1
|
Marcos-Torres FJ, Juniar L, Griese JJ. The molecular mechanisms of the bacterial iron sensor IdeR. Biochem Soc Trans 2023:233013. [PMID: 37140254 DOI: 10.1042/bst20221539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francisco Javier Marcos-Torres
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-CSIC, 18011 Granada, Spain
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
3
|
Rodriguez GM, Sharma N, Biswas A, Sharma N. The Iron Response of Mycobacterium tuberculosis and Its Implications for Tuberculosis Pathogenesis and Novel Therapeutics. Front Cell Infect Microbiol 2022; 12:876667. [PMID: 35646739 PMCID: PMC9132128 DOI: 10.3389/fcimb.2022.876667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Most pathogenic bacteria require iron for growth. However, this metal is not freely available in the mammalian host. Due to its poor solubility and propensity to catalyze the generation of reactive oxygen species, host iron is kept in solution bound to specialized iron binding proteins. Access to iron is an important factor in the outcome of bacterial infections; iron limitation frequently induces virulence and drives pathogenic interactions with host cells. Here, we review the response of Mycobacterium tuberculosis to changes in iron availability, the relevance of this response to TB pathogenesis, and its potential for the design of new therapeutic interventions.
Collapse
|
4
|
Marcos-Torres FJ, Maurer D, Juniar L, Griese JJ. The bacterial iron sensor IdeR recognizes its DNA targets by indirect readout. Nucleic Acids Res 2021; 49:10120-10135. [PMID: 34417623 PMCID: PMC8464063 DOI: 10.1093/nar/gkab711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
The iron-dependent regulator IdeR is the main transcriptional regulator controlling iron homeostasis genes in Actinobacteria, including species from the Corynebacterium, Mycobacterium and Streptomyces genera, as well as the erythromycin-producing bacterium Saccharopolyspora erythraea. Despite being a well-studied transcription factor since the identification of the Diphtheria toxin repressor DtxR three decades ago, the details of how IdeR proteins recognize their highly conserved 19-bp DNA target remain to be elucidated. IdeR makes few direct contacts with DNA bases in its target sequence, and we show here that these contacts are not required for target recognition. The results of our structural and mutational studies support a model wherein IdeR mainly uses an indirect readout mechanism, identifying its targets via the sequence-dependent DNA backbone structure rather than through specific contacts with the DNA bases. Furthermore, we show that IdeR efficiently recognizes a shorter palindromic sequence corresponding to a half binding site as compared to the full 19-bp target previously reported, expanding the number of potential target genes controlled by IdeR proteins.
Collapse
Affiliation(s)
| | - Dirk Maurer
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
5
|
Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep 2021; 48:6181-6196. [PMID: 34351540 DOI: 10.1007/s11033-021-06611-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome due to the complex physiology of Mycobacterium tuberculosis (Mtb). Alongside the emergence of drug-resistant TB, latent TB has worsened the condition. The tubercle bacilli are unusually behaved and successful with its strategies to modulate genes to evade host immune system and persist within macrophages. Under latent/unfavorable conditions, Mtb conceals itself from immune system and modulates its genes. Among many intracellular modulated genes, important are those involved in cell entry, fatty acid degradation, mycolic acid synthesis, phagosome acidification inhibition, inhibition of phagosome-lysosome complex and chaperon protein modulation. Though the study on these genes date back to early times of TB, an insight on their inter-relation within and to newly evolved genes are still required. This review focuses on the findings and discussions on these genes, possible mechanism, credibility as target for novel drugs and repurposed drugs and their interaction that enables Mtb in survival, pathogenesis, resistance and latency.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties. PLoS Comput Biol 2020; 16:e1007624. [PMID: 32012150 PMCID: PMC7018136 DOI: 10.1371/journal.pcbi.1007624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/13/2020] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Interactions between proteins and nucleic acids are at the heart of many essential biological processes. Despite increasing structural information about how these interactions may take place, our understanding of the usage made of protein surfaces by nucleic acids is still very limited. This is in part due to the inherent complexity associated to protein surface deformability and evolution. In this work, we present a method that contributes to decipher such complexity by predicting protein-DNA interfaces and characterizing their properties. It relies on three biologically and physically meaningful descriptors, namely evolutionary conservation, physico-chemical properties and surface geometry. We carefully assessed its performance on several hundreds of protein structures and compared it to several machine-learning state-of-the-art methods. Our approach achieves a higher sensitivity compared to the other methods, with a similar precision. Importantly, we show that it is able to unravel ‘hidden’ binding sites by applying it to unbound protein structures and to proteins binding to DNA via multiple sites and in different conformations. It is also applicable to the detection of RNA-binding sites, without significant loss of performance. This confirms that DNA and RNA-binding sites share similar properties. Our method is implemented as a fully automated tool, JETDNA2, freely accessible at: http://www.lcqb.upmc.fr/JET2DNA. We also provide a new dataset of 187 protein-DNA complex structures, along with a subset of 82 associated unbound structures. The set represents the largest body of high-resolution crystallographic structures of protein-DNA complexes, use biological protein assemblies as DNA-binding units, and covers all major types of protein-DNA interactions. It is available at: http://www.lcqb.upmc.fr/PDNAbenchmarks. Protein-DNA interactions are essential to living organisms and their impairment is associated to many diseases. For these reasons, they have become increasingly important therapeutic targets. Experimental structure determination has revealed different binding motifs and modes, associated to different functions. Yet, the available structural data gives us only a glimpse of the multiplicity and complexity of protein surface usage by DNA. In this work, we use a three-layer model to describe and predict DNA-binding sites at protein surfaces. Given a protein, we consider the way its residues are conserved through evolution, their physico-chemical properties and geometrical shapes to decrypt its surface. We are able to detect a large portion of interacting residues with good precision, even when they are ‘hidden’ by conformational changes. We highlight cases where one protein binds DNA via distinct regions to perform different functions. We are able to uncover the alternative binding sites and relate their properties with their specific roles. Our work can help guiding mutagenesis experiments and the development of new drugs specifically targeting one site while limiting possible side effects.
Collapse
|
7
|
Rohilla A, Khare G, Tyagi AK. Virtual Screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis. Sci Rep 2017; 7:4653. [PMID: 28680150 PMCID: PMC5498548 DOI: 10.1038/s41598-017-04748-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
ideR, an essential gene of Mycobacterium tuberculosis, is an attractive drug target as its conditional knockout displayed attenuated growth phenotype in vitro and in vivo. To the best of our knowledge, no inhibitors of IdeR are identified. We carried out virtual screening of NCI database against the IdeR DNA binding domain followed by inhibition studies using EMSA. Nine compounds exhibited potent inhibition with NSC 281033 (I-20) and NSC 12453 (I-42) exhibiting IC50 values of 2 µg/ml and 1 µg/ml, respectively. We then attempted to optimize the leads firstly by structure based similarity search resulting in a class of inhibitors based on I-42 containing benzene sulfonic acid, 4-hydroxy-3-[(2-hydroxy-1-naphthalenyl) azo] scaffold with 4 molecules exhibiting IC50 ≤ 10 µg/ml. Secondly, optimization included development of energy based pharmacophore and screening of ZINC database followed by docking studies, yielding a molecule with IC50 of 60 µg/ml. More importantly, a five-point pharmacophore model provided insight into the features essential for IdeR inhibition. Five molecules with promising IC50 values also inhibited M. tuberculosis growth in broth culture with MIC90 ranging from 17.5 µg/ml to 100 µg/ml and negligible cytotoxicity in various cell lines. We believe our work opens up avenues for further optimization studies.
Collapse
Affiliation(s)
- Akshay Rohilla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez road, New Delhi, 110021, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez road, New Delhi, 110021, India.
| | - Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez road, New Delhi, 110021, India. .,Vice Chancellor, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, India.
| |
Collapse
|
8
|
Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake. J Bacteriol 2016; 198:2399-409. [PMID: 27402628 DOI: 10.1128/jb.00359-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe(3+)-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases.
Collapse
|
9
|
Patel SJ, Lewis BE, Long JE, Nambi S, Sassetti CM, Stemmler TL, Argüello JM. Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases. J Biol Chem 2016; 291:11529-39. [PMID: 27022029 DOI: 10.1074/jbc.m116.718239] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
Little is known about iron efflux transporters within bacterial systems. Recently, the participation of Bacillus subtilis PfeT, a P1B4-ATPase, in cytoplasmic Fe(2+) efflux has been proposed. We report here the distinct roles of mycobacterial P1B4-ATPases in the homeostasis of Co(2+) and Fe(2+) Mutation of Mycobacterium smegmatis ctpJ affects the homeostasis of both ions. Alternatively, an M. tuberculosis ctpJ mutant is more sensitive to Co(2+) than Fe(2+), whereas mutation of the homologous M. tuberculosis ctpD leads to Fe(2+) sensitivity but no alterations in Co(2+) homeostasis. In vitro, the three enzymes are activated by both Fe(2+) and Co(2+) and bind 1 eq of either ion at their transport site. However, equilibrium binding affinities and activity kinetics show that M. tuberculosis CtpD has higher affinity for Fe(2+) and twice the Fe(2+)-stimulated activity than the CtpJs. These parameters are paralleled by a lower activation and affinity for Co(2+) Analysis of Fe(2+) and Co(2+) binding to CtpD by x-ray absorption spectroscopy shows that both ions are five- to six-coordinate, constrained within oxygen/nitrogen environments with similar geometries. Mutagenesis studies suggest the involvement of invariant Ser, His, and Glu residues in metal coordination. Interestingly, replacement of the conserved Cys at the metal binding pocket leads to a large reduction in Fe(2+) but not Co(2+) binding affinity. We propose that CtpJ ATPases participate in the control of steady state Fe(2+) levels. CtpD, required for M. tuberculosis virulence, is a high affinity Fe(2+) transporter involved in the rapid response to iron dyshomeostasis generated upon redox stress.
Collapse
Affiliation(s)
- Sarju J Patel
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Brianne E Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - José M Argüello
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609,
| |
Collapse
|
10
|
Ghosh S, Chandra N, Vishveshwara S. Mechanism of Iron-Dependent Repressor (IdeR) Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study. PLoS Comput Biol 2015; 11:e1004500. [PMID: 26699663 PMCID: PMC4689551 DOI: 10.1371/journal.pcbi.1004500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.
Collapse
Affiliation(s)
- Soma Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Saraswathi Vishveshwara
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Hameed S, Pal R, Fatima Z. Iron Acquisition Mechanisms: Promising Target Against Mycobacterium tuberculosis. Open Microbiol J 2015; 9:91-7. [PMID: 26464608 PMCID: PMC4598388 DOI: 10.2174/1874285801509010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 02/04/2023] Open
Abstract
Continuous deployment of antitubercular drugs in treating Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed as Multi-Drug Resistance (MDR-TB). Despite reasonable documentation of major factors which contribute to MDR mechanisms, it appears unavoidable to consider novel mechanisms combating MDR. The ability of pathogenic MTB, to sense and become accustomed to changes in the host environment is essential for its survival and confers the basis of their success as dreadful pathogen. One such significant environmental factor that MTB must surmount is iron limitation, since they encounter diverse anatomical sites during the establishment of infection within the host. Considering the importance of MTB, being the second most common cause of mortality, this review focuses on gaining insights of iron acquisition mechanisms in MTB and how it can be exploited as efficient anti-mycobacterial drug target.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| | - Rahul Pal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| |
Collapse
|
12
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
13
|
Pandey R, Rodriguez GM. IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol Microbiol 2013; 91:98-109. [PMID: 24205844 DOI: 10.1111/mmi.12441] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 01/07/2023]
Abstract
Iron is an essential but potentially harmful nutrient, poorly soluble in aerobic conditions, and not freely available in the human host. To acquire iron, bacteria have evolved high affinity iron acquisition systems that are expressed under iron limitation often in conjunction with virulence determinants. Because excess iron can be dangerous, intracellular iron must be tightly controlled. In mycobacteria, IdeR functions as a global iron dependent transcriptional regulator, but because inactivation of ideR is lethal for Mycobacterium tuberculosis, it has not been possible to use genetics to fully characterize this protein's function or examine the requirement of iron regulation during tuberculosis infection. In this work, a conditional M. tuberculosis ideR mutant was generated and used to study the basis of IdeR's essentiality. This investigation uncovered positive regulation of iron storage as a critical aspect of IdeR's function in regular culture and a prominent factor for survival under stresses associated with life in macrophages. Moreover, this study demonstrates that IdeR is indispensable in the mouse model of tuberculosis, thereby linking iron homeostasis to virulence in M. tuberculosis.
Collapse
Affiliation(s)
- Ruchi Pandey
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| | | |
Collapse
|
14
|
Cloning, expression, purification and characterization of an iron-dependent regulator protein from Thermobifida fusca. Protein Expr Purif 2013; 92:190-4. [PMID: 24084005 DOI: 10.1016/j.pep.2013.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022]
Abstract
Iron-dependent regulators (IdeRs) control the transcription of a variety of genes associated with iron homeostasis in Gram-positive bacteria. In this study we report the cloning of a putative IdeR gene from the moderate thermophile Thermobifida fusca into the pET-21a(+) expression vector. The expressed protein, Tf-IdeR, was purified using immobilized metal affinity and size-exclusion chromatography, and yielded approximately 12-16 mg of protein per liter of culture. The purified Tf-IdeR protein binds the tox operator sequence in the presence of divalent metal ions. Two Tf-IdeR binding sites were identified in the T. fusca genome upstream of a putative enterobactin exporter and a putative ABC-type multidrug transporter.
Collapse
|
15
|
Merchant AT, Spatafora GA. A role for the DtxR family of metalloregulators in gram-positive pathogenesis. Mol Oral Microbiol 2013; 29:1-10. [PMID: 24034418 DOI: 10.1111/omi.12039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
Given the central role of transition metal ions in a variety of biochemical processes, the colonization, survival, and proliferation of a bacterium within a host hinges upon its ability to overcome the metal ion deprivation that characterizes nutritional immunity. Metalloregulatory, or 'metal-sensing' proteins have evolved in bacteria to mediate metal ion homeostasis by activating or repressing the expression of genes encoding metal ion transport systems upon binding their cognate metal ion. Yet increasing evidence in the literature supports an additional role for these metalloregulatory proteins in pathogenesis. Herein, we survey studies on the DtxR family of metalloregulators, namely DtxR (Cornyebacterium diphtheriae), SloR (Streptococcus mutans), MtsR (Streptococcus pyogenes), and MntR (Staphylococcus aureus) to describe how metalloregulation enables adaptive virulence gene expression within the mammalian host. This research has important implications for drug design, as the generation of hyper-repressive metalloregulatory proteins may represent a mechanism by which to attenuate bacterial pathogenicity. The fact that metalloregulators are unique to prokaryotes makes these proteins especially attractive therapeutic targets.
Collapse
Affiliation(s)
- A T Merchant
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | | |
Collapse
|
16
|
Stapleton B, Walker LR, Logan TM. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis. Biochemistry 2013; 52:1927-38. [PMID: 23432191 DOI: 10.1021/bi301608p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.
Collapse
Affiliation(s)
- Brian Stapleton
- Department of Chemistry and Biochemistry, 102 Varsity Way, Florida State University, Tallahassee, Florida 32306-4390, United States
| | | | | |
Collapse
|
17
|
Characterization of the functional domains of the SloR metalloregulatory protein in Streptococcus mutans. J Bacteriol 2012; 195:126-34. [PMID: 23104811 DOI: 10.1128/jb.01648-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a commensal member of the healthy plaque biofilm and the primary causative agent of dental caries. The present study is an investigation of SloR, a 25-kDa metalloregulatory protein that modulates genes responsible for S. mutans-induced cariogenesis. Previous studies of SloR homologues in other bacterial pathogens have identified three domains critical to repressor functionality: an N-terminal DNA-binding domain, a central dimerization domain, and a C-terminal FeoA (previously SH3-like) domain. We used site-directed mutagenesis to identify critical amino acid residues within each of these domains of the SloR protein. Select residues were targeted for mutagenesis, and nonconservative amino acid substitutions were introduced by overlap extension PCR. Furthermore, three C-terminally truncated SloR variants were generated using conventional PCR. The repressor functionality and DNA-binding ability of each variant was assessed using CAT reporter gene assays, real-time semiquantitative reverse transcriptase (qRT)-PCR, and electrophoretic mobility shift assays. We identified 12 residues within SloR that cause significant derepression of sloABC promoter activity (P < 0.05) compared to the results for wild-type SloR. Derepression was particularly noteworthy in metal ion-binding site 1 mutants, consistent with the site's importance in gene repression by SloR. In addition, a hyperactive SloR(E169A/Q170A) mutant was identified as having significantly heightened repression of sloABC promoter activity, and experiments with C-terminal deletion mutants support involvement of the FeoA domain in SloR-mediated gene repression. Given these results, we describe the functional domains of the S. mutans SloR protein and propose that the hyperactive mutant could serve as a target for rational drug design aimed at repressing SloR-mediated virulence gene expression.
Collapse
|
18
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
19
|
Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE. Iron acquisition, assimilation and regulation in mycobacteria. INFECTION GENETICS AND EVOLUTION 2011; 11:825-38. [PMID: 21414421 DOI: 10.1016/j.meegid.2011.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/28/2022]
Abstract
Iron is as crucial to the pathogen as it is to the host. The tuberculosis causing bacillus, Mycobacterium tuberculosis (M.tb), is an exceptionally efficient pathogen that has evolved proficient mechanisms to sequester iron from the host despite its thick mycolate-rich outer covering and a highly impermeable membrane of phagolysosome within which it persists inside an infected host macrophage. Further, both overindulgence and moderation of iron inside a host are a threat to mycobacterial persistence. While for removing iron from the host reservoirs, mycobacteria synthesize molecules that have several times higher affinity for iron than their host counterparts, they also synthesize molecules for efficient storage of excess iron. This is supported by tightly regulated iron dependent global gene expressions. In this review we discuss the various molecules and pathways evolved by mycobacteria for an efficient iron metabolism. We also discuss the less investigated players, like iron responsive proteins and iron responsive elements in mycobacteria, and highlight the lacunae in our current understanding of iron acquisition and utilization in mycobacteria with an ultimate aim to make iron metabolism as a possible anti-mycobacterial target.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
20
|
Fang X, Wallqvist A, Reifman J. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2009; 3:92. [PMID: 19754970 PMCID: PMC2759933 DOI: 10.1186/1752-0509-3-92] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 09/15/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide novel opportunities for therapeutic intervention. RESULTS We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and a dynamic cell population growth model, we quantitatively modeled and predicted the dose-response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl) adenosine inhibitor in a medium with low-iron concentration. CONCLUSION The predicted results quantitatively reproduced the experimentally measured dose-response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/constraints, and growth media, our model captured the essential chemical and biological factors that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.
Collapse
Affiliation(s)
- Xin Fang
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U,S, Army Medical Research and Materiel Command, Ft, Detrick, MD 21702, USA.
| | | | | |
Collapse
|
21
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
22
|
Nesbit AD, Giel JL, Rose JC, Kiley PJ. Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol 2009; 387:28-41. [PMID: 19361432 DOI: 10.1016/j.jmb.2009.01.055] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/08/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
IscR is an Fe-S protein that functions as a transcriptional regulator of Fe-S biogenesis and other Fe-S protein-encoding genes in Escherichia coli. In this study, we investigated the requirement for the ligation of the [2Fe-2S] cluster of IscR to regulate a subset of IscR target promoters (P(hyaA), P(ydiU), P(napF), and P(hybO)) and defined the requirements for sequence-specific binding to the IscR target site in the hyaA promoter region. In contrast to previous results with the iscR promoter, we found that the Fe-S cluster is dispensable for IscR regulation of P(hyaA), P(ydiU), P(napF), and P(hybO), since IscR mutants containing alanine substitutions of the cysteine Fe-S ligands retained IscR-dependent regulation of these promoters in vivo. In vitro assays showed that both [2Fe-2S]-IscR and an IscR mutant lacking the cluster (IscR-C92A/C98A/C104A) bound the hya site with similar affinity, explaining why the mutant protein retained its ability to repress P(hyaA) in vivo. Characterization of the oligomeric state of IscR showed that both apo-IscR and [2Fe-2S]-IscR were dimers in solution, and four protomers of either form bound to the hya site. Also, binding of either apo- or [2Fe-2S]-IscR to the hya site showed cooperativity, suggesting that both forms interact similarly with the target site. Analysis of mutations in the hya site using DNA competition assays showed that apo-IscR most likely recognizes an imperfect palindrome within the hya promoter. Furthermore, the strength of apo-IscR binding to P(sufA), P(ydiU), P(napF), and P(hybO) IscR sites correlated with the number of matches to the hya site bases shown to be important in the competition assay. Thus, our data indicated that, unexpectedly, apo-IscR is a site-specific DNA-binding protein, and the role of apo-IscR needs to be considered in developing models for how IscR globally regulates transcription.
Collapse
Affiliation(s)
- A D Nesbit
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
23
|
Heather Z, Holden MTG, Steward KF, Parkhill J, Song L, Challis GL, Robinson C, Davis-Poynter N, Waller AS. A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol 2009; 70:1274-92. [PMID: 18990191 PMCID: PMC3672683 DOI: 10.1111/j.1365-2958.2008.06481.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we determined the function of a novel non-ribosomal peptide synthetase (NRPS) system carried by a streptococcal integrative conjugative element (ICE), ICESe2. The NRPS shares similarity with the yersiniabactin system found in the high-pathogenicity island of Yersinia sp. and is the first of its kind to be identified in streptococci. We named the NRPS product 'equibactin' and genes of this locus eqbA-N. ICESe2, although absolutely conserved in Streptococcus equi, the causative agent of equine strangles, was absent from all strains of the closely related opportunistic pathogen Streptococcus zooepidemicus. Binding of EqbA, a DtxR-like regulator, to the eqbB promoter was increased in the presence of cations. Deletion of eqbA resulted in a small-colony phenotype. Further deletion of the irp2 homologue eqbE, or the genes eqbH, eqbI and eqbJ encoding a putative ABC transporter, or addition of the iron chelator nitrilotriacetate, reversed this phenotype, implicating iron toxicity. Quantification of (55)Fe accumulation and sensitivity to streptonigrin suggested that equibactin is secreted by S. equi and that the eqbH, eqbI and eqbJ genes are required for its associated iron import. In agreement with a structure-based model of equibactin synthesis, supplementation of chemically defined media with salicylate was required for equibactin production.
Collapse
Affiliation(s)
- Zoe Heather
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ranjan S, Yellaboina S, Ranjan A. IdeR in Mycobacteria: From Target Recognition to Physiological Function. Crit Rev Microbiol 2008; 32:69-75. [PMID: 16809230 DOI: 10.1080/10408410600709768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In mycobacteria, iron dependent transcription regulator (IdeR) regulates transcription of genes in response to iron levels. The IdeR regulated genes have been investigated mostly in M. tuberculosis, M. smegmatis, and in few of the other related species. Recent advances in crystal structure solution and computational as well as experimental identification of IdeR targets has provided insight into IdeR structure and function. Here in this review we take stock of current state of knowledge on IdeR and its targets to understand the underlying design of the IdeR regulon and its role in mycobacterial physiology.
Collapse
Affiliation(s)
- Sarita Ranjan
- Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| | | | | |
Collapse
|
25
|
Brett PJ, Burtnick MN, Fenno JC, Gherardini FC. Treponema denticola TroR is a manganese- and iron-dependent transcriptional repressor. Mol Microbiol 2008; 70:396-409. [PMID: 18761626 PMCID: PMC2628430 DOI: 10.1111/j.1365-2958.2008.06418.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola harbours a genetic locus with significant homology to most of the previously characterized Treponema pallidum tro operon. Within this locus are five genes (troABCDR) encoding for the components of an ATP-binding cassette cation-transport system (troABCD) and a DtxR-like transcriptional regulator (troR). In addition, a sigma(70)-like promoter and an 18 bp region of dyad symmetry were identified upstream of the troA start codon. This putative operator sequence demonstrated similarity to the T. pallidum TroR (TroR(Tp)) binding sequence; however, the position of this motif with respect to the predicted tro promoters differed. Interestingly, unlike the T. pallidum orthologue, T. denticola TroR (TroR(Td)) possesses a C-terminal Src homology 3-like domain commonly associated with DtxR family members. In the present study, we show that TroR(Td) is a manganese- and iron-dependent transcriptional repressor using Escherichia coli reporter constructs and in T. denticola. In addition, we demonstrate that although TroR(Td) possessing various C-terminal deletions maintain metal-sensing capacities, these truncated proteins exhibit reduced repressor activities in comparison with full-length TroR(Td). Based upon these findings, we propose that TroR(Td) represents a novel member of the DtxR family of transcriptional regulators and is likely to play an important role in regulating both manganese and iron homeostases in this spirochaete.
Collapse
Affiliation(s)
- Paul J Brett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
26
|
Tomioka H. Development of new antituberculous agents based on new drug targets and structure–activity relationship. Expert Opin Drug Discov 2007; 3:21-49. [DOI: 10.1517/17460441.3.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Liu C, Mao K, Zhang M, Sun Z, Hong W, Li C, Peng B, Chang Z. The SH3-like domain switches its interaction partners to modulate the repression activity of mycobacterial iron-dependent transcription regulator in response to metal ion fluctuations. J Biol Chem 2007; 283:2439-53. [PMID: 18055464 DOI: 10.1074/jbc.m706580200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-dependent regulator (IdeR), a metal ion-activated pleiotropic transcription factor, plays a critical role in maintaining the intracellular iron homeostasis in Mycobacteria, which is important for the normal growth of the cells. This study was initially performed in an attempt to elucidate all potential interactions between the various domains of IdeR that occur in living mycobacterial cells. This led to a hitherto unidentified self-association for the SH3-like domain of IdeR. Further studies demonstrate that the SH3-like domain interacts with different partners in the dimeric forms of IdeR depending on the levels of metal ions in the environment: it undergoes inter-subunit self-association in the metal-free DNA-non-binding form, but interacts with the N-terminal domain in the metal-bound DNA-binding form in an intra-subunit manner to finely modulate the transcription repression activity of IdeR. Our more detailed mapping studies reveal that the SH3-like domain uses an overlapping surface to participate in these two interactions, which therefore occur in a mutually exclusive fashion. This novel mechanism would allow an effective and cooperative interconversion between the two functional forms of IdeR. Our data also demonstrate that a disturbance of the interactions involving the SH3-like domain impairs the transcription repression activity of IdeR and delays the growth of mycobacterial cells.
Collapse
Affiliation(s)
- Chong Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bhattacharya N, Yi M, Zhou HX, Logan TM. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR. J Mol Biol 2007; 374:977-92. [PMID: 17976643 DOI: 10.1016/j.jmb.2007.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/09/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting beta-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 mus time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding<-->unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.
Collapse
Affiliation(s)
- Nilakshee Bhattacharya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
29
|
Basaraba RJ, Bielefeldt-Ohmann H, Eschelbach EK, Reisenhauer C, Tolnay AE, Taraba LC, Shanley CA, Smith EA, Bedwell CL, Chlipala EA, Orme IM. Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig. Tuberculosis (Edinb) 2007; 88:69-79. [PMID: 17942369 DOI: 10.1016/j.tube.2007.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/26/2007] [Accepted: 09/09/2007] [Indexed: 11/25/2022]
Abstract
The growth and virulence of Mycobacterium tuberculosis depends on its ability to scavenge host iron, an essential and limited micronutrient in vivo. In this study, we show that ferric iron accumulates both intra- and extra-cellularly in the primary lung lesions of guinea pigs aerosol-infected with the H37Rv strain of M. tuberculosis. Iron accumulated within macrophages at the periphery of the primary granulomatous lesions while extra-cellular ferric iron was concentrated in areas of lesion necrosis. Accumulation of iron within primary lesions was preceded by an increase in expression of heavy chain (H) ferritin, lactoferrin and receptors for transferrin, primarily by macrophages and granulocytes. The increased expression of intra-cellular H ferritin and extra-cellular lactoferrin, more so than transferrin receptor, paralleled the development of necrosis within primary lesions. The deposition of extra-cellular ferric iron within necrotic foci coincided with the accumulation of calcium and phosphorus and other cations in the form of dystrophic calcification. Primary lung lesions from guinea pigs vaccinated with Mycobactrium bovis BCG prior to experimental infection, had reduced iron accumulation as well as H ferritin, lactoferrin and transferrin receptor expression. The amelioration of primary lesion necrosis and dystrophic calcification by BCG vaccination was coincident with the lack of extra-cellular ferric iron and lactoferrin accumulation. These data demonstrate that BCG vaccination ameliorates primary lesion necrosis, dystrophic mineralization and iron accumulation, in part by down-regulating the expression of macrophage H ferritin, lactoferrin and transferrin receptors, in vivo.
Collapse
Affiliation(s)
- Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Golynskiy MV, Gunderson WA, Hendrich MP, Cohen SM. Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry 2006; 45:15359-72. [PMID: 17176058 PMCID: PMC2561245 DOI: 10.1021/bi0607406] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Manganese transport regulator (MntR) is a member of the diphtheria toxin repressor (DtxR) family of transcription factors that is responsible for manganese homeostasis in Bacillus subtilis. Prior biophysical studies have focused on the metal-mediated DNA binding of MntR [Lieser, S. A., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2003) Biochemistry 42, 12634-12642], as well as metal stabilization of the MntR structure [Golynskiy, M. V., Davis, T. C., Helmann, J. D., and Cohen, S. M. (2005) Biochemistry 44, 3380-3389], but only limited data on the metal-binding affinities for MntR are available. Herein, the metal-binding affinities of MntR were determined by using electron paramagnetic resonance (EPR) spectroscopy, as well as competition experiments with the fluorimetric dyes Fura-2 and Mag-fura-2. MntR was not capable of competing with Fura-2 for the binding of transition metal ions. Therefore, the metal-binding affinities and stoichiometries of Mag-fura-2 for Mn2+, Co2+, Ni2+, Zn2+, and Cd2+ were determined and utilized in MntR/Mag-fura-2 competition experiments. The measured Kd values for MntR metal binding are comparable to those reported for DtxR metal binding [Kd from 10(-)7 to 10(-4) M; D'Aquino, J. A., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 18408-18413], AntR [a homologue from Bacillus anthracis; Sen, K. I. et al. (2006) Biochemistry 45, 4295-4303], and generally follow the Irving-Williams series. Direct detection of the dinuclear Mn2+ site in MntR with EPR spectroscopy is presented, and the exchange interaction was determined, J = -0.2 cm-1. This value is lower in magnitude than most known dinuclear Mn2+ sites in proteins and synthetic complexes and is consistent with a dinuclear Mn2+ site with a longer Mn...Mn distance (4.4 A) observed in some of the available crystal structures. MntR is found to have a surprisingly low binding affinity (approximately 160 microM) for its cognate metal ion Mn2+. Moreover, the results of DNA binding studies in the presence of limiting metal ion concentrations were found to be consistent with the measured metal-binding constants. The metal-binding affinities of MntR reported here help to elucidate the regulatory mechanism of this metal-dependent transcription factor.
Collapse
Affiliation(s)
- Misha V Golynskiy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA
| | | | | | | |
Collapse
|
31
|
Rodionov DA, Gelfand MS, Todd JD, Curson ARJ, Johnston AWB. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2006; 2:e163. [PMID: 17173478 PMCID: PMC1698941 DOI: 10.1371/journal.pcbi.0020163] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/18/2006] [Indexed: 01/08/2023] Open
Abstract
We used comparative genomics to investigate the distribution of conserved DNA-binding motifs in the regulatory regions of genes involved in iron and manganese homeostasis in alpha-proteobacteria. Combined with other computational approaches, this allowed us to reconstruct the metal regulatory network in more than three dozen species with available genome sequences. We identified several classes of cis-acting regulatory DNA motifs (Irr-boxes or ICEs, RirA-boxes, Iron-Rhodo-boxes, Fur-alpha-boxes, Mur-box or MRS, MntR-box, and IscR-boxes) in regulatory regions of various genes involved in iron and manganese uptake, Fe-S and heme biosynthesis, iron storage, and usage. Despite the different nature of the iron regulons in selected lineages of alpha-proteobacteria, the overall regulatory network is consistent with, and confirmed by, many experimental observations. This study expands the range of genes involved in iron homeostasis and demonstrates considerable interconnection between iron-responsive regulatory systems. The detailed comparative and phylogenetic analyses of the regulatory systems allowed us to propose a theory about the possible evolution of Fe and Mn regulons in alpha-proteobacteria. The main evolutionary event likely occurred in the common ancestor of the Rhizobiales and Rhodobacterales, where the Fur protein switched to regulating manganese transporters (and hence Fur had become Mur). In these lineages, the role of global iron homeostasis was taken by RirA and Irr, two transcriptional regulators that act by sensing the physiological consequence of the metal availability rather than its concentration per se, and thus provide for more flexible regulation. The availability of hundreds of complete genomes allows one to use comparative genomics to describe key metabolic processes and regulatory gene networks. Genome context analyses and comparisons of transcription factor binding sites between genomes offer a powerful approach for functional gene annotation. Reconstruction of transcriptional regulatory networks allows for better understanding of cellular processes, which can be substantiated by direct experimentation. Iron homeostasis in bacteria is conferred by the regulation of various iron uptake transporters, iron storage ferritins, and iron-containing enzymes. In high concentrations, iron is poisonous for the cell, so strict control of iron homeostasis is maintained, mostly at the level of transcription by iron-responsive regulators. Despite their general importance, iron regulatory networks in most bacterial species are not well-understood. In this study, Rodionov and colleagues applied comparative genomic approaches to describe the regulatory network formed by genes involved in iron homeostasis in the alpha subclass of proteobacteria, which have extremely versatile lifestyles. These networks are mediated by a set of various DNA motifs (or regulatory signals) that occur in 5′ gene regions and involve at least six different metal-responsive regulators. This study once again shows the power of comparative genomics in the analysis of complex regulatory networks and their evolution.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
32
|
Schnappinger D, Schoolnik GK, Ehrt S. Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another. Microbes Infect 2006; 8:1132-40. [PMID: 16517202 DOI: 10.1016/j.micinf.2005.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/19/2005] [Indexed: 01/09/2023]
Abstract
It has recently become feasible to quantify all mRNAs encoded by the genomes of bacterial pathogens and their eukaryotic host cells and to apply this approach to study the interaction of Mycobacterium tuberculosis with its primary host cell, the macrophage. These studies helped to identify regulatory circuits which mediate adaptation of the M. tuberculosis transcriptome to intraphagosomal environments and stimulated hypotheses for the function of these circuits in human tuberculosis. The macrophage transcriptome reacts to infections with the induction of a pathogen-unspecific expression program as well as the induction of pathogen-specific expression signatures, both of which contribute to the immunologic activation of the infected cell. M. tuberculosis induced changes in the macrophage transcriptome are mediated by Toll-like receptor dependent and Toll-like receptor independent signal transduction pathways. This response is shaped by macrophage produced reactive nitrogen and oxygen molecules and affected by viability and virulence of the pathogen.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
33
|
|