1
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
2
|
Theron CW, Salcedo-Sora JE, Grixti JM, Møller-Hansen I, Borodina I, Kell DB. Evidence for the Role of the Mitochondrial ABC Transporter MDL1 in the Uptake of Clozapine and Related Molecules into the Yeast Saccharomyces cerevisiae. Pharmaceuticals (Basel) 2024; 17:938. [PMID: 39065789 PMCID: PMC11279418 DOI: 10.3390/ph17070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Clozapine is an antipsychotic drug whose accumulation in white cells can sometimes prove toxic; understanding the transporters and alleles responsible is thus highly desirable. We used a strategy in which a yeast (Saccharomyces cerevisiae) CRISPR-Cas9 knock-out library was exposed to cytotoxic concentrations of clozapine to determine those transporters whose absence made it more resistant; we also recognised the structural similarity of the fluorescent dye safranin O (also known as safranin T) to clozapine, allowing it to be used as a surrogate marker. Strains lacking the mitochondrial ABC transporter MDL1 (encoded by YLR188W) showed substantial resistance to clozapine. MDL1 overexpression also conferred extra sensitivity to clozapine and admitted a massive increase in the cellular and mitochondrial uptake of safranin O, as determined using flow cytometry and microscopically. Yeast lacking mitochondria showed no such unusual accumulation. Mitochondrial MDL1 is thus the main means of accumulation of clozapine in S. cerevisiae. The closest human homologue of S. cerevisiae MDL1 is ABCB10.
Collapse
Affiliation(s)
- Chrispian W. Theron
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - J. Enrique Salcedo-Sora
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Justine M. Grixti
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Douglas B. Kell
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Sharma P, Maklashina E, Voehler M, Balintova S, Dvorakova S, Kraus M, Hadrava Vanova K, Nahacka Z, Zobalova R, Boukalova S, Cunatova K, Mracek T, Ghayee HK, Pacak K, Rohlena J, Neuzil J, Cecchini G, Iverson TM. Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners. Nat Commun 2024; 15:473. [PMID: 38212624 PMCID: PMC10784507 DOI: 10.1038/s41467-023-44563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Markus Voehler
- Department of Chemistry Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA
| | - Sona Balintova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Michal Kraus
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Katerina Hadrava Vanova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Kristyna Cunatova
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida College of Medicine and Malcom Randall, VA Medical Center, Gainesville, FL, 32608, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic.
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, 4222, Australia.
- 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
5
|
Roterman I, Stapor K, Fabian P, Konieczny L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int J Mol Sci 2021; 22:10587. [PMID: 34638925 PMCID: PMC8508659 DOI: 10.3390/ijms221910587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The role of the environment in amyloid formation based on the fuzzy oil drop model (FOD) is discussed here. This model assumes that the hydrophobicity distribution within a globular protein is consistent with a 3D Gaussian (3DG) distribution. Such a distribution is interpreted as the idealized effect of the presence of a polar solvent-water. A chain with a sequence of amino acids (which are bipolar molecules) determined by evolution recreates a micelle-like structure with varying accuracy. The membrane, which is a specific environment with opposite characteristics to the polar aquatic environment, directs the hydrophobic residues towards the surface. The modification of the FOD model to the FOD-M form takes into account the specificity of the cell membrane. It consists in "inverting" the 3DG distribution (complementing the Gaussian distribution), which expresses the exposure of hydrophobic residues on the surface. It turns out that the influence of the environment for any protein (soluble or membrane-anchored) is the result of a consensus factor expressing the participation of the polar environment and the "inverted" environment. The ratio between the proportion of the aqueous and the "reversed" environment turns out to be a characteristic property of a given protein, including amyloid protein in particular. The structure of amyloid proteins has been characterized in the context of prion, intrinsically disordered, and other non-complexing proteins to cover a wider spectrum of molecules with the given characteristics based on the FOD-M model.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Medyczna 7, 30-688 Kraków, Poland
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
6
|
Gladyck S, Aras S, Hüttemann M, Grossman LI. Regulation of COX Assembly and Function by Twin CX 9C Proteins-Implications for Human Disease. Cells 2021; 10:197. [PMID: 33498264 PMCID: PMC7909247 DOI: 10.3390/cells10020197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein-protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX assembly and control of its activity through protein-protein interactions, which is further modulated by cell signaling pathways. Interestingly, select members of the CX9C protein family, including MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease.
Collapse
Affiliation(s)
- Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| |
Collapse
|
7
|
Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Rep 2020; 29:4114-4126.e5. [PMID: 31851937 PMCID: PMC6946597 DOI: 10.1016/j.celrep.2019.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO. Soma et al. reports the solution structure of cytochrome c oxidase assembly factor COA6 and establishes that it functions as a thiol-disulfide oxidoreductase in a relay system that delivers copper to COX2, a copper-containing subunit of the mitochondrial cytochrome c oxidase.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Mandar T Naik
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anna A Roesler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Alok Ghosh
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
10
|
Nguyen TQ, Dziuba N, Lindahl PA. Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes. Metallomics 2020; 11:1298-1309. [PMID: 31210222 DOI: 10.1039/c9mt00104b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.
Collapse
Affiliation(s)
- Trang Q Nguyen
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Int J Mol Sci 2019; 20:ijms20153830. [PMID: 31387303 PMCID: PMC6696091 DOI: 10.3390/ijms20153830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential cofactor for aerobic respiration, since it is required as a redox cofactor in Cytochrome c Oxidase (COX). This ancient and highly conserved enzymatic complex from the family of heme-copper oxidase possesses two copper sites: CuA and CuB. Biosynthesis of the oxidase is a complex, stepwise process that requires a high number of assembly factors. In this review, we summarize the state-of-the-art in the assembly of COX, with special emphasis in the assembly of copper sites. Assembly of the CuA site is better understood, being at the same time highly variable among organisms. We also discuss the current challenges that prevent the full comprehension of the mechanisms of assembly and the pending issues in the field.
Collapse
|
12
|
Uddin R, Nur-E-Habiba, Rena G, Hwu ET, Boisen A. New Evidence for the Mechanism of Action of a Type-2 Diabetes Drug Using a Magnetic Bead-Based Automated Biosensing Platform. ACS Sens 2017; 2:1329-1336. [PMID: 28776376 PMCID: PMC5613276 DOI: 10.1021/acssensors.7b00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
The mechanism of
action (MOA) of the first line type-2 diabetes
drug metformin remains unclear despite its widespread usage. However,
recent evidence suggests that the mitochondrial copper (Cu)-binding
action of metformin may contribute toward the drug’s MOA. Here,
we present a novel biosensing platform for investigating the MOA of
metformin using a magnetic microbead-based agglutination assay which
has allowed us to demonstrate for the first time the interaction between
Cu and metformin at clinically relevant low micromolar concentrations
of the drug, thus suggesting a potential pathway of metformin’s
blood-glucose lowering action. In this assay, cysteine-functionalized
magnetic beadswere agglutinated in the presence of Cu due to cysteine’s
Cu-chelation property. Addition of clinically relevant doses of metformin
resulted in disaggregation of Cu-bridged bead-clusters, whereas the
effect of adding a closely related but blood-glucose neutral drug
propanediimidamide (PDI) showed completely different responses to
the clusters. The entire assay was integrated in an automated microfluidics
platform with an advanced optical imaging unit by which we investigated
these aggregation–disaggregation phenomena in a reliable, automated,
and user-friendly fashion with total assay time of 17 min requiring
a sample (metformin/PDI) volume of 30 μL. The marked difference
of Cu-binding action between the blood-glucose lowering drug metformin
and its inactive analogue PDI thus suggests that metformin’s
distinctive Cu-binding properties may be required for its effect on
glucose homeostasis. The novel automated platform demonstrating this
novel investigation thus holds the potential to be utilized for investigating
significant and sensitive molecular interactions via magnetic bead-based
agglutination assay.
Collapse
Affiliation(s)
- Rokon Uddin
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Nur-E-Habiba
- Department
of Chemistry and Bioengineering, Tampere University of Technology, 33720, Tampere, Finland
| | - Graham Rena
- Molecular
and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - En-Te Hwu
- Institute
of Physics, Academia Sinica, Nankang, 11529 Taiwan
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
13
|
MNRR1, a Biorganellar Regulator of Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6739236. [PMID: 28685009 PMCID: PMC5480048 DOI: 10.1155/2017/6739236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/09/2017] [Indexed: 12/12/2022]
Abstract
The central role of energy metabolism in cellular activities is becoming widely recognized. However, there are many gaps in our knowledge of the mechanisms by which mitochondria evaluate their status and call upon the nucleus to make adjustments. Recently, a protein family consisting of twin CX9C proteins has been shown to play a role in human pathophysiology. We focus here on two family members, the isoforms CHCHD2 (renamed MNRR1) and CHCHD10. The better studied isoform, MNRR1, has the unusual property of functioning in both the mitochondria and the nucleus and of having a different function in each. In the mitochondria, it functions by binding to cytochrome c oxidase (COX), which stimulates respiration. Its binding to COX is promoted by tyrosine-99 phosphorylation, carried out by ABL2 kinase (ARG). In the nucleus, MNRR1 binds to a novel promoter element in COX4I2 and itself, increasing transcription at 4% oxygen. We discuss mutations in both MNRR1 and CHCHD10 found in a number of chronic, mostly neurodegenerative, diseases. Finally, we propose a model of a graded response to hypoxic and oxidative stresses, mediated under different oxygen tensions by CHCHD10, MNRR1, and HIF1, which operate at intermediate and very low oxygen concentrations, respectively.
Collapse
|
14
|
Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 2016; 69:211-217. [PMID: 27896900 DOI: 10.1002/iub.1590] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 11/06/2022]
Abstract
Copper has a wide and important role in biological systems, determining conformation and activity of many metalloproteins and enzymes, such as cytochrome oxidase and superoxide dismutase . Furthermore, due to its possible reactivity with nonspecific proteins and toxic effects, elaborate systems of absorption, concentration buffering, delivery to specific protein sites and elimination, require a complex system including small carriers, chaperones and active transporters. The P-type copper ATPases ATP7A and ATP7B provide an important system for acquisition, active transport, distribution and elimination of copper. Relevance of copper metabolism to human diseases and therapy is already known. It is quite certain that further studies will reveal detailed and useful information on biochemical mechanisms and relevance to diseases. © 2016 IUBMB Life, 69(4):211-217, 2017.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| |
Collapse
|
15
|
Dela Cruz R, Jeong MY, Winge DR. Cox1 mutation abrogates need for Cox23 in cytochrome c oxidase biogenesis. MICROBIAL CELL 2016; 3:275-284. [PMID: 28357365 PMCID: PMC5354592 DOI: 10.15698/mic2016.07.511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cox23 is a known conserved assembly factor for cytochrome c
oxidase, although its role in cytochrome c oxidase (CcO)
biogenesis remains unresolved. To gain additional insights into its role, we
isolated spontaneous suppressors of the respiratory growth defect in
cox23∆ yeast cells. We recovered independent colonies that
propagated on glycerol/lactate medium for cox23∆ cells at 37°C.
We mapped these mutations to the mitochondrial genome and specifically to
COX1 yielding an I101F substitution. The
I101F Cox1 allele is a gain-of-function mutation enabling yeast
to respire in the absence of Cox23. CcO subunit steady-state levels were
restored with the I101F Cox1 suppressor mutation and oxygen
consumption and CcO activity were likewise restored. Cells harboring the
mitochondrial genome encoding I101F Cox1 were used to delete genes
for other CcO assembly factors to test the specificity of the Cox1 mutation as a
suppressor of cox23∆ cells. The Cox1 mutant allele fails to
support respiratory growth in yeast lacking Cox17, Cox19, Coa1, Coa2, Cox14 or
Shy1, demonstrating its specific suppressor activity for cox23∆
cells.
Collapse
Affiliation(s)
- Richard Dela Cruz
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry, Salt Lake City, Utah 84132, USA. ; Present address: Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Mi-Young Jeong
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry, Salt Lake City, Utah 84132, USA
| | - Dennis R Winge
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry, Salt Lake City, Utah 84132, USA
| |
Collapse
|
16
|
Quan X, Uddin R, Heiskanen A, Parmvi M, Nilson K, Donolato M, Hansen MF, Rena G, Boisen A. The copper binding properties of metformin--QCM-D, XPS and nanobead agglomeration. Chem Commun (Camb) 2016; 51:17313-6. [PMID: 26462973 DOI: 10.1039/c5cc04321b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and L-cysteine-copper complexes was performed. The results suggest that metformin could interact with biological copper, which plays a key role in mitochondrial function.
Collapse
Affiliation(s)
- Xueling Quan
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Rokon Uddin
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Arto Heiskanen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mattias Parmvi
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Katharina Nilson
- DTU DANCHIP, Technical University of Denmark, Building 347, Kgs. Lyngby DK-2800, Denmark
| | - Marco Donolato
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikkel F Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Graham Rena
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Garcia L, Welchen E, Gey U, Arce AL, Steinebrunner I, Gonzalez DH. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:628-44. [PMID: 26436309 DOI: 10.1111/pce.12647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/22/2015] [Indexed: 05/03/2023]
Abstract
COX17 is a soluble protein from the mitochondrial intermembrane space that participates in the transfer of copper for cytochrome c oxidase (COX) assembly in eukaryotic organisms. In this work, we studied the function of both Arabidopsis thaliana AtCOX17 genes using plants with altered expression levels of these genes. Silencing of AtCOX17-1 in a cox17-2 knockout background generates plants with smaller rosettes and decreased expression of genes involved in the response of plants to different stress conditions, including several genes that are induced by mitochondrial dysfunctions. Silencing of either of the AtCOX17 genes does not affect plant development or COX activity but causes a decrease in the response of genes to salt stress. In addition, these plants contain higher reactive oxygen and lipid peroxidation levels after irrigation with high NaCl concentrations and are less sensitive to abscisic acid. In agreement with a role of AtCOX17 in stress and abscisic acid responses, both AtCOX17 genes are induced by several stress conditions, abscisic acid and mutation of the transcription factor ABI4. The results indicate that AtCOX17 is required for optimal expression of a group of stress-responsive genes, probably as a component of signalling pathways that link stress conditions to gene expression responses.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Uta Gey
- Technische Universität Dresden, Department of Biology, 01062, Dresden, Germany
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Iris Steinebrunner
- Technische Universität Dresden, Department of Biology, 01062, Dresden, Germany
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
18
|
Bou-Abdallah F, Giffune TR. The thermodynamics of protein interactions with essential first row transition metals. Biochim Biophys Acta Gen Subj 2015; 1860:879-891. [PMID: 26569121 DOI: 10.1016/j.bbagen.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism. SCOPE OF REVIEW A rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first row transition metals with relevant proteins and highlight major findings from these thermodynamic studies. GENERAL SIGNIFICANCE The thermodynamic characterization of metal ion-protein interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins' structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases. MAJOR CONCLUSIONS Isothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- State University of New York at Potsdam, Potsdam, NY 13676, United States.
| | - Thomas R Giffune
- State University of New York at Potsdam, Potsdam, NY 13676, United States
| |
Collapse
|
19
|
Xu S, Andrews D, Hill BC. The affinity of yeast and bacterial SCO proteins for CU(I) and CU(II). A capture and release strategy for copper transfer. Biochem Biophys Rep 2015; 4:10-19. [PMID: 29124182 PMCID: PMC5668878 DOI: 10.1016/j.bbrep.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
SCO (Synthesis of Cytochrome c Oxidase) proteins are present in prokaryotic and eukaryotic cells, and are often required for efficient synthesis of the respiratory enzyme cytochrome c oxidase. The Bacillus subtilis version of SCO (i.e., BsSCO) has much greater affinity for Cu(II) than it does for Cu(I) (Davidson and Hill, 2009), and this has been contrasted to mitochondrial SCO proteins that are characterized as being specific for Cu(I) (Nittis, George and Winge, 2001). This differential affinity has been proposed to reflect the different physiological environments in which these two members of the SCO protein family reside. In this study the affinity of mitochondrial SCO1 from yeast is compared directly to that of BsSCO in vitro. We find that the yeast SCO1 protein has similar preference for Cu(II) over Cu(I), as does BsSCO. We propose a mechanism for SCO function which would involve high-affinity binding to capture Cu(II), and relatively weak binding of Cu(I) to facilitate copper transfer. Yeast SCO1 prefers Cu(II) over Cu(I) by many orders of magnitude. Yeast SCO1 has similar copper-species preference as a bacterial SCO protein. High affinity binding of Cu(II) by SCO may be initial step in copper transfer. Conversion of SCO-Cu(II) to SCO-Cu(I) is required for copper transfer. A second cysteine pair in yeast SCO1 may be involved in redox sensing.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada
| | - Diann Andrews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada
| | - Bruce C. Hill
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada
- Protein Function Discovery Research Group, Queen’s University, Kingston, ON K7L3N6 Canada
- Corresponding author at: Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada.Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonON K7L3N6Canada
| |
Collapse
|
20
|
Szarka A, Bánhegyi G. Oxidative folding: recent developments. Biomol Concepts 2015; 2:379-90. [PMID: 25962043 DOI: 10.1515/bmc.2011.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023] Open
Abstract
Disulfide bond formation in proteins is an effective tool of both structure stabilization and redox regulation. The prokaryotic periplasm and the endoplasmic reticulum of eukaryotes were long considered as the only compartments for enzyme mediated formation of stable disulfide bonds. Recently, the mitochondrial intermembrane space has emerged as the third protein-oxidizing compartment. The classic view on the mechanism of oxidative folding in the endoplasmic reticulum has also been reshaped by new observations. Moreover, besides the structure stabilizing function, reversible disulfide bridge formation in some proteins of the endoplasmic reticulum, seems to play a regulatory role. This review briefly summarizes the present knowledge of the redox systems supporting oxidative folding, emphasizing recent developments.
Collapse
|
21
|
Nåbo LJ, Madsen CS, Jensen KJ, Kongsted J, Astakhova K. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids. Chembiochem 2015; 16:1163-7. [PMID: 25940911 DOI: 10.1002/cbic.201500145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)-binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine-based fluorescent probes in vitro and rationalize our results by electronic structure calculations.
Collapse
Affiliation(s)
- Lina J Nåbo
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
| | - Charlotte S Madsen
- Department of Chemistry, University of Copenhagen (Denmark), Thorvaldsensvej 40, 1871 Copenhagen (Denmark)
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen (Denmark), Thorvaldsensvej 40, 1871 Copenhagen (Denmark)
| | - Jacob Kongsted
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
| | - Kira Astakhova
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark).
| |
Collapse
|
22
|
Mia40 Combines Thiol Oxidase and Disulfide Isomerase Activity to Efficiently Catalyze Oxidative Folding in Mitochondria. J Mol Biol 2014; 426:4087-4098. [DOI: 10.1016/j.jmb.2014.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 11/21/2022]
|
23
|
Koch JR, Schmid FX. Mia40 is optimized for function in mitochondrial oxidative protein folding and import. ACS Chem Biol 2014; 9:2049-57. [PMID: 24983157 DOI: 10.1021/cb500408n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mia40 catalyzes oxidative protein folding in mitochondria. It contains a unique catalytic CPC dithiol flanked by a hydrophobic groove, and unlike other oxidoreductases, it forms long-lived mixed disulfides with substrates. We show that this distinctive property originates neither from particular properties of mitochondrial substrates nor from the CPC motif of Mia40. The catalytic cysteines of Mia40 display unusually low chemical reactivity, as expressed in conventional pK values and reduction potentials. The stability of the mixed disulfide intermediate is coupled energetically with hydrophobic interactions between Mia40 and the substrate. Based on these properties, we suggest a mechanism for Mia40, where the hydrophobic binding site is employed to select a substrate thiol for forming the initial mixed disulfide. Its long lifetime is used to retain partially folded proteins in the mitochondria and to direct folding toward forming the native disulfide bonds.
Collapse
Affiliation(s)
- Johanna R. Koch
- Laboratorium
für Biochemie
und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X. Schmid
- Laboratorium
für Biochemie
und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
24
|
Palese LL. Random Matrix Theory in molecular dynamics analysis. Biophys Chem 2014; 196:1-9. [PMID: 25237718 DOI: 10.1016/j.bpc.2014.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/15/2022]
Abstract
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.
Collapse
Affiliation(s)
- Luigi Leonardo Palese
- SMBNOS, University of Bari "Aldo Moro", Piazza G. Cesare, Policlinico, 70124 Bari, Italy.
| |
Collapse
|
25
|
Garcia L, Welchen E, Gonzalez DH. Mitochondria and copper homeostasis in plants. Mitochondrion 2014; 19 Pt B:269-74. [PMID: 24582977 DOI: 10.1016/j.mito.2014.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Copper (Cu) and other transition metals are essential for living organisms but also toxic when present in excess. To cope with this apparent paradox, organisms have developed sophisticated mechanisms to acquire, transport and store these metals. Particularly, plant mitochondria require Cu for the assembly and function of cytochrome c oxidase (COX), the terminal enzyme of the respiratory chain. COX assembly is a complex process that requires the action of multiple factors, many of them involved in the delivery and insertion of Cu into the enzyme. In this review, we summarize what is known about the processes involved in Cu delivery to mitochondria and how these processes impact in Cu homeostasis at the cellular level. We also discuss evidence indicating that metallochaperones involved in COX assembly play additional roles in signaling pathways related to changes in Cu and redox homeostasis and the response of plants to stress. We propose that cysteine-rich proteins present in the mitochondrial intermembrane space are excellent candidates as sensors of these changes and transducers of signals originated in the organelle to the rest of the cell.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina.
| |
Collapse
|
26
|
Repiščák P, Erhardt S, Rena G, Paterson MJ. Biomolecular mode of action of metformin in relation to its copper binding properties. Biochemistry 2014; 53:787-95. [PMID: 24433134 DOI: 10.1021/bi401444n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metformin (Metf), the most commonly used type 2 diabetes drug, is known to affect the cellular housekeeping of copper. Recently, we discovered that the structurally closely related propanediimidamide (PDI) shows a cellular behavior different from that of Metf. Here we investigate the binding of these compounds to copper, to compare their binding strength. Furthermore, we take a closer look at the electronic properties of these compounds and their copper complexes such as molecular orbital interactions and electrostatic potential surfaces. Our results clearly show that the copper binding energies cannot alone be the cause of the biochemical differentiation between Metf and PDI. We conclude that other factors such as pKa values and hydrophilicity of the compounds play a crucial role in their cellular activity. Metf in contrast to PDI can occur as an anion in aqueous medium at moderate pH, forming much stronger complexes particularly with Cu(II) ions, suggesting that biguanides but not PDI may induce easy oxidation of Cu(I) ions extracted from proteins. The higher hydrophobicity and the lack of planarity of PDI may further differentiate it from biguanides in terms of their molecular recognition characteristics. These different properties could hold the key to metformin's mitochondrial activity because they suggest that the drug could act at least in part as a pro-oxidant of accessible protein-bound Cu(I) ions.
Collapse
Affiliation(s)
- Peter Repiščák
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University , Edinburgh, United Kingdom EH14 4AS
| | | | | | | |
Collapse
|
27
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
28
|
Reichmann D, Jakob U. The roles of conditional disorder in redox proteins. Curr Opin Struct Biol 2013; 23:436-42. [PMID: 23477949 DOI: 10.1016/j.sbi.2013.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/18/2022]
Abstract
Cells are constantly exposed to various oxidants, either generated endogenously due to metabolic activity or exogenously. One way that cells respond to oxidants is through the action of redox-regulated proteins. These proteins also play important roles in oxidant signaling and protein biogenesis events. The key sensors built into redox-regulated proteins are cysteines, which undergo reversible thiol oxidation in response to changes in the oxidation status of the cellular environment. In this review, we discuss three examples of redox-regulated proteins found in bacteria, mitochondria, and chloroplasts. These proteins use oxidation of their redox-sensitive cysteines to reversibly convert large structural domains into more disordered regions or vice versa. These massive structural rearrangements are directly implicated in the functions of these proteins.
Collapse
Affiliation(s)
- Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel.
| | | |
Collapse
|
29
|
Bertini I, Felli IC, Gonnelli L, Vasantha Kumar MV, Pierattelli R. High-resolution characterization of intrinsic disorder in proteins: expanding the suite of (13)C-detected NMR spectroscopy experiments to determine key observables. Chembiochem 2013; 12:2347-52. [PMID: 23106082 DOI: 10.1002/cbic.201100406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Order in disorder: The characterization of intrinsically disordered proteins by NMR spectroscopy is a necessity on the one hand and a continuous challenge on the other. We propose two experiments that provide diagnostic parameters to monitor the degree of unfolding of a polypeptide. The test was performed on the yeast Cox17 protein, known to gain its function through maturation from an intrinsically disordered state (see figure).
Collapse
Affiliation(s)
- Ivano Bertini
- CERM University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
30
|
Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation. Structure 2012; 20:2124-37. [PMID: 23123111 DOI: 10.1016/j.str.2012.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/03/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022]
Abstract
[NiFe] hydrogenase maturation represents one of the most dynamic and sophisticated processes in metallocenter assembly. The Fe(CN)(2)CO moiety of [NiFe] hydrogenases is assembled via unknown transient interactions among specific maturation proteins HypC (metallochaperone), HypD (redox protein), and HypE (cyanide synthesis/donor). Here, we report the structures of the HypC-HypD and HypC-HypD-HypE complexes, providing a view of the transient interactions that take place during the maturation process. HypC binds to the conserved region of HypD through extensive hydrophobic interactions. The ternary complex formation between HypE and the HypCD complex involves both HypC and HypD, rendering the HypE conformation favorable for cyanide transfer. In the complex, the conserved cysteines of HypC and HypD form an Fe binding site. The conserved C-terminal cysteine of HypE can access the thiol redox cascade of HypD. These results provide structural insights into the Fe atom cyanation in the HypCDE complex.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
31
|
Bermel W, Bertini I, Chill J, Felli IC, Haba N, Kumar M. V. V, Pierattelli R. Exclusively Heteronuclear13C-Detected Amino-Acid-Selective NMR Experiments for the Study of Intrinsically Disordered Proteins (IDPs). Chembiochem 2012; 13:2425-32. [DOI: 10.1002/cbic.201200447] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Indexed: 12/20/2022]
|
32
|
Abriata LA. Analysis of copper-ligand bond lengths in X-ray structures of different types of copper sites in proteins. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1223-31. [PMID: 22948924 DOI: 10.1107/s0907444912026054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022]
Abstract
An updated picture of the ligand sets and copper-ligand atom bond lengths in proteins is presented which takes advantage of (i) the approximately twofold increase in the number of entries for copper-containing proteins in the PDB since the last study of this kind, especially benefiting from the recent incorporation of the structures of proteins involved in copper homeostasis, and (ii) a preliminary classification of copper sites based on their structural, electronic and functional features. This classification allowed the calculation of reliable target copper-ligand distances for several bonds that were not available in previous work and that are in good agreement with EXAFS data and the known chemistry of these sites. The analysis presented here further disclosed an artifactual dependence of the average of the reported Cu-NHis bond lengths on structure resolution, highlighting the importance of taking this into account when computing target distances even from high-resolution structures. Finally, a relationship between the two Cu-O distances in bidentate carboxylates is disclosed, similar to that reported previously for other metal ions.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
33
|
Banci L, Bertini I, Ciofi-Baffoni S, Jaiswal D, Neri S, Peruzzini R, Winkelmann J. Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins. J Struct Biol 2012; 180:190-200. [PMID: 22842048 DOI: 10.1016/j.jsb.2012.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/05/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
Abstract
Twin CX(9)C proteins constitute a large protein family among all eukaryotes; are putative substrates of the mitochondrial Mia40-dependent import machinery; contain a coiled coil-helix-coiled coil-helix (CHCH) fold stabilized by two disulfide bonds as exemplified by three structures available for this family. However, they considerably differ at the primary sequence level and this prevents an accurate prediction of their structural models. With the aim of expanding structural information on CHCH proteins, here we structurally characterized human CHCHD5 and CHCHD7. While CHCHD5 has two weakly interacting CHCH domains which sample a range of limited conformations as a consequence of hydrophobic interactions, CHCHD7 has a third helix hydrophobically interacting with an extension of helix α2, which is part of the CHCH domain. Upon reduction of the disulfide bonds both proteins become unstructured exposing hydrophobic patches, with the result of protein aggregation/precipitation. These results suggest a model where the molecular interactions guiding the protein recognition between Mia40 and the disulfide-reduced CHCHD5 and CHCHD7 substrates occurs in vivo when the latter proteins are partially embedded in the protein import pore of the outer membrane of mitochondria.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mealman TD, Blackburn NJ, McEvoy MM. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. CURRENT TOPICS IN MEMBRANES 2012; 69:163-96. [PMID: 23046651 DOI: 10.1016/b978-0-12-394390-3.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High levels of metal ions have the potential to cause cellular toxicity through a variety of mechanisms; therefore, cells have developed numerous systems that regulate their intracellular concentrations. The Cus resistance system aids in protection of Escherichia coli from high levels of Cu(I) and Ag(I) by actively transporting these metal ions to the extracellular environment. The Cus system forms a continuous complex, CusCBA, that spans the inner membrane, periplasm, and outer membrane of Gram-negative bacteria, together with a novel fourth component, the periplasmic metallochaperone, CusF. The metal-binding sites of CusA, CusB, and CusF are exquisitely tuned for Cu(I) and Ag(I), and thus effectively discriminate these ions for transport from other metals that may be required in the cell. Furthermore, direct transfer of metal from protein to protein within the Cus system during the transport process is likely to reduce the potential toxicity posed by the free metal ions. Here we review the wealth of structural, biochemical, and genetic information on the Cus system, which demonstrates the many intriguing aspects of function for metal-transporting efflux systems.
Collapse
Affiliation(s)
- Tiffany D Mealman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
35
|
Pope CR, Flores AG, Kaplan JH, Unger VM. Structure and function of copper uptake transporters. CURRENT TOPICS IN MEMBRANES 2012; 69:97-112. [PMID: 23046648 DOI: 10.1016/b978-0-12-394390-3.00004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Owing to their redox and coordination chemistry copper ions play essential roles in cellular function. Research over the past 20 years has shed much light on the biochemistry of copper homeostasis, and the emergence of high-resolution crystal structures for many of the proteins that partake in cellular copper biology have began to provide insight into the molecular mechanisms by which cells handle this important metal. A notable gap in our understanding is related to the process by which cells acquire copper ions. This chapter describes recent progress in the structure determination of cellular copper uptake transporters and how the emerging structural information aids understanding of the molecular mechanisms that govern cellular copper acquisition and distribution.
Collapse
Affiliation(s)
- Christopher R Pope
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
36
|
Herrmann JM, Riemer J. Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J Biol Chem 2011; 287:4426-33. [PMID: 22157015 DOI: 10.1074/jbc.r111.270678] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
99% of all mitochondrial proteins are synthesized in the cytosol, from where they are imported into mitochondria. In contrast to matrix proteins, many proteins of the intermembrane space (IMS) lack presequences and are imported in an oxidation-driven reaction by the mitochondrial disulfide relay. Incoming polypeptides are recognized and oxidized by the IMS-located receptor Mia40. Reoxidation of Mia40 is facilitated by the sulfhydryl oxidase Erv1 and the respiratory chain. Although structurally unrelated, the mitochondrial disulfide relay functionally resembles the Dsb (disufide bond) system of the bacterial periplasm, the compartment from which the IMS was derived 2 billion years ago.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
37
|
Pushie MJ, Zhang L, Pickering IJ, George GN. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:938-47. [PMID: 22056518 DOI: 10.1016/j.bbabio.2011.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/06/2011] [Accepted: 10/14/2011] [Indexed: 02/03/2023]
Abstract
Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N5E2
| | | | | | | |
Collapse
|
38
|
Structural Characterization of Intramolecular Hg2+ Transfer between Flexibly Linked Domains of Mercuric Ion Reductase. J Mol Biol 2011; 413:639-56. [DOI: 10.1016/j.jmb.2011.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 11/20/2022]
|
39
|
Abstract
The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.
Collapse
Affiliation(s)
- Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
40
|
Banci L, Bertini I, Cavallaro G, Ciofi-Baffoni S. Seeking the determinants of the elusive functions of Sco proteins. FEBS J 2011; 278:2244-62. [DOI: 10.1111/j.1742-4658.2011.08141.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Endo T, Yamano K, Kawano S. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1359-73. [PMID: 20136511 DOI: 10.1089/ars.2010.3099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mitochondria contain two biological membranes. Although reducing agents can diffuse from the cytosol into the intermembrane space (IMS) between the outer and inner mitochondrial membranes, the IMS has a dedicated disulfide relay system to introduce disulfide bonds into mainly small and soluble proteins. This system consists of two essential proteins, a disulfide carrier Tim40/Mia40 and a flavin-dependent sulfhydryl oxidase Erv1, high-resolution structures that have recently become available. Tim40/Mia40 transfers disulfide bonds to newly imported IMS proteins by dithiol/disulfide exchange reactions involving mixed disulfide intermediates. Tight folding by introduction of disulfide bonds prevents egress of these small IMS proteins, resulting in their selective retention in the compartment. After disulfide transfer from Tim40/Mia40 to substrate proteins, Tim40/Mia40 is reoxidized again by Erv1, which is then oxidized by electron transfer to either cytochrome c or molecular oxygen. Here we review the recent advancement of the knowledge on the mechanism of the disulfide relay system in the mitochondrial IMS, especially shedding light on the structural aspects of its components.
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Nagoya University, Japan.
| | | | | |
Collapse
|
42
|
Abstract
Mitochondria contain two aqueous compartments: the matrix and the intermembrane space. Whereas many of the biologic functions of the matrix were well characterized in the past, it became clear very recently that the intermembrane space plays a pivotal role in the coordination of mitochondrial activities with other cellular processes. These activities include the exchange of proteins, lipids, or metal ions between the matrix and the cytosol, the regulated initiation of apoptotic cascades, signalling pathways that regulate respiration and metabolic functions, the prevention of reactive oxygen species produced by the respiratory chain, or the control of mitochondrial morphogenesis. We focus on the different biologic functions of the intermembrane space and discuss the relevance of this fascinating compartment for cellular physiology and human health.
Collapse
|
43
|
Spectral and thermodynamic properties of methanobactin from γ-proteobacterial methane oxidizing bacteria: a case for copper competition on a molecular level. J Inorg Biochem 2010; 104:1240-7. [PMID: 20817303 DOI: 10.1016/j.jinorgbio.2010.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
Abstract
Methanobactin (mb) is a low molecular mass copper-binding molecule analogous to iron-binding siderophores. The molecule is produced by many methanotrophic or methane oxidizing bacteria (MOB), but has only been characterized to date in one MOB, Methylosinus trichosporium OB3b. To explore the potential molecular diversity in this novel class of metal binding compound, the spectral (UV-visible, fluorescent, and electron paramagnetic resonance) and thermodynamic properties of mb from two γ-proteobacterial MOB, Methylococcus capsulatus Bath and Methylomicrobium album BG8, were determined and compared to the mb from the α-proteobacterial MOB, M. trichosporium OB3b. The mb from both γ-proteobacterial MOB differed from the mb from M. trichosporium OB3b in molecular mass and spectral properties. Compared to mb from M. trichosporium OB3b, the extracellular concentrations were low, as were copper-binding constants of mb from both γ-proteobacterial MOB. In addition, the mb from M. trichosporium OB3b removed Cu(I) from the mb of both γ-proteobacterial MOB. Taken together the results suggest mb may be a factor in regulating methanotrophic community structure in copper-limited environments.
Collapse
|
44
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
45
|
Rubino JT, Riggs-Gelasco P, Franz KJ. Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I). J Biol Inorg Chem 2010; 15:1033-49. [PMID: 20437064 DOI: 10.1007/s00775-010-0663-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/13/2010] [Indexed: 11/27/2022]
Abstract
Cellular acquisition of copper in eukaryotic organisms is primarily accomplished through high-affinity copper transport proteins (Ctr). The extracellular N-terminal regions of both human and yeast Ctr1 contain multiple methionine residues organized in copper-binding Mets motifs. These motifs comprise combinations of methionine residues arranged in clusters of MXM and MXXM, where X can be one of several amino acids. Model peptides corresponding to 15 different Mets motifs were synthesized and determined to selectively bind Cu(I) and Ag(I), with no discernible affinity for divalent metal ions. These are rare examples of biological thioether-only metal binding sites. Effective dissociation constant (KD) values for the model Mets peptides and Cu(I) were determined by an ascorbic acid oxidation assay and validated through electrospray ionization mass spectrometry and range between 2 and 11 microM. Affinity appears to be independent of pH, the arrangement of the motif, and the composition of intervening amino acids, all of which reveal the generality and flexibility of the MX1-2MX1-2M domain. Circular dichroism spectroscopy, 1H-NMR spectroscopy, and X-ray absorption spectroscopy were also used to characterize the binding event. These results are intended to aid the development of the still unknown mechanism of copper transport across the cell membrane.
Collapse
Affiliation(s)
- Jeffrey T Rubino
- Department of Chemistry, Duke University, P.O. Box 90346, Durham, NC 27708, USA
| | | | | |
Collapse
|
46
|
Wu Z, Fernandez-Lima FA, Russell DH. Amino acid influence on copper binding to peptides: cysteine versus arginine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:522-533. [PMID: 20138783 DOI: 10.1016/j.jasms.2009.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/17/2009] [Accepted: 12/31/2009] [Indexed: 05/28/2023]
Abstract
Matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) and theoretical calculations [density functional theory (DFT)] were utilized to investigate the influence of cysteine side chain on Cu(+) binding to peptides and how Cu(+) ions competitively interact with cysteine (-SH/SO(3)H) versus arginine. Results from theoretical and experimental (fragmentation reactions) studies on [M + Cu](+) and [M + 2Cu - H](+) ions suggest that cysteine side chains (-SH) and cysteic acid (-SO(3)H) are important Cu(+) ligands. For example, we show that Cu(+) ions are competitively coordinated to the -SH or SO(3)H groups; however, we also present evidence that the proton of the SH/SO(3)H group is mobile and can be transferred to the arginine guanidine group. For [M + 2Cu - H](+) ions, deprotonation of the -SH/SO(3)H group is energetically more favorable than that of the carboxyl group, and the resulting thiolate/sulfonate group plays an important role in the coordination structure of [M + 2Cu - H](+) ions, as well as the fragmentation patterns.
Collapse
Affiliation(s)
- Zhaoxiang Wu
- Department of Chemistry, Texas A and M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
47
|
Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem 2010. [PMID: 20205585 DOI: 10.1146/annurev-biochem-030409-143539]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
48
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
49
|
Prymula K, Sałapa K, Roterman I. "Fuzzy oil drop" model applied to individual small proteins built of 70 amino acids. J Mol Model 2010; 16:1269-82. [PMID: 20084418 DOI: 10.1007/s00894-009-0639-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 12/07/2009] [Indexed: 12/25/2022]
Abstract
The proteins composed of short polypeptides (about 70 amino acid residues) representing the following functional groups (according to PDB notation): growth hormones, serine protease inhibitors, antifreeze proteins, chaperones and proteins of unknown function, were selected for structural and functional analysis. Classification based on the distribution of hydrophobicity in terms of deficiency/excess as the measure of structural and functional specificity is presented. The experimentally observed distribution of hydrophobicity in the protein body is compared to the idealized one expressed by a three-dimensional Gauss function. The differences between these two distributions reveal the specificity of structural/functional characteristics of the protein. The residues of hydrophobicity deficiency versus the idealized distribution are assumed to indicate cavities with the potential to bind ligands, while the residues of hydrophobicity excess are interpreted as potentially participating in protein-protein complexation. The distribution of hydrophobicity irregularity seems to be specific for particular structures and functions of proteins. A comparative analysis of such profiles is carried out to identify the potential biological activity of proteins of unknown function.
Collapse
Affiliation(s)
- Katarzyna Prymula
- Department of Bioinformatics, Telemedicine Jagiellonian University - Collegium Medicum, Lazarza 16, 31-530, Krakow, Poland
| | | | | |
Collapse
|
50
|
Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.05.011] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|