1
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2024; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Pourmal S, Green E, Bajaj R, Chemmama IE, Knudsen GM, Gupta M, Sali A, Cheng Y, Craik CS, Kroetz DL, Stroud RM. Structural basis of prostaglandin efflux by MRP4. Nat Struct Mol Biol 2024; 31:621-632. [PMID: 38216659 PMCID: PMC11145372 DOI: 10.1038/s41594-023-01176-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/07/2023] [Indexed: 01/14/2024]
Abstract
Multidrug resistance protein 4 (MRP4) is a broadly expressed ATP-binding cassette transporter that is unique among the MRP subfamily for transporting prostanoids, a group of signaling molecules derived from unsaturated fatty acids. To better understand the basis of the substrate selectivity of MRP4, we used cryogenic-electron microscopy to determine six structures of nanodisc-reconstituted MRP4 at various stages throughout its transport cycle. Substrate-bound structures of MRP4 in complex with PGE1, PGE2 and the sulfonated-sterol DHEA-S reveal a common binding site that accommodates a diverse set of organic anions and suggest an allosteric mechanism for substrate-induced enhancement of MRP4 ATPase activity. Our structure of a catalytically compromised MRP4 mutant bound to ATP-Mg2+ is outward-occluded, a conformation previously unobserved in the MRP subfamily and consistent with an alternating-access transport mechanism. Our study provides insights into the endogenous function of this versatile efflux transporter and establishes a basis for MRP4-targeted drug design.
Collapse
Affiliation(s)
- Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Program in Chemistry and Chemical Biology, University of California, San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Evan Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
- Exelixis, Alameda, CA, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Ilan E Chemmama
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Brightseed, South San Francisco, CA, USA
| | - Giselle M Knudsen
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Cui G, Strickland KM, Vazquez Cegla AJ, McCarty NA. Comparing ATPase activity of ATP-binding cassette subfamily C member 4, lamprey CFTR, and human CFTR using an antimony-phosphomolybdate assay. Front Pharmacol 2024; 15:1363456. [PMID: 38440176 PMCID: PMC10910009 DOI: 10.3389/fphar.2024.1363456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: ATP-binding cassette (ABC) transporters use the hydrolysis of ATP to power the active transport of molecules, but paradoxically the cystic fibrosis transmembrane regulator (CFTR, ABCC7) forms an ion channel. We previously showed that ATP-binding cassette subfamily C member 4 (ABCC4) is the closest mammalian paralog to CFTR, compared to other ABC transporters. In addition, Lamprey CFTR (Lp-CFTR) is the oldest known CFTR ortholog and has unique structural and functional features compared to human CFTR (hCFTR). The availability of these evolutionarily distant orthologs gives us the opportunity to study the changes in ATPase activity that may be related to their disparate functions. Methods: We utilized the baculovirus expression system with Sf9 insect cells and made use of the highly sensitive antimony-phosphomolybdate assay for testing the ATPase activity of human ABCC4 (hABCC4), Lp-CFTR, and hCFTR under similar experimental conditions. This assay measures the production of inorganic phosphate (Pi) in the nanomolar range. Results: Crude plasma membranes were purified, and protein concentration, determined semi-quantitatively, of hABCC4, Lp-CFTR, and hCFTR ranged from 0.01 to 0.36 μg/μL. No significant difference in expression level was found although hABCC4 trended toward the highest level. hABCC4 was activated by ATP with the equilibrium constant (Kd) 0.55 ± 0.28 mM (n = 8). Estimated maximum ATPase rate (Vmax) for hABCC4 was about 0.2 nmol/μg/min when the protein was activated with 1 mM ATP at 37°C (n = 7). Estimated maximum ATPase rate for PKA-phosphorylated Lp-CFTR reached about half of hCFTR levels in the same conditions. Vmax for both Lp-CFTR and hCFTR were significantly increased in high PKA conditions compared to low PKA conditions. Maximum intrinsic ATPase rate of hABCC4 in the absence of substrate was twice that of hCFTR when activated in 1 mM ATP. Conclusion: The findings here suggest that while both ABCC4 and hCFTR bear one consensus and one degenerate ATPase site, the hCFTR exhibited a reduced intrinsic ATPase activity. In addition, ATPase activity in the CFTR lineage increased from Lp-CFTR to hCFTR. Finally, the studies pave the way to purify hABCC4, Lp-CFTR, and hCFTR from Sf9 cells for their structural investigation, including by cryo-EM, and for studies of evolution in the ABC transporter superfamily.
Collapse
Affiliation(s)
| | | | | | - Nael A. McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
4
|
Chen Y, Wang L, Hou WT, Zha Z, Xu K, Zhou CZ, Li Q, Chen Y. Structural insights into human ABCC4-mediated transport of platelet agonist and antagonist. NATURE CARDIOVASCULAR RESEARCH 2023; 2:693-701. [PMID: 39195918 DOI: 10.1038/s44161-023-00289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/19/2023] [Indexed: 08/29/2024]
Abstract
Human platelets contribute to hemostasis and thrombosis, the imbalance of which can cause cardiovascular diseases. The activation and accumulation of platelets can be induced by agonists or inhibited by antagonists. Thus, the human ABC transporter ABCC4, which pumps out platelet agonists and antagonists, might become a promising target for preventing cardiovascular diseases. Here we define five structures of human ABCC4: the apo and three complexed forms in the inward-facing conformation, in addition to an outward-facing occluded conformation upon ATP binding. Combined with biochemical assays, we structurally prove that U46619, a synthetic analog of the unstable agonist TXA2, and the antagonist aspirin are substrates of ABCC4. In addition, we found that the platelet antagonist dipyridamole is a strong competitive inhibitor against ABCC4. These complex structures also enable us to identify a transmembrane pocket in ABCC4 that provides a defined space for the rational design of specific platelet antagonists.
Collapse
Affiliation(s)
- Yu Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Liang Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wen-Tao Hou
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhihui Zha
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Kang Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Qiong Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Becerra E, Aguilera-Durán G, Berumen L, Romo-Mancillas A, García-Alcocer G. Study of Endogen Substrates, Drug Substrates and Inhibitors Binding Conformations on MRP4 and Its Variants by Molecular Docking and Molecular Dynamics. Molecules 2021; 26:1051. [PMID: 33671368 PMCID: PMC7922701 DOI: 10.3390/molecules26041051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.
Collapse
Affiliation(s)
- Edgardo Becerra
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (E.B.); (G.A.-D.)
- Centro Universitario, Unidad de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (E.B.); (G.A.-D.)
- Centro Universitario, Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Laura Berumen
- Centro Universitario, Unidad de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Antonio Romo-Mancillas
- Centro Universitario, Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Guadalupe García-Alcocer
- Centro Universitario, Unidad de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| |
Collapse
|
7
|
Tanaka N, Kawai J, Hirasawa N, Mano N, Yamaguchi H. ATP-Binding Cassette Transporter C4 is a Prostaglandin D2 Exporter in HMC-1 cells. Prostaglandins Leukot Essent Fatty Acids 2020; 159:102139. [PMID: 32544819 DOI: 10.1016/j.plefa.2020.102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
ATP-binding cassette transporter C4 (ABCC4) is associated with multidrug resistance and the regulation of cell signalling. Some prostaglandins (PGs), including: PGE2, PGF2α, PGE3, and PGF3α are known substrates of ABCC4, and are released from some types of cells to exert their biological effects. In the present study, we demonstrate that PGD2 is a novel substrate of ABCC4 using a transport assay based on inside-out membrane vesicles prepared from ABCC4-overexpressing cells. Then, we used two types of cell lines with confirmed ABCC4 mRNA and PGD2 release capacity (human mast cell lines HMC-1 cells and human rhabdomyosarcoma cell lines TE671 cells) to evaluate the contribution of ABCC4. The extracellular levels of PGD2 were unchanged following addition of a selective ABCC4 inhibitor in TE671 cells. Pharmacological inhibition and knockdown of ABCC4 significantly reduced the extracellular levels of PGD2 by at least 53% in HMC-1 cells. Moreover, the extracellular levels of PGD2 decreased by at least 20% using the selective ABCC4 inhibitor in the other mast cell line RBL-2H3 cells. Therefore, our results suggest that ABCC4 functions as a PGD2 exporter in HMC-1 cells.
Collapse
Affiliation(s)
- Nobuaki Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, 800-8, Shimokomazawa, Nagano, 381-0008, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan; Department of Pharmacy, Yamagata University Hospital, Yamagata, 990-9585, Japan.
| |
Collapse
|
8
|
Hardy D, Bill RM, Jawhari A, Rothnie AJ. Functional Expression of Multidrug Resistance Protein 4 MRP4/ABCC4. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:1000-1008. [PMID: 31381460 PMCID: PMC6873218 DOI: 10.1177/2472555219867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
To study the function and structure of membrane proteins, high quantities of pure and stable protein are needed. One of the first hurdles in accomplishing this is expression of the membrane protein at high levels and in a functional state. Membrane proteins are naturally expressed at low levels, so finding a suitable host for overexpression is imperative. Multidrug resistance protein 4 (MRP4) or ATP-binding cassette subfamily C member 4 (ABCC4) is a multi-transmembrane protein that is able to transport a range of organic anionic compounds (both endogenous and xenobiotic) out of the cell. This versatile transporter has been linked with extracellular signaling pathways and cellular protection, along with conferring drug resistance in cancers. Here we report the use of MRP4 as a case study to be expressed in three different expression systems: mammalian, insect, and yeast cells, to gain the highest yield possible. Interestingly, using the baculovirus expression system with Sf9 insect cells produced the highest protein yields. Vesicular transport assays were used to confirm that MRP4 expressed in Sf9 was functional using a fluorescent cAMP analogue (fluo-cAMP) instead of the traditional radiolabeled substrates. MRP4 transported fluo-cAMP in an ATP-dependent manner. The specificity of functional expression of MRP4 was validated by the use of nonhydrolyzable ATP analogues and MRP4 inhibitor MK571. Functionally expressed MRP4 in Sf9 cells can now be used in downstream processes such as solubilization and purification in order to better understand its function and structure.
Collapse
Affiliation(s)
- David Hardy
- Life & Health Sciences, Aston
University, Birmingham, UK
- CALIXAR, Lyon, France
| | - Roslyn M. Bill
- Life & Health Sciences, Aston
University, Birmingham, UK
| | | | | |
Collapse
|
9
|
Tanaka N, Yamaguchi H, Mano N. Involvement of H +-gradient dependent transporter in PGE 2 release from A549 cells. Prostaglandins Leukot Essent Fatty Acids 2019; 149:30-36. [PMID: 31421525 DOI: 10.1016/j.plefa.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to identify the transporter involved in the release of prostaglandin E2 (PGE2). In the present study, transport assays were conducted using membrane vesicles prepared from human lung adenocarcinoma A549 cells, thus enabling identification of the novel exporter present in A549 cells. PGE2 transport into A549 vesicles was higher in the presence of a proton (H+)-gradient, thus suggesting the involvement of PGE2H+ symporter in PGE2 transport. Results from our experiments showed enhanced PGE2 release in A549 cells in the presence of H+-gradient ([H+]extracellular < [H+]intracellular). Moreover, in vesicular transport assays, H+-gradient-dependent transport of PGE2 did not show saturation up to 500 μM PGE2, and 10 mM aromatic monocarboxylic acids (acetylsalicylic acid, salicylic acid, and p-nitrobenzoic acid) significantly inhibited PGE2 transport by 62-70%. These results suggest, the involvement of monocarboxylate transporters in the H+-gradient-dependent PGE2 export.
Collapse
Affiliation(s)
- Nobuaki Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Hiroaki Yamaguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japa; Yamagata University Graduate School of Medicine/Department of Pharmacy, Yamagata University Hospital, 2-2-2, Iida-nishi, Yamagata, 990-9585, Japan.
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japa
| |
Collapse
|
10
|
Liu YT, Liu W, Zhu GY, Wang FL, Chen Q. Involvement of multidrug resistance protein 4 in the hepatocyte efflux of lamivudine and entecavir. Mol Med Rep 2018; 17:7113-7121. [PMID: 29568871 PMCID: PMC5928661 DOI: 10.3892/mmr.2018.8779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4) is capable of transporting acyclic nucleotide phosphonates, but little is known about its role in lamivudine (LAM) and entecavir (ETV) transport. In the present study, the involvement of MRP4 in the transport of LAM and ETV was investigated through in vitro experiments. The cytotoxicity of three antiviral drugs and their activities against HBV as characterized in HepG2.4D14 [wild‑type hepatitis B virus (HBV)] and HepG2.A64 (ETV‑resistant HBV) cells. LAM, ETV and tenofovir (TFV) demonstrated a 50% effective concentration against HBV of 4.14±0.03, 0.13±0.02 and 3.24±0.01 µM in HepG2.4D14 cells and of 5.94±0.20, 6.28±0.07 and 11.43±0.09 µM in HepG2.A64 cells, respectively. After administering 3-([(3-(2-[7-chloro-2-quinolinyl]ethyl)phenyl]-[(3-dimethylamino-3-oxoporphyl)-thio)-methyl]-thio) propanoic acid (MK571), the intracellular concentrations of all three drugs were much lower than the extracellular drug concentrations in these two cell types, whereas the intracellular drug concentrations in wild‑type cells were higher than those in ETV‑resistant cells. Furthermore, the intracellular levels of LAM, ETV and TFV were enhanced and the extracellular concentrations were reduced by addition of MK571. Thus, MRP4 is mainly responsible for the efflux of LAM and ETV in hepatocyte cultures. These results may contribute to enhancing antiviral efficacy.
Collapse
Affiliation(s)
- Yu-Tian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gang-Yan Zhu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fu-Liang Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
11
|
Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 2015; 30:1247-62. [PMID: 26606940 DOI: 10.1096/fj.15-278382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.
Collapse
Affiliation(s)
- Shipeng Wei
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryan C Roessler
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mert Icyuz
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sylvain Chauvet
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Binli Tao
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John L Hartman
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin L Kirk
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Bao H, Dalal K, Cytrynbaum E, Duong F. Sequential Action of MalE and Maltose Allows Coupling ATP Hydrolysis to Translocation in the MalFGK2 Transporter. J Biol Chem 2015; 290:25452-60. [PMID: 26338707 DOI: 10.1074/jbc.m115.671826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 01/05/2023] Open
Abstract
ATP-binding cassette (ABC) transporters have evolved an ATP-dependent alternating-access mechanism to transport substrates across membranes. Despite important progress, especially in their structural analysis, it is still unknown how the substrate stimulates ATP hydrolysis, the hallmark of ABC transporters. In this study, we measure the ATP turnover cycle of MalFGK2 in steady and pre-steady state conditions. We show that (i) the basal ATPase activity of MalFGK2 is very low because the cleavage of ATP is rate-limiting, (ii) the binding of open-state MalE to the transporter induces ATP cleavage but leaves release of Pi limiting, and (iii) the additional presence of maltose stimulates release of Pi, and therefore increases the overall ATP turnover cycle. We conclude that open-state MalE stabilizes MalFGK2 in the outward-facing conformation until maltose triggers return to the inward-facing state for substrate and Pi release. This concerted action explains why ATPase activity of MalFGK2 depends on maltose, and why MalE is essential for transport.
Collapse
Affiliation(s)
- Huan Bao
- From the Departments of Biochemistry and Molecular Biology and
| | - Kush Dalal
- From the Departments of Biochemistry and Molecular Biology and
| | - Eric Cytrynbaum
- Mathematics, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Franck Duong
- From the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
13
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-75. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
14
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
15
|
Gomes MJ, Martins S, Sarmento B. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery. Ageing Res Rev 2015; 21:43-54. [PMID: 25796492 DOI: 10.1016/j.arr.2015.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases.
Collapse
|
16
|
Ventimiglia MS, Najenson AC, Perazzo JC, Carozzo A, Vatta MS, Davio CA, Bianciotti LG. Blockade of Multidrug Resistance-Associated Proteins Aggravates Acute Pancreatitis and Blunts Atrial Natriuretic Factor's Beneficial Effect in Rats: Role of MRP4 (ABCC4). Mol Med 2015; 21:58-67. [PMID: 25569802 DOI: 10.2119/molmed.2014.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
We previously reported that atrial natriuretic factor (ANF) stimulates secretin-evoked cAMP efflux through multidrug resistance-associated protein 4 (MRP4) in the exocrine pancreas. Here we sought to establish in vivo whether this mechanism was involved in acute pancreatitis onset in the rat. Rats pretreated with or without probenecid (MRPs general inhibitor) were infused with secretin alone or with ANF. A set of these animals were given repetitive cerulein injections to induce acute pancreatitis. Plasma amylase and intrapancreatic trypsin activities were measured and histological examination of the pancreas performed. Secretin alone activated trypsinogen but induced no pancreatic histological changes. Blockade by probenecid in secretin-treated rats increased trypsin and also induced vacuolization, a hallmark of acute pancreatitis. ANF prevented the secretin response but in the absence of probenecid. In rats with acute pancreatitis, pretreatment with secretin aggravated the disease, but ANF prevented secretin-induced changes. Blockade of MRPs in rats with acute pancreatitis induced trypsinogen activation and larger cytoplasmic vacuoles as well as larger areas of necrosis and edema that were aggravated by secretin but not prevented by ANF. The temporal resolution of intracellular cAMP levels seems critical in the onset of acute pancreatitis, since secretin-evoked cAMP in a context of MRP inhibition makes the pancreas prone to injury in normal rats and aggravates the onset of acute pancreatitis. Present findings support a protective role for ANF mediated by cAMP extrusion through MRP4 and further suggest that the regulation of MRP4 by ANF would be relevant to maintain pancreatic acinar cell homeostasis.
Collapse
Affiliation(s)
- María Silvia Ventimiglia
- Cátedra de Fisiopatología, Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Clara Najenson
- Cátedra de Fisiopatología, Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Perazzo
- Cátedra de Fisiopatología, Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo S Vatta
- Cátedra de Fisiología-Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Davio
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana G Bianciotti
- Cátedra de Fisiopatología, Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Lee JY, Yang JG, Zhitnitsky D, Lewinson O, Rees DC. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 2014; 343:1133-6. [PMID: 24604198 PMCID: PMC4151877 DOI: 10.1126/science.1246489] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although substantial progress has been achieved in the structural analysis of exporters from the superfamily of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, much less is known about how they selectively recognize substrates and how substrate binding is coupled to ATP hydrolysis. We have addressed these questions through crystallographic analysis of the Atm1/ABCB7/HMT1/ABCB6 ortholog from Novosphingobium aromaticivorans DSM 12444, NaAtm1, at 2.4 angstrom resolution. Consistent with a physiological role in cellular detoxification processes, functional studies showed that glutathione derivatives can serve as substrates for NaAtm1 and that its overexpression in Escherichia coli confers protection against silver and mercury toxicity. The glutathione binding site highlights the articulated design of ABC exporters, with ligands and nucleotides spanning structurally conserved elements to create adaptable interfaces accommodating conformational rearrangements during the transport cycle.
Collapse
Affiliation(s)
- Jonas Y. Lee
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| | - Janet G. Yang
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Zhitnitsky
- Department of Microbiology, The Rappaport Family Institute for Research, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Lewinson
- Department of Microbiology, The Rappaport Family Institute for Research, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Douglas C. Rees
- Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
Fukuda Y, Takenaka K, Sparreboom A, Cheepala SB, Wu CP, Ekins S, Ambudkar SV, Schuetz JD. Human immunodeficiency virus protease inhibitors interact with ATP binding cassette transporter 4/multidrug resistance protein 4: a basis for unanticipated enhanced cytotoxicity. Mol Pharmacol 2013; 84:361-71. [PMID: 23775562 DOI: 10.1124/mol.113.086967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus (HIV) pharmacotherapy, by combining different drug classes such as nucleoside analogs and HIV protease inhibitors (PIs), has increased HIV-patient life expectancy. Consequently, among these patients, an increase in non-HIV-associated cancers has produced a patient cohort requiring both HIV and cancer chemotherapy. We hypothesized that multidrug resistance protein 4/ATP binding cassette transporter 4 (MRP4/ABCC4), a widely expressed transporter of nucleoside-based antiviral medications as well as cancer therapeutics might interact with PIs. Among the PIs evaluated (nelfinavir, ritonavir, amprenavir, saquinavir, and indinavir), only nelfinavir both effectively stimulated MRP4 ATPase activity and inhibited substrate-stimulated ATPase activity. Saos2 and human embryonic kidney 293 cells engineered to overexpress MRP4 were then used to assess transport and cytotoxicity. MRP4 expression reduced intracellular accumulation of nelfinavir and consequently conferred survival advantage to nelfinavir cytotoxicity. Nelfinavir blocked Mrp4-mediated export, which is consistent with its ability to increase the sensitivity of MRP4-expressing cells to methotrexate. In contrast, targeted inactivation of Abcc4/Mrp4 in mouse cells specifically enhanced nelfinavir and 9-(2-phosphonylmethoxyethyl) adenine cytotoxicity. These results suggest that nelfinavir is both an inhibitor and substrate of MRP4. Because nelfinavir is a new MRP4/ABCC4 substrate, we developed a MRP4/ABCC4 pharmacophore model, which showed that the nelfinavir binding site is shared with chemotherapeutic substrates such as adefovir and methotrexate. Our studies reveal, for the first time, that nelfinavir, a potent and cytotoxic PI, is both a substrate and inhibitor of MRP4. These findings suggest that HIV-infected cancer patients receiving nelfinavir might experience both enhanced antitumor efficacy and unexpected adverse toxicity given the role of MRP4/ABCC4 in exporting nucleoside-based antiretroviral medications and cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cheepala SB, Bao J, Nachagari D, Sun D, Wang Y, Zhong TP, Zhong T, Naren AP, Zheng J, Schuetz JD. Crucial role for phylogenetically conserved cytoplasmic loop 3 in ABCC4 protein expression. J Biol Chem 2013; 288:22207-18. [PMID: 23766510 DOI: 10.1074/jbc.m113.476218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ABC transporter ABCC4 is recognized as an ATP-dependent exporter of endogenous substances as well as an increasing variety of anionic chemotherapeutics. A loss-of-function variant of zebrafish Abcc4 was identified with a single amino acid substitution in the cytoplasmic loop T804M. Because this substituted amino acid is highly conserved among ABCC4 orthologs and is located in cytoplasmic loop 3 (CL3), we investigated the impact of this mutation on human and zebrafish Abcc4 expression. We demonstrate that zebrafish Abcc4 T804M or human ABCC4 T796M exhibit substantially reduced expression, coupled with impaired plasma membrane localization. To understand the molecular basis for the localization defect, we developed a homology model of zebrafish Abcc4. The homology model suggested that the bulky methionine substitution disrupted side-chain contacts. Molecular dynamic simulations of a fragment of human or zebrafish CL3 containing a methionine substitution indicated altered helicity coupled with reduced thermal stability. Trifluoroethanol challenge coupled with circular dichroism revealed that the methionine substitution disrupted the ability of this fragment of CL3 to readily form an α-helix. Furthermore, expression and plasma membrane localization of these mutant ABCC4/Abcc4 proteins are mostly rescued by growing cells at subphysiological temperatures. Because the cystic fibrosis transmembrane conductance regulator (ABCC7) is closely related to ABCC4, we extended this by engineering certain pathogenic CFTR-CL3 mutations, and we showed they destabilized human and zebrafish ABCC4. Altogether, our studies provide the first evidence for a conserved domain in CL3 of ABCC4 that is crucial in ensuring its proper plasma membrane localization.
Collapse
Affiliation(s)
- Satish B Cheepala
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 2013; 110:9710-5. [PMID: 23716676 DOI: 10.1073/pnas.1217042110] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABCB10 is one of the three ATP-binding cassette (ABC) transporters found in the inner membrane of mitochondria. In mammals ABCB10 is essential for erythropoiesis, and for protection of mitochondria against oxidative stress. ABCB10 is therefore a potential therapeutic target for diseases in which increased mitochondrial reactive oxygen species production and oxidative stress play a major role. The crystal structure of apo-ABCB10 shows a classic exporter fold ABC transporter structure, in an open-inwards conformation, ready to bind the substrate or nucleotide from the inner mitochondrial matrix or membrane. Unexpectedly, however, ABCB10 adopts an open-inwards conformation when complexed with nonhydrolysable ATP analogs, in contrast to other transporter structures which adopt an open-outwards conformation in complex with ATP. The three complexes of ABCB10/ATP analogs reported here showed varying degrees of opening of the transport substrate binding site, indicating that in this conformation there is some flexibility between the two halves of the protein. These structures suggest that the observed plasticity, together with a portal between two helices in the transmembrane region of ABCB10, assist transport substrate entry into the substrate binding cavity. These structures indicate that ABC transporters may exist in an open-inwards conformation when nucleotide is bound. We discuss ways in which this observation can be aligned with the current views on mechanisms of ABC transporters.
Collapse
|
21
|
Ørvoll E, Lysaa RA, Ravna AW, Sager G. Misoprostol and the Sildenafil analog (PHAR-0099048) Modulate Cellular Efflux of cAMP and cGMP Differently. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.41015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Malofeeva EV, Domanitskaya N, Gudima M, Hopper-Borge EA. Modulation of the ATPase and transport activities of broad-acting multidrug resistance factor ABCC10 (MRP7). Cancer Res 2012; 72:6457-67. [PMID: 23087055 DOI: 10.1158/0008-5472.can-12-1340] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell surface molecule ABCC10 is a broad-acting transporter of xenobiotics, including cancer drugs, such as taxanes, epothilone B, and modulators of the estrogen pathway. Abcc10(-/-) mice exhibit increased tissue sensitivity and lethality resulting from paclitaxel exposure compared with wild-type counterparts, arguing ABCC10 functions as a major determinant of taxane sensitivity in mice. To better understand the mechanistic basis of ABCC10 action, we characterized the biochemical and vectorial transport properties of this protein. Using crude membranes in an ABCC10 overexpression system, we found that the ABCC10 transport substrates estrogen estradiol-glucuronide (E(2)17βG) and leukotriene C4 (LTC(4)) significantly stimulated ABCC10 beryllium fluoride (BeFx)-sensitive ATPase activity. We also defined the E(2)17βG antagonist, tamoxifen, as a novel substrate and stimulator of ABCC10. In addition, a number of cytotoxic substrates, including docetaxel, paclitaxel, and Ara-C, increased the ABCC10 basal ATPase activity. We determined that ABCC10 localizes to the basolateral cell surface, using transepithelial well assays to establish that ABCC10-overexpressing LLC-PK1 cells exported [(3)H]-docetaxel from the apical to the basolateral side. Importantly, we found that the clinically valuable multikinase inhibitor sorafenib, and a natural alkaloid, cepharanthine, inhibited ABCC10 docetaxel transport activity. Thus, concomitant use of these agents might restore the intracellular accumulation and potency of ABCC10-exported cytotoxic drugs, such as paclitaxel. Overall, our work could seed future efforts to identify inhibitors and other physiologic substrates of ABCC10.
Collapse
Affiliation(s)
- Ekaterina V Malofeeva
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
23
|
Krajcsi P, Jani M, Tóth B, Erdő F, Kis E, Beéry E, Sziráki I. Efflux transporters in the blood–brain interfaces –in vitroandin vivomethods and correlations. Expert Opin Drug Metab Toxicol 2012; 8:419-31. [DOI: 10.1517/17425255.2012.668184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Sreenivasan S, Ravichandran S, Vetrivel U, Krishnakumar S. In vitro and In silico studies on inhibitory effects of curcumin on multi drug resistance associated protein (MRP1) in retinoblastoma cells. Bioinformation 2012; 8:13-9. [PMID: 22359429 PMCID: PMC3282270 DOI: 10.6026/97320630008013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 12/20/2011] [Indexed: 11/25/2022] Open
Abstract
Multi Drug Resistance (MDR) is one of the major causes of chemotherapy failure in human malignancies. Curcumin, the active constituent of Curcuma longa is a proven anticancer agent potentially modulating the expression and function of these MDR proteins. In this study, we attempted to test curcumin for its potential to inhibit the expression and function of multidrug resistance associated protein 1 (MRP1) in retinoblastoma (RB) cell lines through western blot, RT-PCR and functional assays. In silico analysis were also performed to understand the molecular interactions conferred by curucmin on MRP1 in RB cells. Western blot and RTPCR analysis did not show any correlation of MRP1 expression with increase in concentration of curcumin. However, inhibitory effect of curcumin on MRP1 function was observed as a decrease in the efflux of fluorescent substrate. Moreover, Curcumin did not affect 8-azido-ATP-biotin binding to MRP1 and it also showed inhibition of ATP-hydrolysis stimulated by quercetin, which is indicative of curcumin's interaction with the substrate binding site of MRP1. Furthermore, homology modelling and docking simulation studies of MRP1 also provided deeper insights into the molecular interactions, thereby inferring the potential binding mode of curcumin into the substrate binding site of MRP1.
Collapse
Affiliation(s)
- Seethalakshmi Sreenivasan
- L&T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18, CollegeRoad, Nungambakkam, Chennai – 600 006, India
| | - Sathyabaarathi Ravichandran
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai – 600 006, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai – 600 006, India
| | - Subramanian Krishnakumar
- L&T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18, CollegeRoad, Nungambakkam, Chennai – 600 006, India
| |
Collapse
|
25
|
Lacroix-Pépin N, Danyod G, Krishnaswamy N, Mondal S, Rong PM, Chapdelaine P, Fortier MA. The multidrug resistance-associated protein 4 (MRP4) appears as a functional carrier of prostaglandins regulated by oxytocin in the bovine endometrium. Endocrinology 2011; 152:4993-5004. [PMID: 21990316 DOI: 10.1210/en.2011-1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostaglandins (PG) are involved in several female reproductive processes, and their action is regulated at the levels of biosynthesis, catabolism, and signal transduction. Facilitated transport across cell membranes emerges as an additional checkpoint regulating PG action. We have already reported on the influx transporter solute carrier organic anion transporting polypeptide (SLCO2A1) [PG transporter (PGT)] in relation to PG action in the bovine endometrium. In the present study, we report on the functional expression and regulation of multidrug resistance-associated protein 4 (MRP4)/ATP-binding cassette carrier 4, an alternate PG transporter belonging to the ATP-binding cassette carrier (ABC) family. We have found that MRP4 protein was present throughout the estrous cycle and exhibited a pattern of expression similar to that of PGT with maximal expression during early-mid luteal phase in the bovine endometrium. Functional expression and regulation of MRP4 was studied in vitro using the newly developed bovine endometrial epithelial bEEL and stromal CSC cell lines. Oxytocin (OT) stimulated PGF2α production and MRP4 mRNA and protein in a time- and dose-dependent manner but had no effect on PGT. OT induced preferred accumulation of PG outside the cells and secretion toward the basolateral side of polarized bEEL cells grown on membrane inserts. MK-571 and indomethacin, two documented inhibitors of MRP4 activity, blocked preferred accumulation of PG, but interferon-τ and NS-398 had no effect on MRP4 expression or the direction of PG transport. Our results suggest that MRP4 is a functional PG carrier under the regulation of OT in the bovine endometrium.
Collapse
Affiliation(s)
- Nicolas Lacroix-Pépin
- Centre de Recherche du Centre Hospitalier Universitaire Québec, Département d'Obstétrique et Gynécologie, Unité d'Ontogénie et Reproduction, Centre de Recherche en Biologie de la Reproduction, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. CHINESE JOURNAL OF CANCER 2011; 31:58-72. [PMID: 22098952 PMCID: PMC3777468 DOI: 10.5732/cjc.011.10329] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.
Collapse
Affiliation(s)
- Kamlesh Sodani
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
27
|
Zhang Z, Wang J, Shen B, Peng C, Zheng M. The ABCC4 gene is a promising target for pancreatic cancer therapy. Gene 2011; 491:194-9. [PMID: 21989485 DOI: 10.1016/j.gene.2011.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/10/2011] [Accepted: 09/27/2011] [Indexed: 01/08/2023]
Abstract
Pancreatic cancer is a malignant neoplasm of the pancreas that usually has a poor prognosis. The investigation of targets that effectively inhibit pancreatic cancer cell proliferation should provide a fundamental basis for the clinical application of gene therapy. Here, high expression levels of ABCC4 protein in thirty-six pancreatic cancer specimens were quantified using an immunohistochemical assay, and the potential of ABCC4 as a therapeutic target for pancreatic cancer was investigated. Inhibition of ABCC4 expression at the mRNA and protein levels was achieved in Panc-1 and BxPC-3 pancreatic cancer cells infected with a lentivirus expressing an ABCC4 short hairpin RNA (shRNA). The downregulation of ABCC4 expression in Panc-1 and BxPC-3 cells significantly inhibited their proliferation and colony formation in vitro, compared to cells infected with mock control (p<0.05). Moreover, the specific downregulation of ABCC4 led to the accumulation of cells at the G1 phase of the cell cycle. Our findings reveal that the ABCC4 gene promotes pancreatic cancer cell growth and represents a promising target for gene therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | | | | | | | | |
Collapse
|
28
|
Nyathi Y, De Marcos Lousa C, van Roermund CW, Wanders RJA, Johnson B, Baldwin SA, Theodoulou FL, Baker A. The Arabidopsis peroxisomal ABC transporter, comatose, complements the Saccharomyces cerevisiae pxa1 pxa2Delta mutant for metabolism of long-chain fatty acids and exhibits fatty acyl-CoA-stimulated ATPase activity. J Biol Chem 2010; 285:29892-902. [PMID: 20659892 PMCID: PMC2943281 DOI: 10.1074/jbc.m110.151225] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/08/2010] [Indexed: 12/26/2022] Open
Abstract
The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for β-oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2Δ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2Δ mutant, and restored β-oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.
Collapse
Affiliation(s)
- Yvonne Nyathi
- From the Centre for Plant Sciences, Faculty of Biological Sciences, and
| | | | - Carlo W. van Roermund
- the Departments of Pediatrics and Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands, and
| | - Ronald J. A. Wanders
- the Departments of Pediatrics and Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands, and
| | - Barbara Johnson
- From the Centre for Plant Sciences, Faculty of Biological Sciences, and
| | - Stephen A. Baldwin
- the Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Alison Baker
- From the Centre for Plant Sciences, Faculty of Biological Sciences, and
| |
Collapse
|
29
|
A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Mol Biol 2010; 17:332-8. [PMID: 20173761 PMCID: PMC2924745 DOI: 10.1038/nsmb.1770] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/25/2009] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters are integral membrane proteins that translocate a diverse array of substrates across cell membranes. We present here the dynamics of complex formation of three structurally characterized ABC transporters-the BtuCD vitamin B(12) importer and MetNI d/l-methionine importer from Escherichia coli and the Hi1470/1 metal-chelate importer from Haemophilus influenzae-in complex with their cognate binding proteins. Similarly to other ABC importers, MetNI interacts with its binding protein with low affinity (K(d) approximately 10(-4) M). In contrast, BtuCD-BtuF and Hi1470/1-Hi1472 form stable, high-affinity complexes (K(d) approximately 10(-13) and 10(-9) M, respectively). In BtuCD-BtuF, vitamin B(12) accelerates the complex dissociation rate approximately 10(7)-fold, with ATP having an additional destabilizing effect. The findings presented here highlight substantial mechanistic differences between BtuCD-BtuF, and likely Hi1470/1-Hi1472, and the better-characterized maltose and related ABC transport systems, indicating that there is considerable mechanistic diversity within this large protein super-family.
Collapse
|
30
|
Liu YH, Di YM, Zhou ZW, Mo SL, Zhou SF. Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol 2009; 37:115-20. [PMID: 19566819 DOI: 10.1111/j.1440-1681.2009.05252.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The multidrug resistance-associated proteins (MRPs) belong to the ATP-binding cassette superfamily (ABCC family) of transporters that are expressed differentially in the liver, kidney, intestine and blood-brain barrier. There are nine human MRPs that transport a structurally diverse array of endo- and xenobiotics as well as their conjugates. 2. Multidrug resistance-associated protein 1 can be distinguished from MRP2 and MRP3 by its higher affinity for leukotriene C(4). Unlike MRP1, MRP2 functions in the extrusion of endogenous organic anions, such as bilirubin glucuronide and certain anticancer agents. In addition to the transport of glutathione and glucuronate conjugates, MRP3 has the additional capability of mediating the transport of monoanionic bile acids. 3. Both MRP4 and MRP5 are able to mediate the transport of cyclic nucleotides and confer resistance to certain antiviral and anticancer nucleotide analogues. Hereditary deficiency of MRP6 results in pseudoxanthoma elasticum. In the body, MRP6 is involved in the transport of glutathione conjugates and the cyclic pentapeptide BQ123. 4. Various MRPs show considerable differences in tissue distribution, substrate specificity and proposed physiological function. These proteins play a role in drug disposition and excretion and thus are implicated in drug toxicity and drug interactions. Increased efflux of natural product anticancer drugs and other anticancer agents mediated by MRPs from cancer cells is associated with tumour resistance. 5. A better understanding of the function and regulating mechanisms of MRPs could help minimize and avoid drug toxicity and unfavourable drug-drug interactions, as well as help overcome drug resistance.
Collapse
Affiliation(s)
- Ya-He Liu
- Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | | | | | | | | |
Collapse
|
31
|
Wu CP, Shukla S, Calcagno AM, Hall MD, Gottesman MM, Ambudkar SV. Evidence for dual mode of action of a thiosemicarbazone, NSC73306: a potent substrate of the multidrug resistance linked ABCG2 transporter. Mol Cancer Ther 2008; 6:3287-96. [PMID: 18089722 DOI: 10.1158/1535-7163.mct-07-2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multidrug resistance due to reduced drug accumulation is a phenomenon predominantly caused by the overexpression of members of the ATP-binding cassette (ABC) transporters, including ABCB1 (P-glycoprotein), ABCG2, and several ABCC family members [multidrug resistance-associated protein (MRP)]. We previously reported that a thiosemicarbazone derivative, NSC73306, is cytotoxic to carcinoma cells that overexpress functional P-glycoprotein, and it resensitizes these cells to chemotherapeutics. In this study, we investigated the effect of NSC73306 on cells overexpressing other ABC drug transporters, including ABCG2, MRP1, MRP4, and MRP5. Our findings showed that NSC73306 is not more toxic to cells that overexpress these transporters compared with their respective parental cells, and these transporters do not confer resistance to NSC73306 either. In spite of this, we observed that NSC73306 is a transport substrate for ABCG2 that can effectively inhibit ABCG2-mediated drug transport and reverse resistance to both mitoxantrone and topotecan in ABCG2-expressing cells. Interactions between NSC73306 and the ABCG2 drug-binding site(s) were confirmed by its stimulatory effect on ATPase activity (140-150 nmol/L concentration required for 50% stimulation) and by inhibition of [(125)I]iodoarylazidoprazosin photolabeling (50% inhibition at 250-400 nmol/L) of the substrate-binding site(s). Overall, NSC73306 seems to be a potent modulator of ABCG2 that does not interact with MRP1, MRP4, or MRP5. Collectively, these data suggest that NSC73306 can potentially be used, due to its dual mode of action, as an effective agent to overcome drug resistance by eliminating P-glycoprotein-overexpressing cells and by acting as a potent modulator that resensitizes ABCG2-expressing cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | |
Collapse
|
32
|
Létourneau IJ, Nakajima A, Deeley RG, Cole SPC. Role of proline 1150 in functional interactions between the membrane spanning domains and nucleotide binding domains of the MRP1 (ABCC1) transporter. Biochem Pharmacol 2008; 75:1659-69. [PMID: 18336795 DOI: 10.1016/j.bcp.2008.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
The ATP-binding cassette multidrug resistance protein 1 (MRP1) mediates ATP-dependent cellular efflux of drugs and organic anions. We previously described a mutant, MRP1-Pro1150Ala, which exhibits selectively increased estradiol glucuronide (E217betaG) and methotrexate transport as well as altered interactions with ATP. We have now further explored the functional importance of MRP1-Pro1150 at the interface of transmembrane helix 15 and cytoplasmic loop 7 (CL7) by replacing it with Gly, Ile, Leu and Val. All four mutants exhibited a phenotype similar to MRP1-Pro1150Ala with respect to organic anion transport and [gamma32P]8N3ATP photolabeling. They also displayed very low levels of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP. To better understand the relationship between the altered nucleotide interactions and transport activity of these mutants, [alpha32P]8N3ADP trapping experiments were performed under different conditions. Unlike leukotriene C4, E217betaG decreased [alpha32P]8N3ADP trapping by both wild-type and mutant MRP1. [alpha32P]8N3ADP trapping by MRP1-Pro1150Ala could be increased by using Ni2+ instead of Mg2+, and by decreasing temperature; however, the transport properties of the mutant remained unchanged. We conclude that the reduced [alpha32P]8N3ADP trapping associated with loss of Pro1150, or the presence of E217betaG, is due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself. We hypothesize that loss of Pro1150 alters the role of CL7 as a coupling helix that mediates signaling between the nucleotide binding domains and some substrate binding sites in the membrane spanning domains of MRP1.
Collapse
Affiliation(s)
- Isabelle J Létourneau
- Department of Pharmacology & Toxicology, Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
33
|
Lin ZP, Zhu YL, Johnson DR, Rice KP, Nottoli T, Hains BC, McGrath J, Waxman SG, Sartorelli AC. Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 2007; 73:243-51. [PMID: 17959714 DOI: 10.1124/mol.107.039594] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4; ABCC4) is a member of the MRP/ATP-binding cassette family serving as a transmembrane transporter involved in energy-dependent efflux of anticancer/antiviral nucleotide agents and of physiological substrates, including cyclic nucleotides and prostaglandins (PGs). Phenotypic consequences of mrp4 deficiency were investigated using mrp4-knockout mice and derived immortalized mouse embryonic fibroblast (MEF) cells. Mrp4 deficiency caused decreased extracellular and increased intracellular levels of cAMP in MEF cells under normal and forskolin-stimulated conditions. Mrp4 deficiency and RNA interference-mediated mrp4 knockdown led to a pronounced reduction in extracellular PGE(2) but with no accumulation of intracellular PGE(2) in MEF cells. This result was consistent with attenuated cAMP-dependent protein kinase activity and reduced cyclooxygenase-2 (Cox-2) expression in mrp4-deficient MEF cells, suggesting that PG synthesis is restrained along with a lack of PG transport caused by mrp4 deficiency. Mice lacking mrp4 exhibited no outward phenotypes but had a decrease in plasma PGE metabolites and an increase in inflammatory pain threshold compared with wild-type mice. Collectively, these findings imply that mrp4 mediates the efflux of PGE(2) and concomitantly modulates cAMP mediated signaling for balanced PG synthesis in MEF cells. Abrogation of mrp4 affects the regulation of peripheral PG levels and consequently alters inflammatory nociceptive responses in vivo.
Collapse
Affiliation(s)
- Z Ping Lin
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Golin J, Kon ZN, Wu CP, Martello J, Hanson L, Supernavage S, Ambudkar SV, Sauna ZE. Complete inhibition of the Pdr5p multidrug efflux pump ATPase activity by its transport substrate clotrimazole suggests that GTP as well as ATP may be used as an energy source. Biochemistry 2007; 46:13109-19. [PMID: 17956128 DOI: 10.1021/bi701414f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The yeast Pdr5p transporter is a 160 kDa protein that effluxes a large variety of xenobiotic compounds. In this study, we characterize its ATPase activity and demonstrate that it has biochemical features reminiscent of those of other ATP-binding cassette multidrug transporters: a relatively high Km for ATP (1.9 mM), inhibition by orthovanadate, and the ability to specifically bind an azidoATP analogue at the nucleotide-binding domains. Pdr5p-specific ATPase activity shows complete, concentration-dependent inhibition by clotrimazole, which is also known to be a potent transport substrate. Our results indicate, however, that this inhibition is noncompetitive and caused by the interaction of clotrimazole with the transporter at a site that is distinct from the ATP-binding domains. Curiously, Pdr5p-mediated transport of clotrimazole continues at intracellular concentrations of substrate that should eliminate all ATPase activity. Significantly, however, we observed that the Pdr5p has GTPase and UTPase activities that are relatively resistant to clotrimazole. Furthermore, the Km(GTPase) roughly matches the intracellular concentrations of the nucleotide reported for yeast. Using purified plasma membrane vesicles, we demonstrate that Pdr5p can use GTP to fuel substrate transport. We propose that Pdr5p increases its multidrug transport substrate specificity by using more than one nucleotide as an energy source.
Collapse
Affiliation(s)
- John Golin
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res 2007; 24:2281-96. [PMID: 17939016 DOI: 10.1007/s11095-007-9453-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/04/2007] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a comprehensive substrate-screening method for the ATP-binding cassette (ABC) transporter, and identify new substrates for multidrug resistance-associated protein 4 (MRP4/ABCC4). METHODS Human MRP4-expressing membrane vesicles were incubated with a mixture of 50 compounds, including methotrexate, a known MRP4 substrate. The amounts transported were simultaneously determined by liquid chromatography-tandem mass spectrometry. RESULTS From 49 compounds, 12 were identified as substrate candidates for MRP4 in the first screening. The second screening was performed involving the uptake of mixture using single quadrupole multichannel mode, and the third screening was performed involving the uptake of individual compounds using multiple reaction monitoring multichannel mode. As a result, eight substrate candidates were additionally identified. Subsequently, in the fourth step, osmotic pressure-dependent transport was demonstrated for 18 compounds (cefmetazole, piperacillin, rebamipide, tetracycline, ampicillin, benzylpenicillin, bumetanide, cephalosporin C, enalapril, pipemidic acid, furosemide, ceftazidime, pravastatin, hydrochlorothiazide, sulbactam, baclofen, bezafibrate and alacepril) among the 20 substrate candidates, thereby confirming them as MRP4 substrates. By contrast, the uptakes of meloxicam and nateglinide did not depend on osmolarity, indicating that these compounds were not substrates, but bound to MRP4. CONCLUSIONS The new comprehensive substrate-screening method for ABC transporters allowed the identification of 18 new substrates for MRP4.
Collapse
|
36
|
Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. PLANT PHYSIOLOGY 2007; 144:2000-8. [PMID: 17556512 PMCID: PMC1949875 DOI: 10.1104/pp.107.096727] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 06/01/2007] [Indexed: 05/15/2023]
Abstract
Legume plants have an ability to fix atmospheric nitrogen into nutrients via symbiosis with soil microbes. As the initial event of the symbiosis, legume plants secrete flavonoids into the rhizosphere to attract rhizobia. Secretion of flavonoids is indispensable for the establishment of symbiotic nitrogen fixation, but almost nothing is known about the membrane transport mechanism of flavonoid secretion from legume root cells. In this study, we performed biochemical analyses to characterize the transport mechanism of flavonoid secretion using soybean (Glycine max) in which genistein is a signal flavonoid. Plasma membrane vesicles prepared from soybean roots showed clear transport activity of genistein in an ATP-dependent manner. This transport activity was inhibited by sodium orthovanadate, a typical inhibitor of ATP-binding cassette (ABC) transporters, but was hardly affected by various ionophores, such as gramicidin D, nigericin, or valinomycin, suggesting involvement of an ABC transporter in the secretion of flavonoids from soybean roots. The K(m) and V(max) values of this transport were calculated to be 158 mum and 322 pmol mg protein(-1) min(-1), respectively. Competition experiments using various flavonoids of both aglycone and glucoside varieties suggested that this ABC-type transporter recognizes genistein and daidzein, another signaling compound in soybean root exudates, as well as other isoflavonoid aglycones as its substrates. Transport activity was constitutive regardless of the availability of nitrogen nutrition. This is, to our knowledge, the first biochemical characterization of the membrane transport of flavonoid secretion from roots.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | |
Collapse
|
37
|
Létourneau IJ, Slot AJ, Deeley RG, Cole SPC. Mutational analysis of a highly conserved proline residue in MRP1, MRP2, and MRP3 reveals a partially conserved function. Drug Metab Dispos 2007; 35:1372-9. [PMID: 17494643 DOI: 10.1124/dmd.107.015479] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ATP-binding cassette multidrug resistance protein 1 MRP1 (ABCC1) mediates the cellular efflux of organic anions including conjugated metabolites, chemotherapeutic agents, and toxicants. We previously described a mutation in cytoplasmic loop 7 (CL7) of MRP1, Pro1150Ala, which reduced leukotriene C(4) (LTC(4)) transport but increased 17beta-estradiol 17beta-d-glucuronide (E(2)17betaG) and methotrexate (MTX) transport. Vanadate-induced trapping of [alpha-(32)P]8N(3)ADP by the Pro1150Ala mutant in the absence of substrate was also greatly reduced compared with wild-type MRP1 suggesting an uncoupling of ATP hydrolysis and transport activity. To determine whether the functional importance of MRP1-Pro(1150) is conserved, the analogous Pro(1158) and Pro(1147) residues in the MRP2 and MRP3 transporters, respectively, were mutated to Ala. Expression levels of the three mutants were unaffected; however, the vesicular transport activity of at least one organic anion substrate was significantly altered. As observed for MRP1-Pro1150Ala, LTC(4) transport by MRP2-Pro1158Ala was decreased. However, E(2)17betaG and MTX transport was comparable with that of wild-type MRP2 rather than increased as was observed for MRP1-Pro1150Ala. In the case of MRP3-Pro1147Ala, LTC(4) transport was increased, whereas E(2)17betaG transport was unaffected. MTX transport by MRP3-Pro1147Ala was also increased but to a lesser extent than for MRP1-Pro1150Ala. In contrast, all three mutants showed a marked reduction in levels of vanadate-induced trapped [alpha-(32)P]8N(3)ADP. We conclude that MRP1-Pro(1150), MRP2-Pro(1158), and MRP3-Pro(1147) in CL7 differ in their influence on substrate specificity but share a common role in the nucleotide interactions of these transporters.
Collapse
Affiliation(s)
- Isabelle J Létourneau
- Department of Pharmacology and Toxicology, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem 2006; 296:85-95. [PMID: 16960658 DOI: 10.1007/s11010-006-9302-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/10/2006] [Indexed: 12/14/2022]
Abstract
Many studies have been performed with the aim of developing effective resistance modulators to overcome the multidrug resistance (MDR) of human cancers. Potent MDR modulators are being investigated in clinical trials. Many current studies are focused on dietary herbs due to the fact that these have been used for centuries without producing any harmful side effects. In this study, the effect of tetrahydrocurcumin (THC) on three ABC drug transporter proteins, P-glycoprotein (P-gp or ABCB1), mitoxantrone resistance protein (MXR or ABCG2) and multidrug resistance protein 1 (MRP1 or ABCC1) was investigated, to assess whether an ultimate metabolite form of curcuminoids (THC) is able to modulate MDR in cancer cells. Two different types of cell lines were used for P-gp study, human cervical carcinoma KB-3-1 (wild type) and KB-V-1 and human breast cancer MCF-7 (wild type) and MCF-7 MDR, whereas, pcDNA3.1 and pcDNA3.1-MRP1 transfected HEK 293 and MXR overexpressing MCF7AdrVp3000 or MCF7FL1000 and its parental MCF-7 were used for MRP1 and MXR study, respectively. We report here for the first time that THC is able to inhibit the function of P-gp, MXR and MRP1. The results of flow cytometry assay indicated that THC is able to inhibit the function of P-gp and thereby significantly increase the accumulation of rhodamine and calcein AM in KB-V-1 cells. The result was confirmed by the effect of THC on [(3)H]-vinblastine accumulation and efflux in MCF-7 and MCF-7MDR. THC significantly increased the accumulation and inhibited the efflux of [(3)H]-vinblastine in MCF-7 MDR in a concentration-dependent manner. This effect was not found in wild type MCF-7 cell line. The interaction of THC with the P-gp molecule was clearly indicated by ATPase assay and photoaffinity labeling of P-gp with transport substrate. THC stimulated P-gp ATPase activity and inhibited the incorporation of [(125)I]-iodoarylazidoprazosin (IAAP) into P-gp in a concentration-dependent manner. The binding of [(125)I]-IAAP to MXR was also inhibited by THC suggesting that THC interacted with drug binding site of the transporter. THC dose dependently inhibited the efflux of mitoxantrone and pheophorbide A from MXR expressing cells (MCF7AdrVp3000 and MCF7FL1000). Similarly with MRP1, the efflux of a fluorescent substrate calcein AM was inhibited effectively by THC thereby the accumulation of calcein was increased in MRP1-HEK 293 and not its parental pcDNA3.1-HEK 293 cells. The MDR reversing properties of THC on P-gp, MRP1, and MXR were determined by MTT assay. THC significantly increased the sensitivity of vinblastine, mitoxantrone and etoposide in drug resistance KB-V-1, MCF7AdrVp3000 and MRP1-HEK 293 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Taken together, this study clearly showed that THC inhibits the efflux function of P-gp, MXR and MRP1 and it is able to extend the MDR reversing activity of curcuminoids in vivo.
Collapse
Affiliation(s)
- Pornngarm Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | |
Collapse
|
39
|
Zhang DW, Graf GA, Gerard RD, Cohen JC, Hobbs HH. Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8. J Biol Chem 2005; 281:4507-16. [PMID: 16352607 DOI: 10.1074/jbc.m512277200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette half-transporters ABCG5 (G5) and ABCG8 (G8) promote secretion of neutral sterols into bile, a major pathway for elimination of sterols. Mutations in either ABCG5 or ABCG8 cause sitosterolemia, a recessive disorder characterized by impaired biliary and intestinal sterol secretion, sterol accumulation, and premature atherosclerosis. The mechanism by which the G5G8 heterodimer couples ATP hydrolysis to sterol transport is not known. Here we examined the roles of the Walker A, Walker B, and signature motifs in the nucleotide-binding domains (NBD) of G5 and G8 using recombinant adenoviruses to reconstitute biliary sterol transport in G5G8-deficient mice. Mutant forms of each half-transporter were co-expressed with their wild-type partners. Mutations at crucial residues in the Walker A and Walker B domains of G5 prevented biliary sterol secretion, whereas mutations of the corresponding residues in G8 did not. The opposite result was obtained when mutations were introduced into the signature motif; mutations in the signature domain of G8 prevented sterol transport, but substitution of the corresponding residues in G5 did not. Taken together, these findings indicate that the NBDs of G5 and G8 are not functionally equivalent. The integrity of the canonical NBD formed by the Walker A and Walker B motifs of G5 and the signature motif of G8 is essential for G5G8-mediated sterol transport. In contrast, mutations in key residues of the NBD formed by the Walker A and B motifs of G8 and the signature sequence of G5 did not affect sterol secretion.
Collapse
Affiliation(s)
- Da-Wei Zhang
- McDermott Center for Human Growth and Development, the Department of Molecular Genetics, University of Texas Southwestern Medical Center, 75390, USA
| | | | | | | | | |
Collapse
|
40
|
Wu CP, Calcagno AM, Hladky SB, Ambudkar SV, Barrand MA. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J 2005; 272:4725-40. [PMID: 16156793 PMCID: PMC1350838 DOI: 10.1111/j.1742-4658.2005.04888.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plant flavonoids are polyphenolic compounds, commonly found in vegetables, fruits and many food sources that form a significant portion of our diet. These compounds have been shown to interact with several ATP-binding cassette transporters that are linked with anticancer and antiviral drug resistance and, as such, may be beneficial in modulating drug resistance. This study investigates the interactions of six common polyphenols; quercetin, silymarin, resveratrol, naringenin, daidzein and hesperetin with the multidrug-resistance-associated proteins, MRP1, MRP4 and MRP5. At nontoxic concentrations, several of the polyphenols were able to modulate MRP1-, MRP4- and MRP5-mediated drug resistance, though to varying extents. The polyphenols also reversed resistance to NSC251820, a compound that appears to be a good substrate for MRP4, as predicted by data-mining studies. Furthermore, most of the polyphenols showed direct inhibition of MRP1-mediated [3H]dinitrophenyl S-glutathione and MRP4-mediated [3H]cGMP transport in inside-out vesicles prepared from human erythrocytes. Also, both quercetin and silymarin were found to inhibit MRP1-, MRP4- and MRP5-mediated transport from intact cells with high affinity. They also had significant effects on the ATPase activity of MRP1 and MRP4 without having any effect on [32P]8-azidoATP[alphaP] binding to these proteins. This suggests that these flavonoids most likely interact at the transporter's substrate-binding sites. Collectively, these results suggest that dietary flavonoids such as quercetin and silymarin can modulate transport activities of MRP1, -4 and -5. Such interactions could influence bioavailability of anticancer and antiviral drugs in vivo and thus, should be considered for increasing efficacy in drug therapies.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Laboratory of Cell Biology, Centre for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-4256, USA
| | - Anna Maria Calcagno
- Laboratory of Cell Biology, Centre for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-4256, USA
| | - Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Centre for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-4256, USA
- * To whom correspondence should be addressed. Suresh V. Ambudkar. Laboratory of Cell Biology, National Cancer Institute, NIH, Building 37, Room 2120, 37 Convent Drive, Bethesda, MD 20892-4256 (Tel: 301-402-4178, Fax: 301-435-8188; )
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
| |
Collapse
|
41
|
Wu CP, Klokouzas A, Hladky SB, Ambudkar SV, Barrand MA. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4) that are present in human red cell membranes. Biochem Pharmacol 2005; 70:500-10. [PMID: 16004972 PMCID: PMC1356667 DOI: 10.1016/j.bcp.2005.05.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/17/2005] [Accepted: 05/23/2005] [Indexed: 12/12/2022]
Abstract
Human erythrocyte membranes express the multidrug resistance-associated proteins, MRP1, MRP4 and 5, that collectively can efflux oxidised glutathione, glutathione conjugates and cyclic nucleotides. It is already known that the quinoline derivative, MK-571, is a potent inhibitor of MRP-mediated transport. We here examine whether the quinoline-based antimalarial drugs, amodiaquine, chloroquine, mefloquine, primaquine, quinidine and quinine, also interact with erythrocyte MRPs with consequences for their access to the intracellular parasites or for efflux of oxidised glutathione from infected cells. Using inside-out vesicles prepared from human erythrocytes we have shown that mefloquine and MK-571 inhibit transport of 3 microM [(3)H]DNP-SG known to be mediated by MRP1 (IC(50) 127 and 1.1 microM, respectively) and of 3.3 microM [(3)H]cGMP thought but not proven to be mediated primarily by MRP4 (IC(50) 21 and 0.41 microM). They also inhibited transport in membrane vesicles prepared from tumour cells expressing MRP1 or MRP4 and blocked calcein efflux from MRP1-overexpressing cells and BCECF efflux from MRP4-overexpressing cells. Both stimulated ATPase activity in membranes prepared from MRP1 and MRP4-overexpressing cells and inhibited activity stimulated by quercetin or PGE(1), respectively. Neither inhibited [alpha-(32)P]8-azidoATP binding confirming that the interactions are not at the ATP binding site. These results demonstrate that mefloquine and MK-571 both inhibit transport of other substrates and stimulate ATPase activity and thus may themselves be substrates for transport. But at concentrations achieved clinically mefloquine is unlikely to affect the MRP1-mediated transport of GSSG across the erythrocyte membrane.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Laboratory of Cell Biology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-42546 USA
| | - Antonios Klokouzas
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Laboratory of Cell Biology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-42546 USA
| | - Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-42546 USA
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Corresponding author: Dr M.A. Barrand, Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1QJ +44-1223-334019; +44-1223-334040 (FAX);; URL: http://www.phar.cam.ac.uk
| |
Collapse
|
42
|
Chearwae W, Wu CP, Chu HY, Lee TR, Ambudkar SV, Limtrakul P. Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother Pharmacol 2005; 57:376-88. [PMID: 16021489 DOI: 10.1007/s00280-005-0052-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 05/02/2005] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is a major cause of chemotherapy failure in cancer patients. One of the resistance mechanisms is the overexpression of drug efflux pumps such as P-glycoprotein and multidrug resistance protein 1 (MRP1, (ABCC1)). In this study, curcumin mixture and three major curcuminoids purified from turmeric (curcumin I, II, and III) were tested for their ability to modulate the function of MRP1 using HEK293 cells stably transfected with MRP1-pcDNA3.1 and pcDNA3.1 vector alone. The IC(50) of curcuminoids in these cell lines ranged from 14.5-39.3 microM. Upon treating the cells with etoposide in the presence of 10 microM curcuminoids, the sensitivity of etoposide was increased by several folds only in MRP1 expressing and not in pcDNA3.1-HEK 293 cells. Western blot analysis showed that the total cellular level of MRP1 protein level was not affected by treatment with 10 microM curcuminoids for three days. The modulatory effect of curcuminoids on MRP1 function was confirmed by the inhibition of efflux of two fluorescent substrates, calcein-AM and fluo4-AM. Although all the three curcuminoids increased the accumulation of fluorescent substrates in a concentration-dependent manner, curcumin I was the most effective inhibitor. In addition, curcuminoids did not affect 8-azido[alpha-(32)P]ATP binding, however they did stimulate the basal ATPase activity and inhibited the quercetin-stimulated ATP hydrolysis of MRP1 indicating that these bioflavonoids interact most likely at the substrate-binding site(s). In summary, these results demonstrate that curcuminoids effectively inhibit MRP1-mediated transport and among curcuminoids, curcumin I, a major constituent of curcumin mixture, is the best modulator.
Collapse
Affiliation(s)
- Wanida Chearwae
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Thailand
| | | | | | | | | | | |
Collapse
|
43
|
Randak CO, Welsh MJ. ADP inhibits function of the ABC transporter cystic fibrosis transmembrane conductance regulator via its adenylate kinase activity. Proc Natl Acad Sci U S A 2005; 102:2216-20. [PMID: 15684079 PMCID: PMC548590 DOI: 10.1073/pnas.0409787102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ADP interacts with the nucleotide-binding domains (NBDs) of the cystic fibrosis transmembrane conductance regulator (CFTR) to inhibit its Cl- channel activity. Because CFTR NBD2 has reversible adenylate kinase activity (ATP + AMP<==> ADP + ADP) that gates the channel, we asked whether ADP might inhibit current through this enzymatic activity. In adenylate kinases, binding of the two ADP molecules is cooperative. Consistent with this hypothesis, CFTR current inhibition showed positive cooperativity for ADP. We also found that ADP inhibition of current was attenuated when we prevented adenylate kinase activity with P1,P5-di(adenosine-5') pentaphosphate. Additional studies suggested that adenylate kinase-dependent inhibition involved phosphotransfer between two nucleotide diphosphates. These data indicate that the adenylate kinase reaction at NBD2 contributed to the inhibitory effect of ADP. Finding that ADP inhibits function via an adenylate kinase activity also helps explain the earlier observation that mutations that disrupt adenylate kinase activity also disrupt ADP inhibition. Thus, the results reveal a previously unrecognized mechanism by which ADP inhibits an ABC transporter.
Collapse
Affiliation(s)
- Christoph O Randak
- Departments of Internal Medicine and Physiology and Biophysics, Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|