1
|
Ma R, Xu X. Deciphering the role of post-translational modifications in fanconi anemia proteins and their influence on tumorigenesis. Cancer Gene Ther 2024; 31:1113-1123. [PMID: 38879655 DOI: 10.1038/s41417-024-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 08/17/2024]
Abstract
Fanconi anemia (FA) is an autosomal or X-linked human disease, characterized by bone marrow failure, cancer susceptibility and various developmental abnormalities. So far, at least 22 FA genes (FANCA-W) have been identified. Germline inactivation of any one of these FA genes causes FA symptoms. Proteins encoded by FA genes are involved in the Fanconi anemia pathway, which is known for its roles in DNA inter-strand crosslinks (ICLs) repair. Besides, its roles in genome maintenance upon replication stress has also been reported. Post-translational modifications (PTMs) of FA proteins, particularly phosphorylation and ubiquitination, emerge as critical determinants in the activation of the FA pathway during ICL repair or replication stress response. Consequent inactivation of the FA pathway engenders heightened chromosomal instability, thereby constituting a genetic susceptibility conducive to cancer predisposition and the exacerbation of tumorigenesis. In this review, we have combined recent structural analysis of FA proteins and summarized knowledge on the functions of different PTMs in regulating FA pathways, and discuss potential contributions stemming from mutations at PTMs to the genesis and progression of tumorigenesis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinlin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
2
|
Ishiai M. Regulation of the Fanconi Anemia DNA Repair Pathway by Phosphorylation and Monoubiquitination. Genes (Basel) 2021; 12:genes12111763. [PMID: 34828369 PMCID: PMC8624177 DOI: 10.3390/genes12111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The Fanconi anemia (FA) DNA repair pathway coordinates a faithful repair mechanism for stalled DNA replication forks caused by factors such as DNA interstrand crosslinks (ICLs) or replication stress. An important role of FA pathway activation is initiated by monoubiquitination of FANCD2 and its binding partner of FANCI, which is regulated by the ATM-related kinase, ATR. Therefore, regulation of the FA pathway is a good example of the contribution of ATR to genome stability. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via phosphorylation and monoubiquitination.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
3
|
Ho MW, Ryan MP, Gupta J, Triantafyllou A, Risk JM, Shaw RJ, Wilson JB. Loss of FANCD2 and related proteins may predict malignant transformation in oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:377-387. [PMID: 34493474 DOI: 10.1016/j.oooo.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Predicting malignant transformation (MT) in oral epithelial dysplasia (OED) is challenging. The higher rate of MT reported in nonsmokers suggests an endogenous etiology in oncogenesis. We hypothesize that loss of FANCD2 and associated proteins could influence genomic instability and MT in the absence of environmental carcinogens. STUDY DESIGN Longitudinal archival samples were obtained from 40 individuals with OED: from diagnosis to the most recent review in 23 patients with stable OED or until excision of the squamous cell carcinoma in 17 patients with unstable OED undergoing MT. Histopathological reassessment, immunohistochemistry for FANCD2, and Western blotting for phosphorylation/monoubiquitylation status of ATR, CHK1, FANCD2, and FANCG were undertaken on each tissue sample. RESULTS Decreased expression of FANCD2 was observed in the diagnostic biopsies of OED lesions that later underwent MT. Combining the FANCD2 expression scores with histologic grading more accurately predicted MT (P = .005) than histology alone, and it correctly predicted MT in 10 of 17 initial biopsies. Significantly reduced expression of total FANCD2, pFANCD2, pATR, pCHK-1, and pFANCG was observed in unstable OED. CONCLUSIONS There is preliminary evidence that defects in the DNA damage sensing/signaling/repair cascade are associated with MT in OED. Loss of expression of FANCD2 protein in association with a higher histologic grade of dysplasia offered better prediction of MT than clinicopathologic parameters alone.
Collapse
Affiliation(s)
- Michael W Ho
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Oral and Maxillofacial Surgery, Leeds Teaching Hospitals NHS Trust, Leeds Dental Institute, Leeds, United Kingdom.
| | - Mark P Ryan
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Juhi Gupta
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Asterios Triantafyllou
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Janet M Risk
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard J Shaw
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Regional Maxillofacial Unit, Aintree University Hospital, Liverpool, United Kingdom
| | - James B Wilson
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
K JCB, Kapoor BS, Mandal K, Ghosh S, Mokhamatam RB, Manna SK, Mukhopadhyay SS. Loss of Mitochondrial Localization of Human FANCG Causes Defective FANCJ Helicase. Mol Cell Biol 2020; 40:e00306-20. [PMID: 32989015 PMCID: PMC7652403 DOI: 10.1128/mcb.00306-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a unique DNA damage repair pathway. To date, 22 genes have been identified that are associated with the FA pathway. A defect in any of those genes causes genomic instability, and the patients bearing the mutation become susceptible to cancer. In our earlier work, we identified that Fanconi anemia protein G (FANCG) protects the mitochondria from oxidative stress. In this report, we have identified eight patients having a mutation (C.65G>C), which converts arginine at position 22 to proline (p.Arg22Pro) in the N terminus of FANCG. The mutant protein, hFANCGR22P, is able to repair the DNA and able to retain the monoubiquitination of FANCD2 in the FANCGR22P/FGR22P cell. However, it lost mitochondrial localization and failed to protect mitochondria from oxidative stress. Mitochondrial instability in the FANCGR22P cell causes the transcriptional downregulation of mitochondrial iron-sulfur cluster biogenesis protein frataxin (FXN) and the resulting iron deficiency of FA protein FANCJ, an iron-sulfur-containing helicase involved in DNA repair.
Collapse
Affiliation(s)
- Jagadeesh Chandra Bose K
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Bishwajit Singh Kapoor
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Kamal Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Shubhrima Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Sunil K Manna
- Center for DNA Finger Printing and Diagnostics, Hyderabad, India
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
5
|
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020; 43:99-106. [PMID: 32024352 PMCID: PMC7057837 DOI: 10.14348/molcells.2019.0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023] Open
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Collapse
Affiliation(s)
- Ann Sanoji Samarakkody
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Nah-Young Shin
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
- Harvard Stem Cell Institute, Cambridge, MA 0138, USA
| |
Collapse
|
6
|
Willis J, Epperly MW, Fisher R, Zhang X, Shields D, Hou W, Wang H, Li S, Wipf P, Parmar K, Guinan E, Steinman J, Greenberger JS. Amelioration of Head and Neck Radiation-Induced Mucositis and Distant Marrow Suppression in Fanca -/- and Fancg -/- Mice by Intraoral Administration of GS-Nitroxide (JP4-039). Radiat Res 2018; 189:560-578. [PMID: 29584588 DOI: 10.1667/rr14878.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamous cell carcinomas of the head and neck are appearing with increased frequency in both marrow transplanted and non-transplanted Fanconi anemia (FA) patients. FA patients commonly display radiosensitivity of epithelial tissues, complicating effective radiotherapy. Fancd2-/- mice (C57BL/6J and 129/Sv background) demonstrate epithelial tissue sensitivity to single-fraction or fractionated irradiation to the head and neck and distant marrow suppression (abscopal effect), both ameliorated by intraoral administration of the mitochondrial-targeted antioxidant, GS-nitroxide, JP4-039. We now report that mice of two other FA genotypes, Fancg-/- (B6) and the most prevalent human genotype Fanca-/- (129/Sv), also demonstrate: 1. reduced longevity of hematopoiesis in long-term bone marrow cultures; 2. radiosensitivity of bone marrow stromal cell lines; and 3. head and neck radiation-induced severe mucositis and abscopal suppression of distant marrow hematopoiesis. Intraoral administration of JP4-039/F15, but not non-mitochondrial-targeted 4-amino-Tempo/F15 or F15 alone, prior to each radiation treatment ameliorated both local and abscopal radiation effects. Head and neck irradiated TGF-β-resistant SMAD3-/- (129/Sv) mice and double-knockout SMAD3-/- Fancd2-/- (129/Sv) mice treated daily with TGF-β receptor antagonist, LY364947, still displayed abscopal bone marrow suppression, implicating a non-TGF-β mechanism. Thus, amelioration of both local normal tissue radiosensitivity and distant marrow suppression by intraoral administration of JP4-039 in Fancg-/- and Fanca-/- mice supports a clinical trial of this locally administered normal tissue radioprotector and mitigator during head and neck irradiation in FA patients.
Collapse
Affiliation(s)
- John Willis
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael W Epperly
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna Shields
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hong Wang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Song Li
- b Departments of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Peter Wipf
- c Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kalindi Parmar
- d Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Eva Guinan
- d Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Justin Steinman
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Joel S Greenberger
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
7
|
Abstract
Fanconi anaemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities and predisposition to cancer. Together with other proteins involved in DNA repair processes and cell division, the FA proteins maintain genome homeostasis, and germline mutation of any one of the genes that encode FA proteins causes FA. Monoallelic inactivation of some FA genes, such as FA complementation group D1 (FANCD1; also known as the breast and ovarian cancer susceptibility gene BRCA2), leads to adult-onset cancer predisposition but does not cause FA, and somatic mutations in FA genes occur in cancers in the general population. Carcinogenesis resulting from a dysregulated FA pathway is multifaceted, as FA proteins monitor multiple complementary genome-surveillance checkpoints throughout interphase, where monoubiquitylation of the FANCD2-FANCI heterodimer by the FA core complex promotes recruitment of DNA repair effectors to chromatin lesions to resolve DNA damage and mitosis. In this Review, we discuss how the FA pathway safeguards genome integrity throughout the cell cycle and show how studies of FA have revealed opportunities to develop rational therapeutics for this genetic disease and for malignancies that acquire somatic mutations within the FA pathway.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut Street, R4-421, Indianapolis, Indiana 46202, USA
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - D Wade Clapp
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Microbiology and Immunology, Indiana University School of Medicine
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
8
|
Bhattacharjee S, Nandi S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 2017; 15:41. [PMID: 29017571 PMCID: PMC5635482 DOI: 10.1186/s12964-017-0195-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.
Collapse
|
9
|
Ishiai M, Sato K, Tomida J, Kitao H, Kurumizaka H, Takata M. Activation of the FA pathway mediated by phosphorylation and ubiquitination. Mutat Res 2017; 803-805:89-95. [PMID: 28552166 DOI: 10.1016/j.mrfmmm.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary condition that impacts genome integrity, leading to clinical features such as skeletal and visceral organ malformations, attrition of bone marrow stem cells, and carcinogenesis. At least 21 proteins, when absent or defective, have been implicated in this disorder, and they together constitute the FA pathway, which functions in detection and repair of, and tolerance to, endogenous DNA damage. The damage primarily handled by the FA pathway has been assumed to be related to DNA interstrand crosslinks (ICLs). The FA pathway is activated upon ICL damage, and a hallmark of this activation is the mono-ubiquitination events of the key FANCD2-FANCI protein complex. Recent data have revealed unexpectedly complex details in the regulation of FA pathway activation by ICLs. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via protein modifications.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Junya Tomida
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kitao
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013; 5:a012724. [PMID: 23813586 DOI: 10.1101/cshperspect.a012724] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | | |
Collapse
|
11
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
12
|
Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012; 2012:425814. [PMID: 22737580 PMCID: PMC3378961 DOI: 10.1155/2012/425814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 11/17/2022] Open
Abstract
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle.
Collapse
|
13
|
Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S, Glazer PM, Semmes OJ, Bale AE, Jones NJ, Kupfer GM. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet 2011; 20:4395-410. [PMID: 21865299 PMCID: PMC3196888 DOI: 10.1093/hmg/ddr366] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/14/2011] [Accepted: 08/15/2011] [Indexed: 12/27/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and an increased risk for leukemia and cancer. Fifteen proteins thought to function in the repair of DNA interstrand crosslinks (ICLs) comprise what is known as the FA-BRCA pathway. Activation of this pathway leads to the monoubiquitylation and chromatin localization of FANCD2 and FANCI. It has previously been shown that FANCJ interacts with the mismatch repair (MMR) complex MutLα. Here we show that FANCD2 interacts with the MMR proteins MSH2 and MLH1. FANCD2 monoubiquitylation, foci formation and chromatin loading are greatly diminished in MSH2-deficient cells. Human or mouse cells lacking MSH2 or MLH1 display increased sensitivity and radial formation in response to treatment with DNA crosslinking agents. Studies in human cell lines and Drosophila mutants suggest an epistatic relationship between FANCD2, MSH2 and MLH1 with regard to ICL repair. Surprisingly, the interaction between MSH2 and MLH1 is compromised in multiple FA cell lines, and FA cell lines exhibit deficient MMR. These results suggest a significant role for MMR proteins in the activation of the FA pathway and repair of ICLs. In addition, we provide the first evidence for a defect in MMR in FA cell lines.
Collapse
Affiliation(s)
| | - James B. Wilson
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | - Andrei Tomashevski
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA and
| | - Sahana Ananth
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - O. John Semmes
- Department of Microbiology and Molecular Cell Biology, Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | - Nigel J. Jones
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Gary M. Kupfer
- Division of Pediatric Hematology-Oncology, Department of Pediatrics
- Department of Pathology
| |
Collapse
|
14
|
Constantinou A. Rescue of replication failure by Fanconi anaemia proteins. Chromosoma 2011; 121:21-36. [PMID: 22057367 PMCID: PMC3260432 DOI: 10.1007/s00412-011-0349-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/23/2023]
Abstract
Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms.
Collapse
Affiliation(s)
- Angelos Constantinou
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
15
|
Garner E, Smogorzewska A. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett 2011; 585:2853-60. [PMID: 21605559 DOI: 10.1016/j.febslet.2011.04.078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.
Collapse
Affiliation(s)
- Elizabeth Garner
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
16
|
The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 2011; 117:5078-87. [PMID: 21355096 DOI: 10.1182/blood-2010-10-311761] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk for cancer and leukemia. Components of the FA-BRCA pathway are thought to function in the repair of DNA interstrand cross-links. Central to this pathway is the monoubiquitylation and chromatin localization of 2 FA proteins, FA complementation group D2 (FANCD2) and FANCI. In the present study, we show that RAD18 binds FANCD2 and is required for efficient monoubiquitylation and chromatin localization of both FANCD2 and FANCI. Human RAD18-knockout cells display increased sensitivity to mitomycin C and a delay in FANCD2 foci formation compared with their wild-type counterparts. In addition, RAD18-knockout cells display a unique lack of FANCD2 and FANCI localization to chromatin in exponentially growing cells. FANCD2 ubiquitylation is normal in cells containing a ubiquitylation-resistant form of proliferating cell nuclear antigen, and chromatin loading of FA core complex proteins appears normal in RAD18-knockout cells. Mutation of the RING domain of RAD18 ablates the interaction with and chromatin loading of FANCD2. These data suggest a key role for the E3 ligase activity of RAD18 in the recruitment of FANCD2 and FANCI to chromatin and the events leading to their ubiquitylation during S phase.
Collapse
|
17
|
Wang LC, Gautier J. The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Crit Rev Biochem Mol Biol 2011; 45:424-39. [PMID: 20807115 DOI: 10.3109/10409238.2010.502166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.
Collapse
Affiliation(s)
- Lily C Wang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
18
|
Wilson JB, Blom E, Cunningham R, Xiao Y, Kupfer GM, Jones NJ. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance. Mutat Res 2010; 689:12-20. [PMID: 20450923 DOI: 10.1016/j.mrfmmm.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/02/2010] [Accepted: 04/28/2010] [Indexed: 11/26/2022]
Abstract
The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes including the FA core complex and the D1-D2-G-X3 complex.
Collapse
Affiliation(s)
- James B Wilson
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Fanconi Anemia (FA) is an inherited genomic instability disorder, caused by mutations in genes regulating replication-dependent removal of interstrand DNA crosslinks. The Fanconi Anemia pathway is thought to coordinate a complex mechanism that enlists elements of three classic DNA repair pathways, namely homologous recombination, nucleotide excision repair, and mutagenic translesion synthesis, in response to genotoxic insults. To this end, the Fanconi Anemia pathway employs a unique nuclear protein complex that ubiquitinates FANCD2 and FANCI, leading to formation of DNA repair structures. Lack of obvious enzymatic activities among most FA members has made it challenging to unravel its precise modus operandi. Here we review the current understanding of how the Fanconi Anemia pathway components participate in DNA repair and discuss the mechanisms that regulate this pathway to ensure timely, efficient, and correct restoration of chromosomal integrity.
Collapse
Affiliation(s)
- George-Lucian Moldovan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
20
|
Zhi G, Wilson JB, Chen X, Krause DS, Xiao Y, Jones NJ, Kupfer GM. Fanconi anemia complementation group FANCD2 protein serine 331 phosphorylation is important for fanconi anemia pathway function and BRCA2 interaction. Cancer Res 2009; 69:8775-83. [PMID: 19861535 DOI: 10.1158/0008-5472.can-09-2312] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fanconi anemia is a cancer-prone inherited bone marrow failure and cancer susceptibility syndrome with at least 13 complementation groups (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL, FANCM, and FANCN). Our laboratory has previously described several regulatory phosphorylation events for core complex member proteins FANCG and FANCA by phosphorylation. In this study, we report a novel phosphorylation site serine 331 (S331) of FANCD2, the pivotal downstream player of the Fanconi anemia pathway. Phosphorylation of S331 is important for its DNA damage-inducible monoubiquitylation, resistance to DNA cross-linkers, and in vivo interaction with FANCD1/BRCA2. A phosphomimetic mutation at S331 restores all of these phenotypes to wild-type. In vitro and in vivo experiments show that phosphorylation of S331 is mediated by CHK1, the S-phase checkpoint kinase implicated in the Fanconi anemia DNA repair pathway.
Collapse
Affiliation(s)
- Gang Zhi
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
22
|
Abstract
Fanconi anemia (FA) is an autosomal and X-linked recessive disorder characterized by bone marrow failure, acute myelogenous leukemia, solid tumors, and developmental abnormalities. Recent years have seen a dramatic improvement in FA patient treatment, resulting in a greater survival of children into adulthood. These improvements have been made despite the fact that a definitive cellular function for the proteins in the FA pathway has yet to be elucidated. Delineating the cellular functions of the FA pathway could help further improve the treatment options for FA patients and further reduce the probability of succumbing to the disease. This article reviews the current clinical aspects of FA including presentation, diagnosis, and treatment followed by a review of the molecular aspects of FA as they are currently understood.
Collapse
Affiliation(s)
- Allison M Green
- Section of Pediatric Hematology-Oncology, Department of Pathology, Yale University School of Medicine, 333 Cedar Street LMP 2073, PO Box 208064, New Haven, CT 06520-8064, USA
| | | |
Collapse
|
23
|
ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood 2008; 113:2181-90. [PMID: 19109555 DOI: 10.1182/blood-2008-05-154294] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous work has shown several proteins defective in Fanconi anemia (FA) are phosphorylated in a functionally critical manner. FANCA is phosphorylated after DNA damage and localized to chromatin, but the site and significance of this phosphorylation are unknown. Mass spectrometry of FANCA revealed one phosphopeptide, phosphorylated on serine 1449. Serine 1449 phosphorylation was induced after DNA damage but not during S phase, in contrast to other posttranslational modifications of FA proteins. Furthermore, the S1449A mutant failed to completely correct a variety of FA-associated phenotypes. The DNA damage response is coordinated by phosphorylation events initiated by apical kinases ATM (ataxia telangectasia mutated) and ATR (ATM and Rad3-related), and ATR is essential for proper FA pathway function. Serine 1449 is in a consensus ATM/ATR site, phosphorylation in vivo is dependent on ATR, and ATR phosphorylated FANCA on serine 1449 in vitro. Phosphorylation of FANCA on serine 1449 is a DNA damage-specific event that is downstream of ATR and is functionally important in the FA pathway.
Collapse
|
24
|
Rego MA, Kolling FW, Howlett NG. The Fanconi anemia protein interaction network: casting a wide net. Mutat Res 2008; 668:27-41. [PMID: 19101576 DOI: 10.1016/j.mrfmmm.2008.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/16/2008] [Accepted: 11/25/2008] [Indexed: 11/26/2022]
Abstract
It has long been hypothesized that a defect in the repair of damaged DNA is central to the etiology of Fanconi anemia (FA). Indeed, an increased sensitivity of FA patient-derived cells to the lethal effects of various forms of DNA damaging agents was described over three decades ago [A.J. Fornace, Jr., J.B. Little, R.R. Weichselbaum, DNA repair in a Fanconi's anemia fibroblast cell strain, Biochim. Biophys. Acta 561 (1979) 99-109; Y. Fujiwara, M. Tatsumi, Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells, Biochem. Biophys. Res. Commun. 66 (1975) 592-598; A.J. Rainbow, M. Howes, Defective repair of ultraviolet- and gamma-ray-damaged DNA in Fanconi's anaemia, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 31 (1977) 191-195]. Furthermore, the cytological hallmark of FA, the DNA crosslink-induced radial chromosome formation, exemplifies an innate impairment in the repair of these particularly cytotoxic DNA lesions [A.D. Auerbach, Fanconi anemia diagnosis and the diepoxybutane (DEB) test, Exp. Hematol. 21 (1993) 731-733]. Precisely defining the collective role of the FA proteins in DNA repair, however, continues to be one of the most enigmatic and challenging questions in the FA field. The first six identified FA proteins (A, C, E, F, G, and D2) harbored no recognizable enzymatic features, precluding association with a specific metabolic process. Consequently, our knowledge of the role of the FA proteins in the DNA damage response has been gleaned primarily through biochemical association studies with non-FA proteins. Here, we provide a chronological discourse of the major FA protein interaction network discoveries, with particular emphasis on the DNA damage response, that have defined our current understanding of the molecular basis of FA.
Collapse
Affiliation(s)
- Meghan A Rego
- Department of Cell and Molecular Biology, University of Rhode Island, 115 Morrill Hall, 45 Lower College Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|
25
|
Wang LC, Stone S, Hoatlin ME, Gautier J. Fanconi anemia proteins stabilize replication forks. DNA Repair (Amst) 2008; 7:1973-81. [PMID: 18786657 DOI: 10.1016/j.dnarep.2008.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/08/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Fanconi anemia (FA) is a recessive genetic disorder characterized by hypersensitivity to crosslinking agents that has been attributed to defects in DNA repair and/or replication. FANCD2 and the FA core complex bind to chromatin during DNA replication; however, the role of FA proteins during replication is unknown. Using Xenopus cell-free extracts, we show that FANCL depletion results in defective DNA replication restart following treatment with camptothecin, a drug that results in DSBs during DNA replication. This defect is more pronounced following treatment with mitomycin C, presumably because of an additional role of the FA pathway in DNA crosslink repair. Moreover, we show that chromatin binding of FA core complex proteins during DNA replication follows origin assembly and origin firing and is dependent on the binding of RPA to ssDNA while FANCD2 additionally requires ATR, consistent with FA proteins acting at replication forks. Together, our data suggest that FA proteins play a role in replication restart at collapsed replication forks.
Collapse
Affiliation(s)
- Lily Chien Wang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
26
|
FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene 2008; 27:3641-52. [PMID: 18212739 DOI: 10.1038/sj.onc.1211034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.
Collapse
|
27
|
UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol 2007; 27:8421-30. [PMID: 17938197 DOI: 10.1128/mcb.00504-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Fanconi anemia (FA) nuclear core complex and the E2 ubiquitin-conjugating enzyme UBE2T are required for the S phase and DNA damage-restricted monoubiquitination of FANCD2. This constitutes a key step in the FA tumor suppressor pathway, and much attention has been focused on the regulation at this point. Here, we address the importance of the assembly of the FA core complex and the subcellular localization of UBE2T in the regulation of FANCD2 monoubiquitination. We establish three points. First, the stable assembly of the FA core complex can be dissociated of its ability to function as an E3 ubiquitin ligase. Second, the actual E3 ligase activity is not determined by the assembly of the FA core complex but rather by its DNA damage-induced localization to chromatin. Finally, UBE2T and FANCD2 access this subcellular fraction independently of the FA core complex. FANCD2 monoubiquitination is therefore not regulated by multiprotein complex assembly but by the formation of an active E2/E3 holoenzyme on chromatin.
Collapse
|
28
|
Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007; 8:735-48. [PMID: 17768402 DOI: 10.1038/nrg2159] [Citation(s) in RCA: 559] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fanconi anaemia (FA) has recently become an attractive model to study breast cancer susceptibility (BRCA) genes, as three FA genes, FANCD1, FANCN and FANCJ, are identical to the BRCA genes BRCA2, PALB2 and BRIP1. Increasing evidence shows that FA proteins function as signal transducers and DNA-processing molecules in a DNA-damage response network. This network consists of many proteins that maintain genome integrity, including ataxia telangiectasia and Rad3 related protein (ATR), Bloom syndrome protein (BLM), and BRCA1. Now that the gene that is defective in the thirteenth and last assigned FA complementation group (FANCI) has been identified, I discuss what is known about FA proteins and their interactive network, and what remains to be discovered.
Collapse
Affiliation(s)
- Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 333 Cassell drive, Baltimore, Maryland 21093, USA.
| |
Collapse
|
29
|
Stone S, Sobeck A, van Kogelenberg M, de Graaf B, Joenje H, Christian J, Hoatlin ME. Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9. Genes Cells 2007; 12:841-51. [PMID: 17584296 DOI: 10.1111/j.1365-2443.2007.01096.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development.
Collapse
Affiliation(s)
- Stacie Stone
- Division of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J Biol Chem 2006; 282:2047-55. [PMID: 17082180 DOI: 10.1074/jbc.m608356200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fanconi anemia (FA) is a rare autosomal recessive and X-linked chromosomal instability disorder. At least eight FA proteins (FANCA, B, C, E, F, G, L, and M) form a nuclear core complex required for monoubiquitination of a downstream protein, FANCD2. The human FANCF protein reportedly functions as a molecular adaptor within the FA nuclear complex, bridging between the subcomplexes A:G and C:E. Our x-ray crystallographic studies of the C-terminal domain of FANCF reveal a helical repeat structure similar to the Cand1 regulator of the Cul1-Rbx1-Skp1-Fbox(Skp2) ubiquitin ligase complex. Two C-terminal loops of FANCF are essential for monoubiquitination of FANCD2 and normal cellular resistance to the DNA cross-linking agent mitomycin C. FANCF mutants bearing amino acid substitutions in this C-terminal surface fail to interact with other components of the FA complex, indicating that this surface is critical for the proper assembly of the FA core complex.
Collapse
Affiliation(s)
- Przemyslaw Kowal
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The Fanconi anemia (FA) pathway consists of a unique, multi-subunit E3 ubiquitin ligase complex that is activated in a replication and DNA-damage dependent mechanism. This FA core complex possesses a putative helicase and an E3 ubiquitin ligase subunit, is assembled in both the nucleoplasm and in chromatin, and is required for the mono-ubiquitination of FANCD2, a downstream FA protein, following genotoxic stress. Clinically, absence of the FA pathway results in congenital defects, bone marrow failure, and cancer predisposition. At the cellular level, this pathway is required for chromosomal stability and cellular resistance to DNA interstrand crosslinkers (ICLs) such as mitomycin C (MMC). A general model has emerged for the FA pathway as an arm of the DNA-damage response following ICLs. This review will summarize the current understanding of the FA core complex and propose a model for its activity.
Collapse
Affiliation(s)
- Allan M Gurtan
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Hussain S, Wilson JB, Blom E, Thompson LH, Sung P, Gordon SM, Kupfer GM, Joenje H, Mathew CG, Jones NJ. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair (Amst) 2006; 5:629-40. [PMID: 16621732 DOI: 10.1016/j.dnarep.2006.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 01/07/2023]
Abstract
Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Medical and Molecular Genetics, King's College London School of Medicine at Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A rare genetic disease, Fanconi anemia (FA), now attracts broader attention from cancer biologists and basic researchers in the DNA repair and ubiquitin biology fields as well as from hematologists. FA is a chromosome instability syndrome characterized by childhood-onset aplastic anemia, cancer or leukemia susceptibility, and cellular hypersensitivity to DNA crosslinking agents. Identification of 11 genes for FA has led to progress in the molecular understanding of this disease. FA proteins, including a ubiquitin ligase (FANCL), a monoubiquitinated protein (FANCD2), a helicase (FANCJ/BACH1/BRIP1), and a breast/ovarian cancer susceptibility protein (FANCD1/BRCA2), appear to cooperate in a pathway leading to the recognition and repair of damaged DNA. Molecular interactions among FA proteins and responsible proteins for other chromosome instability syndromes (BLM, NBS1, MRE11, ATM, and ATR) have also been found. Furthermore, inactivation of FA genes has been observed in a wide variety of human cancers in the general population. These findings have broad implications for predicting the sensitivity and resistance of tumors to widely used anticancer DNA crosslinking agents (cisplatin, mitomycin C, and melphalan). Here, we summarize recent progress in the molecular biology of FA and discuss roles of the FA proteins in DNA repair and cancer biology.
Collapse
Affiliation(s)
- Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
34
|
Abstract
Fanconi anemia (FA) is a rare inherited disorder characterized clinically by aplastic anemia, developmental defects, and a susceptibility to cancer. Eleven complementation groups have been identified (FA-A, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, and -L), and the genes responsible for 9 groups (FANCA, B, C, D1, D2, E, F, G, and L) have been cloned. The proteins involved in FA act coordinately in the cellular response to DNA cross-links in a pathway that has been shown to interact physically or functionally with a variety of other proteins involved in DNA repair or cell cycle control, notably BRCA1, Rad51,ATM,ATR, and Nbs1. Considerable advances in the identification and description of proteins involved in FA have been recorded, but the precise biochemical function of the FA pathway remains elusive. As research continues to improve our understanding of FA, insight will be gained into what is a pivotal process in cancer biology.
Collapse
Affiliation(s)
- Natalie Collins
- Department of Microbiology, University of Virginia Health System, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
35
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
36
|
Mi J, Qiao F, Wilson JB, High AA, Schroeder MJ, Stukenberg PT, Moss A, Shabanowitz J, Hunt DF, Jones NJ, Kupfer GM. FANCG is phosphorylated at serines 383 and 387 during mitosis. Mol Cell Biol 2004; 24:8576-85. [PMID: 15367677 PMCID: PMC516759 DOI: 10.1128/mcb.24.19.8576-8585.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disease marked by congenital defects, bone marrow failure, and high incidence of leukemia and solid tumors. Eight genes have been cloned, with the accompanying protein products participating in at least two complexes, which appear to be functionally dependent upon one another. Previous studies have described chromatin localization of the FA core complex, except at mitosis, which is associated with phosphorylation of the FANCG protein (F. Qiao, A. Moss, and G. M. Kupfer, J. Biol. Chem. 276:23391-23396, 2001). The phosphorylation of FANCG at serine 7 by using mass spectrometry was previously mapped. The purpose of this study was to map the phosphorylation sites of FANCG at mitosis and to assess their functional importance. Reasoning that a potential kinase might be cdc2, which was previously reported to bind to FANCC, we showed that cdc2 chiefly phosphorylated a 14-kDa fragment of the C-terminal half of FANCG. Mass spectrometry analysis demonstrated that this fragment contains amino acids 374 to 504. Kinase motif analysis demonstrated that three amino acids in this fragment were leading candidates for phosphorylation. By using PCR-directed in vitro mutagenesis we mutated S383, S387, and T487 to alanine. Mutation of S383 and S387 abolished the phosphorylation of FANCG at mitosis. These results were confirmed by use of phosphospecific antibodies directed against phosphoserine 383 and phosphoserine 387. Furthermore, the ability to correct FA-G mutant cells of human or hamster (where S383 and S387 are conserved) origin was also impaired by these mutations, demonstrating the functional importance of these amino acids. S387A mutant abolished FANCG fusion protein phosphorylation by cdc2. The FA pathway, of which FANCG is a part, is highly regulated by a series of phosphorylation steps that are important to its overall function.
Collapse
Affiliation(s)
- Jun Mi
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|