1
|
Pang Y, Zhou Y, Wang Y, Fang L, Xiao S. Lactate-lactylation-HSPA6 axis promotes PRRSV replication by impairing IFN-β production. J Virol 2024; 98:e0167023. [PMID: 38088561 PMCID: PMC10804950 DOI: 10.1128/jvi.01670-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Lactate, traditionally considered a metabolic by-product, has recently been identified as a substrate for the induction of lactylation, a newly identified epigenetic modification that plays an important role in the regulation of host gene expression. Our previous study showed that lactate levels were significantly elevated in cells infected with the porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, the role of elevated lactate in PRRSV infections remains unknown. In this study, we found that lactate was required for optimal PRRSV proliferation, and PRRSV infection increased cellular lactylation in a dose-dependent manner. Using the Cleavage Under Targets and Tagmentation (CUT&Tag) combined with RNA sequencing (RNA-seq) to screen the downstream genes regulated by lactylation in PRRSV-infected cells, we found that PRRSV-induced lactylation activated the expression of heat shock 70 kDa protein 6 (HSPA6). Follow-up experiments showed that HSPA6 is important for PRRSV proliferation by negatively modulating interferon (IFN)-β induction. Mechanistically, HSPA6 impeded the interaction between TNF-receptor-associated factor 3 (TRAF3) and inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε), thereby hindering the production of IFN-β. Taken together, these results indicate that the activated lactate-lactylation-HSPA6 axis promotes viral growth by impairing IFN-β induction, providing new therapeutic targets for the prevention and control of PRRSV infection. The results presented here also link lactylation to the virus life cycle, improving our understanding of epigenetic regulation in viral infection.IMPORTANCEAs a newly identified epigenetic modification, lactate-induced lactylation has received attentions because it plays important roles in gene expression and contributes to tumorigenesis and the innate immune response. Previous studies showed that many viruses upregulate cellular lactate levels; however, whether virus-elevated lactate induces lactylation and the subsequent biological significance of the modification to viral infection have not been reported. In this study, we demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection induced cellular lactylation, which, in turn, upregulated the expression of HSPA6, an IFN-negative regulator. We also dissected the mechanism by which HSPA6 negatively regulates IFN-β production. To our knowledge, this is the first report to study virus-induced lactylation and establish the relationship between lactylation and virus infection.
Collapse
Affiliation(s)
- Yu Pang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanrong Zhou
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yucheng Wang
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Wu HT, Chen WT, Li GW, Shen JX, Ye QQ, Zhang ML, Chen WJ, Liu J. Analysis of the Differentially Expressed Genes Induced by Cisplatin Resistance in Oral Squamous Cell Carcinomas and Their Interaction. Front Genet 2019; 10:1328. [PMID: 32038705 PMCID: PMC6989555 DOI: 10.3389/fgene.2019.01328] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a solid tumor, which originates from squamous epithelium, with about 400,000 new-cases/year worldwidely. Presently, chemoradiotherapy is the most important adjuvant treatment for OSCC, mostly in advanced tumors. However, clinical resistance to chemotherapy still leads to poor prognosis of OSCC patients. Via high-throughput analysis of gene expression database of OSCC, we investigated the molecular mechanisms underlying cisplatin resistance in OSCC, analyzing the differentially expressed genes (DEGs) and their regulatory relationship, to clarify the molecular basis of OSCC chemotherapy resistance and provide a theoretical foundation for the treatment of patients with OSCC and individualized therapeutic targets accurately. METHODS Datasets related to "OSCC" and "cisplatin resistance" (GSE111585 and GSE115119) were downloaded from the GEO database and analyzed by GEO2R. Venn diagram was used to obtain drug-resistance-related DEGs. Functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed on DEGs using The Database for Annotation, Visualization and Integrated Discovery (DAVID) software. Protein-protein interaction (PPI) network was constructed by STRING (search tool for recurring instances of neighbouring genes) database. Potential target genes of miRNA were predicted via miRDB, and cBioportal was used to analyze the function and survival of the potential functional genes. RESULTS Forty-eight upregulated DEGs and 49 downregulated DEGs were obtained from the datasets, with cutoff as p < 0.01 and |log FC| > 1. The DEGs in OSCC mainly enriched in cell proliferation regulation, and chemokine activity. In PPI network with hub score > 300, the hub genes were identified as NOTCH1, JUN, CTNNB1, CEBPA, and ETS1. Among miRNA-mRNA targeting regulatory network, hsa-mir-200c-3p, hsa-mir-200b-3p, hsa-mir-429, and hsa-mir-139-5p were found to simultaneously regulate multiple hub genes. Survival analysis showed that patients with high CTNNB1 or low CEBPA expression had poor outcome. CONCLUSIONS In the OSCC cisplatin-resistant cell lines, NOTCH1, JUN, CTNNB1, CEBPA, and ETS1 were found as the hub genes involved in regulating the cisplatin resistance of OSCC. Members of the miR-200 family may reverse drug resistance of OSCC cells by regulating the hub genes, which can act as potential targets for the treatment of OSCC patients with cisplatin resistance.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wen-Tian Chen
- Department of Physiology, Shantou University Medical College, Shantou, China
| | - Guan-Wu Li
- Open Laboratory for Tumor Molecular Biology, Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Jia-Xin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qian-Qian Ye
- Department of Physiology, Shantou University Medical College, Shantou, China
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Wen-Jia Chen
- Department of Physiology, Shantou University Medical College, Shantou, China
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Department of Physiology, Shantou University Medical College, Shantou, China
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| |
Collapse
|
3
|
Hu Y, Jin R, Gao M, Xu H, Zou S, Li X, Xing C, Wang Q, Wang H, Feng J, Hu M, Song L. Transcriptional repression of IKKβ by p53 in arsenite-induced GADD45α accumulation and apoptosis. Oncogene 2019; 38:731-746. [PMID: 30177839 PMCID: PMC6355650 DOI: 10.1038/s41388-018-0478-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/01/2023]
Abstract
Our previous studies revealed that GADD45α is a liable protein, which undergoes MDM2-dependent constitutive ubiquitination and degradation in resting HepG2 hepatoma cells. Arsenite exposure induces ribosomal stress responses mediated by the ribosomal protein S7, which can block MDM2 activity and result in GADD45α accumulation and cell apoptosis. In the present study, we found that one of the catalytic subunits of IκB kinase (IKK), IKKβ, exerted a novel IKKα- and NF-κB-independent function in stabilizing MDM2 and therefore contributed to ubiquitination-dependent degradation of GADD45α in resting HepG2 cells. Arsenite stimulation induced transactivation of p53, which formed a complex with its downstream target, Ets-1, and then synergistically repressed IKKβ transcription, reduced MDM2 stability, and ultimately removed the inhibitory effect of MDM2 on GADD45α induction. In addition, DAPK1 functioned as an upstream protein kinase triggering p53/Ets-1-dependent IKKβ and MDM2 reduction and GADD45α accumulation, thus promoting apoptosis in HepG2 cells. Subsequent studies further revealed that the activation of the DAPK1/p53/Ets-1/IKKβ/MDM2/GADD45α cascade was a common signaling event in mediating apoptosis of diverse cancer cells induced by arsenite and other tumor therapeutic agents. Therefore, we conclude that data in the current study have revealed a novel role for IKKβ in negatively regulating GADD45α protein stability and the contribution of p53-dependent IKKβ reduction to mediating cancer cell apoptosis.
Collapse
Affiliation(s)
- Yongliang Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Department of Dermatology, The 309 Hospital of PLA, 17 Heishanhu Street, Beijing, 100091, P. R. China
| | - Rui Jin
- Department of Tumor Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, 100850, China
| | - Ming Gao
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, P. R. China
| | - Huan Xu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Shuxian Zou
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xiaoguang Li
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Shanghai, 200032, P. R. China
| | - Chen Xing
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Qiyu Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hongli Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Jiannan Feng
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Meiru Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Lun Song
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China.
- Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
4
|
ETS1 is associated with cisplatin resistance through IKKα/NF-κB pathway in cell line MDA-MB-231. Cancer Cell Int 2018; 18:86. [PMID: 29950928 PMCID: PMC6009945 DOI: 10.1186/s12935-018-0581-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background Platinum-based drugs are used extensively in neoadjuvant chemotherapy for triple-negative breast cancer (TNBC), but their use can be limited by resistance. In this study, we established cisplatin (DDP) resistant TNBC cells to investigate the potential relationship among ETS1, IKKα/NF-κB and resistance. Methods The sensitivity was evaluated by MTT, apoptosis analysis. The intracellular DDP concentration difference was tested by inductively coupled plasma mass spectrometry (ICP-MS) method. Molecular pathological mechanism of DDP resistance was explored by microarray analysis and PPI network analysis. The ETS1, NF-κB signaling change were assessed by western blot and q-PCR in vitro and vivo. The existing binds between ETS1 and the core IKKα promoter were found by luciferase assay and chromatin immunoprecipitation technique (ChIP). Results MDA-MB-231/DDP (231/DDP) cell had a higher IC50 value of cisplatin, lower intracellular DDP concentration, and lower apoptosis ratio than MDA-MB-231 (231/wt) cell line treated with DDP. Increased ABC transporters were induced by the activation of NF-κB pathway in 231/DDP cells. ETS1, RPL6, RBBP8, BIRC2, PIK3A and RARS were six important genes for DDP-resistance based on PPI network and expression validation. Protein expression of ETS1 and IKKα were significantly up-regulated in 231/DDP cells. However, inhibition of ETS1 expression enhances chemo-sensitivity to DDP and reversed the activation of NF-κB pathway in 231/DDP cells and subcutaneous transplantation tumor in vivo. Moreover, there is existing binds between ETS1 and the core IKKα promoter though luciferase assay and ChIP. Conclusion This study enables us to understand the functions of ETS1 in TNBC chemotherapy and suggests that ETS1 could be used as a novel marker of poor response to DDP and a potential therapeutic target for TNBC chemotherapy.
Collapse
|
5
|
Chen X, Cai Y, Liu Q, Pan L, Shi S, Liu X, Chen Y, Li J, Wang J, Li Y, Li X, Wang S. ETS1 and SP1 drive DHX15 expression in acute lymphoblastic leukaemia. J Cell Mol Med 2018; 22:2612-2621. [PMID: 29512921 PMCID: PMC5908128 DOI: 10.1111/jcmm.13525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022] Open
Abstract
DHX15 plays a role in leukaemogenesis and leukaemia relapse. However, the mechanism underlying the transcriptional regulation of DHX15 in ALL has not been elucidated. Our present study aimed to explore the functional promoter region of DHX15 and to investigate the transcription factors controlling the transcription of this gene. A luciferase assay performed with several truncated constructs identified a 501-bp region as the core promoter region of DHX15. Site-directed mutagenesis, electrophoretic mobility shift and chromatin immunoprecipitation assays showed that ETS1 and SP1 occupied the DHX15 promoter. Furthermore, knockdown of ETS1 and SP1 resulted in suppression of DHX15, whereas the overexpression of these genes led to up-regulation of DHX15. Interestingly, in samples obtained from patients with ALL at diagnosis, both ETS1 and SP1 correlated positively with DHX15 expression. Additionally, differences in methylation of the DHX15 core promoter region were not observed between the patients and controls. In conclusion, we identified the core promoter region of DHX15 and demonstrated that ETS1 and SP1 regulated DHX15 expression in ALL.
Collapse
Affiliation(s)
- Xiang‐Lei Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yuan‐Hua Cai
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Qiao Liu
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Li‐Li Pan
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Shui‐Ling Shi
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Xiao‐Li Liu
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yuan Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Jing‐Gang Li
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Jing Wang
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yang Li
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Xiao‐Fan Li
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Shao‐Yuan Wang
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| |
Collapse
|
6
|
Alfano L, Costa C, Caporaso A, Antonini D, Giordano A, Pentimalli F. HUR protects NONO from degradation by mir320, which is induced by p53 upon UV irradiation. Oncotarget 2018; 7:78127-78139. [PMID: 27816966 PMCID: PMC5363649 DOI: 10.18632/oncotarget.13002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
UV radiations challenge genomic stability and are a recognized cancer risk factor. We previously found that the RNA-binding protein NONO regulates the intra-S phase checkpoint and its silencing impaired HeLa and melanoma cell response to UV-induced DNA damage. Here we investigated the mechanisms underlying NONO regulation upon UVC treatment. We found that UVC rays induce the expression of mir320a, which can indeed target NONO. However, despite mir320a induction, NONO mRNA and protein expression are not affected by UVC. We found through RNA immunoprecipitation that UVC rays induce the ubiquitous RNA-binding protein HUR to bind NONO 5′UTR in a site overlapping mir320a binding site. Both HUR silencing and its pharmacological inhibition induced NONO downregulation following UVC exposure, whereas concomitant mir320a silencing restored NONO stability. UVC-mediated mir320a upregulation is triggered by p53 binding to its promoter, which lies within a region marked by H3K4me3 and H3K27ac signals upon UVC treatment. Silencing mir320a sensitizes cells to DNA damage. Overall our findings reveal a new mechanism whereby HUR protects NONO from mir320-mediated degradation upon UVC exposure and identify a new component within the complex network of players underlying the DNA damage response adding mir320a to the list of p53-regulated targets upon genotoxic stress.
Collapse
Affiliation(s)
- Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, 80131, Italy
| | - Caterina Costa
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, 80131, Italy
| | - Antonella Caporaso
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, 53100, Italy
| | | | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, 53100, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, 19122, USA
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, 80131, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, 19122, USA
| |
Collapse
|
7
|
Zhang M, Xu-Monette ZY, Li L, Manyam GC, Visco C, Tzankov A, Wang J, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, Han van Krieken J, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Winter JN, Piris MA, Medeiros LJ, Pham LV, Young KH. RelA NF-κB subunit activation as a therapeutic target in diffuse large B-cell lymphoma. Aging (Albany NY) 2017; 8:3321-3340. [PMID: 27941215 PMCID: PMC5270671 DOI: 10.18632/aging.101121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
It has been well established that nuclear factor kappa-B (NF-κB) activation is important for tumor cell growth and survival. RelA/p65 and p50 are the most common NF-kB subunits and involved in the classical NF-kB pathway. However, the prognostic and biological significance of RelA/p65 is equivocal in the field. In this study, we assessed RelA/p65 nuclear expression by immunohistochemistry in 487 patients with de novo diffuse large B-cell lymphoma (DLBCL), and studied the effects of molecular and pharmacological inhibition of NF-kB on cell viability. We found RelA/p65 nuclear expression, without associations with other apparent genetic or phenotypic abnormalities, had unfavorable prognostic impact in patients with stage I/II DLBCL. Gene expression profiling analysis suggested immune dysregulation and antiapoptosis may be relevant for the poorer prognosis associated with p65 hyperactivation in germinal center B-cell-like (GCB) DLBCL and in activated B-cell-like (ABC) DLBCL, respectively. We knocked down individual NF-κB subunits in representative DLBCL cells in vitro, and found targeting p65 was more effective than targeting other NF-κB subunits in inhibiting cell growth and survival. In summary, RelA/p65 nuclear overexpression correlates with significant poor survival in early-stage DLBCL patients, and therapeutic targeting RelA/p65 is effective in inhibiting proliferation and survival of DLBCL with NF-κB hyperactivation.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, Henan, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, Henan, China
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX 77030, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Eric D Hsi
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | - Ben M Parsons
- Gundersen Medical Foundation, La Crosse, WI 54601, USA
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Yao JY, Chen JK. Over-expression of ΔNp63α facilitates rat corneal wound healing in vivo. Biosci Biotechnol Biochem 2017; 81:2279-2284. [PMID: 29090620 DOI: 10.1080/09168451.2017.1391684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.
Collapse
Affiliation(s)
- Jeng-Yuan Yao
- a Center for Translational Medicine, Department of Basic Medical Science , Xiamen Medical College , Fujian , China.,b Department of Physiology, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Jan-Kan Chen
- b Department of Physiology, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
9
|
Cai Q, Tu M, Xu-Monette ZY, Sun R, Manyam GC, Xu X, Tzankov A, Hsi ED, Møller MB, Medeiros LJ, Ok CY, Young KH. NF-κB p50 activation associated with immune dysregulation confers poorer survival for diffuse large B-cell lymphoma patients with wild-type p53. Mod Pathol 2017; 30:854-876. [PMID: 28281555 DOI: 10.1038/modpathol.2017.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022]
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis, however, the expression and clinical relevance of NF-κB subunit p50 in diffuse large B-cell lymphoma have not been evaluated. In this study, we analyzed the prognostic significance and gene expression signatures of p50 nuclear expression as a surrogate for p50 activation in 465 patients with de novo diffuse large B-cell lymphoma. We found that p50+ nuclear expression, observed in 34.6% of diffuse large B-cell lymphoma, predominantly composed of activated B-cell-like subtype, was an independent adverse prognostic factor in patients with activated B-cell-like diffuse large B-cell lymphoma. It was also an adverse prognostic factor in patients with wild-type TP53 independent of the activated B-cell-like and germinal center B-cell-like subtypes, even though p50 activation correlated with significantly lower levels of Myc, PI3K, phospho-AKT, and CXCR4 expression and less frequent BCL2 translocations. In contrast, in germinal center B-cell-like diffuse large B-cell lymphoma patients with TP53 mutations, p50+ nuclear expression correlated with significantly better clinical outcomes, and decreased p53, Bcl-2, and Myc expression. Gene expression profiling revealed multiple signaling pathways potentially upstream the p50 activation through either canonical or noncanonical NF-κB pathways, and suggested that immune suppression, including that by the immune checkpoint TIM-3 and that through leukocyte immunoglobulin-like receptors, but not antiapoptosis and proliferation, may underlie the observed poorer survival rates associated with p50+ nuclear expression in diffuse large B-cell lymphoma. In conclusion, these data show that p50 is important as a unique mechanism of R-CHOP-resistance in activated B-cell-like diffuse large B-cell lymphoma and in patients without TP53 mutations. The results also provide insights into the regulation and function of p50 in diffuse large B-cell lymphoma and its cross talk with the p53 pathway with important therapeutic implications.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meifeng Tu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital &Institute, Beijing, China
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaolu Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | | | - Eric D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
10
|
Fierabracci A, Pellegrino M. The Double Role of p53 in Cancer and Autoimmunity and Its Potential as Therapeutic Target. Int J Mol Sci 2016; 17:ijms17121975. [PMID: 27897991 PMCID: PMC5187775 DOI: 10.3390/ijms17121975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 01/22/2023] Open
Abstract
p53 is a sequence-specific short-lived transcription factor expressed at low concentrations in various tissues while it is upregulated in damaged, tumoral or inflamed tissue. In normally proliferating cells, p53 protein levels and function are tightly controlled by main regulators, i.e., MDM2 (mouse double minute 2) and MDM4 proteins. p53 plays an important role due to its ability to mediate tumor suppression. In addition to its importance as a tumor suppressor, p53 coordinates diverse cellular responses to stress and damage and plays an emerging role in various physiological processes, including fertility, cell metabolism, mitochondrial respiration, autophagy, cell adhesion, stem cell maintenance and development. Interestingly, it has been recently implicated in the suppression of autoimmune and inflammatory diseases in both mice and humans. In this review based on current knowledge on the functional properties of p53 and its regulatory pathways, we discuss the potential utility of p53 reactivation from a therapeutic perspective in oncology and chronic inflammatory disorders leading to autoimmunity.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, 00146 Rome, Italy.
| | - Marsha Pellegrino
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
11
|
Li L, Xu-Monette ZY, Ok CY, Tzankov A, Manyam GC, Sun R, Visco C, Zhang M, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Wang J, Parsons BM, Winter JN, Piris MA, Pham LV, Medeiros LJ, Young KH. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:23157-80. [PMID: 26324762 PMCID: PMC4695110 DOI: 10.18632/oncotarget.4319] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mingzhi Zhang
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
12
|
Abstract
TP53 is one of the most frequently inactivated tumor suppressor genes in human cancer. However, unlike other tumor suppressor genes whose expression is lost, TP53 is usually inactivated as a result of a single nucleotide change within the coding region. Typically, these single nucleotide mutations result in a codon change that creates an amino acid substitution. Thus, unlike other tumor suppressor genes whose expression is lost due to genetic or epigenetic changes, the p53 gene primarily suffers missense mutations, and therefore, the cells retain and express a mutant form of the p53 protein (mtp53). It is now well established that mtp53 contributes to tumor development through its gain-of-function (GOF) activities. These GOF activities can arise from novel protein–protein interactions that can either disable other tumor suppressors (e.g., p63 and p73) or enable oncogenes such as ETS2, an ETS family member. In this review, I will focus on the identification of the mtp53/ETS2 complex and outline the diverse activities that this transcriptional regulatory complex controls to promote cancer.
Collapse
Affiliation(s)
- Luis Alfonso Martinez
- Department of Pathology, Stony Brook Cancer Center, Stony Brook University , Stony Brook, NY , USA
| |
Collapse
|
13
|
XIE YUXIN, XIE KEQI, GOU QIHENG, CHEN NIANYONG. IκB kinase α functions as a tumor suppressor in epithelial-derived tumors through an NF-κB-independent pathway (Review). Oncol Rep 2015; 34:2225-32. [DOI: 10.3892/or.2015.4229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
|
14
|
Current position of TNF-α in melanomagenesis. Tumour Biol 2015; 36:6589-602. [DOI: 10.1007/s13277-015-3639-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/03/2015] [Indexed: 12/19/2022] Open
|
15
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
16
|
Xia X, Liu S, Xiao Z, Zhu F, Song NY, Zhou M, Liu B, Shen J, Nagashima K, Veenstra TD, Burkett S, Datla M, Willette-Brown J, Shen H, Hu Y. An IKKα-nucleophosmin axis utilizes inflammatory signaling to promote genome integrity. Cell Rep 2013; 5:1243-55. [PMID: 24290756 PMCID: PMC4159076 DOI: 10.1016/j.celrep.2013.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 01/04/2023] Open
Abstract
The inflammatory microenvironment promotes skin tumorigenesis. However, the mechanisms by which cells protect themselves from inflammatory signals are unknown. Downregulation of IKKα promotes skin tumor progression from papillomas to squamous cell carcinomas, which is frequently accompanied by genomic instability, including aneuploid chromosomes and extra centrosomes. In this study, we found that IKKα promoted oligomerization of nucleophosmin (NPM), a negative centrosome duplication regulator, which further enhanced NPM and centrosome association, inhibited centrosome amplification, and maintained genome integrity. Levels of NPM hexamers and IKKα were conversely associated with skin tumor progression. Importantly, proinflammatory cytokine-induced IKKα activation promoted the formation of NPM oligomers and reduced centrosome numbers in mouse and human cells, whereas kinase-dead IKKα blocked this connection. Therefore, our findings suggest a mechanism in which an IKKα-NPM axis may use inflammatory signals to suppress centrosome amplification, promote genomic integrity, and prevent tumor progression.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Shuang Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Zuoxiang Xiao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Bigang Liu
- Department of Molecular Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Unit 389, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Molecular Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Unit 389, Smithville, TX 78957, USA
| | - Kunio Nagashima
- Advanced Technology Program, Electron Microscopy Laboratory, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Timothy D Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Mahesh Datla
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA.
| |
Collapse
|
17
|
Remels AHV, Gosker HR, Langen RC, Polkey M, Sliwinski P, Galdiz J, van den Borst B, Pansters NA, Schols AMWJ. Classical NF-κB activation impairs skeletal muscle oxidative phenotype by reducing IKK-α expression. Biochim Biophys Acta Mol Basis Dis 2013; 1842:175-85. [PMID: 24215713 DOI: 10.1016/j.bbadis.2013.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression. METHODS Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α. RESULTS IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-β over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels. CONCLUSION Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD.
Collapse
Key Words
- 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide
- 50S ribosomal subunit protein L15
- 60S ribosomal protein L13a
- ACTB
- ALAS1
- ATP
- Ad
- Adenosine triphosphate
- Adenoviral
- B2M
- BMI
- Beta Cytoskeletal Actin
- Body mass index
- CA
- COPD
- COXIV
- CS
- Chronic obstructive pulmonary disease
- Citrate synthase
- Classical NF-κB
- Constitutively active
- Cytochrome c oxidase 4
- DMEM
- Delta-aminolevulinate synthase 1
- Dulbecco's Modified Eagle Medium
- FEV1
- FVC
- Forced expiratory volume in one second
- Forced vital capacity
- GAPDH
- GUSB
- Gapdh, Glyceraldehyde-3-phosphate dehydrogenase
- Gfp
- Glucuronidase, bèta
- Green fluorescent protein
- HAD
- HBSS
- HCBP
- HMBS
- HPRT
- Hank's Balanced Salt solution
- Hprt, Hypoxanthine phosphoribosyltransferase 1
- Human carnitine-palmitoyl transferase B
- Hydroxymethylbilane Synthase
- IKK-α
- Icam-1
- Ikk-α, IκB kinase alpha
- Ikk-β
- Il-1β
- Intra-cellular adhesion molecule 1
- IκB kinase beta
- IκBα
- Mlc
- Myhc
- Myosin heavy chain
- Myosin light chain
- NF-κB
- NS
- Not significant
- Nrf
- Nuclear factor kappa B
- Nuclear respiratory factor
- OXPHEN
- Oxidative metabolism
- Oxidative phenotype
- Oxidative phosphorylation
- Oxphos
- PBS
- PGC-1
- PPAR
- PPIA
- Pgc-1, Peroxisome proliferator-activated receptor gamma co-activator 1
- Phosphate-buffered saline
- Ppar, Peroxisome proliferator-activated receptor
- RPL13A
- RPLO
- SD
- SEM
- SR
- Skeletal muscle
- Standard deviation
- Standard equality of the mean
- Super repressor
- TFAM
- TNF-α
- Tfam, Mitochondrial transcription factor A
- Tnf-α, Tumour necrosis factor alpha
- UBC
- Ubiquitin C
- WT
- Wild-type
- YWHAZ
- interleukin 1β
- nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha
- peptidylprolyl isomerase A (cyclophilin A)
- β-hydroxyacyl-CoA dehydrogenase
- β2m, Beta 2 microglobulin
Collapse
Affiliation(s)
- A H V Remels
- NUTRIM School for Nutrition, Toxicology & Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands.
| | - H R Gosker
- NUTRIM School for Nutrition, Toxicology & Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands.
| | - R C Langen
- NUTRIM School for Nutrition, Toxicology & Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands.
| | - M Polkey
- NIHR Respiratory Biomedical Research unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London SW3 6NP, UK.
| | - P Sliwinski
- Department of Respiratory Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland.
| | - J Galdiz
- Pneumology Department and Research Unit, Cruces Hospital, Basque Country University, Barakaldo, Spain.
| | - B van den Borst
- NUTRIM School for Nutrition, Toxicology & Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands.
| | - N A Pansters
- NUTRIM School for Nutrition, Toxicology & Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - A M W J Schols
- NUTRIM School for Nutrition, Toxicology & Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands.
| |
Collapse
|
18
|
Deng L, Li Y, Ai P, Xie Y, Zhu H, Chen N. Increase in IkappaB kinase alpha expression suppresses the tumor progression and improves the prognosis for nasopharyngeal carcinoma. Mol Carcinog 2013; 54:156-65. [PMID: 24753359 DOI: 10.1002/mc.22087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 02/05/2023]
Abstract
Recent studies have suggested that the action of IkappaB kinase alpha (IKKα) as a tumor suppressor is crucial in the development of skin carcinoma, but its role in nasopharyngeal carcinoma (NPC) remains unknown. We examined the IKKα expression in specimens from 157 NPC patients by immunohistochemistry and analyzed the effect of IKKα on prognosis. The functional significance of IKKα expression in NPC cell lines was investigated by IKKα overexpression or downregulation in in vitro studies. The in vitro assays revealed that the IKKα expression was negatively correlated with the invasiveness, migration, and angiogenesis of NPC cells. Overexpression or downregulation of IKKα could significantly repress or enhance the above characteristics, respectively, and these effects were independent of IKKα kinase or EBNA1. In 157 NPC cases, IKKα was differentially expressed in NPC tissues. High expression of IKKα was associated significantly with a high disease-free survival (DFS; P = 0.002) or overall survival (OS; P = 0.014). Multivariate analyses showed that the IKKα expression was an independent risk factor for DFS (HR, 2.302; P = 0.011) and OS (HR, 3.578; P = 0.006). Our findings indicated that IKKα plays a crucial role as a tumor suppressor that suppresses the invasion, metastasis, and angiogenesis of NPC cells in vitro and correlates with the survival in NPC patients. Therefore, IKKα is not only a novel independent prognostic indicator in NPC, but also targeting IKKα expression may provide a potential therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Ling Deng
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
19
|
Kasthuri SR, Umasuthan N, Whang I, Wan Q, Lim BS, Jung HB, Lee J. Akirin2 homologues from rock bream, Oplegnathus fasciatus: Genomic and molecular characterization and transcriptional expression analysis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:740-747. [PMID: 23770624 DOI: 10.1016/j.fsi.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/08/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Akirins are conserved nuclear resident NF-κB signaling pathway molecules. Isoforms of akirins found in various organisms are known to play diverse roles. In this study, we have characterized two akirin2 homologues from rock bream, OfAk2(1) and OfAk2(2). The proteins derived from OfAk2(1) and OfAk2(2) revealed the presence of nuclear localization signal. Multiple sequence alignment and pairwise alignment of OfAk2(1) and OfAk2(2) with the akirin homologues, revealed high conservation and identity. Phylogenetic tree analysis revealed that the distinct position of OfAk2(1) and OfAk2(2) was close to the fish homologues and separated from the mammals and invertebrates. Genomic structure characterization revealed two distinct structures. OfAk2(1) possessed 6 exons interrupted by 5 introns whereas OfAk2(2) possessed 5 exons interrupted by 4 introns. The promoter analysis revealed the presence of significant transcription factors, which suggests its regulation by diverse stimuli. In addition, transcript expression analysis using real time quantitative reverse-transcriptase polymerase chain reaction post immune challenges with lipopolysaccharide, Edwardsiella tarda and poly I:C revealed upregulation of both OfAk2(1) and OfAk2(2) in liver, spleen and head kidney.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 2013; 14:1097-101. [PMID: 23308042 DOI: 10.1593/neo.121534] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 09/14/2012] [Accepted: 10/09/2012] [Indexed: 12/26/2022] Open
Abstract
Murine double minute-2 (MDM2) is an intracellular molecule with multiple biologic functions. It serves as a negative regulator of p53 and thereby limits cell cycle arrest and apoptosis. Because MDM2 blockade suppresses tumor cell growth in vitro and in vivo, respective MDM2 inhibition is currently evaluated as anti-cancer therapy in clinical trials. However, the anti-proliferative effects of MDM2 inhibition also impair regenerative cell growth upon tissue injury. This was so far documented for tubular repair upon postischemic acute kidney injury and might apply to wound healing responses in general. Furthermore, MDM2 has numerous p53-independent effects. As a new entry, MDM2 was identified to act as a co-transcription factor for nuclear factor-kappa-light-enhancer of activated B cells (NF-κB) at cytokine promoters. This explains the potent anti-inflammatory effects of MDM2 inhibitors in vitro and in vivo. For example, the NF-κB-antagonistic and p53-agonistic activities of MDM2 inhibitors elicit potent therapeutic effects on experimental lymphoproliferative autoimmune disorders such as systemic lupus erythematosus. In this review, we discuss the classic p53-dependent, the recently discovered p53-independent, and the NF-κB-agonistic biologic functions of MDM2. We describe its complex regulatory role on p53 and NF-κB signaling and name areas of research that may help to foresee previously unexpected effects or potential alternative indications of therapeutic MDM2 blockade.
Collapse
|
21
|
Heyne K, Winter C, Gerten F, Schmidt C, Roemer K. A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 2013; 12:2479-92. [PMID: 23839035 DOI: 10.4161/cc.25495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The inflammation regulating transcription factor NFκB and the tumor-suppressing transcription factor p53 can act as functional antagonists. Chronic inflammation (NFκB activity) may contribute to the development of cancer through the inhibition of p53 function, while, conversely, p53 activity may dampen inflammation. Here we report that the E3 ubiquitin ligase MDM2, whose gene is transcriptionally activated by both NFκB and p53, can bind and inhibit the p65RelA subunit of NFκB. The interaction is mediated through the N-terminal and the acidic/zinc finger domains of MDM2 on the one hand and through the N-terminal Rel homology domain of p65RelA on the other hand. Co-expression of MDM2 and p65RelA caused ubiquitination of the latter in the nucleus, and this modification was dependent of a functional MDM2 RING domain. Conversely, inhibition of endogenous MDM2 by small-molecule inhibitors or siRNA significantly reduced the ubiquitination of ectopic and endogenous p65RelA. MDM2 was able to equip p65RelA with mutated ubiquitin moieties capable of multiple monoubiquitination but incapable of polyubiquitination; moreover, MDM2 failed to destabilize p65RelA detectably, suggesting that the ubiquitin modification of p65RelA by MDM2 was mostly regulatory rather than stability-determining. MDM2 inhibited the NFκB-mediated transactivation of a reporter gene and the binding of NFκB to its DNA binding motif in vitro. Finally, knockdown of endogenous MDM2 increased the activity of endogenous NFκB as a transactivator. Thus, MDM2 can act as a direct negative regulator of NFκB by binding and inhibiting p65RelA.
Collapse
Affiliation(s)
- Kristina Heyne
- Internal Medicine I and José Carreras Center; University of Saarland Medical Center; Homburg, Saarland, Germany
| | | | | | | | | |
Collapse
|
22
|
Kong X, Peng B, Yang Y, Zhang P, Qin B, Han D, Wang C, Dang Y, Liu JO, Yu L. p53 Represses transcription of RING finger LIM domain-binding protein RLIM through Sp1. PLoS One 2013; 8:e62832. [PMID: 23650532 PMCID: PMC3641103 DOI: 10.1371/journal.pone.0062832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/26/2013] [Indexed: 12/12/2022] Open
Abstract
RLIM acts as a negative regulator of LIM-Homeodomain proteins either by recruiting Sin3A/Histone Deacetylase (HDAC) co-repressor complex or through degradation of CLIM coactivator, thus playing an important role in embryonic development. Recent studies by different research groups have shown that RLIM acts as an X-encoded, dose-dependent inducer of X chromosome inactivation in mouse embryonic stem cells. However, until now, very little is known about the expression regulation of RLIM gene, and we tried to study the transcriptional regulation of RLIM gene. In the present study, we identified RLIM as a novel target of p53 and demonstrated that p53 repressed both mRNA and protein levels of RLIM. Expression of wild type p53, but not p53 mutants, led to repression of the RLIM promoter activity. We further identified four putative Sp1 elements (S1 to S4) on the RLIM promoter that are essential for p53-mediated repression of RLIM. Although p53 does not directly bind to the RLIM promoter, it physically interacts with and prevents the binding of Sp1 to the RLIM promoter. Thus, RLIM is a novel target of p53, and p53 exerts its inhibitory effect on RLIM expression by interfering with Sp1-mediated transcriptional activation on RLIM. Our results provided data to enlarge the knowledge of transcriptional regulation of RLIM and suggested a new pathway by which physiological and pathological activators of p53 may affect development.
Collapse
Affiliation(s)
- Xiangtao Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Bo Peng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yang Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Pingzhao Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Bo Qin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Dingding Han
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yongjun Dang
- Departments of Pharmacology and Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jun O. Liu
- Departments of Pharmacology and Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
23
|
Son DS, Kabir SM, Dong YL, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IκB. PLoS One 2012; 7:e51116. [PMID: 23300534 PMCID: PMC3534106 DOI: 10.1371/journal.pone.0051116] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer, one of inflammation-associated cancers, is the fifth leading cause of cancer deaths among women. Inflammation in the tumor microenvironment is associated with peritoneal tumor dissemination and massive ascites, which contribute to high mortality in ovarian cancer. Tumor suppressor p53 is frequently deleted or mutated in aggressive and high-grade ovarian cancer, probably aggravating cancer progression and increasing mortality. We therefore investigated the influence of p53 on proinflammatory chemokines in ovarian cancer cells. A PCR array of the chemokine network revealed that ovarian cancer cells with low or mutated p53 expression expressed high levels of proinflammatory chemokines such as CXCL1, 2, 3 and 8. Transient transfection of p53 into p53-null ovarian cancer cells downregulated proinflammatory chemokines induced by tumor necrosis factor-α (TNF), a proinflammatory cytokine abundantly expressed in ovarian cancer. Furthermore, p53 restoration or stabilization blocked TNF-induced NF-κB promoter activity and reduced TNF-activated IκB. Restoration of p53 increased ubiquitination of IκB, resulting from concurrently reduced proteasome activity followed by stability of IκB. A ubiquitination PCR array on restoration of p53 did not reveal any significant change in expression except for Mdm2, indicating that the balance between p53 and Mdm2 is more important in regulating NF-κB signaling rather than the direct effect of p53 on ubiquitin-related genes or IκB kinases. In addition, nutlin-3, a specific inducer of p53 stabilization, inhibited proinflammatory chemokines by reducing TNF-activated IκB through p53 stabilization. Taken together, these results suggest that p53 inhibits proinflammatory chemokines in ovarian cancer cells by reducing proteasomal degradation of IκB. Thus, frequent loss or mutation of p53 may promote tumor progression by enhancing inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
24
|
Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, Li R, Martinez LA. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 2012; 26:830-45. [PMID: 22508727 DOI: 10.1101/gad.181685.111] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mutant p53 (mtp53) promotes chemotherapy resistance through multiple mechanisms, including disabling proapoptotic proteins and regulating gene expression. Comparison of genome wide analysis of mtp53 binding revealed that the ETS-binding site motif (EBS) is prevalent within predicted mtp53-binding sites. We demonstrate that mtp53 regulates gene expression through EBS in promoters and that ETS2 mediates the interaction with this motif. Importantly, we identified TDP2, a 5'-tyrosyl DNA phosphodiesterase involved in the repair of DNA damage caused by etoposide, as a transcriptional target of mtp53. We demonstrate that suppression of TDP2 sensitizes mtp53-expressing cells to etoposide and that mtp53 and TDP2 are frequently overexpressed in human lung cancer; thus, our analysis identifies a potentially "druggable" component of mtp53's gain-of-function activity.
Collapse
Affiliation(s)
- Phi M Do
- Department of Biochemistry, University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Joshi H, Nord SH, Frigessi A, Børresen-Dale AL, Kristensen VN. Overrepresentation of transcription factor families in the genesets underlying breast cancer subtypes. BMC Genomics 2012; 13:199. [PMID: 22616941 PMCID: PMC3441847 DOI: 10.1186/1471-2164-13-199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 05/22/2012] [Indexed: 01/08/2023] Open
Abstract
Background The human genome contains a large amount of cis-regulatory DNA elements responsible for directing both spatial and temporal gene-expression patterns. Previous studies have shown that based on their mRNA expression breast tumors could be divided into five subgroups (Luminal A, Luminal B, Basal, ErbB2+ and Normal-like), each with a distinct molecular portrait. Whole genome gene expression analysis of independent sets of breast tumors reveals repeatedly the robustness of this classification. Furthermore, breast tumors carrying a TP53 mutation show a distinct gene expression profile, which is in strong association to the distinct molecular portraits. The mRNA expression of 552 genes, which varied considerably among the different tumors, but little between two samples of the same tumor, has been shown to be sufficient to separate these tumor subgroups. Results We analyzed in silico the transcriptional regulation of genes defining the subgroups at 3 different levels: 1. We studied the pathways in which the genes distinguishing the subgroups of breast cancer may be jointly involved including upstream regulators (1st and 2nd level of regulation) as well as downstream targets of these genes. 2. Then we analyzed the promoter areas of these genes (−500 bp tp +100 bp relative to the transcription start site) for canonical transcription binding sites using Genomatix. 3. We looked for the actual expression levels of the identified TF and how they correlate with the overrepresentation of their TF binding sites in the separate groups. We report that promoter composition of the genes that most strongly predict the patient subgroups is distinct. The class-predictive genes showed a clearly different degree of overrepresentation of transcription factor families in their promoter sequences. Conclusion The study suggests that transcription factors responsible for the observed expression pattern in breast cancers may lead us to important biological pathways.
Collapse
Affiliation(s)
- Himanshu Joshi
- Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital, Lorenskog, Norway
| | | | | | | | | |
Collapse
|
26
|
Gudkov AV, Gurova KV, Komarova EA. Inflammation and p53: A Tale of Two Stresses. Genes Cancer 2011; 2:503-16. [PMID: 21779518 DOI: 10.1177/1947601911409747] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous observations indicate a strong link between chronic inflammation and cancer. This link is supported by substantial experimental evidence indicating mutual negative regulation of NF-κB, the major regulator of inflammation, and p53, the major tumor suppressor. This antagonistic relationship reflects the opposite principles of the physiological responses driven by these transcription factors, which act as sensors and mediators of intrinsic and extrinsic cell stresses, respectively. Constitutive activation of NF-κB, the underlying cause of chronic inflammation, is a common acquired characteristic of tumors. A variety of experimental methods have been used to demonstrate that constitutive activation of NF-κB reduces the tumor suppressor activity of p53, thereby creating permissive conditions for dominant oncogene-mediated transformation. Loss of p53 activity is also a characteristic of the majority of tumors and results in unleashed inflammatory responses due to loss of p53-mediated NF-κB suppression. On the other hand, in natural or pharmacological situations of enforced p53 activation, NF-κB activity, inflammation, and immune responses are reduced, resulting in different pathologies. It is likely that the chronic inflammation that is commonly acquired in various tissues of older mammals leads to general suppression of p53 function, which would explain the increased risk of cancer observed in aging animals and humans. Although the molecular mechanisms underlying reciprocal negative regulation of p53 and NF-κB remain to be deciphered, this phenomenon has important implications for pharmacological prevention of cancer and aging and for new approaches to control inflammation.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
27
|
Aranha MM, Solá S, Low WC, Steer CJ, Rodrigues CMP. Caspases and p53 modulate FOXO3A/Id1 signaling during mouse neural stem cell differentiation. J Cell Biochem 2009; 107:748-58. [PMID: 19415678 DOI: 10.1002/jcb.22172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) differentiate into neurons and glia, and a large percentage undergoes apoptosis. The engagement and activity of apoptotic pathways may favor either cell death or differentiation. In addition, Akt represses differentiation by up-regulating the inhibitor of differentiation 1 (Id1), through phosphorylation of its repressor FOXO3A. The aim of this study was to investigate the potential cross-talk between apoptosis and proliferation during mouse NSC differentiation. We determined the time of neurogenesis and gliogenesis using neuronal beta-III tubulin and astroglial GFAP to confirm that both processes occurred at approximately 3 and 8 days, respectively. p-Akt, p-FOXO3A, and Id1 were significantly reduced throughout differentiation. Caspase-3 processing, p53 phosphorylation, and p53 transcriptional activation increased at 3 days of differentiation, with no evidence of apoptosis. Importantly, in cells exposed to the pancaspase inhibitor z-VAD.fmk, p-FOXO3A and Id1 were no longer down-regulated, p53 phosphorylation and transcriptional activation were reduced, while neurogenesis and gliogenesis were significantly delayed. The effect of siRNA-mediated silencing of p53 on FOXO3A/Id1 was similar to that of z-VAD.fmk only at 3 days of differentiation. Interestingly, caspase inhibition further increased the effect of p53 knockdown during neurogenesis. In conclusion, apoptosis-associated factors such as caspases and p53 temporally modulate FOXO3A/Id1 signaling and differentiation of mouse NSCs.
Collapse
|
28
|
Liu G, Park YJ, Tsuruta Y, Lorne E, Abraham E. p53 Attenuates Lipopolysaccharide-Induced NF-κB Activation and Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2009; 182:5063-71. [DOI: 10.4049/jimmunol.0803526] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Kajihara A, Takahashi A, Ohnishi K, Imai Y, Yamakawa N, Yasumoto JI, Ohnishi T, Kirita T. Protein microarray analysis of apoptosis-related protein expression following heat shock in human tongue squamous cell carcinomas containing different p53 phenotypes. Int J Hyperthermia 2009; 24:605-12. [PMID: 19065343 DOI: 10.1080/02656730802348339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Hyperthermia is useful in the treatment of human head and neck cancers, because it is relatively easy to regulate temperatures when compared to tumors located in deep organs. In this study, attention was focused on p53 as a possible predictive indicator for the efficacy of hyperthermic cancer therapy. METHODS Two kinds of cell lines were used. These were derived from a human squamous cell carcinoma (SAS) and had identical genetic backgrounds except for their p53 gene status. It was previously reported that the heat sensitivity and frequency of apoptosis in wild-type p53 cells (SAS/neo) were clearly elevated when compared with mutated p53 cells (SAS/mp53). In order to study the expression of apoptosis related proteins after heat treatment, protein microarray analysis was used. RESULTS The expression of apoptosis inhibitory proteins such as Bcl-2, Bcl-xL, NF-kappaB, COX2, STAT3, IL-6, and IKKalpha/1 was seen to increase after heat treatment in SAS/mp53 cells, but not in SAS/neo cells. CONCLUSION The result of these observations indicates that apoptosis inhibitory proteins (such as Bcl-2, Bcl-xL, IL-6, etc.) were highly induced in SAS/mp53 cells after heat treatment when compared to control SAS/neo cells.
Collapse
Affiliation(s)
- Atsuhisa Kajihara
- Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nagarajan P, Parikh N, Garrett-Sinha LA, Sinha S. Ets1 induces dysplastic changes when expressed in terminally-differentiating squamous epidermal cells. PLoS One 2009; 4:e4179. [PMID: 19142229 PMCID: PMC2615206 DOI: 10.1371/journal.pone.0004179] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/28/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ets1 is an oncogene that functions as a transcription factor and regulates the activity of many genes potentially important for tumor initiation and progression. Interestingly, the Ets1 oncogene is over-expressed in many human squamous cell cancers and over-expression is highly correlated with invasion and metastasis. Thus, Ets1 is believed to mainly play a role in later stages of the oncogenic process, but not early events. METHODOLOGY/PRINCIPAL FINDINGS To better define the role of Ets1 in squamous cell carcinogenesis, we generated a transgenic mouse model in which expression of the Ets1 oncogene could be temporally and spatially regulated. Upon Ets1 induction in differentiating cells of stratified squamous epithelium, these mice exhibited dramatic changes in epithelial organization including increased proliferation and blocked terminal differentiation. The phenotype was completely reversed when Ets1 expression was suppressed. In mice where Ets1 expression was re-induced at a later age, the phenotype was more localized and the lesions that developed were more invasive. Many potential Ets1 targets were upregulated in the skin of these mice with the most dramatic being the metalloprotease MMP13, which we demonstrate to be a direct transcriptional target of Ets1. CONCLUSIONS/SIGNIFICANCE Collectively, our data reveal that upregulation of Ets1 can be an early event that promotes pre-neoplastic changes in epidermal tissues via its regulation of key genes driving growth and invasion. Thus, the Ets1 oncogene may be important for oncogenic processes in both early and late stages of tumor development.
Collapse
Affiliation(s)
- Priyadharsini Nagarajan
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Neha Parikh
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail: (LAG-S); (SS)
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail: (LAG-S); (SS)
| |
Collapse
|
31
|
Liu B, Xia X, Zhu F, Park E, Carbajal S, Kiguchi K, DiGiovanni J, Fischer S, Hu Y. IKKalpha is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 2008; 14:212-25. [PMID: 18772111 PMCID: PMC7263012 DOI: 10.1016/j.ccr.2008.07.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 06/24/2008] [Accepted: 08/05/2008] [Indexed: 12/17/2022]
Abstract
It has long been known that excessive mitotic activity due to H-Ras can block keratinocyte differentiation and cause skin cancer. It is not clear whether there are any innate surveillants that are able to ensure that keratinocytes undergo terminal differentiation, preventing the disease. IKKalpha induces keratinocyte terminal differentiation, and its downregulation promotes skin tumor development. However, its intrinsic function in skin cancer is unknown. Here, we found that mice with IKKalpha deletion in keratinocytes develop a thickened epidermis and spontaneous squamous cell-like carcinomas. Inactivation of epidermal growth factor receptor (EGFR) or reintroduction of IKKalpha inhibits excessive mitosis, induces terminal differentiation, and prevents skin cancer through repressing an EGFR-driven autocrine loop. Thus, IKKalpha serves as an innate surveillant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yinling Hu
- To whom correspondence should be addressed. ., Phone: 512-237-9338, Fax: 512-237-2475
| |
Collapse
|
32
|
Marinari B, Ballaro C, Koster MI, Giustizieri ML, Moretti F, Crosti F, Papoutsaki M, Karin M, Alema S, Chimenti S, Roop DR, Costanzo A. IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. J Invest Dermatol 2008; 129:60-9. [PMID: 18633439 DOI: 10.1038/jid.2008.202] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transcription factor p63 plays a pivotal role in the development and differentiation of the epidermis and epithelial appendages. Indeed, mutations in p63 are associated with a group of ectodermal dysplasias characterized by skin, limb, and craniofacial defects. It was hypothesized that p63 exerts its functions by activating specific genes during epidermal development, which in turn regulate epidermal stratification and differentiation. We have identified I-kappaB kinase alpha (IKKalpha) as a direct transcriptional target of p63 that is induced at early phases of terminal differentiation of primary keratinocytes. We show that the DeltaNp63 isoform is required for IKKalpha expression in differentiating keratinocytes and that mutant p63 proteins expressed in ectodermal dysplasia patients exhibit defects in inducing IKKalpha. Furthermore, we observed reduced IKKalpha expression in the epidermis of an ankyloblepharon ectodermal dysplasia clefting patient. Our data demonstrate that a failure to properly express IKKalpha may play a role in the development of ectodermal dysplasias.
Collapse
Affiliation(s)
- Barbara Marinari
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Millau JF, Bastien N, Drouin R. P53 transcriptional activities: a general overview and some thoughts. Mutat Res 2008; 681:118-133. [PMID: 18639648 DOI: 10.1016/j.mrrev.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 05/05/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
P53 is a master transcriptional regulator controlling several main cellular pathways. Its role is to adapt gene expression programs in order to maintain cellular homeostasis and genome integrity in response to stresses. P53 is found mutated in about half of human cancers and most mutations are clustered within the DNA-binding domain of the protein resulting in altered p53 transcriptional activity. This illustrates the importance of the gene regulations achieved by p53. The aim of this review is to provide a global overview of the current understanding of p53 transcriptional activities and to discuss some ongoing questions and unresolved points about p53 transcriptional activity.
Collapse
Affiliation(s)
- Jean-François Millau
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Nathalie Bastien
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Régen Drouin
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada.
| |
Collapse
|
34
|
Yamaguchi T, Kimura J, Miki Y, Yoshida K. The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem 2007; 282:33943-8. [PMID: 17897950 DOI: 10.1074/jbc.m706282200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Post-translational modification and degradation of proteins by the ubiquitin-proteasome system are key regulatory events in cellular responses to various stimuli. The NF-kappaB signaling pathway is controlled by the ubiquitin-mediated proteolysis. Although mechanisms of ubiquitination in the NF-kappaB pathway have been extensively studied, deubiquitination-mediated regulation of the NF-kappaB signaling remains poorly understood. The present studies show that a deubiquitinating enzyme, USP11, specifically regulates IkappaB kinase alpha (IKKalpha) among the NF-kappaB signaling molecules. Knocking down USP11 attenuates expression of IKKalpha in the transcriptional, but not the post-translational, level. However, down-regulation of USP11 dramatically enhances NF-kappaB activity in response to tumor necrosis factor-alpha, indicating that IKKalpha does not require activation of NF-kappaB. Instead, knock down of USP11 or IKKalpha is associated with abrogation of p53 expression upon exposure to tumor necrosis factor-alpha. In concert with these results, silencing of USP11 is associated with transcriptional attenuation of the p53-responsive genes, such as p21 or Bax. Importantly, the ectopic expression of IKKalpha into cells silenced for USP11 restores p53 expression, demonstrating that USP11 functions as an upstream regulator of an IKKalpha-p53 signaling pathway.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Maeda G, Chiba T, Kawashiri S, Satoh T, Imai K. Epigenetic Inactivation of IκB Kinase-α in Oral Carcinomas and Tumor Progression. Clin Cancer Res 2007; 13:5041-7. [PMID: 17785555 DOI: 10.1158/1078-0432.ccr-07-0463] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The loss of epithelial phenotypes in the process of carcinoma progression correlates with clinical outcome, and genetic/epigenetic changes accumulate aggressive clones toward uncurable disease. IkappaB kinase-alpha (IKKalpha) has a decisive role in the development of the skin and establishes keratinocyte phenotypes. We assessed clinical implications of IKKalpha expression in oral carcinomas and epigenetic aberrations for the loss of expression. EXPERIMENTAL DESIGN We examined IKKalpha expression in oral carcinomas by immunostaining (n = 64) and genetic instability by microsatellite PCR (n = 46). Promoter methylation status was analyzed by bisulfite-modified sequence (n = 11). RESULTS IKKalpha was expressed in the nucleus of basal cells of normal oral epithelium, but not or marginally detected in 32.8% of carcinomas. The immunoreactivity was significantly decreased in less differentiated carcinomas (P < 0.05) and correlated to long-term survival of patients (P < 0.01) with an independent prognostic value (P < 0.05). Although allelic/biallelic loss of the gene was limited to four cases, we detected microsatellite instability in 63.0% cases in which the immunoreactivities were decreased and the promoter was hypermethylated. CONCLUSION These results showed that oral carcinomas exhibiting genetic instability and promoter hypermethylation down-regulate expression of IKK and suggest that the epigenetic loss of the expression closely associates with disease progression toward unfavorable prognosis.
Collapse
Affiliation(s)
- Genta Maeda
- Department of Biochemistry, School of Life Dentistry, Nippon Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2007; 13:951-61. [PMID: 16575405 DOI: 10.1038/sj.cdd.4401916] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The p53 tumor suppressor protein is a DNA sequence-specific transcriptional regulator that, in response to various forms of cellular stress, controls the expression of numerous genes involved in cellular outcomes including among others, cell cycle arrest and cell death. Two key features of the p53 protein are required for its transcriptional activities: its ability to recognize and bind specific DNA sequences and to recruit both general and specialized transcriptional co-regulators. In fact, multiple interactions with co-activators and co-repressors as well as with the components of the general transcriptional machinery allow p53 to either promote or inhibit transcription of different target genes. This review focuses on some of the salient features of the interactions of p53 with DNA and with factors that regulate transcription. We discuss as well the complexities of the functional domains of p53 with respect to these interactions.
Collapse
Affiliation(s)
- O Laptenko
- Department of Biological Sciences, Columbia University, 530 120th Street, New York, NY 10027, USA
| | | |
Collapse
|
37
|
Abstract
A number of proteins are activated by stress stimuli but none so spectacularly or with the degree of complexity as the tumour suppressor p53 (human p53 gene or protein). Once stabilized, p53 is responsible for the transcriptional activation of a series of proteins involved in cell cycle control, apoptosis and senescence. This protein is present at low levels in resting cells but after exposure to DNA-damaging agents and other stress stimuli it is stabilized and activated by a series of post-translational modifications that free it from MDM2 (mouse double minute 2 but used interchangeably to denote human also), a ubiquination ligase that ubiquitinates it prior to proteasome degradation. The stability of p53 is also influenced by a series of other interacting proteins. In this review, we discuss the post-translational modifications to p53 in response to different stresses and the consequences of these changes.
Collapse
Affiliation(s)
- M F Lavin
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | |
Collapse
|
38
|
Yang J, Pan WH, Clawson GA, Richmond A. Systemic targeting inhibitor of kappaB kinase inhibits melanoma tumor growth. Cancer Res 2007; 67:3127-34. [PMID: 17409419 PMCID: PMC2665271 DOI: 10.1158/0008-5472.can-06-3547] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of nuclear factor-kappaB (NF-kappaB) has been directly implicated in tumorigenesis of various cancer types, including melanoma. Inhibitor of kappaB kinase (IKK) functions as a major mediator of NF-kappaB activation. Thus, development of an IKK-specific inhibitor has been a high priority, although it remains unclear whether systemic inhibition of IKK will provide therapeutic benefit. In this study, we show that inhibition of NF-kappaB activity in melanocytes that are persistently expressing an active H-Ras(V12) gene and are deficient in the tumor suppressors inhibitor A of cyclin-dependent kinase 4/alternative reading frame results in reduction of melanoma tumor growth in vivo. This effect is, at least in part, via regulation of NF-kappaB nuclear activation and RelA phosphorylation. Based on this result, we developed a double hammerhead ribozyme long-term expression system to silence either IKKalpha or IKKbeta. The ribozymes were placed in an EBV construct and delivered i.v. to nude mice bearing melanoma lesions, which developed after i.v. injection of H-Ras-transformed melanoma cells. Our in vivo data show that knockdown of endogenous IKKbeta significantly reduces the growth of the melanoma lesions and knockdown of either IKKalpha or IKKbeta prolongs the life span of immunocompetent mice.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Growth Processes/physiology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Genes, ras
- I-kappa B Kinase/antagonists & inhibitors
- I-kappa B Kinase/deficiency
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Melanocytes/metabolism
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Sequence Data
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
Collapse
Affiliation(s)
- Jinming Yang
- Department of Cancer Biology, Vanderbilt University School of Medicine and Veterans Affairs Medical Center, Nashville, Tennessee
| | - Wei-Hua Pan
- Department of Pathology, Department of Biochemistry and Molecular Biology, The Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Gary A. Clawson
- Department of Pathology, Department of Biochemistry and Molecular Biology, The Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University School of Medicine and Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
39
|
Abstract
Since the very early days of p53 research, the gain of oncogenic activities by some mutant p53 proteins had been suspected as an important factor contributing to cancer progression. Considerable progress towards understanding the biology of mutant p53 has been made during the last years, the quintessence being the realization that the impact of mutant p53 proteins on the transcriptome of a tumor cell is much more global than previously thought. The emerging role of mutant p53 proteins in coordinating oncogenic signaling and chromatin modifying activities reveals an until now unsuspected function of these proteins as important modifiers of the oncogenic transcriptional response. Notwithstanding the fact that the sequence-specific DNA binding activity of mutant p53 proteins is impaired, they are still able to associate with specific loci on DNA by utilizing different mechanisms. The ability to associate with DNA appears to be crucial for the master role of mutant p53 proteins in coordinating oncogenic transcriptional responses.
Collapse
Affiliation(s)
- E Kim
- Translational Neuro-Oncology Group, Department of Neurosurgery, Georg-August-University of Goettingen, Robert-Koch-Strasse 40, Goettingen, Germany.
| | | |
Collapse
|
40
|
Candi E, Terrinoni A, Rufini A, Chikh A, Lena AM, Suzuki Y, Sayan BS, Knight RA, Melino G. p63 is upstream of IKKα in epidermal development. J Cell Sci 2006; 119:4617-22. [PMID: 17093266 DOI: 10.1242/jcs.03265] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidermis, the outer layer of the skin composed of keratinocytes, develops following the action of the transcription factor p63. The mouse Trp63 gene contains two promoters, driving the production of distinct proteins, one with an N-terminal trans-activation domain (TAp63) and one without (ΔNp63), although their relative contribution to epidermal development is not clearly established. To identify the relative role of p63 isoforms in relation to IKKα, also known to be essential for epithelial development, we performed both molecular and in vivo analyses using genetic complementation in mice. We found that the action of TAp63 is mediated at the molecular level by direct and indirect transactivation of IKKα and Ets-1, respectively. We also found that ΔNp63 upregulates IKKα indirectly, through GATA-3. Our data are consistent with a role for p63 directly upstream of IKKα in epithelial development.
Collapse
Affiliation(s)
- Eleonora Candi
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Metastatic melanoma is an aggressive skin cancer that is notoriously resistant to current cancer therapies. In human melanoma, nuclear factor-kappa B (NF-kappaB) is upregulated, leading to the deregulation of gene transcription. In this review, we discuss (i) the relationship between gene alteration in melanoma and upregulation of NF-kappaB, (ii) mechanisms by which activated NF-kappaB switch from pro-apoptotic to anti-apoptotic functions in melanoma and (iii) autocrine mechanisms that promote constitutive activation of NF-kappaB in metastatic melanoma.
Collapse
Affiliation(s)
- Yukiko Ueda
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Nashville, TN, USA
- Address correspondence to Ann Richmond, e-mail:
| |
Collapse
|
42
|
Shirley RB, Kaddour-Djebbar I, Patel DM, Lakshmikanthan V, Lewis RW, Kumar MV. Combination of proteasomal inhibitors lactacystin and MG132 induced synergistic apoptosis in prostate cancer cells. Neoplasia 2006; 7:1104-11. [PMID: 16354593 PMCID: PMC1501172 DOI: 10.1593/neo.05520] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 12/16/2022] Open
Abstract
The proteasome inhibitor Velcade (bortezomib/PS-341) has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego CA) and MG132 (Biomol International, Plymouth Meeting, PA) may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKalpha, IKKbeta, and IKKgamma proteins and NFkappaB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFkappaB axis.
Collapse
Affiliation(s)
- Robert B Shirley
- Department of Urology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
43
|
Zhu N, Gu L, Findley HW, Zhou M. Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53. Biochem Biophys Res Commun 2005; 335:1272-9. [PMID: 16112647 DOI: 10.1016/j.bbrc.2005.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 01/31/2023]
Abstract
The eukaryotic initiation factor 4E (eIF4E) plays important roles in transformation and cancer progression. It is frequently overexpressed in malignant cells, one mechanism of which is through transcriptional activation by c-myc. Here, we report that high level of eIF4E expression and its tumorigenicity could be alternatively associated with defects of p53, since we found that induction of wt-p53 repressed eIF4E expression. Gene transfection of p53 inhibited eIF4E promoter activity, while inactivation of p53 either by mutation or by over-expression of MDM2 resulted in stimulation of eIF4E promoter activity. We demonstrated that p53-repression of eIF4E was regulated by c-myc. The wt-p53 can physically bind to c-myc, which inhibited binding of c-myc to eIF4E promoter and c-myc-stimulated promoter activity. These results suggest that the expression of eIF4E is reciprocally regulated by p53 and c-myc, and loss of p53-mediated control over c-myc-dependent transactivation of eIF4E may represent a novel mechanism for eIF4E-mediated neoplastic transformation and cancer progression.
Collapse
Affiliation(s)
- Ningxi Zhu
- Division of Pediatric Hematology/Oncology/BMT, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
44
|
Komarova EA, Krivokrysenko V, Wang K, Neznanov N, Chernov MV, Komarov PG, Brennan ML, Golovkina TV, Rokhlin OW, Kuprash DV, Nedospasov SA, Hazen SL, Feinstein E, Gudkov AV. p53 is a suppressor of inflammatory response in mice. FASEB J 2005; 19:1030-2. [PMID: 15811878 DOI: 10.1096/fj.04-3213fje] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic inflammation is known to promote cancer, suggesting that negative regulation of inflammation is likely to be tumor suppressive. We found that p53 is a general inhibitor of inflammation that acts as an antagonist of nuclear factor kappaB (NFkappaB). We first observed striking similarities in global gene expression profiles in human prostate cancer cells LNCaP transduced with p53 inhibitory genetic element or treated with TNF, suggesting that p53 inhibits transcription of TNF-inducible genes that are largely regulated by NFkappaB. Consistently, ectopically expressed p53 acts as an inhibitor of transcription of NFkappaB-dependent promoters. Furthermore, suppression of inflammatory response by p53 was observed in vivo in mice by comparing wild-type and p53 null animals at molecular (inhibition of transcription of genes encoding cytokines and chemokines, reducing accumulation of reactive oxygen species and protein oxidation products), cellular (activation of macrophages and neutrophil clearance) and organismal (high levels of metabolic markers of inflammation in tissues of p53-deficient mice and their hypersensitivity to LPS) levels. These observations indicate that p53, acting through suppression of NFkappaB, plays the role of a general "buffer" of innate immune response in vivo that is well consistent with its tumor suppressor function and frequent constitutive activation of NFkappaB in tumors.
Collapse
Affiliation(s)
- Elena A Komarova
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|