1
|
Wang H, Xiang Z. Structural insights into type III polyketide synthase CylI from cylindrocyclophane biosynthesis. Protein Sci 2024; 33:e5130. [PMID: 39302095 PMCID: PMC11413912 DOI: 10.1002/pro.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024]
Abstract
Type III polyketide synthases (PKSs) catalyze the formation of a variety of polyketide natural products with remarkable structural diversity and biological activities. Despite significant progress in structural and mechanistic studies of type III PKSs in bacteria, fungi, and plants, research on type III PKSs in cyanobacteria is lacking. Here, we report structural and mechanistic insights into CylI, a type III PKS that catalyzes the formation of the alkylresorcinol intermediate in cylindrocyclophane biosynthesis. The crystal structure of apo-CylI reveals a distinct arrangement of structural elements that are proximal to the active site. We further solved the crystal structures of CylI in complexes with two substrate analogues at resolutions of 1.9 Å. The complex structures indicate that N259 is the key residue that determines the substrate preference of CylI. We also solved the crystal structure of CylI complexed with the alkylresorcinol product at a resolution of 2.0 Å. Structural analysis and mutagenesis experiments suggested that S170 functions as a key residue that determines cyclization specificity. On the basis of this result, a double mutant was engineered to completely switch the cyclization of CylI from aldol condensation to lactonization. This work elucidates the molecular basis of type III PKS in cyanobacteria and lays the foundation for engineering CylI-like enzymes to generate new products.
Collapse
Affiliation(s)
- Hua‐Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
- Institute of Chemical Biology, Shenzhen Bay LaboratoryGaoke Innovation CenterShenzhenPR China
| |
Collapse
|
2
|
Vijayanathan M, Vadakkepat AK, Mahendran KR, Sharaf A, Frandsen KEH, Bandyopadhyay D, Pillai MR, Soniya EV. Structural and mechanistic insights into Quinolone Synthase to address its functional promiscuity. Commun Biol 2024; 7:566. [PMID: 38745065 PMCID: PMC11093982 DOI: 10.1038/s42003-024-06152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
- Department of Plant and Environment Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Abhinav Koyamangalath Vadakkepat
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE17HB, UK
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Abdoallah Sharaf
- SequAna Core Facility, Department of Biology, University of Konstanz, Konstanz, Germany
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Kristian E H Frandsen
- Department of Plant and Environment Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Debashree Bandyopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Eppurath Vasudevan Soniya
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
| |
Collapse
|
3
|
Zabolotneva AA, Gaponov AM, Roumiantsev SA, Vasiliev IY, Grigoryeva TV, Kit OI, Zlatnik EY, Maksimov AY, Goncharova AS, Novikova IA, Appolonova SA, Markin PA, Shestopalov AV. Alkylresorcinols as New Modulators of the Metabolic Activity of the Gut Microbiota. Int J Mol Sci 2023; 24:14206. [PMID: 37762509 PMCID: PMC10532030 DOI: 10.3390/ijms241814206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (-/-) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol's regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (-/-) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (-/-) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism.
Collapse
Affiliation(s)
- Anastasia A. Zabolotneva
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N. I. Pirogov Russian National Research Medical University, 1 Ostrovitianov Str., Moscow 117997, Russia; (S.A.R.); (A.V.S.)
- Russian National Medical Research Center for Endocrinology, 11 Dm. Ulyanova Str., Moscow 117036, Russia
| | - Andrei M. Gaponov
- Center for Digital and Translational Biomedicine «Center for Molecular Health», 32 Nakhimovskiy prospekt, Moscow 117218, Russia
| | - Sergey A. Roumiantsev
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N. I. Pirogov Russian National Research Medical University, 1 Ostrovitianov Str., Moscow 117997, Russia; (S.A.R.); (A.V.S.)
- Russian National Medical Research Center for Endocrinology, 11 Dm. Ulyanova Str., Moscow 117036, Russia
| | - Ilya Yu. Vasiliev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Tatiana V. Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Oleg I. Kit
- National Medical Research Centre for Oncology, 14 Line, 63, Rostov-on-Don 344019, Russia (E.Y.Z.); (A.Y.M.); (A.S.G.); (I.A.N.)
| | - Elena Yu. Zlatnik
- National Medical Research Centre for Oncology, 14 Line, 63, Rostov-on-Don 344019, Russia (E.Y.Z.); (A.Y.M.); (A.S.G.); (I.A.N.)
| | - Aleksey Yu. Maksimov
- National Medical Research Centre for Oncology, 14 Line, 63, Rostov-on-Don 344019, Russia (E.Y.Z.); (A.Y.M.); (A.S.G.); (I.A.N.)
| | - Anna S. Goncharova
- National Medical Research Centre for Oncology, 14 Line, 63, Rostov-on-Don 344019, Russia (E.Y.Z.); (A.Y.M.); (A.S.G.); (I.A.N.)
| | - Inna A. Novikova
- National Medical Research Centre for Oncology, 14 Line, 63, Rostov-on-Don 344019, Russia (E.Y.Z.); (A.Y.M.); (A.S.G.); (I.A.N.)
| | - Svetlana A. Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow 119991, Russia; (S.A.A.); (P.A.M.)
| | - Pavel A. Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow 119991, Russia; (S.A.A.); (P.A.M.)
| | - Aleksandr V. Shestopalov
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N. I. Pirogov Russian National Research Medical University, 1 Ostrovitianov Str., Moscow 117997, Russia; (S.A.R.); (A.V.S.)
- Russian National Medical Research Center for Endocrinology, 11 Dm. Ulyanova Str., Moscow 117036, Russia
- Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela Str., Moscow 117997, Russia
| |
Collapse
|
4
|
Guo H, Ao YF, Wang DX, Wang QQ. Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions. Beilstein J Org Chem 2022; 18:486-496. [PMID: 35601988 PMCID: PMC9086498 DOI: 10.3762/bjoc.18.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
A series of tetraamino-bisthiourea chiral macrocycles containing two diarylthiourea and two chiral diamine units were synthesized by a fragment-coupling approach in high yields. Different chiral diamine units, including cyclohexanediamines and diphenylethanediamines were readily incorporated by both homo and hetero [1 + 1] macrocyclic condensation of bisamine and bisisothiocyanate fragments. With the easy synthesis, gram-scale of macrocycle products can be readily obtained. These chiral macrocycles were applied in catalyzing bioinspired decarboxylative Mannich reactions. Only 5 mol % of the optimal macrocycle catalyst efficiently catalyzed the decarboxylative addition of a broad scope of malonic acid half thioesters to isatin-derived ketimines with excellent yields and good enantioselectivity. The rigid macrocyclic framework and the cooperation between the thiourea and tertiary amine sites were found to be crucial for achieving efficient activation and stereocontrol. As shown in control experiments, catalysis with the acyclic analogues having the same structural motifs were non-selective.
Collapse
Affiliation(s)
- Hao Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chowdhury R, Dubey MK, Waser M. Catalytic Enantioselective Decarboxylative Aldol reactions of Malonic acid half thio(oxy)ester and β‐ketoacids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghunath Chowdhury
- Bhabha Atomic Research Centre Bio-Organic Division Tombay 400085 Mumbai INDIA
| | | | - Mario Waser
- Johannes Kepler Universität Linz: Johannes Kepler Universitat Linz Institute of Organic Chemistry AUSTRIA
| |
Collapse
|
6
|
Kang SH, Lee WH, Sim JS, Thaku N, Chang S, Hong JP, Oh TJ. De novo Transcriptome Assembly of Senna occidentalis Sheds Light on the Anthraquinone Biosynthesis Pathway. FRONTIERS IN PLANT SCIENCE 2022; 12:773553. [PMID: 35046973 PMCID: PMC8761625 DOI: 10.3389/fpls.2021.773553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Senna occidentalis is an annual leguminous herb that is rich in anthraquinones, which have various pharmacological activities. However, little is known about the genetics of S. occidentalis, particularly its anthraquinone biosynthesis pathway. To broaden our understanding of the key genes and regulatory mechanisms involved in the anthraquinone biosynthesis pathway, we used short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) to perform a spatial and temporal transcriptomic analysis of S. occidentalis. This generated 121,592 RNA-Seq unigenes and 38,440 Iso-Seq unigenes. Comprehensive functional annotation and classification of these datasets using public databases identified unigene sequences related to major secondary metabolite biosynthesis pathways and critical transcription factor families (bHLH, WRKY, MYB, and bZIP). A tissue-specific differential expression analysis of S. occidentalis and measurement of the amount of anthraquinones revealed that anthraquinone accumulation was related to the gene expression levels in the different tissues. In addition, the amounts and types of anthraquinones produced differ between S. occidentalis and S. tora. In conclusion, these results provide a broader understanding of the anthraquinone metabolic pathway in S. occidentalis.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Niha Thaku
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
- Genome-Based BioIT Convergence Institute, Asan, South Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, South Korea
| |
Collapse
|
7
|
Yang X, Ma Y, Di H, Wang X, Jin H, Ryu DH, Zhang L. A Mild Method for Access to α‐Substituted Dithiomalonates through C‐Thiocarbonylation of Thioester: Synthesis of Mesoionic Insecticides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyue Yang
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Yanrong Ma
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Huiming Di
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Xiaochen Wang
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Hui Jin
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| | - Do Hyun Ryu
- Department of Chemistry Sungkyunkwan University Suwon 440-746 Korea
| | - Lixin Zhang
- Institute of Functional Molecules Shenyang University of Chemical Technology National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology Liaoning Province Key Laboratory of Green Functional Molecular Design and Development Shenyang 110142 People's Republic of China
| |
Collapse
|
8
|
Xiao P, Pannecoucke X, Bouillon JP, Couve-Bonnaire S. Wonderful fusion of organofluorine chemistry and decarboxylation strategy. Chem Soc Rev 2021; 50:6094-6151. [PMID: 34027960 DOI: 10.1039/d1cs00216c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decarboxylation strategy has been emerging as a powerful tool for the synthesis of fluorine-containing organic compounds that play important roles in various fields such as pharmaceuticals, agrochemicals, and materials science. Considerable progress in decarboxylation has been made over the past decade towards the construction of diverse valuable fluorinated fine chemicals for which the fluorinated part can be brought in two ways. The first way is described as the reaction of non-fluorinated carboxylic acids (and their derivatives) with fluorinating reagents, as well as fluorine-containing building blocks. The second way is dedicated to the exploration and the use of fluorine-containing carboxylic acids (and their derivatives) in decarboxylative transformations. This review aims to provide a comprehensive summary of the development and applications of decarboxylative radical, nucleophilic and cross-coupling strategies in organofluorine chemistry.
Collapse
Affiliation(s)
- Pan Xiao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | | | | |
Collapse
|
9
|
Xavier T, Condon S, Pichon C, Le Gall E, Presset M. Decarboxylative Mannich Reactions with Substituted Malonic Acid Half-Oxyesters. J Org Chem 2021; 86:5452-5462. [PMID: 33822615 DOI: 10.1021/acs.joc.0c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The decarboxylative Mannich reaction between imines and substituted malonic acids half-oxyesters (SMAHOs) has been developed using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an organocatalyst. The reaction proceeds under simple reaction conditions and tolerates a broad range of substrates, affording general access to β2,3-aminoesters, the syn diastereomer being the major one. An alternative multicomponent protocol has also been developed to increase the overall eco-compatibility of the process.
Collapse
Affiliation(s)
- Tania Xavier
- ICMPE, Université Paris Est Créteil, CNRS, ICMPE, UMR7182, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Sylvie Condon
- ICMPE, Université Paris Est Créteil, CNRS, ICMPE, UMR7182, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Christophe Pichon
- ICMPE, Université Paris Est Créteil, CNRS, ICMPE, UMR7182, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Erwan Le Gall
- ICMPE, Université Paris Est Créteil, CNRS, ICMPE, UMR7182, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Marc Presset
- ICMPE, Université Paris Est Créteil, CNRS, ICMPE, UMR7182, 2 rue Henri Dunant, F-94320 Thiais, France
| |
Collapse
|
10
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Larsen JS, Pearson LA, Neilan BA. Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biol Evol 2021; 13:6178795. [PMID: 33739400 PMCID: PMC8086630 DOI: 10.1093/gbe/evab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
Cyanobacteria are prolific producers of natural products, including polyketides and hybrid compounds thereof. Type III polyketide synthases (PKSs) are of particular interest, due to their wide substrate specificity and simple reaction mechanism, compared with both type I and type II PKSs. Surprisingly, only two type III PKS products, hierridins, and (7.7)paracyclophanes, have been isolated from cyanobacteria. Here, we report the mining of 517 cyanobacterial genomes for type III PKS biosynthesis gene clusters. Approximately 17% of the genomes analyzed encoded one or more type III PKSs. Together with already characterized type III PKSs, the phylogeny of this group of enzymes was investigated. Our analysis showed that type III PKSs in cyanobacteria evolved into three major lineages, including enzymes associated with 1) (7.7)paracyclophane-like biosynthesis gene clusters, 2) hierridin-like biosynthesis gene clusters, and 3) cytochrome b5 genes. The evolutionary history of these enzymes is complex, with some sequences partitioning primarily according to speciation and others putatively according to their reaction type. Protein modeling showed that cyanobacterial type III PKSs generally have a smaller active site cavity (mean = 109.035 Å3) compared with enzymes from other organisms. The size of the active site did not correlate well with substrate size, however, the “Gatekeeper” amino acid residues within the active site were strongly correlated to enzyme phylogeny. Our study provides unprecedented insight into the distribution, diversity, and molecular evolution of cyanobacterial type III PKSs, which could facilitate the discovery, characterization, and exploitation of novel enzymes, biochemical pathways, and specialized metabolites from this biosynthetically talented clade of microorganisms.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Leanne Andrea Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Brett Anthony Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
12
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
13
|
Murray LAM, McKinnie SMK, Moore BS, George JH. Meroterpenoid natural products from Streptomyces bacteria - the evolution of chemoenzymatic syntheses. Nat Prod Rep 2020; 37:1334-1366. [PMID: 32602506 PMCID: PMC7578067 DOI: 10.1039/d0np00018c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: Up to January 2020Meroterpenoids derived from the polyketide 1,3,6,8-tetrahydroxynaphthalene (THN) are complex natural products produced exclusively by Streptomyces bacteria. These antibacterial compounds include the napyradiomycins, merochlorins, marinones, and furaquinocins and have inspired many attempts at their chemical synthesis. In this review, we highlight the role played by biosynthetic studies in the stimulation of biomimetic and, ultimately, chemoenzymatic total syntheses of these natural products. In particular, the application of genome mining techniques to marine Streptomyces bacteria led to the discovery of unique prenyltransferase and vanadium-dependent haloperoxidase enzymes that can be used as highly selective biocatalysts in fully enzymatic total syntheses, thus overcoming the limitations of purely chemical reagents.
Collapse
Affiliation(s)
- Lauren A M Murray
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
14
|
Shen X, Wang X, Huang T, Deng Z, Lin S. Naphthoquinone-Based Meroterpenoids from Marine-Derived Streptomyces sp. B9173. Biomolecules 2020; 10:biom10081187. [PMID: 32824158 PMCID: PMC7463872 DOI: 10.3390/biom10081187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Naphthoquinone-based meroterpenoids are hybrid polyketide-terpenoid natural products with chemical diversity and a broad range of biological activities. Here, we report the isolation of a group of naphthoquinone-containing compounds from Streptomyces sp. B9173, and their structures were elucidated by using a combination of spectroscopic techniques, including 1D, 2D NMR, and high-resolution mass (HRMS) analysis. Seven flaviogeranin congeners or intermediates, three of which were new, have been derived from common naphthoquinone backbone and subsequent oxidation, methylation, prenylation, and amino group incorporation. Both flaviogeranin B1 (1) and B (2) contain an amino group which was incorporated into the C8 of 1,3,6,8-terhydroxynaphthalene (THN). Flaviogeranin D (3) contains an intact C-geranylgeranyl residue attached to the C2 of THN, while the O-geranylgeranyl group of 2 links with the hydroxyl on the C2 site of THN. Four compounds were selected and tested for antibacterial activity and cytotoxicity, with 3 and flaviogeranin C2 (5) displaying potent activity against selected bacteria and cancer cell lines. In light of the structure features of isolated compounds and the biosynthetic genes, a biosynthetic pathway of naphthoquinone-based flaviogeranins has been proposed. These isolated compounds not only extend the structural diversity but also represent new insights into the biosynthesis of naphthoquinone-based meroterpenoids.
Collapse
Affiliation(s)
- Xinqian Shen
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University; 800 Dongchuan Rd, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University; 800 Dongchuan Rd, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University; 800 Dongchuan Rd, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University; 800 Dongchuan Rd, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University; 800 Dongchuan Rd, Shanghai 200240, China
| |
Collapse
|
15
|
De Luca D, Lauritano C. In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms. BIOLOGY 2020; 9:E110. [PMID: 32456002 PMCID: PMC7284882 DOI: 10.3390/biology9050110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Marine microalgae are photosynthetic microorganisms at the base of the marine food webs. They are characterized by huge taxonomic and metabolic diversity and several species have been shown to have bioactivities useful for the treatment of human pathologies. However, the compounds and the metabolic pathways responsible for bioactive compound synthesis are often still unknown. In this study, we aimed at analysing the microalgal transcriptomes available in the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) database for an in silico search of polyketide synthase type III homologs and, in particular, chalcone synthase (CHS) and stilbene synthase (STS), which are often referred to as the CHS/STS family. These enzymes were selected because they are known to produce compounds with biological properties useful for human health, such as cancer chemopreventive, anti-inflammatory, antioxidant, anti-angiogenic, anti-viral and anti-diabetic. In addition, we also searched for 4-Coumarate: CoA ligase, an upstream enzyme in the synthesis of chalcones and stilbenes. This study reports for the first time the occurrence of these enzymes in specific microalgal taxa, confirming the importance for microalgae of these pathways and giving new insights into microalgal physiology and possible biotechnological applications for the production of bioactive compounds.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Humanities, Università degli Studi Suor Orsola Benincasa, CAP80135 Naples, Italy
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
16
|
Hyodo K, Nakamura S. Catalytic enantioselective decarboxylative nucleophilic addition reactions using chiral organocatalysts. Org Biomol Chem 2020; 18:2781-2792. [PMID: 32222743 DOI: 10.1039/d0ob00127a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic decarboxylative reactions are attractive as biomimetic and environmentally friendly reaction processes. This review summarizes the recent results of organocatalytic enantioselective decarboxylative reactions of malonic acid half oxy- or thioesters, β-ketoacids, and related compounds from October 2013 to December 2019.
Collapse
Affiliation(s)
- Kengo Hyodo
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shuichi Nakamura
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
17
|
Zhang HQ, Xi JM, Liao WW. Organocatalytic Isomerization/Allylic Alkylation of O-Acylated Hemithioacetals and Their Application in Tandem Sequence to Access 2,7-Dioxabicyclo[2.2.1]heptan-3-one Derivatives. J Org Chem 2020; 85:1168-1180. [PMID: 31878775 DOI: 10.1021/acs.joc.9b03172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel protocol for the efficient preparation of α-hydroxy allylic thioesters via a Lewis base-catalyzed tandem isomerization/allylic alkylation process is reported. The resulting allylic thioesters can serve as valuable scaffolds to undergo a stereoselective intramolecular cyclization to deliver 2,7-dioxabicyclo[2.2.1]heptan-3-one derivatives in a catalytically atom-economic fashion.
Collapse
Affiliation(s)
- Huan-Qing Zhang
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , China
| |
Collapse
|
18
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
19
|
Park JH, Sim JH, Song CE. Direct Access to β-Trifluoromethyl-β-hydroxy Thioesters by Biomimetic Organocatalytic Enantioselective Aldol Reaction. Org Lett 2019; 21:4567-4570. [PMID: 31184184 DOI: 10.1021/acs.orglett.9b01469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A broadly applicable biomimetic enantioselective decarboxylative catalytic aldol reaction of trifluoromethyl ketones with malonic acid half-thioesters (MAHTs) is described. Utilizing cinchona-based thioureas as highly efficient polyketide synthase-mimic catalysts, chiral tertiary aldols, β-trifluoromethyl-β-hydroxy thioesters, were obtained in up to 99% yield and 95% ee. Facile transformation of the thioester moiety of the aldol adducts showcases the synthetic utility of this biomimetic aldol protocol to deliver a range of chiral trifluoromethylated tertiary aldol pharmacophores.
Collapse
Affiliation(s)
- Jin Hyun Park
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Jae Hun Sim
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Choong Eui Song
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| |
Collapse
|
20
|
Genome mining reveals uncommon alkylpyrones as type III PKS products from myxobacteria. J Ind Microbiol Biotechnol 2018; 46:319-334. [PMID: 30506464 DOI: 10.1007/s10295-018-2105-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Type III polyketide synthases (PKSs) are comparatively small homodimeric enzymes affording natural products with diverse structures and functions. While type III PKS biosynthetic pathways have been studied thoroughly in plants, their counterparts from bacteria and fungi are to date scarcely characterized. This gap is exemplified by myxobacteria from which no type III PKS-derived small molecule has previously been isolated. In this study, we conducted a genomic survey of myxobacterial type III PKSs and report the identification of uncommon alkylpyrones as the products of type III PKS biosynthesis from the myxobacterial model strain Myxococcus xanthus DK1622 through a self-resistance-guided screening approach focusing on genes encoding pentapetide repeat proteins, proficient to confer resistance to topoisomerase inhibitors. Using promoter-induced gene expression in the native host as well as heterologous expression of biosynthetic type III PKS genes, sufficient amounts of material could be obtained for structural elucidation and bioactivity testing, revealing potent topoisomerase activity in vitro.
Collapse
|
21
|
Albrecht A. Utilization of Chromone-3-Carboxylic Acids as Acceptors in the Michael-Type Decarboxylative Addition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Albrecht
- Institute of Organic Chemistry; Faculty of Chemistry; Lodz University of Technology; Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
22
|
Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc Natl Acad Sci U S A 2018; 115:9835-9844. [PMID: 30232266 DOI: 10.1073/pnas.1808567115] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Malonyl-CoA is an important central metabolite for the production of diverse valuable chemicals including natural products, but its intracellular availability is often limited due to the competition with essential cellular metabolism. Several malonyl-CoA biosensors have been developed for high-throughput screening of targets increasing the malonyl-CoA pool. However, they are limited for use only in Escherichia coli and Saccharomyces cerevisiae and require multiple signal transduction steps. Here we report development of a colorimetric malonyl-CoA biosensor applicable in three industrially important bacteria: E. coli, Pseudomonas putida, and Corynebacterium glutamicum RppA, a type III polyketide synthase producing red-colored flaviolin, was repurposed as a malonyl-CoA biosensor in E. coli Strains with enhanced malonyl-CoA accumulation were identifiable by the colorimetric screening of cells showing increased red color. Other type III polyketide synthases could also be repurposed as malonyl-CoA biosensors. For target screening, a 1,858 synthetic small regulatory RNA library was constructed and applied to find 14 knockdown gene targets that generally enhanced malonyl-CoA level in E. coli These knockdown targets were applied to produce two polyketide (6-methylsalicylic acid and aloesone) and two phenylpropanoid (resveratrol and naringenin) compounds. Knocking down these genes alone or in combination, and also in multiple different E. coli strains for two polyketide cases, allowed rapid development of engineered strains capable of enhanced production of 6-methylsalicylic acid, aloesone, resveratrol, and naringenin to 440.3, 30.9, 51.8, and 103.8 mg/L, respectively. The malonyl-CoA biosensor developed here is a simple tool generally applicable to metabolic engineering of microorganisms to achieve enhanced production of malonyl-CoA-derived chemicals.
Collapse
|
23
|
Parvez A, Giri S, Bisht R, Saxena P. New Insights on Cyclization Specificity of Fungal Type III Polyketide Synthase, PKSIII Nc in Neurospora crassa. Indian J Microbiol 2018; 58:268-277. [PMID: 30013270 PMCID: PMC6023819 DOI: 10.1007/s12088-018-0738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Type III polyketide synthases (PKSs) biosynthesize varied classes of metabolites with diverse bio-functionalities. Inherent promiscuous substrate specificity, multiple elongations of reaction intermediates and several modes of ring-closure, confer the proteins with the ability to generate unique scaffolds from limited substrate pools. Structural studies have identified crucial amino acid residues that dictate type III PKS functioning, though cyclization specific residues need further investigation. PKSIIINc, a functionally and structurally characterized type III PKS from the fungus, Neurospora crassa, is known to biosynthesize alkyl-resorcinol, alkyl-triketide- and alkyl-tetraketide-α-pyrone products. In this study, we attempted to identify residue positions governing cyclization specificity in PKSIIINc through comparative structural analysis. Structural comparisons with other type III PKSs revealed a motif with conserved hydroxyl/thiol groups that could dictate PKSIIINc catalysis. Site-directed mutagenesis of Cys120 and Ser186 to Ser and Cys, respectively, altered product profiles of mutant proteins. While both C120S and S186C proteins retained wild-type PKSIIINc product activity, S186C favoured lactonization and yielded higher amounts of the α-pyrone products. Notably, C120S gained new cyclization capability and biosynthesized acyl-phloroglucinol in addition to wild-type PKSIIINc products. Generation of alkyl-resorcinol and acyl-phloroglucinol by a single protein is a unique observation in fungal type III PKS family. Mutation of Cys120 to bulky Phe side-chain abrogated formation of tetraketide products and adversely affected overall protein stability as revealed by molecular dynamics simulation studies. Our investigations identify residue positions governing cyclization programming in PKSIIINc protein and provide insights on how subtle variations in protein cores dictate product profiles in type III PKS family.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
- Present Address: Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076 Germany
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| |
Collapse
|
24
|
Murray LAM, McKinnie SMK, Pepper HP, Erni R, Miles ZD, Cruickshank MC, López-Pérez B, Moore BS, George JH. Total Synthesis Establishes the Biosynthetic Pathway to the Naphterpin and Marinone Natural Products. Angew Chem Int Ed Engl 2018; 57:11009-11014. [PMID: 29935040 PMCID: PMC6248334 DOI: 10.1002/anie.201804351] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Indexed: 01/18/2023]
Abstract
The naphterpins and marinones are naphthoquinone meroterpenoids with an unusual aromatic oxidation pattern that is biosynthesized from 1,3,6,8-tetrahydroxynaphthalene (THN). We propose that cryptic halogenation of THN derivatives by vanadium-dependent chloroperoxidase (VCPO) enzymes is key to this biosynthetic pathway, despite the absence of chlorine in these natural products. This speculation inspired a total synthesis to mimic the naphterpin/marinone biosynthetic pathway. In validation of this biogenetic hypothesis, two VCPOs were discovered that interconvert several of the proposed biosynthetic intermediates.
Collapse
Affiliation(s)
- Lauren A. M. Murray
- Department of Chemistry, University of Adelaide Adelaide, SA 5005 (Australia)
| | - Shaun M. K. McKinnie
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanograph, University of California, San Diego, La Jolla, CA 92093 (USA) and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA)
| | - Henry P. Pepper
- Department of Chemistry, University of Adelaide Adelaide, SA 5005 (Australia)
| | - Reto Erni
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanograph, University of California, San Diego, La Jolla, CA 92093 (USA) and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA)
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanograph, University of California, San Diego, La Jolla, CA 92093 (USA) and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA)
| | | | - Borja López-Pérez
- Department of Chemistry, University of Adelaide Adelaide, SA 5005 (Australia)
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanograph, University of California, San Diego, La Jolla, CA 92093 (USA) and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA)
| | - Jonathan H. George
- Department of Chemistry, University of Adelaide Adelaide, SA 5005 (Australia)
| |
Collapse
|
25
|
Murray LAM, McKinnie SMK, Pepper HP, Erni R, Miles ZD, Cruickshank MC, López‐Pérez B, Moore BS, George JH. Total Synthesis Establishes the Biosynthetic Pathway to the Naphterpin and Marinone Natural Products. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Shaun M. K. McKinnie
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanograph University of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Henry P. Pepper
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Reto Erni
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanograph University of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanograph University of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | | | - Borja López‐Pérez
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanograph University of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla CA 92093 USA
| | - Jonathan H. George
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
26
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
27
|
Parvez A, Giri S, Giri GR, Kumari M, Bisht R, Saxena P. Novel Type III Polyketide Synthases Biosynthesize Methylated Polyketides in Mycobacterium marinum. Sci Rep 2018; 8:6529. [PMID: 29695799 PMCID: PMC5916927 DOI: 10.1038/s41598-018-24980-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial pathogenesis is hallmarked by lipidic polyketides that decorate the cell envelope and mediate infection. However, factors mediating persistence remain largely unknown. Dynamic cell wall remodeling could facilitate the different pathogenic phases. Recent studies have implicated type III polyketide synthases (PKSs) in cell wall alterations in several bacteria. Comparative genome analysis revealed several type III pks gene clusters in mycobacteria. In this study, we report the functional characterization of two novel type III PKSs, MMAR_2470 and MMAR_2474, in Mycobacterium marinum. These type III pkss belong to a unique pks genomic cluster conserved exclusively in pathogenic mycobacteria. Cell-free reconstitution assays and high-resolution mass spectrometric analyses revealed methylated polyketide products in independent reactions of both proteins. MMAR_2474 protein exceptionally biosynthesized methylated alkyl-resorcinol and methylated acyl-phloroglucinol products from the same catalytic core. Structure-based homology modeling, product docking, and mutational studies identified residues that could facilitate the distinctive catalysis of these proteins. Functional investigations in heterologous mycobacterial strain implicated MMAR_2474 protein to be vital for mycobacterial survival in stationary biofilms. Our investigations provide new insights into type III PKSs conserved in pathogenic mycobacterial species.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Gorkha Raj Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Monika Kumari
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Biochemistry, University College of Medical Sciences, Delhi, 110095, India
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
28
|
Ramakrishnan D, Tiwari MK, Manoharan G, Sairam T, Thangamani R, Lee JK, Marimuthu J. Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi. Enzyme Microb Technol 2018; 115:16-22. [PMID: 29859598 DOI: 10.1016/j.enzmictec.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Two putative type III polyketide synthase genes (PKS) were identified from Sordariomycetes fungi. These two type III PKS genes from Sordaria macrospora (SmPKS) and Chaetomium thermophilum (CtPKS), shared 59.8% sequence identity. Both, full-length and truncated versions of type III PKSs were successfully cloned and overexpressed in a bacterial host, Escherichia Coli BL21 (DE3) using a N-terminus hexa-histidine tag. The full-length and the truncated construct of PKSs showed similar activity profiles, suggesting that additional amino acid residues at the C-terminal of both SmPKS and CtPKS may not be involved in catalytic functions. We demonstrate that these two recombinant polyketide synthases could efficiently synthesize tri- and tetraketide pyrones, resorcinols and resorcylic acids using various acyl-CoAs (C4-C20) as starter units. The truncated S. macrospora polyketide synthases (TrSmPKS) showed a maximum of 7.0 × 104 s-1 M-1 catalytic efficiency towards stearoyl-CoA.Whereas, truncated C. thermophilum polyketide synthases (TrCtPKS) preferred the long-chain acyl-CoA starter arachidoyl-CoA, to produce pentaketide and hexaketide resorcinols with a high catalytic efficiency of 6.2 × 104 s-1 M-1. Homology model and substrate docking analyses suggest a shorter distance between sulfur of catalytic Cys152 and thioester carbonyl group of arachidoyl-CoA as well as stronger imidazolium-thiolate ion pair distance in TrCtPKS between catalytic Cys152-His309 compared to TrSmPKS- arachidoyl CoA complex. Enhanced binding interactions of CtPKS residues forming intermolecular contacts at the active site could be attributed to its high specificity towards arachidoyl-CoA. This study reports the functional characterization of two fungal type III polyketide synthases, SmPKS and CtPKS with high catalytic efficiency from S. macrospora and C. thermophilum respectively. Furthermore, the results suggested that the both SmPKS and CtPKS could be attractive targets for protein engineering to discern the unique substrate specificity and catalytic efficiency.
Collapse
Affiliation(s)
- Dhivya Ramakrishnan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen,Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Gomathi Manoharan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Thiagarajan Sairam
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Rajesh Thangamani
- Biotechnology Division, CSIR-National Environmental Engineering Research Institute, CMC, Chennai 600113, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeya Marimuthu
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India.
| |
Collapse
|
29
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Stewart C, Woods K, Macias G, Allan AC, Hellens RP, Noel JP. Molecular architectures of benzoic acid-specific type III polyketide synthases. Acta Crystallogr D Struct Biol 2017; 73:1007-1019. [PMID: 29199980 PMCID: PMC5713876 DOI: 10.1107/s2059798317016618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/17/2017] [Indexed: 11/23/2022] Open
Abstract
Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure-function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants.
Collapse
Affiliation(s)
- Charles Stewart
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kate Woods
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Greg Macias
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Joseph P Noel
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Kaur J, Kumari A, Chimni SS. Grinding assisted, column chromatography free decarboxylative carbon-carbon bond formation: Greener synthesis of 3, 3-disubstituted oxindoles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Shimizu Y, Ogata H, Goto S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. Chembiochem 2016; 18:50-65. [DOI: 10.1002/cbic.201600522] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yugo Shimizu
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Hiroyuki Ogata
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Susumu Goto
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
33
|
Exploiting the Biosynthetic Potential of Type III Polyketide Synthases. Molecules 2016; 21:molecules21060806. [PMID: 27338328 PMCID: PMC6274091 DOI: 10.3390/molecules21060806] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.
Collapse
|
34
|
Type III polyketide synthase repertoire in Zingiberaceae: computational insights into the sequence, structure and evolution. Dev Genes Evol 2016; 226:269-85. [PMID: 27138283 DOI: 10.1007/s00427-016-0548-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Zingiberaceae or 'ginger family' is the largest family in the order 'Zingiberales' with more than 1300 species in 52 genera, which are mostly distributed throughout Asia, tropical Africa and the native regions of America with their maximum diversity in Southeast Asia. Many of the members are important spice, medicinal or ornamental plants including ginger, turmeric, cardamom and kaempferia. These plants are distinguished for the highly valuable metabolic products, which are synthesised through phenylpropanoid pathway, where type III polyketide synthase is the key enzyme. In our present study, we used sequence, structural and evolutionary approaches to scrutinise the type III polyketide synthase (PKS) repertoire encoded in the Zingiberaceae family. Highly conserved amino acid residues in the sequence alignment and phylogram suggested strong relationships between the type III PKS members of Zingiberaceae. Sequence and structural level investigation of type III PKSs showed a small number of variations in the substrate binding pocket, leading to functional divergence among these PKS members. Molecular evolutionary studies indicate that type III PKSs within Zingiberaceae evolved under strong purifying selection pressure, and positive selections were rarely detected in the family. Structural modelling and protein-small molecule interaction studies on Zingiber officinale PKS 'a representative from Zingiberaceae' suggested that the protein is comparatively stable without much disorder and exhibited wide substrate acceptance.
Collapse
|
35
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
36
|
Bai X, Jing Z, Liu Q, Ye X, Zhang G, Zhao X, Jiang Z. l-Amino Acid Based Urea–Tertiary Amine-Catalyzed Chemoselective and Asymmetric Stereoablative Carboxylation of 3-Bromooxindoles with Malonic Acid Half Thioesters. J Org Chem 2015; 80:12686-96. [DOI: 10.1021/acs.joc.5b02286] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiangbin Bai
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Zhenzhong Jing
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Qian Liu
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xinyi Ye
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Gao Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China, 475004
- Division
of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
37
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
38
|
A Streptomyces coelicolor host for the heterologous expression of Type III polyketide synthase genes. Microb Cell Fact 2015; 14:145. [PMID: 26376792 PMCID: PMC4573997 DOI: 10.1186/s12934-015-0335-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Recent advances in genome sequencing, combined with bioinformatic analysis, has led to the identification of numerous novel natural product gene clusters, particularly in actinomycetes of terrestrial and marine origin. Many of these gene clusters encode uncharacterised Type III polyketide synthases. To facilitate the study of these genes and their potentially novel products, we set out to construct an actinomycete expression host specifically designed for the heterologous expression of Type III PKS genes and their gene clusters. Results A derivative of Streptomyces coelicolor A3(2) designed for the expression of Type III polyketide synthase (PKS) genes was constructed from the previously engineered expression strain S. coelicolor M1152 [Δact Δred Δcpk Δcda rpoB(C1298T)] by removal of all three of the endogenous Type III PKS genes (gcs,srsA,rppA) by PCR targeting. The resulting septuple deletion mutant, M1317, proved to be an effective surrogate host for the expression of actinobacterial Type III PKS genes: expression of the reintroduced gcs gene from S. coelicolor and of the heterologous rppA gene from Streptomyces venezuelae under the control of the constitutive ermE* promoter resulted in copious production of germicidin and flaviolin, respectively. Conclusions The newly constructed expression host S. coelicolor M1317 should be particularly useful for the discovery and analysis of new Type III polyketide metabolites.
Collapse
|
39
|
Bew SP, Stephenson GR, Rouden J, Ashford PA, Bourane M, Charvet A, Dalstein VMD, Jauseau R, Hiatt-Gipson GD, Martinez-Lozano LA. Bioinspired, Base- and Metal-Free, Mild Decarboxylative Aldol Activation of Malonic Acid Half Thioesters Under Phase-Transfer Reaction Conditions. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Mori T, Yang D, Matsui T, Hashimoto M, Morita H, Fujii I, Abe I. Structural basis for the formation of acylalkylpyrones from two β-ketoacyl units by the fungal type III polyketide synthase CsyB. J Biol Chem 2015; 290:5214-5225. [PMID: 25564614 DOI: 10.1074/jbc.m114.626416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acylalkylpyrone synthase CsyB from Aspergillus oryzae catalyzes the one-pot formation of the 3-acyl-4-hydroxy-6-alkyl-α-pyrone scaffold from acetoacetyl-CoA, fatty acyl-CoA, and malonyl-CoA. This is the first type III polyketide synthase that performs not only the polyketide chain elongation but also the condensation of two β-ketoacyl units. The crystal structures of wild-type CsyB and its I375F and I375W mutants were solved at 1.7-, 2.3-, and 2.0-Å resolutions, respectively. The crystal structures revealed a unique active site architecture featuring a hitherto unidentified novel pocket for accommodation of the acetoacetyl-CoA starter in addition to the conventional elongation/cyclization pocket with the Cys-His-Asn catalytic triad and the long hydrophobic tunnel for binding the fatty acyl chain. The structures also indicated the presence of a putative nucleophilic water molecule activated by the hydrogen bond networks with His-377 and Cys-155 at the active site center. Furthermore, an in vitro enzyme reaction confirmed that the (18)O atom of the H2(18)O molecule is enzymatically incorporated into the final product. These observations suggested that the enzyme reaction is initiated by the loading of acetoacetyl-CoA onto Cys-155, and subsequent thioester bond cleavage by the nucleophilic water generates the β-keto acid intermediate, which is placed within the novel pocket. The second β-ketoacyl unit is then produced by polyketide chain elongation of fatty acyl-CoA with one molecule of malonyl-CoA, and the condensation with the β-keto acid generates the final products. Indeed, steric modulation of the novel pocket by the structure-based I375F and I375W mutations resulted in altered specificities for the chain lengths of the substrates.
Collapse
Affiliation(s)
- Takahiro Mori
- From the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dengfeng Yang
- From the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Matsui
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan, and
| | - Makoto Hashimoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Hiroyuki Morita
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan, and.
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan.
| | - Ikuro Abe
- From the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan,.
| |
Collapse
|
41
|
Ren Q, Gao T, Li W, Wan L, Hu Y, Peng Y, Sun S, Hu L, Wu M, Guo H, Wang J. A highly enantioselective Michael reaction between α,β-unsaturated ketones and malonic acid half-thioesters. NEW J CHEM 2015. [DOI: 10.1039/c5nj00719d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic Michael reaction of enones and malonic acid half thioesters catalyzed by a chiral amine has been developed.
Collapse
Affiliation(s)
- Qiao Ren
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Tao Gao
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Wenjun Li
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Li Wan
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Yimin Hu
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Yanhong Peng
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Shaofa Sun
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Liqiang Hu
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Minghu Wu
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Haibing Guo
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology
- College of Chemistry and Biological Sciences
- Hubei University of Science and Technology
- People's Republic of China
| | - Jian Wang
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|
42
|
Teufel R, Kaysser L, Villaume MT, Diethelm S, Carbullido MK, Baran PS, Moore BS. One-Pot Enzymatic Synthesis of Merochlorin A and B. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Teufel R, Kaysser L, Villaume MT, Diethelm S, Carbullido MK, Baran PS, Moore BS. One-pot enzymatic synthesis of merochlorin A and B. Angew Chem Int Ed Engl 2014; 53:11019-22. [PMID: 25115835 DOI: 10.1002/anie.201405694] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 11/06/2022]
Abstract
The polycycles merochlorin A and B are complex halogenated meroterpenoid natural products with significant antibacterial activities and are produced by the marine bacterium Streptomyces sp. strain CNH-189. Heterologously produced enzymes and chemical synthesis are employed herein to fully reconstitute the merochlorin biosynthesis in vitro. The interplay of a dedicated type III polyketide synthase, a prenyl diphosphate synthase, and an aromatic prenyltransferase allow formation of a highly unusual aromatic polyketide-terpene hybrid intermediate which features an unprecedented branched sesquiterpene moiety from isosesquilavandulyl diphosphate. As supported by in vivo experiments, this precursor is furthermore chlorinated and cyclized to merochlorin A and isomeric merochlorin B by a single vanadium-dependent haloperoxidase, thus completing the remarkably efficient pathway.
Collapse
Affiliation(s)
- Robin Teufel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037 (USA) http://scrippsscholars.ucsd.edu/bsmoore
| | | | | | | | | | | | | |
Collapse
|
44
|
Aldemir H, Richarz R, Gulder TAM. Das biokatalytische Repertoire natürlicher Biarylbildung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Aldemir H, Richarz R, Gulder TAM. The Biocatalytic Repertoire of Natural Biaryl Formation. Angew Chem Int Ed Engl 2014; 53:8286-93. [DOI: 10.1002/anie.201401075] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/04/2023]
|
46
|
Nakamura S. Catalytic enantioselective decarboxylative reactions using organocatalysts. Org Biomol Chem 2013; 12:394-405. [PMID: 24270735 DOI: 10.1039/c3ob42161a] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Catalytic decarboxylative reactions are attractive as biomimetic reactions and environmentally friendly reaction processes. In this review, the origin and recent development of organocatalytic enantioselective decarboxylative reactions of malonic acid half oxy- or thioesters, or β-ketoacids are summarized.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
47
|
Deane CD, Mitchell DA. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor. J Ind Microbiol Biotechnol 2013; 41:315-31. [PMID: 24142337 DOI: 10.1007/s10295-013-1361-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/30/2013] [Indexed: 12/24/2022]
Abstract
Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as "reverse-discovered" natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome-size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs.
Collapse
Affiliation(s)
- Caitlin D Deane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
48
|
Satou R, Miyanaga A, Ozawa H, Funa N, Katsuyama Y, Miyazono KI, Tanokura M, Ohnishi Y, Horinouchi S. Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity. J Biol Chem 2013; 288:34146-34157. [PMID: 24100027 DOI: 10.1074/jbc.m113.487272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.
Collapse
Affiliation(s)
- Ryutaro Satou
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akimasa Miyanaga
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Ozawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobutaka Funa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
49
|
Bae HY, Sim JH, Lee JW, List B, Song CE. Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angew Chem Int Ed Engl 2013; 52:12143-7. [DOI: 10.1002/anie.201306297] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Indexed: 11/07/2022]
|
50
|
Bae HY, Sim JH, Lee JW, List B, Song CE. Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306297] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|