1
|
Sirithanakorn C, Imlay JA. Evidence for endogenous hydrogen peroxide production by E. coli fatty acyl-CoA dehydrogenase. PLoS One 2024; 19:e0309988. [PMID: 39436877 PMCID: PMC11495604 DOI: 10.1371/journal.pone.0309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells. However, in vitro studies have shown that flavoenzymes can inadvertently transfer electrons to oxygen. Therefore, it seems plausible that substantial ROS may be generated when large metabolic fluxes flow through flavoproteins. Such a situation may arise during the catabolism of fatty acids. Acyl-CoA dehydrogenase (FadE) is a flavoprotein involved in each turn of the beta-oxidation cycle. In the present study the catabolism of dodecanoic acid specifically impaired the growth of strains that lack enzymes to scavenge hydrogen peroxide. The defect was absent from fadE mutants. Direct measurements confirmed that the beta-oxidation pathway amplified the rate of intracellular hydrogen peroxide formation. Scavenging-proficient cells did not display the FadE-dependent growth defect. Those cells also did not induce the peroxide stress response during dodecanoate catabolism, indicating that the basal defenses are sufficient to cope with moderately elevated peroxide formation. In vitro work still is needed to test whether the ROS evolve specifically from the FadE flavin site and to determine whether superoxide as well as peroxide is released. At present such experiments are challenging because the natural redox partner of FadE has not been identified. This study supports the hypothesis that the degree of internal ROS production can depend upon the type of active metabolism inside cells.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Division of Molecular and Cellular Medicine, King Mongkut’s Institute of Technology Ladkrabang, Faculty of Medicine, Bangkok, Thailand
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
2
|
Fisher CE, Bak DW, Miller KE, Washington-Hughes CL, Dickfoss AM, Weerapana E, Py B, Outten FW. Escherichia coli monothiol glutaredoxin GrxD replenishes Fe-S clusters to the essential ErpA A-type carrier under low iron stress. J Biol Chem 2024; 300:107506. [PMID: 38944118 PMCID: PMC11327457 DOI: 10.1016/j.jbc.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA. GrxD, a Fe-S cluster-binding monothiol glutaredoxin, also participates in Fe-S protein biogenesis in both prokaryotes and eukaryotes. Previous studies in E. coli showed that the ΔgrxD mutation causes sensitivity to iron depletion, spotlighting a critical role for GrxD under conditions that disrupt Fe-S homeostasis. Here, we utilized a global chemoproteomic mass spectrometry approach to analyze the contribution of GrxD to the Fe-S proteome. Our results demonstrate that (1) GrxD is required for biogenesis of a specific subset of Fe-S proteins under iron-depleted conditions, (2) GrxD is required for cluster delivery to ErpA under iron limitation, (3) GrxD is functionally distinct from other Fe-S trafficking proteins, and (4) GrxD Fe-S cluster binding is responsive to iron limitation. All these results lead to the proposal that GrxD is required to maintain Fe-S cluster delivery to the essential trafficking protein ErpA during iron limitation conditions.
Collapse
Affiliation(s)
- Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Massachusetts, USA
| | - Kennedy E Miller
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Anna M Dickfoss
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Béatrice Py
- Aix-Marseille Université-Centre National de la Recherche Scientifique (UMR7283), Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Marseille, France.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
3
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
4
|
Korshunov S, Imlay JA. Antioxidants are ineffective at quenching reactive oxygen species inside bacteria and should not be used to diagnose oxidative stress. Mol Microbiol 2024; 122:113-128. [PMID: 38889382 DOI: 10.1111/mmi.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
5
|
Wallart L, Ben Mlouka MA, Saffiedine B, Coquet L, Le H, Hardouin J, Jouenne T, Phan G, Kiefer-Meyer MC, Girard E, Broutin I, Cosette P. BacA: a possible regulator that contributes to the biofilm formation of Pseudomonas aeruginosa. Front Microbiol 2024; 15:1332448. [PMID: 38505547 PMCID: PMC10948618 DOI: 10.3389/fmicb.2024.1332448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Previously, we pointed out in P. aeruginosa PAO1 biofilm cells the accumulation of a hypothetical protein named PA3731 and showed that the deletion of the corresponding gene impacted its biofilm formation capacity. PA3731 belongs to a cluster of 4 genes (pa3732 to pa3729) that we named bac for "Biofilm Associated Cluster." The present study focuses on the PA14_16140 protein, i.e., the PA3732 (BacA) homolog in the PA14 strain. The role of BacA in rhamnolipid secretion, biofilm formation and virulence, was confirmed by phenotypic experiments with a bacA mutant. Additional investigations allow to advance that the bac system involves in fact 6 genes organized in operon, i.e., bacA to bacF. At a molecular level, quantitative proteomic studies revealed an accumulation of the BAC cognate partners by the bacA sessile mutant, suggesting a negative control of BacA toward the bac operon. Finally, a first crystallographic structure of BacA was obtained revealing a structure homologous to chaperones or/and regulatory proteins.
Collapse
Affiliation(s)
- Lisa Wallart
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Mohamed Amine Ben Mlouka
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Brahim Saffiedine
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Laurent Coquet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Julie Hardouin
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Thierry Jouenne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Gilles Phan
- Paris Cité University, CiTCoM, CNRS, Paris, France
| | - Marie-Christine Kiefer-Meyer
- Univ Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chemobiologie, IRIB, Rouen, France
| | - Eric Girard
- Grenoble Alpes University, CNRS, CEA, IBS, Grenoble, France
| | | | - Pascal Cosette
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| |
Collapse
|
6
|
Webster CM, Shepherd M. The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy. Emerg Top Life Sci 2024; 8:37-43. [PMID: 37975610 PMCID: PMC10903473 DOI: 10.1042/etls20230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
7
|
Eben SS, Imlay JA. Evidence that protein thiols are not primary targets of intracellular reactive oxygen species in growing Escherichia coli. Front Microbiol 2023; 14:1305973. [PMID: 38152379 PMCID: PMC10751367 DOI: 10.3389/fmicb.2023.1305973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
The oxidizability of cysteine residues is exploited in redox chemistry and as a source of stabilizing disulfide bonds, but it also raises the possibility that these side chains will be oxidized when they should not be. It has often been suggested that intracellular oxidative stress from hydrogen peroxide or superoxide may result in the oxidation of the cysteine residues of cytoplasmic proteins. That view seemed to be supported by the discovery that one cellular response to hydrogen peroxide is the induction of glutaredoxin 1 and thioredoxin 2. In this study we used model compounds as well as alkaline phosphatase to test this idea. Our results indicate that molecular oxygen, superoxide, and hydrogen peroxide are very poor oxidants of N-acetylcysteine and of the protein thiols of alkaline phosphatase in vitro. Copper could accelerate thiol oxidation, but iron did not. When alkaline phosphatase was engineered to remain in the cytoplasm of live cells, unnaturally high concentrations of hydrogen peroxide were required to oxidize it to its active, disulfide-dependent form, and toxic levels of superoxide had no effect. At the same time, far lower concentrations of these oxidants were sufficient to poison key metalloenzymes. The elimination of glutaredoxin 1 and thioredoxin 2 did not change these results, raising the question of why E. coli induces them during peroxide stress. In fact, when catalase/peroxidase mutants were chronically stressed with hydrogen peroxide, the absence of glutaredoxin 1 and thioredoxin 2 did not impair growth at all, even in a minimal medium over many generations. We conclude that physiological levels of reduced oxygen species are not potent oxidants of typical protein thiols. Glutaredoxin and thioredoxin must either have an alternative purpose or else play a role under culture conditions that differ from the ones we tested.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| |
Collapse
|
8
|
Yaeger LN, French S, Brown ED, Côté JP, Burrows LL. Central metabolism is a key player in E. coli biofilm stimulation by sub-MIC antibiotics. PLoS Genet 2023; 19:e1011013. [PMID: 37917668 PMCID: PMC10645362 DOI: 10.1371/journal.pgen.1011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/14/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Exposure of Escherichia coli to sub-inhibitory antibiotics stimulates biofilm formation through poorly characterized mechanisms. Using a high-throughput Congo Red binding assay to report on biofilm matrix production, we screened ~4000 E. coli K12 deletion mutants for deficiencies in this biofilm stimulation response. We screened using three different antibiotics to identify core components of the biofilm stimulation response. Mutants lacking acnA, nuoE, or lpdA failed to respond to sub-MIC cefixime and novobiocin, implicating central metabolism and aerobic respiration in biofilm stimulation. These genes are members of the ArcA/B regulon-controlled by a respiration-sensitive two-component system. Mutants of arcA and arcB had a 'pre-activated' phenotype, where biofilm formation was already high relative to wild type in vehicle control conditions, and failed to increase further with the addition of sub-MIC cefixime. Using a tetrazolium dye and an in vivo NADH sensor, we showed spatial co-localization of increased metabolic activity with sub-lethal concentrations of the bactericidal antibiotics cefixime and novobiocin. Supporting a role for respiratory stress, the biofilm stimulation response to cefixime and novobiocin was inhibited when nitrate was provided as an alternative electron acceptor. Deletion of a gene encoding part of the machinery for respiring nitrate abolished its ameliorating effects, and nitrate respiration increased during growth with sub-MIC cefixime. Finally, in probing the generalizability of biofilm stimulation, we found that the stimulation response to translation inhibitors, unlike other antibiotic classes, was minimally affected by nitrate supplementation, suggesting that targeting the ribosome stimulates biofilm formation in distinct ways. By characterizing the biofilm stimulation response to sub-MIC antibiotics at a systems level, we identified multiple avenues for design of therapeutics that impair bacterial stress management.
Collapse
Affiliation(s)
- Luke N. Yaeger
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean Philippe Côté
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants (Basel) 2023; 12:1273. [PMID: 37372003 DOI: 10.3390/antiox12061273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. Leptospira are diderm bacteria form the Spirochaetes phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in Leptospira virulence. In this review, we describe the ROS encountered by Leptospira in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in Leptospira adaptation to oxidative stress.
Collapse
Affiliation(s)
- Samuel G Huete
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| |
Collapse
|
10
|
Oliveira RNS, de Aguiar SRMM, Pauleta SR. Coordination of the N-Terminal Heme in the Non-Classical Peroxidase from Escherichia coli. Molecules 2023; 28:4598. [PMID: 37375153 DOI: 10.3390/molecules28124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The non-classical bacterial peroxidase from Escherichia coli, YhjA, is proposed to deal with peroxidative stress in the periplasm when the bacterium is exposed to anoxic environments, defending it from hydrogen peroxide and allowing it to thrive under those conditions. This enzyme has a predicted transmembrane helix and is proposed to receive electrons from the quinol pool in an electron transfer pathway involving two hemes (NT and E) to accomplish the reduction of hydrogen peroxide in the periplasm at the third heme (P). Compared with classical bacterial peroxidases, these enzymes have an additional N-terminal domain binding the NT heme. In the absence of a structure of this protein, several residues (M82, M125 and H134) were mutated to identify the axial ligand of the NT heme. Spectroscopic data demonstrate differences only between the YhjA and YhjA M125A variant. In the YhjA M125A variant, the NT heme is high-spin with a lower reduction potential than in the wild-type. Thermostability was studied by circular dichroism, demonstrating that YhjA M125A is thermodynamically more unstable than YhjA, with a lower TM (43 °C vs. 50 °C). These data also corroborate the structural model of this enzyme. The axial ligand of the NT heme was validated to be M125, and mutation of this residue was proven to affect the spectroscopic, kinetic, and thermodynamic properties of YhjA.
Collapse
Affiliation(s)
- Ricardo N S Oliveira
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sara R M M de Aguiar
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Barreiro DS, Oliveira RN, Pauleta SR. Bacterial peroxidases – Multivalent enzymes that enable the use of hydrogen peroxide for microaerobic and anaerobic proliferation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
12
|
Strotmann L, Harter C, Gerasimova T, Ritter K, Jessen HJ, Wohlwend D, Friedrich T. H 2O 2 selectively damages the binuclear iron-sulfur cluster N1b of respiratory complex I. Sci Rep 2023; 13:7652. [PMID: 37169846 PMCID: PMC10175503 DOI: 10.1038/s41598-023-34821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
NADH:ubiquinone oxidoreductase, respiratory complex I, plays a major role in cellular energy metabolism by coupling electron transfer with proton translocation. Electron transfer is catalyzed by a flavin mononucleotide and a series of iron-sulfur (Fe/S) clusters. As a by-product of the reaction, the reduced flavin generates reactive oxygen species (ROS). It was suggested that the ROS generated by the respiratory chain in general could damage the Fe/S clusters of the complex. Here, we show that the binuclear Fe/S cluster N1b is specifically damaged by H2O2, however, only at high concentrations. But under the same conditions, the activity of the complex is hardly affected, since N1b can be easily bypassed during electron transfer.
Collapse
Affiliation(s)
- Lisa Strotmann
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Caroline Harter
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tatjana Gerasimova
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Kevin Ritter
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Henning J Jessen
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| |
Collapse
|
13
|
Meng S, Ji Y, Zhu L, Dhoke GV, Davari MD, Schwaneberg U. The molecular basis and enzyme engineering strategies for improvement of coupling efficiency in cytochrome P450s. Biotechnol Adv 2022; 61:108051. [DOI: 10.1016/j.biotechadv.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
14
|
Li L, Dong H, Lu Y, Zhang H, Li Y, Xiao J, Xiao S, Jin Z. In-depth exploration of toxicity mechanism of nanoscale zero-valent iron and its aging products toward Escherichia coli under aerobic and anaerobic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120118. [PMID: 36087891 DOI: 10.1016/j.envpol.2022.120118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The bacteria toxicity of nanoscale zero-valent iron (nZVI) can be changed during its application in water treatment but the toxicity mechanism is still not well understood, particularly under anaerobic conditions. Here, the toxicity of nZVI and its aging products towards Escherichia coli (E. coli) and the mechanisms of extracellular and intracellular reactive oxygen species (ROS) damage were deeply probed in the presence and absence of oxygen in ultrapure water. Under aerobic conditions, the ROS damage primarily caused by the generation of extracellular free •OH can be a major contributor to the toxicity of nZVI to E. coli. By contrast, in anaerobic nZVI treatment system, the intracellular •OH can be quenched by benzoic acid which is a cell permeable quencher and the electron spin resonance (ESR) signals of 5,5-dimethy-1-pyrroline (DMPO)- •OH were evidently observed in system with the addition of F- which could desorb the surface •OH into solution. It indicated that the intracellular •OH adsorbed on the particle surface can also play an indispensable role in inactivating cells under anaerobic conditions. Moreover, nZVI can steeply decline the membrane potential, causing severe membrane disruption and therefore resulting in the stronger toxicity in anaerobic conditions. Furthermore, the chemical composition transformation of nZVI and generation of benign iron corrosion products (e.g., Fe3O4, γ-Fe2O3, γ-FeOOH) are mainly responsible for the reduced toxicity with the increasing aging time. These results provide insights into the extracellular and intracellular ROS damage occurred in aerobic and anaerobic nZVI treatment systems, offering more perspective to the risk assessment of nZVI application.
Collapse
Affiliation(s)
- Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
15
|
Rohaun SK, Imlay JA. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biol 2022; 57:102495. [PMID: 36240621 PMCID: PMC9576991 DOI: 10.1016/j.redox.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Radical S-adenosylmethionine enzymes (RSEs) drive diverse biological processes by catalyzing chemically difficult reactions. Each of these enzymes uses a solvent-exposed [4Fe-4S] cluster to coordinate and cleave its SAM co-reactant. This cluster is destroyed during oxic handling, forcing investigators to work with these enzymes under anoxic conditions. Analogous substrate-binding [4Fe-4S] clusters in dehydratases are similarly sensitive to oxygen in vitro; they are also extremely vulnerable to reactive oxygen species (ROS) in vitro and in vivo. These observations suggested that ROS might similarly poison RSEs. This conjecture received apparent support by the observation that when E. coli experiences hydrogen peroxide stress, it induces a cluster-free isozyme of the RSE HemN. In the present study, surprisingly, the purified RSEs viperin and HemN proved quite resistant to peroxide and superoxide in vitro. Furthermore, pathways that require RSEs remained active inside E. coli cells that were acutely stressed by hydrogen peroxide and superoxide. Viperin, but not HemN, was gradually poisoned by molecular oxygen in vitro, forming an apparent [3Fe-4S]+ form that was readily reactivated. The modest rate of damage, and the known ability of cells to repair [3Fe-4S]+ clusters, suggest why these RSEs remain functional inside fully aerated organisms. In contrast, copper(I) damaged HemN and viperin in vitro as readily as it did fumarase, a known target of copper toxicity inside E. coli. Excess intracellular copper also impaired RSE-dependent biosynthetic processes. These data indicate that RSEs may be targets of copper stress but not of reactive oxygen species.
Collapse
Affiliation(s)
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Park M, Kim J, Feinstein J, Lang KS, Ryu S, Jeon B. Development of Fluoroquinolone Resistance through Antibiotic Tolerance in Campylobacter jejuni. Microbiol Spectr 2022; 10:e0166722. [PMID: 36066254 PMCID: PMC9602944 DOI: 10.1128/spectrum.01667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022] Open
Abstract
Antibiotic tolerance not only enables bacteria to survive acute antibiotic exposures but also provides bacteria with a window of time in which to develop antibiotic resistance. The increasing prevalence of Campylobacter jejuni isolates resistant to clinically important antibiotics, particularly fluoroquinolones (FQs), is a global public health concern. Currently, little is known about antibiotic tolerance and its effects on resistance development in C. jejuni. Here, we show that exposure to ciprofloxacin or tetracycline at concentrations 10 and 100 times higher than the MIC induces antibiotic tolerance in C. jejuni, whereas gentamicin or erythromycin treatment causes cell death. Interestingly, FQ resistance rapidly develops in C. jejuni after tolerance induction by ciprofloxacin and tetracycline. Furthermore, after tolerance is induced, alkyl hydroperoxide reductase (AhpC) plays a critical role in reducing FQ resistance development by alleviating oxidative stress. Together, these results demonstrate that exposure of C. jejuni to antibiotics can induce antibiotic tolerance and that FQ-resistant (FQR) C. jejuni clones rapidly emerge after tolerance induction. This study elucidates the mechanisms underlying the high prevalence of FQR C. jejuni and provides insights into the effects of antibiotic tolerance on resistance development. IMPORTANCE Antibiotic tolerance compromises the efficacy of antibiotic treatment by extending bacterial survival and facilitating the development of mutations associated with antibiotic resistance. Despite growing public health concerns about antibiotic resistance in C. jejuni, antibiotic tolerance has not yet been investigated in this important zoonotic pathogen. Here, our results show that exposure of C. jejuni to ciprofloxacin or tetracycline leads to antibiotic tolerance development, which subsequently facilitates the emergence of FQR C. jejuni. Importantly, these antibiotics are commonly used in animal agriculture. Moreover, our study suggests that the use of non-FQ drugs in animal agriculture promotes FQ resistance development, which is crucial because antibiotic-resistant C. jejuni is primarily transmitted from animals to humans. Overall, these findings increase our understanding of the mechanisms of resistance development through the induction of antibiotic tolerance.
Collapse
Affiliation(s)
- Myungseo Park
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jill Feinstein
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kevin S. Lang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
17
|
Pollo-Oliveira L, Davis NK, Hossain I, Ho P, Yuan Y, Salguero García P, Pereira C, Byrne SR, Leng J, Sze M, Blaby-Haas CE, Sekowska A, Montoya A, Begley T, Danchin A, Aalberts DP, Angerhofer A, Hunt J, Conesa A, Dedon PC, de Crécy-Lagard V. The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12. Metallomics 2022; 14:mfac065. [PMID: 36066904 PMCID: PMC9508795 DOI: 10.1093/mtomcs/mfac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Intekhab Hossain
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Pedro Salguero García
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia 46022, Spain
| | - Cécile Pereira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melody Sze
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Crysten E Blaby-Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY 12222, USA
| | - Antoine Danchin
- Kodikos Labs, 23 rue Baldassini, Lyon 69007, France
- School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, Pokfulam, SAR Hong Kong
| | - Daniel P Aalberts
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | | | - John Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10024, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Wu P, Lin S, Cao G, Wu J, Jin H, Wang C, Wong MH, Yang Z, Cai Z. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129361. [PMID: 35749897 DOI: 10.1016/j.jhazmat.2022.129361] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs; <5 mm) in the biosphere draws public concern about their potential health impacts. Humans are potentially exposed to MPs via ingestion, inhalation, and dermal contact. Ingestion and inhalation are the two major exposure pathways. An adult may consume approximately 5.1 × 103 items from table salts and up to 4.1 × 104 items via drinking water annually. Meanwhile, MP inhalation intake ranges from 0.9 × 104 to 7.9 × 104 items per year. The intake of MPs would be further distributed in different tissues and organs of humans depending on their sizes. The excretion has been discussed with the possible clearance ways (e.g., urine and feces). The review summarized the absorption, distribution, metabolic toxicity and excretion of MPs together with the attached chemicals. Moreover, the potential implications on humans are also discussed from in vitro and in vivo studies, and connecting the relationship between the physicochemical properties and the potential risks. This review will contribute to a better understanding of MPs as culprits and/or vectors linking to potential human health hazards, which will help outline the promising areas for further revealing the possible toxicity pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jiabin Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
19
|
Choudhary E, Sharma R, Pal P, Agarwal N. Deciphering the Proteomic Landscape of Mycobacterium tuberculosis in Response to Acid and Oxidative Stresses. ACS OMEGA 2022; 7:26749-26766. [PMID: 35936415 PMCID: PMC9352160 DOI: 10.1021/acsomega.2c03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Symbiosis
School of Biomedical Sciences, Symbiosis
International (Deemed University), Pune412115, Maharashtra, India
| | - Rishabh Sharma
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| | - Pramila Pal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Jawaharlal
Nehru University, New
Mehrauli Road, New Delhi110067, India
| | - Nisheeth Agarwal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| |
Collapse
|
20
|
Xia Y, Chen R, Ke Y, Xiang Z, Ma Z, Shi Q, Ataullakhanov FI, Panteleev M. Manipulation of ROS‐Responsiveness of Dextran with Thioether Side Chains. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Runhai Chen
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function Soochow University Suzhou 215123 China
| | - Fazly I. Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol 1 Samory Mashela St Moscow 117198 Russia
- Faculty of Physics Lomonosov Moscow State University Leninskie Gory, 1, build. 2, GSP‐1 Moscow 119991 Russia
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol 1 Samory Mashela St Moscow 117198 Russia
- Faculty of Physics Lomonosov Moscow State University Leninskie Gory, 1, build. 2, GSP‐1 Moscow 119991 Russia
| |
Collapse
|
21
|
Meng S, Ji Y, Liu L, Davari MD, Schwaneberg U. Modulating the Coupling Efficiency of P450 BM3 by Controlling Water Diffusion through Access Tunnel Engineering. CHEMSUSCHEM 2022; 15:e202102434. [PMID: 34936208 PMCID: PMC9302676 DOI: 10.1002/cssc.202102434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Indexed: 06/03/2023]
Abstract
Cytochromes P450 have gained much interest for their broad substrate scope in the catalysis of oxidation reactions for pharmaceuticals, plastics, and hormones. However, achieving high coupling efficiency by the engineering of P450s is still a big challenge. The presence of extra water around the active site is deemed to be related to uncoupling. In this study, the access tunnels of P450 BM3 from Bacillus megaterium are engineered to control water access from bulk solvent to the active site. Nine residues located in tunnels are investigated by site-saturation mutagenesis to reduce water diffusion, thereby improving the coupling efficiency. The recombined variant N319L/T411V/T436A shows improved coupling efficiency (from 31.2 % to 52.6 %). Tunnel polarity analysis and molecular dynamics simulation further indicate that reduced water molecules around the active site lead to higher coupling efficiency. Overall, this study provides valuable insight on improving coupling efficiency by controlling water diffusion through tunnel engineering.
Collapse
Affiliation(s)
- Shuaiqi Meng
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Yu Ji
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Luo Liu
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeisanhuan East Road 15Beijing10029P. R. China
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
22
|
Gupta A, Imlay JA. Escherichia coli induces DNA repair enzymes to protect itself from low-grade hydrogen peroxide stress. Mol Microbiol 2022; 117:754-769. [PMID: 34942039 PMCID: PMC9018492 DOI: 10.1111/mmi.14870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Escherichia coli responds to hydrogen peroxide (H2 O2 ) by inducing defenses that protect H2 O2 -sensitive enzymes. DNA is believed to be another important target of oxidation, and E. coli contains enzymes that can repair oxidative lesions in vitro. However, those enzymes are not known to be induced by H2 O2 , and experiments have indicated that they are not necessary for the cell to withstand natural (low-micromolar) concentrations. In this study, we used H2 O2 -scavenging mutants to impose controlled doses of H2 O2 for extended time. Transcriptomic analysis revealed that in the presence of 1 µM cytoplasmic H2 O2 , the OxyR transcription factor-induced xthA, encoding exonuclease III. The xthA mutants survived a conventional 15-min exposure to even 100 times this level of H2 O2 . However, when these mutants were exposed to 1 µM H2 O2 for hours, they accumulated DNA lesions, failed to propagate, and eventually died. Although endonuclease III (nth) was not induced, nth mutants struggled to grow. Low-grade H2 O2 stress also activated the SOS regulon, and when this induction was blocked, cell replication stopped. Collectively, these data indicate that physiological levels of H2 O2 are a real threat to DNA, and the engagement of the base-excision-repair and SOS systems is necessary to enable propagation during protracted stress.
Collapse
Affiliation(s)
- Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
23
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
24
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
25
|
Bombaywala S, Purohit HJ, Dafale NA. Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113315. [PMID: 34298350 DOI: 10.1016/j.jenvman.2021.113315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
27
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
28
|
Sachla AJ, Luo Y, Helmann JD. Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity. Mol Microbiol 2021; 116:729-742. [PMID: 34097790 DOI: 10.1111/mmi.14767] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Cell physiology relies on metalloenzymes and can be easily disrupted by imbalances in metal ion pools. Bacillus subtilis requires manganese for growth and has highly regulated mechanisms for import and efflux that help maintain homeostasis. Cells defective for manganese (Mn) efflux are highly sensitive to intoxication, but the processes impaired by Mn excess are often unknown. Here, we employed a forward genetics approach to identify pathways affected by manganese intoxication. Our results highlight a central role for the membrane-localized electron transport chain in metal intoxication during aerobic growth. In the presence of elevated manganese, there is an increased generation of reactive radical species associated with dysfunction of the major terminal oxidase, the cytochrome aa3 heme-copper menaquinol oxidase (QoxABCD). Intoxication is suppressed by diversion of menaquinol to alternative oxidases or by a mutation affecting heme A synthesis that is known to convert QoxABCD from an aa3 to a bo3 -type oxidase. Manganese sensitivity is also reduced by derepression of the MhqR regulon, which protects cells against reactive quinones. These results suggest that dysfunction of the cytochrome aa3 -type quinol oxidase contributes to metal-induced intoxication.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Yuanchan Luo
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol Rev 2021; 45:6284802. [PMID: 34037759 PMCID: PMC8632737 DOI: 10.1093/femsre/fuab028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Manganese (Mn2+) is an essential trace element within organisms spanning the entire tree of life. In this review, we provide an overview of Mn2+ transport and the regulation of its homeostasis in bacteria, with a focus on its functions beyond being a cofactor for enzymes. Crucial differences in Mn2+ homeostasis exist between bacterial species that can be characterized to have an iron- or manganese-centric metabolism. Highly iron-centric species require minimal Mn2+ and mostly use it as a mechanism to cope with oxidative stress. As a consequence, tight regulation of Mn2+ uptake is required, while organisms that use both Fe2+ and Mn2+ need other layers of regulation for maintaining homeostasis. We will focus in detail on manganese-centric bacterial species, in particular lactobacilli, that require little to no Fe2+ and use Mn2+ for a wider variety of functions. These organisms can accumulate extraordinarily high amounts of Mn2+ intracellularly, enabling the nonenzymatic use of Mn2+ for decomposition of reactive oxygen species while simultaneously functioning as a mechanism of competitive exclusion. We further discuss how Mn2+ accumulation can provide both beneficial and pathogenic bacteria with advantages in thriving in their niches.
Collapse
Affiliation(s)
- Elleke F Bosma
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | - Martin H Rau
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | | | - Solvej Siedler
- Corresponding author: Boege Allé 10-12, 2970 Hoersholm, Denmark. Tel: +45 52 18 08 25; E-mail:
| |
Collapse
|
30
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
31
|
Gardnerella vaginalis and Neisseria gonorrhoeae Are Effectively Inhibited by Lactobacilli with Probiotic Properties Isolated from Brazilian Cupuaçu ( Theobroma grandiflorum) Fruit. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626249. [PMID: 33997030 PMCID: PMC8102102 DOI: 10.1155/2021/6626249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
In recent years, certain Lactobacillus sp. have emerged in health care as an alternative therapy for various diseases. Based on this, this study is aimed at evaluating in vitro the potential probiotics of five lactobacilli strains isolated from pulp of cupuaçu fruit fermentation against Gardnerella vaginalis and Neisseria gonorrhoeae. Our lactobacilli strains were classified as safe for use in humans, and they were tolerant to heat and pH. Our strains were biofilm producers, while hydrophobicity and autoaggregation varied from 13% to 86% and 13% to 25%, respectively. The coaggregation of lactobacilli used in this study with G. vaginalis and N. gonorrhoeae ranged from 15% to 36% and 32% to 52%, respectively. Antimicrobial activity was present in all tested Lactobacillus strains against both pathogens, and the growth of pathogens in coculture was reduced by the presence of our lactobacilli. Also, all tested lactobacilli reduced the pH of the culture, even in incubation with pathogens after 24 hours. The cell-free culture supernatants (CFCS) of all five lactobacilli demonstrated activity against the two pathogens with a halo presence and CFCS characterization assay together with gas chromatography revealed that lactic acid was the most abundant organic acid in the samples (50% to 62%). Our results demonstrated that the organic acid production profile is strain-specific. This study revealed that cupuaçu is a promising source of microorganisms with probiotic properties against genital pathogens. We demonstrated by in vitro tests that our Lactobacillus strains have probiotic properties. However, the absence of in vivo tests is a limitation of our work due to the need to evaluate the interaction of our lactobacilli with pathogens in the vaginal mucosa. We believe that these findings may be useful in developing a product containing our lactobacilli and their supernatants in order to support with vaginal health.
Collapse
|
32
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
33
|
Jaramillo-Lanchero RD, Suarez-Alvarez P, Teheran-Sierra L. Effect of respiratory inhibitors and quinone analogues on the aerobic electron transport system of Eikenella corrodens. Sci Rep 2021; 11:8987. [PMID: 33903681 PMCID: PMC8076288 DOI: 10.1038/s41598-021-88388-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of respiratory inhibitors, quinone analogues and artificial substrates on the membrane-bound electron transport system of the fastidious β-proteobacterium Eikenella corrodens grown under O2-limited conditions were studied. NADH respiration in isolated membrane particles were partially inhibited by rotenone, dicoumarol, quinacrine, flavone, and capsaicin. A similar response was obtained when succinate oxidation was performed in the presence of thenoyltrifluoroacetone and N,N’-dicyclohexylcarbodiimide. NADH respiration was resistant to site II inhibitors and cyanide, indicating that a percentage of the electrons transported can reach O2 without the bc1 complex. Succinate respiration was sensitive to myxothiazol, antimycin A and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Juglone, plumbagin and menadione had higher reactivity with NADH dehydrogenase. The membrane particles showed the highest oxidase activities with ascorbate-TCHQ (tetrachlorohydroquinone), TCHQ alone, and NADH-TMPD (N,N,N’,N’-tetramethyl-p-phenylenediamine), and minor activity levels with ascorbate-DCPIP (2,6-dichloro-phenolindophenol) and NADH-DCPIP. The substrates NADH-DCPIP, NADH-TMPD and TCHQ were electron donors to cyanide-sensitive cbb' cytochrome c oxidase. The presence of dissimilatory nitrate reductase in the aerobic respiratory system of E. corrodens ATCC 23834 was demonstrated by first time. Our results indicate that complexes I and II have resistance to their classic inhibitors, that the oxidation of NADH is stimulated by juglone, plumbagin and menadione, and that sensitivity to KCN is stimulated by the substrates TCHQ, NADH-DCPIP and NADH-TMPD.
Collapse
Affiliation(s)
- Rubén D Jaramillo-Lanchero
- Grupo de Investigación de Biomembranas (GIBIOM), CIFACS, Facultad Ciencias de La Salud, Centro Seccional de Investigación (CIUL), Universidad Libre Campus Barranquilla, Barranquilla, Colombia.
| | - Paola Suarez-Alvarez
- Grupo de Micología, Departamento de Microbiología, Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Cartagena, Colombia
| | - Luis Teheran-Sierra
- Grupo de Investigación de Biomembranas (GIBIOM), CIFACS, Facultad Ciencias de La Salud, Centro Seccional de Investigación (CIUL), Universidad Libre Campus Barranquilla, Barranquilla, Colombia.,School of Agricultural and Veterinary Sciences, Technology Department, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
34
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
35
|
Effect of α-Hemolysin Producing E. coli in Two Different Mouse Strains in a DSS Model of Inflammatory Bowel Disease. Microorganisms 2020; 8:microorganisms8121971. [PMID: 33322398 PMCID: PMC7764192 DOI: 10.3390/microorganisms8121971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Phylogroup B2 Escherichia coli have been associated with ulcerative colitis (UC). In this study, we aimed to compare colonization with the UC-associated E. coli p19A in different mice strains, to investigate the role of alpha hemolysin in a UC mouse model. Methods: In this study, Sigirr −/− and C57BL/6 mice were chosen, and UC was induced by adding dextran sulfate sodium (DSS) to the drinking water. The mice were pre-treated with ciprofloxacin. p19A expressing luminescence and GFP, alpha-hemolysin knock out p19A-ΔhlyI II, and non-pathogenic lab E. coli DH10B were cultured in LB broth, and orally gavaged into the mice. Colonization with p19A WT was visualized using an in vivo imaging system. Results: p19A WT colonized the colon, ileum, Peyer’s patches, liver, and spleen of infected C57BL/6 and Sigirr −/− mice. A total of 99% of the p19A WT infected C57BL/6 mice and 29% of the p19A WT infected Sigirr −/− mice survived to the 4th post infection day. Conclusion: UC-associated E. coli p19A WT colonized the intestines of DSS-treated mice and caused extra-intestinal infection. Hemolysin is an important factor in this pathogenesis, since isogenic hemolysin mutants did not cause the same inflammation.
Collapse
|
36
|
Lyall R, Nikoloski Z, Gechev T. Comparative Analysis of ROS Network Genes in Extremophile Eukaryotes. Int J Mol Sci 2020; 21:E9131. [PMID: 33266251 PMCID: PMC7730656 DOI: 10.3390/ijms21239131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
The reactive oxygen species (ROS) gene network, consisting of both ROS-generating and detoxifying enzymes, adjusts ROS levels in response to various stimuli. We performed a cross-kingdom comparison of ROS gene networks to investigate how they have evolved across all Eukaryotes, including protists, fungi, plants and animals. We included the genomes of 16 extremotolerant Eukaryotes to gain insight into ROS gene evolution in organisms that experience extreme stress conditions. Our analysis focused on ROS genes found in all Eukaryotes (such as catalases, superoxide dismutases, glutathione reductases, peroxidases and glutathione peroxidase/peroxiredoxins) as well as those specific to certain groups, such as ascorbate peroxidases, dehydroascorbate/monodehydroascorbate reductases in plants and other photosynthetic organisms. ROS-producing NADPH oxidases (NOX) were found in most multicellular organisms, although several NOX-like genes were identified in unicellular or filamentous species. However, despite the extreme conditions experienced by extremophile species, we found no evidence for expansion of ROS-related gene families in these species compared to other Eukaryotes. Tardigrades and rotifers do show ROS gene expansions that could be related to their extreme lifestyles, although a high rate of lineage-specific horizontal gene transfer events, coupled with recent tetraploidy in rotifers, could explain this observation. This suggests that the basal Eukaryotic ROS scavenging systems are sufficient to maintain ROS homeostasis even under the most extreme conditions.
Collapse
Affiliation(s)
- Rafe Lyall
- Department Bioinformatics and Mathematical Modelling, Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (Z.N.); (T.G.)
| | - Zoran Nikoloski
- Department Bioinformatics and Mathematical Modelling, Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (Z.N.); (T.G.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Tsanko Gechev
- Department Bioinformatics and Mathematical Modelling, Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (Z.N.); (T.G.)
- Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
37
|
Drlica K, Zhao X. Bacterial death from treatment with fluoroquinolones and other lethal stressors. Expert Rev Anti Infect Ther 2020; 19:601-618. [PMID: 33081547 DOI: 10.1080/14787210.2021.1840353] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lethal stressors, including antimicrobials, kill bacteria in part through a metabolic response proposed to involve reactive oxygen species (ROS). The quinolone anti-bacterials have served as key experimental tools in developing this idea. AREAS COVERED Bacteriostatic and bactericidal action of quinolones are distinguished, with emphasis on the contribution of chromosome fragmentation and ROS accumulation to bacterial death. Action of non-quinolone antibacterials and non-antimicrobial stressors is described to provide a general framework for understanding stress-mediated, bacterial death. EXPERT OPINION Quinolones trap topoisomerases on DNA in reversible complexes that block DNA replication and bacterial growth. At elevated drug concentrations, DNA ends are released from topoisomerase-mediated constraint, leading to the idea that death arises from chromosome fragmentation. However, DNA ends also stimulate repair, which is energetically expensive. An incompletely understood metabolic shift occurs, and ROS accumulate. Even after quinolone removal, ROS continue to amplify, generating secondary and tertiary damage that overwhelms repair and causes death. Repair may also contribute to death directly via DNA breaks arising from incomplete base-excision repair of ROS-oxidized nucleotides. Remarkably, perturbations that interfere with ROS accumulation confer tolerance to many diverse lethal agents.
Collapse
Affiliation(s)
| | - Xilin Zhao
- Rutgers University, Newark, NJ, USA.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province, China
| |
Collapse
|
38
|
The Onset of Tacrolimus Biosynthesis in Streptomyces tsukubaensis Is Dependent on the Intracellular Redox Status. Antibiotics (Basel) 2020; 9:antibiotics9100703. [PMID: 33076498 PMCID: PMC7602649 DOI: 10.3390/antibiotics9100703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The oxidative stress response is a key mechanism that microorganisms have to adapt to changeling environmental conditions. Adaptation is achieved by a fine-tuned molecular response that extends its influence to primary and secondary metabolism. In the past, the role of the intracellular redox status in the biosynthesis of tacrolimus in Streptomyces tsukubaensis has been briefly acknowledged. Here, we investigate the impact of the oxidative stress response on tacrolimus biosynthesis in S. tsukubaensis. Physiological characterization of S. tsukubaensis showed that the onset of tacrolimus biosynthesis coincided with the induction of catalase activity. In addition, tacrolimus displays antioxidant properties and thus a controlled redox environment would be beneficial for its biosynthesis. In addition, S. tsukubaensis ∆ahpC strain, a strain defective in the H2O2-scavenging enzyme AhpC, showed increased production of tacrolimus. Proteomic and transcriptomic studies revealed that the tacrolimus over-production phenotype was correlated with a metabolic rewiring leading to increased availability of tacrolimus biosynthetic precursors. Altogether, our results suggest that the carbon source, mainly used for cell growth, can trigger the production of tacrolimus by modulating the oxidative metabolism to favour a low oxidizing intracellular environment and redirecting the metabolic flux towards the increase availability of biosynthetic precursors.
Collapse
|
39
|
Antibacterial Activity of Synthetic Cationic Iron Porphyrins. Antioxidants (Basel) 2020; 9:antiox9100972. [PMID: 33050461 PMCID: PMC7601463 DOI: 10.3390/antiox9100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Widespread antibiotic resistance demands new strategies for fighting infections. Porphyrin-based compounds were long ago introduced as photosensitizers for photodynamic therapy, but light-independent antimicrobial activity of such compounds has not been systematically explored. The results of this study demonstrate that synthetic cationic amphiphilic iron N-alkylpyridylporphyrins exert strong bactericidal action at concentrations as low as 5 μM. Iron porphyrin, FeTnHex-2-PyP, which is well tolerated by laboratory animals, efficiently killed Gram-negative and Gram-positive microorganisms. Its bactericidal activity was oxygen-independent and was controlled by the lipophilicity and accumulation of the compound in bacterial cells. Such behavior is in contrast with the anionic gallium protoporphyrin IX, whose efficacy depends on cellular heme uptake systems. Under aerobic conditions, however, the activity of FeTnHex-2-PyP was limited by its destruction due to redox-cycling. Neither iron released from the Fe-porphyrin nor other decomposition products were the cause of the bactericidal activity. FeTnHex-2-PyP was as efficient against antibiotic-sensitive E. coli and S. aureus as against their antibiotic-resistant counterparts. Our data demonstrate that development of amphiphilic, positively charged metalloporphyrins might be a promising approach in the introduction of new weapons against antibiotic-resistant strains.
Collapse
|
40
|
Khademian M, Imlay JA. Do reactive oxygen species or does oxygen itself confer obligate anaerobiosis? The case of Bacteroides thetaiotaomicron. Mol Microbiol 2020; 114:333-347. [PMID: 32301184 DOI: 10.1111/mmi.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Bacteroides thetaiotaomicron was examined to determine whether its obligate anaerobiosis is imposed by endogenous reactive oxygen species or by molecular oxygen itself. Previous analyses established that aerated B. thetaiotaomicron loses some enzyme activities due to a high rate of endogenous superoxide formation. However, the present study establishes that another key step in central metabolism is poisoned by molecular oxygen itself. Pyruvate dissimilation was shown to depend upon two enzymes, pyruvate:formate lyase (PFL) and pyruvate:ferredoxin oxidoreductase (PFOR), that lose activity upon aeration. PFL is a glycyl-radical enzyme whose vulnerability to oxygen is already understood. The rate of PFOR damage was unaffected by the level of superoxide or peroxide, showing that molecular oxygen itself is the culprit. The cell cannot repair PFOR, which amplifies the impact of damage. The rates of PFOR and fumarase inactivation are similar, suggesting that superoxide dismutase is calibrated so the oxygen- and superoxide-sensitive enzymes are equally sensitive to aeration. The physiological purpose of PFL and PFOR is to degrade pyruvate without disrupting the redox balance, and they do so using catalytic mechanisms that are intrinsically vulnerable to oxygen. In this way, the anaerobic excellence and oxygen sensitivity of B. thetaiotaomicron are two sides of the same coin.
Collapse
Affiliation(s)
- Maryam Khademian
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
41
|
Mosteo R, Varon Lopez A, Muzard D, Benitez N, Giannakis S, Pulgarin C. Visible light plays a significant role during bacterial inactivation by the photo-fenton process, even at sub-critical light intensities. WATER RESEARCH 2020; 174:115636. [PMID: 32109753 DOI: 10.1016/j.watres.2020.115636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The aim of this research is to clarify the contribution of sunlight wavelengths, irradiance and Fe2+/H2O2 during bacterial disinfection by the photo-Fenton process in clear surface waters. We considered different solar spectrum distributions (visible, UVA-Visible), sub-critical irradiances (0-400 W/m2), focusing on the action modes of E. coli inactivation by the constituents involved in the composite process, at low μM reactants concentration (Fe2+/H2O2) in in ultrapure (MQ) water. We report that solar disinfection improved with Fenton reagents (photo-Fenton process) is a reality from very low light irradiance values (200 W/m2), and made possible even without the presence of UVA radiation, even when using low quantities of the Fenton reagents (0.5 mg/L Fe2+, 5 mg/L H2O2). Under light exposure, H2O2 was found to augment the intracellular Fenton process and Fe2+ to initiate further, distinct oxidative actions. Finally, validation was performed in Lake Geneva water over a wider irradiance range, where the photo-Fenton process was found to be reagent-dependent in low irradiance, shifting to light-driven in the higher values.
Collapse
Affiliation(s)
- Rosa Mosteo
- Department of Chemical Engineering and Environmental Technology, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain; School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Angelica Varon Lopez
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland; Universidad del Valle, Departamento de Química, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A.A. 25360 Cali, Colombia
| | - David Muzard
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Norberto Benitez
- Universidad del Valle, Departamento de Química, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A.A. 25360 Cali, Colombia
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
42
|
Chakraborty S, Liu L, Fitzsimmons L, Porwollik S, Kim JS, Desai P, McClelland M, Vazquez-Torres A. Glycolytic reprograming in Salmonella counters NOX2-mediated dissipation of ΔpH. Nat Commun 2020; 11:1783. [PMID: 32286292 PMCID: PMC7156505 DOI: 10.1038/s41467-020-15604-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/09/2020] [Indexed: 01/16/2023] Open
Abstract
The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins. Depolarization in respiring Salmonella mediates intense bactericidal activity of reactive oxygen species (ROS). Salmonella adapts to the challenges oxidative stress imposes on membrane bioenergetics by shifting redox balance to glycolysis and fermentation, thereby diminishing electron flow through the membrane, meeting energetic requirements and anaplerotically generating tricarboxylic acid intermediates. By diverting electrons away from the respiratory chain, glycolysis also enables thiol/disulfide exchange-mediated folding of bacterial cell envelope proteins during periods of oxidative stress. Thus, primordial metabolic pathways, already present in bacteria before aerobic respiration evolved, offer a solution to the stress ROS exert on molecular targets at the bacterial cell envelope. Chakraborty et al. show that phagocyte NADPH oxidase (NOX2) collapses the ΔpH of intracellular Salmonella Typhimurium, leading to oxidative damage of cell envelope proteins. Salmonella responds by shifting redox balance from respiration to glycolysis and fermentation, thereby facilitating folding of periplasmic functions.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Lin Liu
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Liam Fitzsimmons
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Ju-Sim Kim
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA. .,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA.
| |
Collapse
|
43
|
Korshunov S, Imlay KRC, Imlay JA. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol Microbiol 2019; 113:22-39. [PMID: 31612555 PMCID: PMC7007315 DOI: 10.1111/mmi.14403] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
The structure of free cysteine makes it vulnerable to oxidation by molecular oxygen; consequently, organisms that live in oxic habitats have acquired the ability to import cystine as a sulfur source. We show that cystine imported into Escherichia coli can transfer disulfide bonds to cytoplasmic proteins. To minimize this problem, the imported cystine is rapidly reduced. However, this conversion of cystine to cysteine precludes product inhibition of the importer, so cystine import continues into cells that are already sated with cysteine. The burgeoning cysteine pool is itself hazardous, as cysteine promotes the formation of reactive oxygen species, triggers sulfide production and competitively inhibits a key enzyme in the isoleucine biosynthetic pathway. The Lrp transcription factor senses the excess cysteine and induces AlaE, an export protein that pumps cysteine back out of the cell until transcriptional controls succeed in lowering the amount of the importer. While it lasts, the overall phenomenon roughly doubles the NADPH demand of the cell. It comprises another example of the incompatibility of the reduced cytoplasms of microbes with the oxic world in which they dwell. It also reveals one natural source of cytoplasmic disulfide stress and sheds light on a role for broad-spectrum amino acid exporters.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
44
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
45
|
Babele PK, Kumar J, Chaturvedi V. Proteomic De-Regulation in Cyanobacteria in Response to Abiotic Stresses. Front Microbiol 2019; 10:1315. [PMID: 31263458 PMCID: PMC6584798 DOI: 10.3389/fmicb.2019.01315] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are oxygenic photoautotrophs, exhibiting a cosmopolitan distribution in almost all possible environments and are significantly responsible for half of the global net primary productivity. They are well adapted to the diverse environments including harsh conditions by evolving a range of fascinating repertoires of unique biomolecules and secondary metabolites to support their growth and survival. These phototrophs are proved as excellent models for unraveling the mysteries of basic biochemical and physiological processes taking place in higher plants. Several known species of cyanobacteria have tremendous biotechnological applications in diverse fields such as biofuels, biopolymers, secondary metabolites and much more. Due to their potential biotechnological and commercial applications in various fields, there is an imperative need to engineer robust cyanobacteria in such a way that they can tolerate and acclimatize to ever-changing environmental conditions. Adaptations to stress are mainly governed by a precise gene regulation pathways resulting in the expression of novel protein/enzymes and metabolites. Despite the demand, till date few proteins/enzymes have been identified which play a potential role in improving tolerance against abiotic stresses. Therefore, it is utmost important to study environmental stress responses related to post-genomic investigations, including proteomic changes employing advanced proteomics, synthetic and structural biology workflows. In this respect, the study of stress proteomics offers exclusive advantages to scientists working on these aspects. Advancements on these fields could be helpful in dissecting, characterization and manipulation of physiological and metabolic systems of cyanobacteria to understand the stress induced proteomic responses. Till date, it remains ambiguous how cyanobacteria perceive changes in the ambient environment that lead to the stress-induced proteins thus metabolic deregulation. This review briefly describes the current major findings in the fields of proteome research on the cyanobacteria under various abiotic stresses. These findings may improve and advance the information on the role of different class of proteins associated with the mechanism(s) of stress mitigation in cyanobacteria under harsh environmental conditions.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jay Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Venkatesh Chaturvedi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Jaroensuk J, Intasian P, Kiattisewee C, Munkajohnpon P, Chunthaboon P, Buttranon S, Trisrivirat D, Wongnate T, Maenpuen S, Tinikul R, Chaiyen P. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway. J Biol Chem 2019; 294:11536-11548. [PMID: 31182484 DOI: 10.1074/jbc.ra119.008246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/08/2019] [Indexed: 11/06/2022] Open
Abstract
An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Cholpisit Kiattisewee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pobthum Munkajohnpon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Paweenapon Chunthaboon
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Duangthip Trisrivirat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
47
|
Nóbrega CS, Pauleta SR. Reduction of hydrogen peroxide in gram-negative bacteria - bacterial peroxidases. Adv Microb Physiol 2019; 74:415-464. [PMID: 31126534 DOI: 10.1016/bs.ampbs.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacteria display an array of enzymes to detoxify reactive oxygen species that cause damage to DNA and to other biomolecules leading to cell death. Hydrogen peroxide is one of these species, with endogenous and exogenous sources, such as lactic acid bacteria, oxidative burst of the immune system or chemical reactions at oxic-anoxic interfaces. The enzymes that detoxify hydrogen peroxide will be the focus of this review, with special emphasis on bacterial peroxidases that reduce hydrogen peroxide to water. Bacterial peroxidases are periplasmic cytochromes with either two or three c-type haems, which have been classified as classical and non-classical bacterial peroxidases, respectively. Most of the studies have been focus on the classical bacterial peroxidases, showing the presence of a reductive activation in the presence of calcium ions. Mutagenesis studies have clarified the catalytic mechanism of this enzyme and were used to propose an intramolecular electron transfer pathway, with far less being known about the intermolecular electron transfer that occurs between reduced electron donors and the enzyme. The physiological function of these enzymes was not very clear until it was shown, for the non-classical bacterial peroxidase, that this enzyme is required for the bacteria to use hydrogen peroxide as terminal electron acceptor under anoxic conditions. These non-classical bacterial peroxidases are quinol peroxidases that do not require reductive activation but need calcium ions to attain maximum activity and share similar catalytic intermediates with the classical bacterial peroxidases.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
48
|
Mohammadi M. Oxidative Stress and Polycystic Ovary Syndrome: A Brief Review. Int J Prev Med 2019; 10:86. [PMID: 31198521 PMCID: PMC6547785 DOI: 10.4103/ijpvm.ijpvm_576_17] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common hormonal disorders, occurring in 5-10% women in reproductive ages. Despite a long history of studies on PCOS, its etiology is still unknown. Oxidative stress is now recognized to play a central role in the pathophysiology of many different disorders, including PCOS. Although intracellular reactive oxygen species (ROS) production and propagation are controlled by highly complex antioxidant enzymatic and non-enzymatic systems, understanding of mechanisms that oxidative stress is important to develop strategies for prevention and therapy of PCOS. This article reviews the literature data related to the mechanisms of oxidative stress in PCOS.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
A small RNA controls bacterial sensitivity to gentamicin during iron starvation. PLoS Genet 2019; 15:e1008078. [PMID: 31009454 PMCID: PMC6497325 DOI: 10.1371/journal.pgen.1008078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/02/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023] Open
Abstract
Phenotypic resistance describes a bacterial population that becomes transiently resistant to an antibiotic without requiring a genetic change. We here investigated the role of the small regulatory RNA (sRNA) RyhB, a key contributor to iron homeostasis, in the phenotypic resistance of Escherichia coli to various classes of antibiotics. We found that RyhB induces phenotypic resistance to gentamicin, an aminoglycoside that targets the ribosome, when iron is scarce. RyhB induced resistance is due to the inhibition of respiratory complexes Nuo and Sdh activities. These complexes, which contain numerous Fe-S clusters, are crucial for generating a proton motive force (pmf) that allows gentamicin uptake. RyhB regulates negatively the expression of nuo and sdh, presumably by binding to their mRNAs and, as a consequence, inhibiting their translation. We further show that Isc Fe-S biogenesis machinery is essential for the maturation of Nuo. As RyhB also limits levels of the Isc machinery, we propose that RyhB may also indirectly impact the maturation of Nuo and Sdh. Notably, our study shows that respiratory complexes activity levels are predictive of the bacterial sensitivity to gentamicin. Altogether, these results unveil a new role for RyhB in the adaptation to antibiotic stress, an unprecedented consequence of its role in iron starvation stress response. Understanding the mechanisms at work behind bacterial antibiotic resistance has become a major health issue in the face of the antibiotics crisis. Here, we show that RyhB, a bacterial small regulatory RNA, decreases the sensitivity of Escherichia coli to the antibiotic gentamicin when iron is scarce, an environmental situation prevalent during host-pathogen interactions. This phenotypic resistance is related to the activity of the respiratory complexes Nuo and Sdh, which are producing the proton motive force allowing antibiotic uptake. Altogether, this study points out to a major role for RyhB in escaping antibacterial action.
Collapse
|
50
|
Ajiboye T, Skiebe E, Wilharm G. Impact of zinc uptake regulator Zur on the susceptibility and oxidative stress response of Acinetobacter baumannii to antibiotics. Int J Antimicrob Agents 2019; 53:467-473. [DOI: 10.1016/j.ijantimicag.2018.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 01/17/2023]
|