1
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Sachs N, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:930-945. [PMID: 38385291 PMCID: PMC10978277 DOI: 10.1161/atvbaha.123.320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (L.M.)
- Department of Medicine, Karolinksa Institute, Stockholm, Sweden (L.M.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
- Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
3
|
Oliveira-Paula GH, Liu S, Maira A, Ressa G, Ferreira GC, Quintar A, Jayakumar S, Almonte V, Parikh D, Valenta T, Basler K, Hla T, Riascos-Bernal DF, Sibinga NES. The β-catenin C terminus links Wnt and sphingosine-1-phosphate signaling pathways to promote vascular remodeling and atherosclerosis. SCIENCE ADVANCES 2024; 10:eadg9278. [PMID: 38478616 PMCID: PMC10936954 DOI: 10.1126/sciadv.adg9278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/β-catenin-S1P cross-talk. In the vascular system, both Wnt/β-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of β-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the β-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the β-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/β-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophia Liu
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alishba Maira
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gaia Ressa
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graziele C. Ferreira
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Amado Quintar
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vanessa Almonte
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Dario F. Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas E. S. Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Garella R, Bernacchioni C, Chellini F, Tani A, Palmieri F, Parigi M, Guasti D, Cassioli E, Castellini G, Ricca V, Bani D, Sassoli C, Donati C, Squecco R. Adiponectin Modulates Smooth Muscle Cell Morpho-Functional Properties in Murine Gastric Fundus via Sphingosine Kinase 2 Activation. Life (Basel) 2023; 13:1812. [PMID: 37763216 PMCID: PMC10532860 DOI: 10.3390/life13091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Emanuele Cassioli
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| |
Collapse
|
5
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292633. [PMID: 37502836 PMCID: PMC10370238 DOI: 10.1101/2023.07.13.23292633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
- Karolinksa Institute, Department of Medicine
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
6
|
Piccoli M, Cirillo F, Ghiroldi A, Rota P, Coviello S, Tarantino A, La Rocca P, Lavota I, Creo P, Signorelli P, Pappone C, Anastasia L. Sphingolipids and Atherosclerosis: The Dual Role of Ceramide and Sphingosine-1-Phosphate. Antioxidants (Basel) 2023; 12:antiox12010143. [PMID: 36671005 PMCID: PMC9855164 DOI: 10.3390/antiox12010143] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sphingolipids are bioactive molecules that play either pro- and anti-atherogenic roles in the formation and maturation of atherosclerotic plaques. Among SLs, ceramide and sphingosine-1-phosphate showed antithetic properties in regulating various molecular mechanisms and have emerged as novel potential targets for regulating the development of atherosclerosis. In particular, maintaining the balance of the so-called ceramide/S1P rheostat is important to prevent the occurrence of endothelial dysfunction, which is the trigger for the entire atherosclerotic process and is strongly associated with increased oxidative stress. In addition, these two sphingolipids, together with many other sphingolipid mediators, are directly involved in the progression of atherogenesis and the formation of atherosclerotic plaques by promoting the oxidation of low-density lipoproteins (LDL) and influencing the vascular smooth muscle cell phenotype. The modulation of ceramide and S1P levels may therefore allow the development of new antioxidant therapies that can prevent or at least impair the onset of atherogenesis, which would ultimately improve the quality of life of patients with coronary artery disease and significantly reduce their mortality.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Signorelli
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226437765
| |
Collapse
|
7
|
Wang S, Chu F, Xia R, Guan J, Zhou L, Fang X, Dai T, Xie F, Zhang L, Zhou F. LPA maintains innate antiviral immunity in a pro-active state via STK38L-mediated IRF3 Ser303 phosphorylation. Cell Rep 2022; 41:111661. [PMID: 36417850 DOI: 10.1016/j.celrep.2022.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Innate immunity is critical for the early detection and elimination of viral invasion. Extracellular signals are crucial for host resistance; however, how extracellular factors prepare the innate immunity for rapid antiviral response remains elusive. Here, we find that serum deprivation largely restricts the innate antiviral responses to RNA and DNA viruses. When serum is supplied, serine/threonine-protein kinase 38-like (STK38L), induced by serum response factor (SRF), phosphorylates IRF3 at Ser303, which prevents IRF3 from proteasome-mediated degradation in the rest state (non-infected), and ensures that enough IRF3 is called in the primed state (infected). STK38L-deficient mice exhibit compromised innate antiviral responses and elevated viral proliferation and mortality. Moreover, lysophosphatidic acid (LPA) or sphingosine 1-phosphate (S1P), the crucial activators of SRF, rescue immunosuppression caused by serum deprivation. These findings identify the SRF-STK38L-IRF3 axis as a novel mechanism that maintains the host in a pro-active state when not infected, which ensures the rapid immune response against virus.
Collapse
Affiliation(s)
- Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Feng Chu
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Ran Xia
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Lili Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Xiuwu Fang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Liao KA, Rangarajan KV, Bai X, Taylor JM, Mack CP. The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. Am J Physiol Heart Circ Physiol 2021; 321:H893-H904. [PMID: 34559579 DOI: 10.1152/ajpheart.00142.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-β (TGF-β) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.
Collapse
Affiliation(s)
- Kuo An Liao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xue Bai
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joan M Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher P Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
10
|
Wu H, Zhou X, Gong H, Ni Z, Xu Q. Perivascular tissue stem cells are crucial players in vascular disease. Free Radic Biol Med 2021; 165:324-333. [PMID: 33556462 DOI: 10.1016/j.freeradbiomed.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Perivascular tissue including adipose layer and adventitia have been considered to play pivotal roles in vascular development and disease progression. Recent studies showed that abundant stem/progenitorcells (SPCs) are present in perivascular tissues. These SPCs exhibit capability to proliferate and differentiate into specific terminal cells. Adult perivascular SPCs are quiescent in normal condition, once activated by specific molecules (e.g., cytokines), they migrate toward the lumen side where they differentiate into both smooth muscle cells (SMCs) and endothelial cells (ECs), thus promoting intima hyperplasia or endothelial regeneration. In addition, perivascular SPCs can also regulate vascular diseases via other ways including but not limited to paracrine effects, matrix protein modulation and microvessel formation. Perivascular SPCs have also been shown to possess therapeutic potentials due to the capability to differentiate into vascular cells and regenerate vascular structures. This review summarizes current knowledge on resident SPCs features and discusses the potential benefits of SPCs therapy in vascular diseases.
Collapse
Affiliation(s)
- Hong Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Gong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhichao Ni
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
11
|
Yingling CV, Pruyne D. FHOD formin and SRF promote post-embryonic striated muscle growth through separate pathways in C. elegans. Exp Cell Res 2021; 398:112388. [PMID: 33221314 PMCID: PMC7750259 DOI: 10.1016/j.yexcr.2020.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
Previous work with cultured cells has shown transcription of muscle genes by serum response factor (SRF) can be stimulated by actin polymerization driven by proteins of the formin family. However, it is not clear if endogenous formins similarly promote SRF-dependent transcription during muscle development in vivo. We tested whether formin activity promotes SRF-dependent transcription in striated muscle in the simple animal model, Caenorhabditis elegans. Our lab has shown FHOD-1 is the only formin that directly promotes sarcomere formation in the worm's striated muscle. We show here FHOD-1 and SRF homolog UNC-120 both support muscle growth and also muscle myosin II heavy chain A expression. However, while a hypomorphic unc-120 allele blunts expression of a set of striated muscle genes, these genes are largely upregulated or unchanged by absence of FHOD-1. Instead, pharmacological inhibition of the proteasome restores myosin protein levels in worms lacking FHOD-1, suggesting elevated proteolysis accounts for their myosin deficit. Interestingly, proteasome inhibition does not restore normal muscle growth to fhod-1(Δ) mutants, suggesting formin contributes to muscle growth by some alternative mechanism. Overall, we find SRF does not depend on formin to promote muscle gene transcription in a simple in vivo system.
Collapse
Affiliation(s)
- Curtis V Yingling
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| | - David Pruyne
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases 2020; 11:194-203. [PMID: 29099324 PMCID: PMC7549679 DOI: 10.1080/21541248.2017.1375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype. Indeed, our new findings presented herein indicate that GRAF3 expression acts as a pressure-sensitive rheostat to control vessel tone by both reducing calcium sensitivity and restraining expression of the SMC-specific contractile proteins that support this function. Collectively, these studies highlight the potential therapeutic value of GRAF3 in the control of human hypertension.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Mangum
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Molecular Regulation of the RhoGAP GRAF3 and Its Capacity to Limit Blood Pressure In Vivo. Cells 2020; 9:cells9041042. [PMID: 32331391 PMCID: PMC7226614 DOI: 10.3390/cells9041042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-hypertensive therapies are usually prescribed empirically and are often ineffective. Given the prevalence and deleterious outcomes of hypertension (HTN), improved strategies are needed. We reported that the Rho-GAP GRAF3 is selectively expressed in smooth muscle cells (SMC) and controls blood pressure (BP) by limiting the RhoA-dependent contractility of resistance arterioles. Importantly, genetic variants at the GRAF3 locus controls BP in patients. The goal of this study was to validate GRAF3 as a druggable candidate for future anti-HTN therapies. Importantly, using a novel mouse model, we found that modest induction of GRAF3 in SMC significantly decreased basal and vasoconstrictor-induced BP. Moreover, we found that GRAF3 protein toggles between inactive and active states by processes controlled by the mechano-sensing kinase, focal adhesion kinase (FAK). Using resonance energy transfer methods, we showed that agonist-induced FAK-dependent phosphorylation at Y376GRAF3 reverses an auto-inhibitory interaction between the GAP and BAR-PH domains. Y376 is located in a linker between the PH and GAP domains and is invariant in GRAF3 homologues and a phosphomimetic E376GRAF3 variant exhibited elevated GAP activity. Collectively, these data provide strong support for the future identification of allosteric activators of GRAF3 for targeted anti-hypertensive therapies.
Collapse
|
14
|
Guo S, Liu S, Bou G, Guo J, Jiang L, Chai Z, Cai M, Mu Y, Liu Z. Fetal bovine serum promotes the development of in vitro porcine blastocysts by activating the Rho-associated kinase signalling pathway. Reprod Fertil Dev 2019; 31:366-376. [PMID: 30253120 DOI: 10.1071/rd18070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
Fetal bovine serum (FBS) supplementation has beneficial effects on invitro porcine embryonic development, but the underlying mechanisms are unclear. In the present study we found that the addition of FBS to PZM-3 increased the number of cells in porcine blastocysts and hatching rate invitro primarily by promoting proliferation of the inner cell mass and further differentiation. Moreover, based on the following results, we surmise that FBS benefits blastocyst development by activating Rho-associated kinase (ROCK) signalling: (1) the ROCK signalling inhibitor Y-27632 decreased the blastocyst rate and the number of cells in blastocysts, whereas FBS rescued the developmental failure induced by Y-27632; (2) the mRNA levels of two ROCK isoforms, ROCK1 and ROCK2, were significantly increased in blastocysts derived from medium containing FBS; and (3) FBS increased RhoA/Rho-kinase expression in the nucleus of embryonic cells. These results indicate that FBS promotes the invitro development of porcine embryos by activating ROCK signalling in a chemically defined medium.
Collapse
Affiliation(s)
- Shimeng Guo
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Jia Guo
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Liyuan Jiang
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Zhuang Chai
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Mingming Cai
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Yanshuang Mu
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin 150030, China
| |
Collapse
|
15
|
Papadaki S, Tselepis AD. Nonhemostatic Activities of Factor Xa: Are There Pleiotropic Effects of Anti-FXa Direct Oral Anticoagulants? Angiology 2019; 70:896-907. [PMID: 31010298 DOI: 10.1177/0003319719840861] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Factor Xa (FXa) is the key serine protease of the coagulation cascade as it is the point of convergence of the intrinsic and extrinsic pathways, leading to the formation of thrombin. Factor Xa is an established target of anticoagulation therapy, due to its central role in coagulation. Over the past years, several direct oral anticoagulants (DOACs) targeting FXa have been developed. Rivaroxaban, apixaban, and edoxaban are used in clinical practice for prevention and treatment of thrombotic diseases. Increasing evidence suggests that FXa exerts nonhemostatic cellular effects that are mediated mainly through protease-activated receptors-1 and -2 and are involved in pathophysiological conditions, such as atherosclerosis, inflammation, and fibrosis. Direct inhibition of FXa by DOACs could be beneficial in these conditions. This is a narrative review that focuses on the cellular effects of FXa in various cell types and conditions, as well as on the possible pleiotropic effects of FXa-targeting DOACs.
Collapse
Affiliation(s)
- Styliani Papadaki
- 1 Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- 1 Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
16
|
Zabini D, Granton E, Hu Y, Miranda MZ, Weichelt U, Breuils Bonnet S, Bonnet S, Morrell NW, Connelly KA, Provencher S, Ghanim B, Klepetko W, Olschewski A, Kapus A, Kuebler WM. Loss of SMAD3 Promotes Vascular Remodeling in Pulmonary Arterial Hypertension via MRTF Disinhibition. Am J Respir Crit Care Med 2019; 197:244-260. [PMID: 29095649 DOI: 10.1164/rccm.201702-0386oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Vascular remodeling in pulmonary arterial hypertension (PAH) results from smooth muscle cell hypertrophy and proliferation of vascular cells. Loss of BMPR-II (bone morphogenetic protein receptor 2) signaling and increased signaling via TGF-β (transforming growth factor β) and its downstream mediators SMAD (small body size [a C. elegans protein] mothers against decapentaplegic [a Drosophila protein family])-2/3 has been proposed to drive lung vascular remodeling; yet, proteomic analyses indicate a loss of SMAD3 in PAH. OBJECTIVES We proposed that SMAD3 may be dysregulated in PAH and that loss of SMAD3 may present a pathophysiological master switch by disinhibiting its interaction partner, MRTF (myocardin-related transcription factor), which drives muscle protein expression. METHODS SMAD3 levels were measured in lungs from PAH patients, rats treated either with Sugen/hypoxia or monocrotaline (MCT), and in mice carrying a BMPR2 mutation. In vitro, effects of SMAD3 or BMPR2 silencing or SMAD3 overexpression on cell proliferation or smooth muscle hypertrophy were assessed. In vivo, the therapeutic and prophylactic potential of CCG1423, an inhibitor of MRTF, was investigated in Sugen/hypoxia rats. MEASUREMENTS AND MAIN RESULTS SMAD3 was downregulated in lungs of patients with PAH and in pulmonary arteries of three independent PAH animal models. TGF-β treatment replicated the loss of SMAD3 in human pulmonary artery smooth muscle cells (huPASMCs) and human pulmonary artery endothelial cells. SMAD3 silencing increased proliferation and migration in huPASMCs and human pulmonary artery endothelial cells. Coimmunoprecipitation revealed reduced interaction of MRTF with SMAD3 in TGF-β-treated huPASMCs and pulmonary arteries of PAH animal models. In huPASMCs, loss of SMAD3 or BMPR-II increased smooth muscle actin expression, which was attenuated by MRTF inhibition. Conversely, SMAD3 overexpression prevented TGF-β-induced activation of an MRTF reporter and reduced actin stress fibers in BMPR2-silenced huPASMCs. MRTF inhibition attenuated PAH and lung vascular remodeling in Sugen/hypoxia rats. CONCLUSIONS Loss of SMAD3 presents a novel pathomechanism in PAH that promotes vascular cell proliferation and-via MRTF disinhibition-hypertrophy of huPASMCs, thereby reconciling the parallel induction of a synthetic and contractile huPASMC phenotype.
Collapse
Affiliation(s)
- Diana Zabini
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,2 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elise Granton
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yijie Hu
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Maria Zena Miranda
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ulrike Weichelt
- 3 Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Breuils Bonnet
- 4 Pulmonary Hypertension Group of the Institute of Cardiology and Pulmonology, Laval University, Quebec City, Québec, Canada
| | - Sébastien Bonnet
- 4 Pulmonary Hypertension Group of the Institute of Cardiology and Pulmonology, Laval University, Quebec City, Québec, Canada
| | - Nicholas W Morrell
- 5 Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Kim A Connelly
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Steeve Provencher
- 4 Pulmonary Hypertension Group of the Institute of Cardiology and Pulmonology, Laval University, Quebec City, Québec, Canada
| | - Bahil Ghanim
- 6 Department of Thoracic Surgery, Medical University, Vienna, Austria; and
| | - Walter Klepetko
- 6 Department of Thoracic Surgery, Medical University, Vienna, Austria; and
| | - Andrea Olschewski
- 2 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Andras Kapus
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,7 Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,7 Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Li Y, Li Y, Jing X, Liu Y, Liu B, She Q. Sphingosine 1-phosphate induces epicardial progenitor cell differentiation into smooth muscle-like cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:402-410. [PMID: 30877755 DOI: 10.1093/abbs/gmz017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
Epicardial progenitor cells (EpiCs) which are derived from the proepicardium have the potential to differentiate into coronary vascular smooth muscle cells during development. Whether sphingosine 1-phosphate (S1P), a highly hydrophobic zwitterionic lysophospholipid in signal transduction, induces the differentiation of EpiCs is unknown. In the present study, we demonstrated that S1P significantly induced the expression of smooth muscle cell specific markers α-smooth muscle actin and myosin heavy chain 11 in the EpiCs. And the smooth muscle cells differentiated from the EpiCs stimulated by S1P were further evaluated by gel contraction assay. To further confirm the major subtype of sphingosine 1-phosphate receptors (S1PRs) involved in the differentiation of EpiCs, we used the agonists and antagonists of different S1PRs. The results showed that the S1P1/S1P3 antagonist VPC23019 and the S1P2 antagonist JTE013 significantly attenuated EpiCs differentiation, while the S1P1 agonist SEW2871 and antagonist W146 did not affect EpiCs differentiation. These results collectively suggested that S1P, principally through its receptor S1P3, increases EpiCs differentiation into VSMCs and thus indicated the importance of S1P signaling in the embryonic coronary vasculature, while S1P2 plays a secondary role.
Collapse
Affiliation(s)
- Yu Li
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yingrui Li
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Wang W, Hind T, Lam BWS, Herr DR. Sphingosine 1–phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells. FASEB J 2019; 33:7180-7191. [DOI: 10.1096/fj.201801635r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Wang
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Tatsuma Hind
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of PharmacologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brenda Wan Shing Lam
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Deron R. Herr
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
19
|
Singh RP, Escobar E, Wildt D, Patel S, Costa GMJ, Pukazhenthi B. Effect of sphingosine-1-phosphate on cryopreserved sheep testicular explants cultured in vitro. Theriogenology 2019; 128:184-192. [PMID: 30772662 DOI: 10.1016/j.theriogenology.2019.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/29/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Complete spermatogenesis has been achieved in vitro in mouse testicular explants with resulting sperm used to produce pups after Intra Cytoplasm Sperm Injection and Embryo Transfer. In the present study, we evaluated the influence of sphingosine-1-phosphate (S1P) on spermatogenesis of frozen-thawed lamb testis explants in vitro. Thawed testicular pieces were cultured for 12 d on agarose blocks in serum-free growth medium containing 0, 2, 5 or 10 μM S1P. At the end of D6 and D12, some pieces were fixed and processed for histology. Other pieces were processed for RNA isolation and quantitation of proliferation (PCNA, Ki67) and differentiation (PLZF) markers and genes involved in S1P signaling (S1PR1, SGPL1, SGPP1, AKT1 and NFKBIA) by qPCR. Histology revealed an increase (P < 0.05) in seminiferous cord (SC) diameter under all culture conditions, except 5 and 10 μM S1P by D6. In the presence of 5 μM S1P, percentage of gonocytes decreased (P < 0.05) by D6 (control, 24.9% vs. S1P, 10.3%) with a concomitant increase (P < 0.05) in spermatogonia formation (control, 74.4% vs. S1P, 88.1%). S1P induced PCNA or Ki67 expression by D6, whereas PLZF was up-regulated (P < 0.05) by D6 in 2 μM S1P and D12 in 5 & 10 μM S1P. Expression of SGPL1 and SGPP1 increased 4-12-fold in tissues cultured in 10 μM S1P by D12 compared to D12 control. AKT1 and NFKBIA mRNA expression was low (P < 0.05) in 5 and or 10 μM S1P treatments on D6. These results demonstrate that S1P promotes germ cell proliferation during first week of culture and may exert an anti-apoptotic influence on the seminiferous cord in sheep testicular explants in vitro.
Collapse
Affiliation(s)
- Ram Pratap Singh
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA; Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, India.
| | - Enrique Escobar
- Department of Agriculture, Food and Resource Sciences, School of Agriculture and Natural Sciences, University of Maryland-Eastern Shore, Princess Anne, MD, USA
| | - David Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - Seema Patel
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Budhan Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| |
Collapse
|
20
|
Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther 2019; 193:121-134. [PMID: 30189292 PMCID: PMC7235948 DOI: 10.1016/j.pharmthera.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of high blood pressure (also known as hypertension) has steadily increased over the last few decades. Known as a silent killer, hypertension increases the risk for cardiovascular disease and can lead to stroke, heart attack, kidney failure and associated sequela. While numerous hypertensive therapies are currently available, it is estimated that only half of medicated patients exhibit blood pressure control. This signifies the need for a better understanding of the underlying cause of disease and for more effective therapies. While blood pressure homeostasis is very complex and involves the integrated control of multiple body systems, smooth muscle contractility and arterial resistance are important contributors. Strong evidence from pre-clinical animal models and genome-wide association studies indicate that smooth muscle contraction and BP homeostasis are governed by the small GTPase RhoA and its downstream target, Rho kinase. In this review, we summarize the signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity in smooth muscle cells and discuss current therapeutic strategies to target these RhoA pathway components. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations.
Collapse
Affiliation(s)
- Rachel A Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin D Mangum
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Cordeiro AV, Silva VRR, Pauli JR, da Silva ASR, Cintra DE, Moura LP, Ropelle ER. The role of sphingosine-1-phosphate in skeletal muscle: Physiology, mechanisms, and clinical perspectives. J Cell Physiol 2018; 234:10047-10059. [PMID: 30523638 DOI: 10.1002/jcp.27870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.
Collapse
Affiliation(s)
- André V Cordeiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Chen T, Wu Y, Gu W, Xu Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 2018; 75:4079-4091. [PMID: 29946805 PMCID: PMC11105685 DOI: 10.1007/s00018-018-2859-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
23
|
Bian G, Yu C, Liu L, Fang C, Chen K, Ren P, Zhang Q, Liu F, Zhang K, Xue Q, Xiang J, Guo H, Song J, Zhao Y, Wu W, Chung SK, Sun R, Ju G, Wang J. Sphingosine 1-phosphate stimulates eyelid closure in the developing rat by stimulating EGFR signaling. Sci Signal 2018; 11:11/553/eaat1470. [DOI: 10.1126/scisignal.aat1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In many mammals, the eyelids migrate over the eye and fuse during embryogenesis to protect the cornea from damage during birth and early life. Loss-of-function mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway cause an eyes-open-at-birth (EOB) phenotype in rodents. We identified an insertional mutation in Spinster homolog 2 (Spns2) in a strain of transgenic rats exhibiting the EOB phenotype. Spns2, a sphingosine 1-phosphate (S1P) transporter that releases S1P from cells, was enriched at the tip of developing eyelids in wild-type rat embryos. Spns2 expression or treatment with S1P or any one of several EGFR ligands rescued the EOB Spns2 mutant phenotype in vivo and in tissue explants in vitro and rescued the formation of stress fibers in primary keratinocytes from mutants. S1P signaled through the receptors S1PR1, S1PR2, and S1PR3 to activate extracellular signal–regulated kinase (ERK) and EGFR-dependent mitogen-activated protein kinase kinase kinase 1 (MEKK1)–c-Jun signaling. S1P also induced the nuclear translocation of the transcription factor MAL in a manner dependent on EGFR signaling. MAL and c-Jun stimulated the expression of the microRNAs miR-21 and miR-222, both of which target the metalloprotease inhibitor TIMP3, thus promoting metalloprotease activity. The metalloproteases ADAM10 and ADAM17 stimulated EGFR signaling by cleaving a membrane-anchored form of EGF to release the ligand. Our results outline a network by which S1P transactivates EGFR signaling through a complex mechanism involving feedback between several intra- and extracellular molecules to promote eyelid fusion in the developing rat.
Collapse
|
24
|
Zhang Q, Qin M, Zhou X, Nie W, Wang W, Li L, He C. Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis. J Mater Chem B 2018; 6:6731-6743. [PMID: 32254690 DOI: 10.1039/c8tb02138d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Repair of bone defects remains a major clinical challenge due to inadequate or abnormal vascularization in bone substitutes, which commonly leads to inferior bone formation or bone nonunion. Therefore, healing of bone defects requires the coordinated processes of angiogenesis and osteogenesis. In this study, sphingosine-1-phosphate (S1P) was initially loaded into mesoporous silica nanoparticles (MSNs) to form angiogenic microcarriers, which were subsequently embedded into porous nanofibrous poly-l-lactide (PLLA) scaffolds during a thermally induced phase separation (TIPS) process, while bone morphogenetic protein-2 (BMP-2) was encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to obtain osteogenic microcarriers, which were then integrated onto a MSNs/PLLA nanofibrous scaffold by a post seeding method. The osteogenic and angiogenic activities of the resulting dual-bioactive factor containing scaffolds were evaluated both in vitro and in vivo. The simulated drug release studies indicated that both bioactive factors will be released simultaneously and continuously from the fabricated composite scaffold. Moreover, the ectopic bone formation results showed that the sustained release of S1P and BMP-2 from the composite scaffold resulted in a synergistic effect on blood vessel formation and bone regeneration. Taken together, the results showed the promising application of the dual-bioactive factor loaded nanofibrous scaffold for enhanced bone regeneration.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Piquet L, Robbe T, Neaud V, Basbous S, Rosciglione S, Saltel F, Moreau V. Rnd3/RhoE expression is regulated by G-actin through MKL1-SRF signaling pathway. Exp Cell Res 2018; 370:227-236. [DOI: 10.1016/j.yexcr.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
|
26
|
Zhu B, Rippe C, Holmberg J, Zeng S, Perisic L, Albinsson S, Hedin U, Uvelius B, Swärd K. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Sci Rep 2018; 8:13025. [PMID: 30158653 PMCID: PMC6115340 DOI: 10.1038/s41598-018-31328-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden. .,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China.
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Shaohua Zeng
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Section of Urology, Lund University, SE-221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| |
Collapse
|
27
|
Gu W, Hong X, Potter C, Qu A, Xu Q. Mesenchymal stem cells and vascular regeneration. Microcirculation 2018; 24. [PMID: 27681821 DOI: 10.1111/micc.12324] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
In recent years, MSCs have emerged as a promising therapeutic cell type in regenerative medicine. They hold great promise for treating cardiovascular diseases, such as myocardial infarction and limb ischemia. MSCs may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits to patients. The efficacy of MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Increasing our understanding of the mechanisms of MSC involvement in vascular regeneration will be beneficial in boosting present therapeutic approaches and developing novel ones to treat cardiovascular diseases. In this review, we aim to summarize current progress in characterizing the in vivo identity of MSCs, to discuss mechanisms involved in cell-based therapy utilizing MSCs, and to explore current and future strategies for vascular regeneration.
Collapse
Affiliation(s)
- Wenduo Gu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Xuechong Hong
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Claire Potter
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| |
Collapse
|
28
|
Bowers DT, Olingy CE, Chhabra P, Langman L, Merrill PH, Linhart RS, Tanes ML, Lin D, Brayman KL, Botchwey EA. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J Biomed Mater Res B Appl Biomater 2018; 106:555-568. [PMID: 28240814 PMCID: PMC5572559 DOI: 10.1002/jbm.b.33862] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/28/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Macroencapsulation is a powerful approach to increase the efficiency of extrahepatic pancreatic islet transplant. FTY720, a small molecule that activates signaling through sphingosine-1-phosphate receptors, is immunomodulatory and pro-angiogenic upon sustained delivery from biomaterials. While FTY720 (fingolimod, Gilenya) has been explored for organ transplantation, in the present work the effect of locally released FTY720 from novel nanofiber-based macroencapsulation membranes is explored for islet transplantation. We screened islet viability during culture with FTY720 and various biodegradable polymers. Islet viability is significantly reduced by the addition of high doses (≥500 ng/mL) of soluble FTY720. Among the polymers screened, islets have the highest viability when cultured with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Therefore, PHBV was blended with polycaprolactone (PCL) for mechanical stability and electrospun into nanofibers. Islets had no detectable function ex vivo following 5 days or 12 h of subcutaneous implantation within our engineered device. Subsequently, we explored a preconditioning scheme in which islets are transplanted 2 weeks after FTY720-loaded nanofibers are implanted. This allows FTY720 to orchestrate a local regenerative milieu while preventing premature transplantation into avascular sites that contain high concentrations of FTY720. These results provide a foundation and motivation for further investigation into the use of FTY720 in preconditioning sites for efficacious islet transplantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 555-568, 2018.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332-0363
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Linda Langman
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Parker H Merrill
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Ritu S Linhart
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Michael L Tanes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Dan Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Kenneth L Brayman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Edward A Botchwey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332-0363
| |
Collapse
|
29
|
Dai X, Thiagarajan D, Fang J, Shen J, Annam NP, Yang Z, Jiang H, Ju D, Xie Y, Zhang K, Tseng YY, Yang Z, Rishi AK, Li HJ, Yang M, Li L. SM22α suppresses cytokine-induced inflammation and the transcription of NF-κB inducing kinase (Nik) by modulating SRF transcriptional activity in vascular smooth muscle cells. PLoS One 2017; 12:e0190191. [PMID: 29284006 PMCID: PMC5746259 DOI: 10.1371/journal.pone.0190191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic modulation is characterized by the downregulation of SMC actin cytoskeleton proteins. Our published study shows that depletion of SM22α (aka SM22, Transgelin, an actin cytoskeleton binding protein) promotes inflammation in SMCs by activating NF-κB signal pathways both in cultured VSMCs and in response to vascular injury. The goal of this study is to investigate the underlying molecular mechanisms whereby SM22 suppresses NF-κB signaling pathways under inflammatory condition. NF-κB inducing kinase (Nik, aka MAP3K14, activated by the LTβR) is a key upstream regulator of NF-κB signal pathways. Here, we show that SM22 overexpression suppresses the expression of NIK and its downstream NF-κB canonical and noncanonical signal pathways in a VSMC line treated with a LTβR agonist. SM22 regulates NIK expression at both transcriptional and the proteasome-mediated post-translational levels in VSMCs depending on the culture condition. By qPCR, chromatin immunoprecipitation and luciferase assays, we found that Nik is a transcription target of serum response factor (SRF). Although SM22 is known to be expressed in the cytoplasm, we found that SM22 is also expressed in the nucleus where SM22 interacts with SRF to inhibit the transcription of Nik and prototypical SRF regulated genes including c-fos and Egr3. Moreover, carotid injury increases NIK expression in Sm22-/- mice, which is partially relieved by adenovirally transduced SM22. These findings reveal for the first time that SM22 is expressed in the nucleus in addition to the cytoplasm of VSMCs to regulate the transcription of Nik and its downstream proinflammatory NF-kB signal pathways as a modulator of SRF during vascular inflammation.
Collapse
Affiliation(s)
- Xiaohua Dai
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Devi Thiagarajan
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Jingye Fang
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Jianbin Shen
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Neeraja Priyanka Annam
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Hong Jiang
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Youming Xie
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Cardiovascular Research Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Yan Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Arun K. Rishi
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Hui J. Li
- Department of Medicine, University of Massachusetts, Worcester, Massachusetts, United States of America
| | - Maozhou Yang
- Bone and Joint Center, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Li Li
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Cardiovascular Research Institute, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
30
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
31
|
Bernau K, Torr EE, Evans MD, Aoki JK, Ngam CR, Sandbo N. Tensin 1 Is Essential for Myofibroblast Differentiation and Extracellular Matrix Formation. Am J Respir Cell Mol Biol 2017; 56:465-476. [PMID: 28005397 DOI: 10.1165/rcmb.2016-0104oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myofibroblasts, the primary effector cells that mediate matrix remodeling during pulmonary fibrosis, rapidly assemble an extracellular fibronectin matrix. Tensin (TNS) 1 is a key component of specialized cellular adhesions (fibrillar adhesions) that bind to extracellular fibronectin fibrils. We hypothesized that TNS1 may play a role in modulating myofibroblast-mediated matrix formation. We found that TNS1 expression is increased in fibroblastic foci from lungs with idiopathic pulmonary fibrosis. Transforming growth factor (TGF)-β profoundly up-regulates TNS1 expression with kinetics that parallel the expression of the myofibroblast marker, smooth muscle α-actin. TGF-β-induced TNS1 expression is dependent on signaling through the TGF-β receptor 1 and is Rho coiled-coiled kinase/actin/megakaryoblastic leukemia-1/serum response factor dependent. Small interfering RNA-mediated knockdown of TNS1 disrupted TGF-β-induced myofibroblast differentiation, without affecting TGF-β/Smad signaling. In contrast, loss of TNS1 resulted in disruption of focal adhesion kinase phosphorylation, focal adhesion formation, and actin stress fiber development. Finally, TNS1 was essential for the formation of fibrillar adhesions and the assembly of nascent fibronectin and collagen matrix in myofibroblasts. In summary, our data show that TNS1 is a novel megakaryoblastic leukemia-1-dependent gene that is induced during pulmonary fibrosis. TNS1 plays an essential role in TGF-β-induced myofibroblast differentiation and myofibroblast-mediated formation of extracellular fibronectin and collagen matrix. Targeted disruption of TNS1 and associated signaling may provide an avenue to inhibit tissue fibrosis.
Collapse
Affiliation(s)
| | | | - Michael D Evans
- 2 Biostatistics and Medical Informatics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | |
Collapse
|
32
|
Yue B, Wu J, Wang Y, Zhang C, Fang X, Chen H. Expression Profiles Analysis and Functional Characterization of MicroRNA-660 in Skeletal Muscle Differentiation. J Cell Biochem 2017; 118:2387-2394. [PMID: 28106300 DOI: 10.1002/jcb.25901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022]
Abstract
MicroRNA are a series of small non-coding RNAs that have emerged as critical regulators of skeletal muscle development. Here, we concentrated on the function of miR-660 during bovine skeletal myogenesis from our previous high-throughput sequencing results, then analyzed its expression profiles and characterized related functional roles. Overexpression of miR-660 significantly attenuated myogenic differentiation of C2C12 cells, whereas miR-660 inhibition enhanced C2C12 differentiation. Dual-Luciferase Reporter Assay went for demonstrating that miR-660 directly targeted the 3'-UTR of Rho guanine nucleotide exchange factor 12 (ARHGEF-12). Furthermore, we found an inverse relationship between the expression of miR-660 and ARHGEF12 in both gain- and loss-of-function studies: overexpression of miR-660 declined the mRNA and protein expressions of ARHGEF12 in C2C12 cells differentiation; however, knockdown of miR-660 had completely opposite results. Taken together, these results offered a new perspective for miR-660 in skeletal muscle differentiation. J. Cell. Biochem. 118: 2387-2394, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Binglin Yue
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Jiyao Wu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Yanhuan Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| |
Collapse
|
33
|
Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, Patterson C, Schisler JC, Viera AJ, Taylor JM, Mack CP. Blood pressure-associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. J Clin Invest 2017; 127:670-680. [PMID: 28112683 PMCID: PMC5272192 DOI: 10.1172/jci88899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure-associated locus within the ARHGAP42 gene. The goals of the current study were to identify polymorphisms that affect ARHGAP42 expression and to better assess ARHGAP42's role in the development of hypertension. Using DNase I hypersensitivity methods and ENCODE data, we have identified a regulatory element encompassing the ARHGAP42 SNP rs604723 that exhibits strong SMC-selective, allele-specific activity. Importantly, CRISPR/Cas9-mediated deletion of this element in cultured human SMCs markedly reduced endogenous ARHGAP42 expression. DNA binding and transcription assays demonstrated that the minor T allele variation at rs604723 increased the activity of this fragment by promoting serum response transcription factor binding to a cryptic cis-element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent manner, and deletion of ARHGAP42 enhanced the progression of hypertension in mice treated with DOCA-salt. Our analysis of a well-characterized cohort of untreated borderline hypertensive patients suggested that ARHGAP42 genotype has important implications in regard to hypertension risk. Taken together, our data add insight into the genetic mechanisms that control blood pressure and provide a potential target for individualized antihypertensive therapies.
Collapse
MESH Headings
- Animals
- Blood Pressure
- CRISPR-Cas Systems
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation
- Humans
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Polymorphism, Single Nucleotide
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Sodium Chloride, Dietary/adverse effects
- Sodium Chloride, Dietary/pharmacology
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Craig R. Lee
- McAllister Heart Institute, and
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Akinyemi Oni-Orisan
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Cam Patterson
- New York–Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | | | - Anthony J. Viera
- Department of Family Medicine, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | | | | |
Collapse
|
34
|
Alajbegovic A, Turczyńska KM, Hien TT, Cidad P, Swärd K, Hellstrand P, Della Corte A, Forte A, Albinsson S. Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1088-1098. [PMID: 27939432 DOI: 10.1016/j.bbamcr.2016.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
The dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile function but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcriptional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs are short non-coding RNAs that modulate gene expression by post-transcriptional regulation of target messenger RNA. In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated with the contractile smooth muscle phenotype and 3) enriched in muscle cells. This analysis was performed using cardiovascular disease-focused miRNA arrays in both mouse and human cells. The potential clinical importance of actin polymerization in aortic aneurysm was evaluated using biopsies from mildly dilated human thoracic aorta in patients with stenotic tricuspid or bicuspid aortic valve. By integrating information from multiple qPCR based miRNA arrays we identified a group of five miRNAs (miR-1, miR-22, miR-143, miR-145 and miR-378a) that were sensitive to actin polymerization and MRTF-A overexpression in both mouse and human vascular smooth muscle. With the exception of miR-22, these miRNAs were also relatively enriched in striated and/or smooth muscle containing tissues. Actin polymerization was found to be dramatically reduced in the aorta from patients with mild aortic dilations. This was associated with a decrease in actin/MRTF-regulated miRNAs. In conclusion, the transcriptional co-activator MRTF-A and actin polymerization regulated a subset of miRNAs in vascular smooth muscle. Identification of novel miRNAs regulated by actin/MRTF-A may provide further insight into the mechanisms underlying vascular disease states, such as aortic aneurysm, as well as novel ideas regarding therapeutic strategies. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Tran Thi Hien
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Amalia Forte
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | |
Collapse
|
35
|
Castaldi A, Chesini GP, Taylor AE, Sussman MA, Brown JH, Purcell NH. Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. Cell Signal 2016; 28:871-9. [PMID: 27094722 PMCID: PMC5004781 DOI: 10.1016/j.cellsig.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
Although c-kit(+) cardiac progenitor cells (CPCs) are currently used in clinical trials there remain considerable gaps in our understanding of the molecular mechanisms underlying their proliferation and differentiation. G-protein coupled receptors (GPCRs) play an important role in regulating these processes in mammalian cell types thus we assessed GPCR mRNA expression in c-kit(+) cells isolated from adult mouse hearts. Our data provide the first comprehensive overview of the distribution of this fundamental class of cardiac receptors in CPCs and reveal notable distinctions from that of adult cardiomyocytes. We focused on GPCRs that couple to RhoA activation in particular those for sphingosine-1-phosphate (S1P). The S1P2 and S1P3 receptors are the most abundant S1P receptor subtypes in mouse and human CPCs while cardiomyocytes express predominantly S1P1 receptors. Treatment of CPCs with S1P, as with thrombin and serum, increased proliferation through a pathway requiring RhoA signaling, as evidenced by significant attenuation when Rho was inhibited by treatment with C3 toxin. Further analysis demonstrated that both S1P- and serum-induced proliferation are regulated through the S1P2 and S1P3 receptor subtypes which couple to Gα12/13 to elicit RhoA activation. The transcriptional co-activator MRTF-A was activated by S1P as assessed by its nuclear accumulation and induction of a RhoA/MRTF-A luciferase reporter. In addition S1P treatment increased expression of cardiac lineage markers Mef2C and GATA4 and the smooth muscle marker GATA6 through activation of MRTF-A. In conclusion, we delineate an S1P-regulated signaling pathway in CPCs that introduces the possibility of targeting S1P2/3 receptors, Gα12/13 or RhoA to influence the proliferation and commitment of c-kit(+) CPCs and improve the response of the myocardium following injury.
Collapse
Affiliation(s)
- Alessandra Castaldi
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Gino P Chesini
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Amy E Taylor
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Mark A Sussman
- San Diego State Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| | - Nicole H Purcell
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| |
Collapse
|
36
|
Cabrera G. Update on Coronary Involvement in Fabry Disease. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816679427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Gustavo Cabrera
- Centro Cardiovascular Bolivar, Pilar, Buenos Aires, Argentina
| |
Collapse
|
37
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
38
|
Kim YH, Tabata Y. Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 2015; 94:28-40. [PMID: 26079284 DOI: 10.1016/j.addr.2015.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 02/08/2023]
Abstract
Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials.
Collapse
|
39
|
Moharil J, Lei P, Tian J, Gaile DP, Andreadis ST. Lentivirus Live Cell Array for Quantitative Assessment of Gene and Pathway Activation during Myogenic Differentiation of Mesenchymal Stem Cells. PLoS One 2015; 10:e0141365. [PMID: 26505747 PMCID: PMC4624764 DOI: 10.1371/journal.pone.0141365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Stem cell differentiation involves multiple cascades of transcriptional regulation that govern the cell fate. To study the real-time dynamics of this complex process, quantitative and high throughput live cell assays are required. Herein, we developed a lentiviral library of promoters and transcription factor binding sites to quantitatively capture the gene expression dynamics over a period of several days during myogenic differentiation of human mesenchymal stem cells (MSCs) harvested from two different anatomic locations, bone marrow and hair follicle. Our results enabled us to monitor the sequential activation of signaling pathways and myogenic gene promoters at various stages of differentiation. In conjunction with chemical inhibitors, the lentiviral array (LVA) results also revealed the relative contribution of key signaling pathways that regulate the myogenic differentiation. Our study demonstrates the potential of LVA to monitor the dynamics of gene and pathway activation during MSC differentiation as well as serve as a platform for discovery of novel molecules, genes and pathways that promote or inhibit complex biological processes.
Collapse
Affiliation(s)
- Janhavi Moharil
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 908 Furnas Hall, Amherst, NY 14260–4200, United States of America
- Department of Biostatistics, University at Buffalo, State University of New York, Kimball, Buffalo, NY 14214–3000, United States of America
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 908 Furnas Hall, Amherst, NY 14260–4200, United States of America
| | - Jun Tian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 908 Furnas Hall, Amherst, NY 14260–4200, United States of America
| | - Daniel P. Gaile
- Department of Biostatistics, University at Buffalo, State University of New York, Kimball, Buffalo, NY 14214–3000, United States of America
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 908 Furnas Hall, Amherst, NY 14260–4200, United States of America
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260–4200, United States of America
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, United States of America
- * E-mail:
| |
Collapse
|
40
|
Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. Mol Cell Biol 2015; 36:39-49. [PMID: 26459764 DOI: 10.1128/mcb.00772-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022] Open
Abstract
The ability of a subset of G protein-coupled receptors (GPCRs) to activate RhoA endows them with unique growth-regulatory properties. Two transcriptional pathways are activated through GPCRs and RhoA, one utilizing the transcriptional coactivator myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) and the other using the transcriptional coactivator Yes-associated protein (YAP) and TEA domain family members (TEAD). These pathways have not been compared for their relative levels of importance and potential interactions in RhoA target gene expression. GPCRs for thrombin and sphingosine-1-phosphate (S1P) on human glioblastoma cells robustly couple to RhoA and induce the matricelluar protein CCN1. Knockdown of either MRTF-A or YAP abrogates S1P-stimulated CCN1 expression, demonstrating that both coactivators are required. MRTF-A and YAP are also both required for transcriptional control of other S1P-regulated genes in various cell types and for S1P-stimulated glioblastoma cell proliferation. Interactions between MRTF-A and YAP are suggested by their synergistic effects on SRE.L- and TEAD-luciferase expression. Moreover, MRTF-A and YAP associate in coimmunoprecipitations from S1P-stimulated cells. Chromatin immunoprecipitation (ChIP) analysis of the CCN1 gene promoter demonstrated that S1P increases coactivator binding at the canonical transcription factor sequences. Unexpectedly, S1P also enhances MRTF-A binding at TEA sites. Our findings reveal that GPCR- and RhoA-regulated gene expression requires dual input and integration of two distinct transcriptional pathways.
Collapse
|
41
|
Weise-Cross L, Taylor JM, Mack CP. Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2374-83. [PMID: 26381868 DOI: 10.1161/atvbaha.115.305879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We and others have previously shown that RhoA-dependent stimulation of myocardin-related transcription factor nuclear localization promotes smooth muscle cell (SMC) marker gene expression. The goal of this study was to provide direct in vivo evidence that actin polymerization by the diaphanous-related formins contributes to the regulation of SMC differentiation and phenotype. APPROACH AND RESULTS Conditional Cre-based genetic approaches were used to overexpress a well-characterized dominant-negative variant of mDia1 (DNmDia) in SMC. DNmDia expression in SM22-expressing cells resulted in embryonic and perinatal lethality in ≈20% of mice because of defects in myocardial development and SMC investment of peripheral vessels. Although most DNmDia(+)/SM22Cre(+) mice exhibited no overt phenotype, the re-expression of SMC differentiation marker gene expression that occurs after carotid artery ligation was delayed, and this effect was accompanied by a significant decrease in myocardin-related transcription factor-A nuclear localization. Interestingly, neointima growth was inhibited by expression of DNmDia in SMC and this was likely because of a defect in directional SMC migration and not to defects in SMC proliferation or survival. Finally, by using the tamoxifen-inducible SM MHC-CreER(T2) line, we showed that SMC-specific induction of DNmDia in adult mice decreased SMC marker gene expression. CONCLUSIONS Our demonstration that diaphanous-related formin signaling plays a role in heart and vascular development and the maintenance of SMC phenotype provides important new evidence that Rho/actin/myocardin-related transcription factor signaling plays a critical role in cardiovascular function.
Collapse
Affiliation(s)
- Laura Weise-Cross
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|
42
|
Lupieri A, Smirnova N, Malet N, Gayral S, Laffargue M. PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Adv Biol Regul 2015; 59:4-18. [PMID: 26238239 DOI: 10.1016/j.jbior.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Cardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses. In the last few years, the study of phosphoinositide 3-kinase (PI3K) functions has become an attractive area of investigation in the field of arterial diseases, especially since inhibitors of specific PI3K isoforms have been developed. The PI3K family includes 8 members divided into classes I, II or III depending on their substrate specificity. Although some of the different isoforms are responsible for the production of the same 3-phosphoinositides, they each have specific, non-redundant functions as a result of differences in expression levels in different cell types, activation mechanisms and specific subcellular locations. This review will focus on the functions of the different PI3K isoforms that are suspected as having protective or deleterious effects in both the various immune cells and types of cell found in the arterial wall. It will also discuss our current understanding in the context of which PI3K isoform(s) should be targeted for future therapeutic interventions to prevent or treat arterial diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Natalia Smirnova
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Nicole Malet
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France.
| |
Collapse
|
43
|
Yester JW, Bryan L, Waters MR, Mierzenski B, Biswas DD, Gupta AS, Bhardwaj R, Surace MJ, Eltit JM, Milstien S, Spiegel S, Kordula T. Sphingosine-1-phosphate inhibits IL-1-induced expression of C-C motif ligand 5 via c-Fos-dependent suppression of IFN-β amplification loop. FASEB J 2015; 29:4853-65. [PMID: 26246404 DOI: 10.1096/fj.15-275180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
Abstract
The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNβ production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-β amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.
Collapse
Affiliation(s)
- Jessie W Yester
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Lauren Bryan
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael R Waters
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Bartosz Mierzenski
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Debolina D Biswas
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Angela S Gupta
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Reetika Bhardwaj
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael J Surace
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jose M Eltit
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sheldon Milstien
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tomasz Kordula
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
44
|
Trayssac M, Galvani S, Augé N, Sabbadini R, Calise D, Mucher E, Sallusto F, Thomsen M, Salvayre R, Nègre-Salvayre A. Role of Sphingosine-1-Phosphate in Transplant Vasculopathy Evoked by Anti-HLA Antibody. Am J Transplant 2015; 15:2050-61. [PMID: 25930666 DOI: 10.1111/ajt.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 01/25/2023]
Abstract
Transplant vasculopathy (TV) represents the main cause of late graft failure and limits the long-term success of organ transplantation. Cellular and humoral immune responses contribute to the pathogenesis of the concentric and diffuse intimal hyperplasia of arteries of the grafted organ. We recently reported that the mitogenic signaling, evoked in human vascular smooth muscle cells (hmSMC) by the anti-HLA class I monoclonal antibody W6/32, implicates neutral sphingomyelinase-2, suggesting a role for sphingolipids in intimal hyperplasia of TV. Here, we investigated whether the mitogenic sphingolipid, sphingosine-1-phosphate (S1P), is involved in intimal hyperplasia elicited by W6/32. Studies were done on cultured hmSMC and on an in vivo model of TV, consisting of human mesenteric arteries grafted into SCID/beige mice, injected weekly with W6/32. hmSMC migration and DNA synthesis elicited by W6/32 were inhibited by the sphingosine kinase-1 (SK1) inhibitor dimethylsphingosine, the anti-S1P antibody Sphingomab and the S1PR1/R3 inhibitor VPC23019. W6/32 stimulated SK1 activity, while siRNA silencing SK1, S1PR1 and S1PR3 inhibited hmSMC migration. In vivo, Sphingomab significantly reduced the intimal thickening induced by W6/32. These data emphasize the role of S1P in intimal hyperplasia elicited by the humoral immune response, and open perspectives for preventing TV with S1P inhibitors.
Collapse
Affiliation(s)
- M Trayssac
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - S Galvani
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - N Augé
- INSERM UMR-1048, Toulouse, France
| | - R Sabbadini
- Lpath, Inc., and Department of Biology, San Diego State University, San Diego, CA
| | - D Calise
- INSERM UMR-1048, Toulouse, France
| | - E Mucher
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - F Sallusto
- CHU Rangueil, Department of Nephrology, Toulouse, France
| | - M Thomsen
- INSERM UMR-1048, Toulouse, France.,INSERM UMR-1027, Toulouse, France
| | - R Salvayre
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | | |
Collapse
|
45
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
46
|
Yu OM, Brown JH. G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Mol Pharmacol 2015; 88:171-80. [PMID: 25904553 DOI: 10.1124/mol.115.097857] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/22/2015] [Indexed: 01/06/2023] Open
Abstract
The low molecular weight G protein RhoA (rat sarcoma virus homolog family member A) serves as a node for transducing signals through G protein-coupled receptors (GPCRs). Activation of RhoA occurs through coupling of G proteins, most prominently, G12/13, to Rho guanine nucleotide exchange factors. The GPCR ligands that are most efficacious for RhoA activation include thrombin, lysophosphatidic acid, sphingosine-1-phosphate, and thromboxane A2. These ligands also stimulate proliferation, differentiation, and inflammation in a variety of cell and tissues types. The molecular events underlying these responses are the activation of transcription factors, transcriptional coactivators, and downstream gene programs. This review describes the pathways leading from GPCRs and RhoA to the regulation of activator protein-1, NFκB (nuclear factor κ-light-chain-enhancer of activated B cells), myocardin-related transcription factor A, and Yes-associated protein. We also focus on the importance of two prominent downstream transcriptional gene targets, the inflammatory mediator cyclooxygenase 2, and the matricellular protein cysteine-rich angiogenic inducer 61 (CCN1). Finally, we describe the importance of GPCR-induced activation of these pathways in the pathophysiology of cancer, fibrosis, and cardiovascular disease.
Collapse
Affiliation(s)
- Olivia M Yu
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| | - Joan Heller Brown
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| |
Collapse
|
47
|
de Faria Poloni J, Bonatto D. Systems Chemo-Biology and Transcriptomic Meta-Analysis Reveal the Molecular Roles of Bioactive Lipids in Cardiomyocyte Differentiation. J Cell Biochem 2015; 116:2018-31. [PMID: 25752681 DOI: 10.1002/jcb.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 11/12/2022]
Abstract
Lipids, which are essential constituents of biological membranes, play structural and functional roles in the cell. In recent years, certain lipids have been identified as regulatory signaling molecules and have been termed "bioactive lipids". Subsequently, the importance of bioactive lipids in stem cell differentiation and cardiogenesis has gained increasing recognition. Therefore, the aim of this study was to identify the biological processes underlying murine cardiac differentiation and the mechanisms by which bioactive lipids affect these processes. For this purpose, a transcriptomic meta-analysis of microarray and RNA-seq data from murine stem cells undergoing cardiogenic differentiation was performed. The differentially expressed genes identified via this meta-analysis, as well as bioactive lipids, were evaluated using systems chemo-biology tools. These data indicated that bioactive lipids are associated with the regulation of cell motility, cell adhesion, cytoskeletal rearrangement, and gene expression. Moreover, bioactive lipids integrate the signaling pathways involved in cell migration, the secretion and remodeling of extracellular matrix components, and the establishment of the cardiac phenotype. In conclusion, this study provides new insights into the contribution of bioactive lipids to the induction of cellular responses to various stimuli, which may originate from the extracellular environment and morphogens, and the manner in which this contribution directly affects murine heart morphogenesis.
Collapse
Affiliation(s)
- Joice de Faria Poloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
48
|
Rhee SH, Zhang P, Hunter K, Mama ST, Caraballo R, Holzberg AS, Seftel RH, Seftel AD, Echols KT, DiSanto ME. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall. J OBSTET GYNAECOL 2015; 35:726-32. [DOI: 10.3109/01443615.2015.1004527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Torr EE, Ngam CR, Bernau K, Tomasini-Johansson B, Acton B, Sandbo N. Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem 2015; 290:6951-61. [PMID: 25627685 DOI: 10.1074/jbc.m114.606186] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblasts have increased expression of contractile proteins and display augmented contractility. It is not known if the augmented contractile gene expression characterizing the myofibroblast phenotype impacts its intrinsic ability to assemble fibronectin (FN) and extracellular matrix. In this study we investigated whether myofibroblasts displayed increased rates of FN fibril assembly when compared with their undifferentiated counterparts. Freshly plated myofibroblasts assemble exogenous FN (488-FN) into a fibrillar matrix more rapidly than fibroblasts that have not undergone myofibroblast differentiation. The augmented rate of FN matrix formation by myofibroblasts was dependent on intact Rho/Rho kinase (ROCK) and myosin signals inasmuch as treatment with Y27632 or blebbistatin attenuated 488-FN assembly. Inhibiting contractile gene expression by pharmacologic disruption of the transcription factors megakaryoblastic leukemia-1 (MKL1)/serum response factor (SRF) during myofibroblast differentiation resulted in decreased contractile force generation and attenuated 488-FN incorporation although not FN expression. Furthermore, disruption of the MKL1/SRF target gene, smooth muscle α-actin (α-SMA) via siRNA knockdown resulted in attenuation of 488-FN assembly. In conclusion, this study demonstrates a linkage between increased contractile gene expression, most importantly α-SMA, and the intrinsic capacity of myofibroblasts to assemble exogenous FN into fibrillar extracellular matrix.
Collapse
Affiliation(s)
| | | | | | - Bianca Tomasini-Johansson
- Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53792
| | | | | |
Collapse
|
50
|
Zhao X, Ding EY, Yu OM, Xiang SY, Tan-Sah VP, Yung BS, Hedgpeth J, Neubig RR, Lau LF, Brown JH, Miyamoto S. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. J Mol Cell Cardiol 2014; 75:152-61. [PMID: 25106095 PMCID: PMC4157956 DOI: 10.1016/j.yjmcc.2014.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 01/06/2023]
Abstract
Activation of RhoA, a low molecular-weight G-protein, plays an important role in protecting the heart against ischemic stress. Studies using non-cardiac cells demonstrate that the expression and subsequent secretion of the matricellular protein CCN1 is induced by GPCR agonists that activate RhoA. In this study we determined whether and how CCN1 is induced by GPCR agonists in cardiomyocytes and examined the role of CCN1 in ischemic cardioprotection in cardiomyocytes and the isolated perfused heart. In neonatal rat ventricular myocytes (NRVMs), sphingosine 1-phosphate (S1P), lysophosphatidic acid (LPA) and endothelin-1 induced robust increases in CCN1 expression while phenylephrine, isoproterenol and carbachol had little or no effect. The ability of agonists to activate the small G-protein RhoA correlated with their ability to induce CCN1. CCN1 induction by S1P was blocked when RhoA function was inhibited with C3 exoenzyme or a pharmacological RhoA inhibitor. Conversely overexpression of RhoA was sufficient to induce CCN1 expression. To delineate the signals downstream of RhoA we tested the role of MRTF-A (MKL1), a co-activator of SRF, in S1P-mediated CCN1 expression. S1P increased the nuclear accumulation of MRTF-A and this was inhibited by the functional inactivation of RhoA. In addition, pharmacological inhibitors of MRTF-A or knockdown of MRTF-A significantly diminished S1P-mediated CCN1 expression, indicating a requirement for RhoA/MRTF-A signaling. We also present data indicating that CCN1 is secreted following agonist treatment and RhoA activation, and binds to cells where it can serve an autocrine function. To determine the functional significance of CCN1 expression and signaling, simulated ischemia/reperfusion (sI/R)-induced apoptosis was assessed in NRVMs. The ability of S1P to protect against sI/R was significantly reduced by the inhibition of RhoA, ROCK or MRTF-A or by CCN1 knockdown. We also demonstrate that ischemia/reperfusion induces CCN1 expression in the isolated perfused heart and that this functions as a cardioprotective mechanism, evidenced by the significant increase in infarct development in response to I/R in the cardiac specific CCN1 KO relative to control mice. Our findings implicate CCN1 as a mediator of cardioprotection induced by GPCR agonists that activate RhoA/MRTF-A signaling.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Eric Y Ding
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Olivia M Yu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Sunny Y Xiang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Valerie P Tan-Sah
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Bryan S Yung
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Joe Hedgpeth
- CompleGen, Inc., 1124 Columbia Street, Seattle, WA 98104, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St./B440 Life Sciences, East Lansing, MI 48824, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 S Ashland, Chicago, IL 60607, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| |
Collapse
|