterns of gene expression induced by stimulating the Toll receptors with LPS were similar in wild-type cells and small hairpin RNA-containing cells. Thus, ablation of the Gbeta-subunits destabilized Galpha- and Ggamma-subunits and effectively eliminated G protein-mediated signaling responses. Unrelated ligand regulated pathways remained intact. These cells provide a system that can be used to study signaling in the absence of most G protein-mediated functions.
Collapse
Affiliation(s)
- Jong-Ik Hwang
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
40
|
Brittingham KC, Ruthel G, Panchal RG, Fuller CL, Ribot WJ, Hoover TA, Young HA, Anderson AO, Bavari S. Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis. THE JOURNAL OF IMMUNOLOGY 2005; 174:5545-52. [PMID: 15843553 DOI: 10.4049/jimmunol.174.9.5545] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhalational anthrax because they initiate germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign particles and migrate to lymph nodes. However, the participation of DCs in phagocytosis and dissemination of spores has not been investigated previously. We found that human DCs readily engulfed fully pathogenic Ames and attenuated B. anthracis spores predominately by coiling phagocytosis. Spores provoked a loss of tissue-retaining chemokine receptors (CCR2, CCR5) with a concurrent increase in lymph node homing receptors (CCR7, CD11c) on the membrane of DCs. After spore infection, immature DCs displayed a mature phenotype (CD83(bright), HLA-DR(bright), CD80(bright), CD86(bright), CD40(bright)) and enhanced costimulatory activity. Surprisingly, spores activated the MAPK cascade (ERK, p38) within 30 min and stimulated expression of several inflammatory response genes by 2 h. MAPK signaling was extinguished by 6 h infection, and there was a dramatic reduction of secreted TNF-alpha, IL-6, and IL-8 in the absence of DC death. This corresponded temporally with enzymatic cleavage of proximal MAPK signaling proteins (MEK-1, MEK-3, and MAP kinase kinase-4) and may indicate activity of anthrax lethal toxin. Taken together, these results suggest that B. anthracis may exploit DCs to facilitate infection.
Collapse
|