1
|
Lazzeri G, Lenzi P, Signorini G, Raffaelli S, Giammattei E, Natale G, Ruffoli R, Fornai F, Ferrucci M. Retinoic Acid Promotes Neuronal Differentiation While Increasing Proteins and Organelles Related to Autophagy. Int J Mol Sci 2025; 26:1691. [PMID: 40004155 PMCID: PMC11855701 DOI: 10.3390/ijms26041691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Retinoic acid (RA) is commonly used to differentiate SH-SY5Y neuroblastoma cells. This effect is sustained by a specific modulation of gene transcription, leading to marked changes in cellular proteins. In this scenario, autophagy may be pivotal in balancing protein synthesis and degradation. The present study analyzes whether some autophagy-related proteins and organelles are modified during RA-induced differentiation of SH-SY5Y cells. RA-induced effects were compared to those induced by starvation. SH-SY5Y cells were treated with a single dose of 10 µM RA or grown in starvation, for 3 days or 7 days. After treatments, cells were analyzed at light microscopy and transmission electron microscopy to assess cell morphology and immunostaining for specific markers (nestin, βIII-tubulin, NeuN) and some autophagy-related proteins (Beclin 1, LC3). We found that both RA and starvation differentiate SH-SY5Y cells. Specifically, cell differentiation was concomitant with an increase in autophagy proteins and autophagy-related organelles. However, the effects of a single dose of 10 μM RA persist for at least 7 days, while prolonged starvation produces cell degeneration and cell loss. Remarkably, the effects of RA are modulated in the presence of autophagy inhibitors or stimulators. The present data indicate that RA-induced differentiation is concomitant with an increased autophagy.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Giulia Signorini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Sara Raffaelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Elisa Giammattei
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
- IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| |
Collapse
|
2
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhong J, Zhao N, Song Q, Du Z, Shu P. Topical retinoids: Novel derivatives, nano lipid-based carriers, and combinations to improve chemical instability and skin irritation. J Cosmet Dermatol 2024; 23:3102-3115. [PMID: 38952060 DOI: 10.1111/jocd.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Retinoids, defined as synthetic or natural derivatives of vitamin A, have been extensively studied as anti-aging molecules that are widely applied in cosmetics. However, due to their physicochemical property, retinoids are highly unstable and extremely sensitive to light, oxygen, and temperature. Moreover, topical application of retinoids often leads to cutaneous irritation. These instabilities and irritant properties of retinoids limit their application in cosmetic and pharmaceutical products. AIM Our study aimed to provide a systematic review to summarize the mechanisms underlying the instability and irritant properties of retinoids, as well as recent developments in addressing these challenges. METHODS A comprehensive PubMed search was conducted using the following keywords: retinoids, chemical instability, skin irritation, retinoid derivatives, nano lipid-based carriers, liposomes, penetration-enhancer vesicles, ethosomes, niosomes, nanoemulsions, solid lipid nanoparticles, vitamins, soothing and hydrating agents, antioxidants and metal chelator and retinol combinations. Relevant researches published between 1968 and 2023 and studies related to these reports were reviewed. RESULTS The development of new retinoid derivatives, the utilization of new delivery systems like nano lipid-based carriers and the combination with other compounds like vitamins, soothing agents, antioxidants and metal chelator have been explored to improve the stability, bioavailability, and toxicity of the retinoid family. CONCLUSIONS Through advancements in formulation techniques, structure modification of retinoid derivatives and development of novel nano lipid-based carriers, the chemical instability and skin irritation of retinoids has been mitigated, ensuring their efficacy and potency over extended periods.
Collapse
Affiliation(s)
- Jiangming Zhong
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Qingle Song
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Eleazar EG, Carrera ARM, Quiambao JIR, Caparanga AR, Tayo LL. QSTR Models in Dioxins and Dioxin-like Compounds Provide Insights into Gene Expression Dysregulation. TOXICS 2024; 12:597. [PMID: 39195699 PMCID: PMC11359467 DOI: 10.3390/toxics12080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) are a group of organic chemicals containing three-ring structures that can be substituted with one to eight chlorine atoms, leading to 75 dioxin and 135 furan congeners. As endocrine-disrupting chemicals (EDCs), they can alter physiological processes causing a number of disorders. In this study, quantitative structure-toxicity relationship (QSTR) studies were used to determine the correlations between the PCDD/Fs' molecular structures and various toxicity endpoints. Strong QSTR models, with the coefficients of determination (r2) values greater than 0.95 and ANOVA p-values less than 0.0001 were established between molecular descriptors and the endpoints of bioconcentration, fathead minnow LC50, and Daphnia magna LC50. The ability of PCDD/Fs to bind to several nuclear receptors was investigated via molecular docking studies. The results show comparable, and in some instances better, binding affinities of PCDD/Fs toward the receptors relative to their natural agonistic and antagonistic ligands, signifying possible interference with the receptors' natural biological activities. These studies were accompanied by the molecular dynamics simulations of the top-binding PCDD/Fs to show changes in the receptor-ligand complexes during binding and provide insights into these compounds' ability to interfere with transcription and thereby modify gene expression. This introspection of PCDD/Fs at the molecular level provides a deeper understanding of these compounds' toxicity and opens avenues for future studies.
Collapse
Affiliation(s)
- Elisa G. Eleazar
- School of Graduate Studies, Mapua University, Manila 1002, Philippines; (E.G.E.); (A.R.M.C.); (A.R.C.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
| | - Andrei Raphael M. Carrera
- School of Graduate Studies, Mapua University, Manila 1002, Philippines; (E.G.E.); (A.R.M.C.); (A.R.C.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
| | - Janus Isaiah R. Quiambao
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
| | - Alvin R. Caparanga
- School of Graduate Studies, Mapua University, Manila 1002, Philippines; (E.G.E.); (A.R.M.C.); (A.R.C.)
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines;
- Department of Biology, School of Health Sciences, Mapua University, Makati 1200, Philippines
| |
Collapse
|
5
|
Wang D, Pei P, Shea F, Spinney R, Chang A, Lahann J, Mallery SR. Growth modulatory effects of fenretinide encompass keratinocyte terminal differentiation: a favorable outcome for oral squamous cell carcinoma chemoprevention. Carcinogenesis 2024; 45:436-449. [PMID: 38470060 PMCID: PMC11519021 DOI: 10.1093/carcin/bgae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.
Collapse
Affiliation(s)
- Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Fortune Shea
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Albert Chang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
6
|
Carrera ARM, Eleazar EG, Caparanga AR, Tayo LL. Theoretical Studies on the Quantitative Structure-Toxicity Relationship of Polychlorinated Biphenyl Congeners Reveal High Affinity Binding to Multiple Human Nuclear Receptors. TOXICS 2024; 12:49. [PMID: 38251005 PMCID: PMC10821279 DOI: 10.3390/toxics12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Polychlorinated biphenyls (PCBs) are organic chemicals consisting of a biphenyl structure substituted with one to ten chlorine atoms, with 209 congeners depending on the number and position of the chlorine atoms. PCBs are widely known to be endocrine-disrupting chemicals (EDCs) and have been found to be involved in several diseases/disorders. This study takes various molecular descriptors of these PCBs (e.g., molecular weight) and toxicity endpoints as molecular activities, investigating the possibility of correlations via the quantitative structure-toxicity relationship (QSTR). This study then focuses on molecular docking and dynamics to investigate the docking behavior of the strongest-binding PCBs to nuclear receptors and compares these to the docking behavior of their natural ligands. Nuclear receptors are a family of transcription factors activated by steroid hormones, and they have been investigated to consider the impact of PCBs on humans in this context. It has been observed that the docking affinity of PCBs is comparable to that of the natural ligands, but they are inferior in terms of stability and interacting forces, as shown by the RMSD and total energy values. However, it is noted that most nuclear receptors respond to PCBs similarly to how they respond to their natural ligands-as shown in the RMSF plots-the most similar of which are seen in the ER, THR-β, and RAR-α. However, this study is performed purely in silico and will need experimental verification for validation.
Collapse
Affiliation(s)
- Andrei Raphael M. Carrera
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.M.C.); (E.G.E.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Elisa G. Eleazar
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.M.C.); (E.G.E.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Alvin R. Caparanga
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
7
|
Tsai JM, Aguirre JD, Li YD, Brown J, Focht V, Kater L, Kempf G, Sandoval B, Schmitt S, Rutter JC, Galli P, Sandate CR, Cutler JA, Zou C, Donovan KA, Lumpkin RJ, Cavadini S, Park PMC, Sievers Q, Hatton C, Ener E, Regalado BD, Sperling MT, Słabicki M, Kim J, Zon R, Zhang Z, Miller PG, Belizaire R, Sperling AS, Fischer ES, Irizarry R, Armstrong SA, Thomä NH, Ebert BL. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol Cell 2023; 83:2753-2767.e10. [PMID: 37478846 PMCID: PMC11134608 DOI: 10.1016/j.molcel.2023.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yen-Der Li
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jared Brown
- Department of Data Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Vivian Focht
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brittany Sandoval
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stefan Schmitt
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Justine C Rutter
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pius Galli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Colby R Sandate
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jevon A Cutler
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Charles Zou
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ryan J Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Paul M C Park
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Quinlan Sievers
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlie Hatton
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ener
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brandon D Regalado
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Micah T Sperling
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mikołaj Słabicki
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeonghyeon Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Rebecca Zon
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zinan Zhang
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Peter G Miller
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Roger Belizaire
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Adam S Sperling
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Rafael Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Scott A Armstrong
- Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Benjamin L Ebert
- Division of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Choi WJ, Haratipour Z, Blind RD. Full-length nuclear receptor allosteric regulation. J Lipid Res 2023; 64:100406. [PMID: 37356665 PMCID: PMC10388211 DOI: 10.1016/j.jlr.2023.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
Nuclear receptors are a superfamily of transcription factors regulated by a wide range of lipids that include phospholipids, fatty acids, heme-based metabolites, and cholesterol-based steroids. Encoded as classic two-domain modular transcription factors, nuclear receptors possess a DNA-binding domain (DBD) and a lipid ligand-binding domain (LBD) containing a transcriptional activation function. Decades of structural studies on the isolated LBDs of nuclear receptors established that lipid-ligand binding allosterically regulates the conformation of the LBD, regulating transcriptional coregulator recruitment and thus nuclear receptor function. These structural studies have aided the development of several FDA-approved drugs, highlighting the importance of understanding the structure-function relationships between lipids and nuclear receptors. However, there are few published descriptions of full-length nuclear receptor structure and even fewer descriptions of how lipids might allosterically regulate full-length structure. Here, we examine multidomain interactions based on the published full-length nuclear receptor structures, evaluating the potential of interdomain interfaces within these nuclear receptors to act as inducible sites of allosteric regulation by lipids.
Collapse
Affiliation(s)
- Woong Jae Choi
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zeinab Haratipour
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raymond D Blind
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Rastinejad F. Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol 2022; 69:T25-T36. [PMID: 36069789 PMCID: PMC11376212 DOI: 10.1530/jme-22-0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
The retinoic acid receptors (RARα, β, and γ) are multi-domain polypeptides that heterodimerize with retinoid X receptors (RXRα, β, and γ) to form functional transcription factors. Understanding the three-dimensional molecular organization of these nuclear receptors (NRs) began with RAR and RXR DNA-binding domains (DBDs), and were followed with studies on isolated ligand-binding domains (LBDs). The more complete picture emerged in 2017 with the multi-domain crystal structure of RXRα-RARβ on its response element with retinoic acid molecules and coactivator segments on both proteins. The analysis of that structure and its complementary studies have clarified the direct communication pathways within RXR-RAR polypeptides, through which DNA binding, protein-ligand, and protein-protein interactions are integrated for overall functional responses. Understanding the molecular connections in the RXR-RAR complex has benefited from direct observations of the multi-domain structures of RXRα-PPARγ, RXRα-LXRβ, HNF-4α homodimer, and androgen receptor homodimer, each bound to its response element. These comprehensive NR structures show unique quaternary architectures, yet all have DBD-DBD, LBD-LBD, and DBD-LBD domain-domain contacts within them. These convergence zones allow signals from discrete domains of their polypeptides to be propagated and integrated across their entire complex, shaping their overall responses in an allosteric fashion.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Nuffield Department of Medicine, University of Oxford, Target Discovery Institute (NDM RB), Oxford, UK
| |
Collapse
|
10
|
Fujiki F, Morimoto S, Katsuhara A, Okuda A, Ogawa S, Ueda E, Miyazaki M, Isotani A, Ikawa M, Nishida S, Nakajima H, Tsuboi A, Oka Y, Nakata J, Hosen N, Kumanogoh A, Oji Y, Sugiyama H. T Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:935465. [PMID: 35844620 PMCID: PMC9280205 DOI: 10.3389/fimmu.2022.935465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Fumihiro Fujiki, ; Haruo Sugiyama,
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Katsuhara
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akane Okuda
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Saeka Ogawa
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eriko Ueda
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maki Miyazaki
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ayako Isotani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Fumihiro Fujiki, ; Haruo Sugiyama,
| |
Collapse
|
11
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Ligands and DNA in the allosteric control of retinoid receptors function. Essays Biochem 2021; 65:887-899. [PMID: 34296739 DOI: 10.1042/ebc20200168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,β,γ) and three retinoid X receptor (RXRα,β,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.
Collapse
|
13
|
Di Martino O, Niu H, Hadwiger G, Kuusanmaki H, Ferris MA, Vu A, Beales J, Wagner C, Menéndez-Gutiérrez MP, Ricote M, Heckman C, Welch JS. Endogenous and combination retinoids are active in myelomonocytic leukemias. Haematologica 2021; 106:1008-1021. [PMID: 33241677 PMCID: PMC8017822 DOI: 10.3324/haematol.2020.264432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Retinoid therapy transformed response and survival outcomes in acute promyelocytic leukemia (APL) but has demonstrated only modest activity in non-APL forms of acute myeloid leukemia (AML). The presence of natural retinoids in vivo could influence the efficacy of pharmacologic agonists and antagonists. We found that natural RXRA ligands, but not RARA ligands, were present in murine MLL-AF9-derived myelomonocytic leukemias in vivo and that the concurrent presence of receptors and ligands acted as tumor suppressors. Pharmacologic retinoid responses could be optimized by concurrent targeting of RXR ligands (e.g., bexarotene) and RARA ligands (e.g., all-trans retinoic acid), which induced either leukemic maturation or apoptosis depending on cell culture conditions. Co-repressor release from the RARA:RXRA heterodimer occurred with RARA activation, but not RXRA activation, providing an explanation for the combination synergy. Combination synergy could be replicated in additional, but not all, AML cell lines and primary samples, and was associated with improved survival in vivo, although tolerability of bexarotene administration in mice remained an issue. These data provide insight into the basal presence of natural retinoids in leukemias in vivo and a potential strategy for clinical retinoid combination regimens in leukemias beyond APL.
Collapse
Affiliation(s)
- Orsola Di Martino
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Haixia Niu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 3333
| | - Gayla Hadwiger
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Heikki Kuusanmaki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014
| | - Margaret A Ferris
- Department of Pediatrics, Washington University, St Louis, Missouri, 63110
| | - Anh Vu
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Jeremy Beales
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Carl Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, 85281 USA
| | - María P Menéndez-Gutiérrez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029
| | - Caroline Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014
| | - John S Welch
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| |
Collapse
|
14
|
Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR). J Mol Biol 2021; 433:166899. [PMID: 33647291 DOI: 10.1016/j.jmb.2021.166899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) form heterodimers that activate target gene transcription by recruiting co-activator complexes in response to ligand binding. The nuclear receptor (NR) co-activator TIF2 mediates this recruitment by interacting with the ligand-binding domain (LBD) of NRs trough the nuclear receptor interaction domain (TIF2NRID) containing three highly conserved α-helical LxxLL motifs (NR-boxes). The precise binding mode of this domain to RXR/RAR is not clear due to the disordered nature of TIF2. Here we present the structural characterization of TIF2NRID by integrating several experimental (NMR, SAXS, Far-UV CD, SEC-MALS) and computational data. Collectively, the data are in agreement with a largely disordered protein with partially structured regions, including the NR-boxes and their flanking regions, which are evolutionary conserved. NMR and X-ray crystallographic data on TIF2NRID in complex with RXR/RAR reveal a multisite binding of the three NR-boxes as well as an active role of their flanking regions in the interaction.
Collapse
|
15
|
Joshi P, Skromne I. A theoretical model of neural maturation in the developing chick spinal cord. PLoS One 2020; 15:e0244219. [PMID: 33338079 PMCID: PMC7748286 DOI: 10.1371/journal.pone.0244219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cellular differentiation is a tightly regulated process under the control of intricate signaling and transcription factors interaction network working in coordination. These interactions make the systems dynamic, robust and stable but also difficult to dissect. In the spinal cord, recent work has shown that a network of FGF, WNT and Retinoic Acid (RA) signaling factors regulate neural maturation by directing the activity of a transcription factor network that contains CDX at its core. Here we have used partial and ordinary (Hill) differential equation based models to understand the spatiotemporal dynamics of the FGF/WNT/RA and the CDX/transcription factor networks, alone and in combination. We show that in both networks, the strength of interaction among network partners impacts the dynamics, behavior and output of the system. In the signaling network, interaction strength determine the position and size of discrete regions of cell differentiation and small changes in the strength of the interactions among networking partners can result in a signal overriding, balancing or oscillating with another signal. We also show that the spatiotemporal information generated by the signaling network can be conveyed to the CDX/transcription network to produces a transition zone that separates regions of high cell potency from regions of cell differentiation, in agreement with most in vivo observations. Importantly, one emerging property of the networks is their robustness to extrinsic disturbances, which allows the system to retain or canalize NP cells in developmental trajectories. This analysis provides a model for the interaction conditions underlying spinal cord cell maturation during embryonic axial elongation.
Collapse
Affiliation(s)
- Piyush Joshi
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isaac Skromne
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
16
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
18
|
Zhang T, Gygi SP, Paulo JA. Temporal Proteomic Profiling of SH-SY5Y Differentiation with Retinoic Acid Using FAIMS and Real-Time Searching. J Proteome Res 2020; 20:704-714. [PMID: 33054241 DOI: 10.1021/acs.jproteome.0c00614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The SH-SY5Y cell line is often used as a surrogate for neurons in cell-based studies. This cell line is frequently differentiated with all-trans retinoic acid (ATRA) over a 7-day period, which confers neuron-like properties to the cells. However, no analysis of proteome remodeling has followed the progress of this transition. Here, we quantitatively profiled over 9400 proteins across a 7-day treatment with retinoic acid using state-of-the-art mass spectrometry-based proteomics technologies, including FAIMS, real-time database searching, and TMTpro16 sample multiplexing. Gene ontology analysis revealed that categories with the highest increases in protein abundance were related to the plasma membrane/extracellular space. To showcase our data set, we surveyed the protein abundance profiles linked to neurofilament bundle assembly, neuron projections, and neuronal cell body formation. These proteins exhibited increases in abundance level, yet we observed multiple patterns among the queried proteins. The data presented represent a rich resource for investigating temporal protein abundance changes in SH-SY5Y cells differentiated with retinoic acid. Moreover, the sample preparation and data acquisition strategies used here can be readily applied to any analogous cell line differentiation analysis.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Golonka RM, San Yeoh B, Li Y, Saha P, Abokor AA, Cheng X, Xiao X, Chandrashekar DS, Varambally S, Gonzalez DJ, Ross AC, Vijay-Kumar M. Fermentable fibers induce rapid macro- and micronutrient depletion in Toll-like receptor 5-deficient mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G955-G965. [PMID: 32200644 PMCID: PMC7276927 DOI: 10.1152/ajpgi.00349.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional fermentable fibers are considered essential for a healthy diet. Recently, we demonstrated that gut microbiota dysbiotic mice fed an inulin-containing diet (ICD) developed hepatocellular carcinoma (HCC) within 6 mo. In particular, a subset of Toll-like receptor 5-deficient (T5KO) mice prone to HCC exhibited rapid onset of hyperbilirubinemia (HB) and cholemia; these symptoms provide rationale that ICD induces cholestasis. Our objective in the present study was to determine whether inulin-fed T5KO-HB mice exhibit other known consequences of cholestasis, including essential fatty acid and fat-soluble vitamin deficiencies. Here, we measured hepatic fatty acids and serum vitamin A and D levels from wild-type (WT), T5KO low bilirubin (LB) and T5KO-HB mice fed ICD for 4 wk. Additionally, hepatic RNAseq and proteomics were performed to ascertain other metabolic alterations. Compared with WT and T5KO-LB, T5KO-HB mice exhibited steatorrhea, i.e., ~50% increase in fecal lipids. This could contribute to the significant reduction of linoleate in hepatic neutral lipids in T5KO-HB mice. Additionally, serum vitamins A and D were ~50% reduced in T5KO-HB mice, which was associated with metabolic compromises. Overall, our study highlights that fermentable fiber-induced cholestasis is further characterized by depletion of macro-and micronutrients.NEW & NOTEWORTHY Feeding a dietary, fermentable fiber diet to a subset of Toll-like receptor 5 deficient (T5KO) mice induces early onset hyperbilirubinemia and cholemia that later manifests to hepatocellular carcinoma (HCC). Our study highlights that fermentable fiber-induced cholestasis is characterized with modest macro- and micronutrient deficiencies that may further contribute to hepatic biliary disease. Compared with chemical induction, immunization, surgery, or genetic manipulation, these findings provide a novel approach to study the cholestatic subtype of HCC.
Collapse
Affiliation(s)
- Rachel M. Golonka
- 1Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- 1Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Yaqi Li
- 2Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Piu Saha
- 1Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmed A. Abokor
- 1Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- 1Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xia Xiao
- 3Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Sooryanarayana Varambally
- 4Department of Pathology, University of Alabama, Birmingham, Alabama,5Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama,6Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - David J. Gonzalez
- 7Department of Pharmacology, School of Medicine, and the School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - A. Catharine Ross
- 2Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Matam Vijay-Kumar
- 1Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio,8Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
20
|
Abstract
Retinoic acid receptors were discovered during early studies of the actions and mechanisms of essential vitamins. Vitamin A is metabolized in the body to retinoic acid (RA) which is a key compound in the control of many developmental processes in chordates. These functions are mediated by a subfamily of nuclear receptors, divided into two classes, the retinoic acid receptors (RAR) and the retinoid X receptors (RXR). Each class is encoded by three closely related genes that are located on different chromosomes. The three proteins in each class are designated α, β and γ, respectively. A wealth of structural studies have shown that they all share the same architecture including a DNA-binding domain connected by a flexible linker to the ligand and co-activator binding domain. Retinoic acid incorporation into the ligand-binding domain leads to a conformational change enabling the formation of RAR homodimers or RAR/RXR heterodimers that in turn bind specifically to target DNA sequences. The consensus sequences located on the promotors of regulated genes are known as retinoic acid response elements (RARE). The activated RAR/RXR homodimers recruit co-activators with histone acetylase activity leading to an opening of the chromatin structure and enabling downstream transcription of regulated genes. These canonical pathways describe the control mechanism for the majority of developmental processes mediated by retinoic acid and its derivatives.
Collapse
Affiliation(s)
- Ehmke Pohl
- Department of Chemistry, Durham University, Durham, United Kingdom; Department of Bioscience, Durham University, Durham, United Kingdom; Biophysical Sciences Institute, Durham University, Durham, United Kingdom.
| | | |
Collapse
|
21
|
le Maire A, Germain P, Bourguet W. Protein-protein interactions in the regulation of RAR–RXR heterodimers transcriptional activity. Methods Enzymol 2020; 637:175-207. [DOI: 10.1016/bs.mie.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Thouennon E, Delfosse V, Bailly R, Blanc P, Boulahtouf A, Grimaldi M, Barducci A, Bourguet W, Balaguer P. Insights into the activation mechanism of human estrogen-related receptor γ by environmental endocrine disruptors. Cell Mol Life Sci 2019; 76:4769-4781. [PMID: 31127318 PMCID: PMC11105698 DOI: 10.1007/s00018-019-03129-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
The estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones. Interestingly, affinity constants (Kds) of the most potent compounds measured by isothermal titration calorimetry were in the 50-500 nM range, in agreement with their receptor activation potencies. Crystallographic analysis of the interaction between the ERRγ ligand-binding domain (LBD) and compounds of the bisphenol, alkylphenol and naphthol families revealed a partially shared binding mode and minimal alterations of the receptor conformation upon ligand binding. Further biophysical characterizations coupled to molecular dynamics simulations suggested a mechanism through which ERRγ ligands would exhibit their agonistic properties by preserving the transcriptionally active form of the receptor while rigidifying some loop regions with associated functions. This unique mechanism contrasts with the classical one involving a ligand-induced repositioning and stabilization of the C-terminal activation helix H12.
Collapse
Affiliation(s)
- Erwan Thouennon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Vanessa Delfosse
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Rémy Bailly
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Pauline Blanc
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France.
| |
Collapse
|
23
|
le Maire A, Teyssier C, Balaguer P, Bourguet W, Germain P. Regulation of RXR-RAR Heterodimers by RXR- and RAR-Specific Ligands and Their Combinations. Cells 2019; 8:cells8111392. [PMID: 31694317 PMCID: PMC6912802 DOI: 10.3390/cells8111392] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
The three subtypes (α, β, and γ) of the retinoic acid receptor (RAR) are ligand-dependent transcription factors that mediate retinoic acid signaling by forming heterodimers with the retinoid X receptor (RXR). Heterodimers are functional units that bind ligands (retinoids), transcriptional co-regulators and DNA, to regulate gene networks controlling cell growth, differentiation, and death. Using biochemical, crystallographic, and cellular approaches, we have set out to explore the spectrum of possibilities to regulate RXR-RAR heterodimer-dependent transcription through various pharmacological classes of RAR- and RXR- specific ligands, alone or in combination. We reveal the molecular details by which these compounds direct specificity and functionality of RXR-RAR heterodimers. Among these ligands, we have reevaluated and improved the molecular and structural definition of compounds CD2665, Ro41-5253, LE135, or LG100754, highlighting novel functional features of these molecules. Our analysis reveals a model of RXR-RAR heterodimer action in which each subunit retains its intrinsic properties in terms of ligand and co-regulator binding. However, their interplay upon the combined action of RAR- and RXR-ligands allows for the fine tuning of heterodimer activity. It also stresses the importance of accurate ligand characterization to use synthetic selective retinoids appropriately and avoid data misinterpretations.
Collapse
Affiliation(s)
- Albane le Maire
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
| | - Catherine Teyssier
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France;
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
| | - Pierre Germain
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, ICM, 34090 Montpellier, France; (A.l.M.); (C.T.); (W.B.)
- Correspondence: ; Tel.: +33-(0)4-6741-7910
| |
Collapse
|
24
|
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, Bourguet W, le Maire A, Bernadó P. Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure 2019; 27:1270-1285.e6. [DOI: 10.1016/j.str.2019.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
|
25
|
Wen G, Fischer J, Most E, Eder K, Ringseis R. Decreased All- trans Retinoic Acid-Induced Expression of Sodium-Iodide Transporter in Mammary Epithelial Cells Caused by Conjugated Linoleic Acid Isomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4493-4504. [PMID: 30938528 DOI: 10.1021/acs.jafc.9b00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Expression of sodium-iodide symporter (NIS) is stimulated by sterol-regulatory-element-binding transcription factors (SREBFs) in mammary epithelial MCF-7 cells. Because conjugated linoleic acid (CLA) isomers have been shown to inhibit transcriptional activity of SREBFs in the mammary gland, the hypothesis was tested that CLA isomers inhibit NIS expression induced by all- trans retinoic acid (ATRA) in MCF-7 cells through inhibiting SREBF activity. c9t11-CLA and t10c12-CLA decreased ATRA-induced NIS-mRNA expression from 1.00 (ATRA alone) to 0.80 ± 0.12 (200 μM c9t11-CLA, P < 0.05) and 0.62 ± 0.10 (200 μM t10c12-CLA, P < 0.05), NIS-protein expression from 1.00 (ATRA alone) to 0.77 ± 0.08 (200 μM c9t11-CLA, P < 0.05) and 0.63 ± 0.05 (200 μM t10c12-CLA, P < 0.05), and NIS-promoter activity from 1.00 (ATRA alone) to 0.74 ± 0.13 (200 μM c9t11-CLA, P < 0.05) and 0.76 ± 0.13 (200 μM t10c12-CLA, P < 0.05); however, c9t11-CLA and t10c12-CLA increased the mRNA levels of SREBF isoforms and their target genes. In contrast, the mRNA expression of peroxisome-proliferator-activated receptor γ (PPARG) was strongly induced by ATRA alone but decreased by CLA isomers from 1.00 (ATRA alone) to 0.80 ± 0.06 (200 μM c9t11-CLA, P < 0.05) and 0.86 ± 0.06 (200 μM t10c12-CLA, P < 0.05). Overexpression of PPARγ in MCF-7 cells increased basal NIS-promoter activity, and treatment with the PPARγ ligand troglitazone stimulated ATRA-induced NIS-promoter activity. In conclusion, the results suggest that CLA isomers exert their effect on the expression of NIS by decreasing PPARG expression in MCF-7 cells.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Julia Fischer
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 26-32 , 35392 Giessen , Germany
| |
Collapse
|
26
|
de Almeida NR, Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med Res Rev 2019; 39:1372-1397. [PMID: 30941786 DOI: 10.1002/med.21578] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
An attractive approach to combat disease is to target theregulation of cell function. At the heart of this task are nuclear receptors (NRs); which control functions such as gene transcription. Arguably, the key player in this regulatory machinery is the retinoid X receptor (RXR). This NR associates with a third of the NRs found in humans. Scientists have hypothesized that controlling the activity of RXR is an attractive approach to control cellular functions that modulate diseases such as cancer, diabetes, Alzheimer's disease and Parkinson's disease. In this review, we will describe the key features of the RXR, present a historic perspective of the first RXR agonists, and discuss various templates that have been reported to activate RXR with a focus on their molecular structure, biological activity, and limitations. Finally, we will present an outlook of the field and future directions and considerations to synthesize or modulate RXR agonists to make these compounds a clinical reality.
Collapse
Affiliation(s)
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
27
|
Wang N, Zou Q, Xu J, Zhang J, Liu J. Ligand binding and heterodimerization with retinoid X receptor α (RXRα) induce farnesoid X receptor (FXR) conformational changes affecting coactivator binding. J Biol Chem 2018; 293:18180-18191. [PMID: 30275017 DOI: 10.1074/jbc.ra118.004652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptor farnesoid X receptor (FXR) functions as the major bile acid sensor coordinating cholesterol metabolism, lipid homeostasis, and absorption of dietary fats and vitamins. Because of its central role in metabolism, FXR represents an important drug target to manage metabolic and other diseases, such as primary biliary cirrhosis and nonalcoholic steatohepatitis. FXR and nuclear receptor retinoid X receptor α (RXRα) form a heterodimer that controls the expression of numerous downstream genes. To date, the structural basis and functional consequences of the FXR/RXR heterodimer interaction have remained unclear. Herein, we present the crystal structures of the heterodimeric complex formed between the ligand-binding domains of human FXR and RXRα. We show that both FXR and RXR bind to the transcriptional coregulator steroid receptor coactivator 1 with higher affinity when they are part of the heterodimer complex than when they are in their respective monomeric states. Furthermore, structural comparisons of the FXR/RXRα heterodimers and the FXR monomers bound with different ligands indicated that both heterodimerization and ligand binding induce conformational changes in the C terminus of helix 11 in FXR that affect the stability of the coactivator binding surface and the coactivator binding in FXR. In summary, our findings shed light on the allosteric signal transduction in the FXR/RXR heterodimer, which may be utilized for future drug development targeting FXR.
Collapse
Affiliation(s)
- Na Wang
- From the School of Life Sciences, University of Science and Technology of China, Hefei 230026, China,; the State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Qingan Zou
- Guangzhou Henovcom Biosciences Inc., Guangzhou 510530, China
| | - Jinxin Xu
- the State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Jiancun Zhang
- the State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and; Guangzhou Henovcom Biosciences Inc., Guangzhou 510530, China
| | - Jinsong Liu
- the State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,; the Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and.
| |
Collapse
|
28
|
Haffez H, Chisholm DR, Tatum NJ, Valentine R, Redfern C, Pohl E, Whiting A, Przyborski S. Probing biological activity through structural modelling of ligand-receptor interactions of 2,4-disubstituted thiazole retinoids. Bioorg Med Chem 2018; 26:1560-1572. [PMID: 29439915 PMCID: PMC5933457 DOI: 10.1016/j.bmc.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
Abstract
Retinoids, such as all-trans-retinoic acid (ATRA), regulate cellular differentiation and signalling pathways in chordates by binding to nuclear retinoic acid receptors (RARα/β/γ). Polar interactions between receptor and ligand are important for binding and facilitating the non-polar interactions and conformational changes necessary for RAR-mediated transcriptional regulation. The constraints on activity and RAR-type specificity with respect to the structural link between the polar and non-polar functions of synthetic retinoids are poorly understood. To address this, predictions from in silico ligand-RAR docking calculations and molecular dynamics simulations for a small library of stable, synthetic retinoids (designated GZ series) containing a central thiazole linker structure and different hydrophobic region substituents, were tested using a ligand binding assay and a range of cellular biological assays. The docking analysis showed that these thiazole-containing retinoids were well suited to the binding pocket of RARα, particularly via a favorable hydrogen bonding interaction between the thiazole and Ser232 of RARα. A bulky hydrophobic region (i.e., present in compounds GZ23 and GZ25) was important for interaction with the RAR binding pockets. Ligand binding assays generally reflected the findings from in silico docking, and showed that GZ25 was a particularly strongly binding ligand for RARα/β. GZ25 also exhibited higher activity as an inducer of neuronal differentiation than ATRA and other GZ derivatives. These data demonstrate that GZ25 is a stable synthetic retinoid with improved activity which efficiently regulates neuronal differentiation and help to define the key structural requirements for retinoid activity enabling the design and development of the next generation of more active, selective synthetic retinoids as potential therapeutic regulators of neurogenesis.
Collapse
Key Words
- atra, all-trans retinoic acid
- af, activation function
- esi, electronic supplementary information
- gz, compound series code
- h12, helix 12
- lbd, ligand binding domain
- rar, retinoic acid receptor
- rare, retinoic acid response element
- rxr, retinoid x receptor
- ttn, 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene hydrophobic region
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Biochemistry and Molecular Biology, Pharmacy College, Helwan University, Cairo, Egypt; Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - David R Chisholm
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roy Valentine
- High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, UK
| | - Christopher Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK.
| | - Stefan Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
29
|
Jusu S, Presley JF, Williams C, Das SK, Jean-Claude B, Kremer R. Examination of VDR/RXR/DRIP205 Interaction, Intranuclear Localization, and DNA Binding in Ras-Transformed Keratinocytes and Its Implication for Designing Optimal Vitamin D Therapy in Cancer. Endocrinology 2018; 159:1303-1327. [PMID: 29300860 DOI: 10.1210/en.2017-03098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
Abstract
Retinoid X receptor (RXR) occupies a central position within the nuclear receptor superfamily, serving as an obligatory partner to numerous other nuclear receptors, including vitamin D receptor (VDR). In the current study, we examined whether phosphorylation of RXRα at serine 260 affects VDR/RXR and VDR interacting protein (DRIP) 205 coactivator recruitment, interactions, and binding of the VDR/human RXRα (hRXRα)/DRIP205 complex to chromatin. Serine 260 is a critical amino acid on the hRXRα that is located in close spatial proximity to regions of coactivator and corepressor interactions. Using fluorescence resonance energy transfer and immunofluorescence studies, we showed that the physical interaction between hRXRα and DRIP205 coactivator was impaired in human keratinocytes with the ras oncogene (HPK1Aras) or transfected with the wild-type hRXRα. Furthermore, the nuclear colocalization of VDR/DRIP205, hRXRα/DRIP205, and VDR/hRXRα/DRIP205 complex binding to chromatin is impaired in the HPK1Aras cells when compared with the normal human keratinocytes (HPK1A cells). However, transfection with the nonphosphorylatable hRXRα (S260A) mutant or treatment with the mitogen-activated protein kinase (MAPK) inhibitor UO126 rescued their nuclear localization, interaction, and binding of the complex to chromatin in the HPK1Aras cells. In summary, we have demonstrated, using highly specific intracellular tagging methods in live and fixed cells, important alterations of the vitamin D signaling system in cancer cells in which the ras-raf-MAPK system is activated, suggesting that specific inhibition of this commonly activated pathway could be targeted therapeutically to enhance vitamin D efficacy.
Collapse
Affiliation(s)
- Sylvester Jusu
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | - Sanjoy Kumar Das
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Bertrand Jean-Claude
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Richard Kremer
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Niu H, Fujiwara H, di Martino O, Hadwiger G, Frederick TE, Menéndez-Gutiérrez MP, Ricote M, Bowman GR, Welch JS. Endogenous retinoid X receptor ligands in mouse hematopoietic cells. Sci Signal 2017; 10:10/503/eaan1011. [PMID: 29089448 DOI: 10.1126/scisignal.aan1011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The retinoid X receptor α (RXRA) has been implicated in diverse hematological processes. To identify natural ligands of RXRA that are present in hematopoietic cells, we adapted an upstream activation sequence-green fluorescent protein (UAS-GFP) reporter mouse to detect natural RXRA ligands in vivo. We observed reporter activity in diverse types of hematopoietic cells in vivo. Reporter activity increased during granulocyte colony-stimulating factor (G-CSF)-induced granulopoiesis and after phenylhydrazine (PHZ)-induced anemia, suggesting the presence of dynamically regulated natural RXRA ligands in hematopoietic cells. Mouse plasma activated Gal4-UAS reporter cells in vitro, and plasma from mice treated with G-CSF or PHZ recapitulated the patterns of reporter activation that we observed in vivo. Plasma from mice with dietary vitamin A deficiency only mildly reduced RXRA reporter activity, whereas plasma from mice on a fatty acid restriction diet reduced reporter activity, implicating fatty acids as plasma RXRA ligands. Through differential extraction coupled with mass spectrometry, we identified the long-chain fatty acid C24:5 as a natural RXRA ligand that was greatly increased in abundance in response to hematopoietic stress. Together, these data suggest that natural RXRA ligands are present and dynamically increased in abundance in mouse hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Haixia Niu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Orsola di Martino
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gayla Hadwiger
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - María P Menéndez-Gutiérrez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John S Welch
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Chandra V, Wu D, Li S, Potluri N, Kim Y, Rastinejad F. The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission. Nat Commun 2017; 8:868. [PMID: 29021580 PMCID: PMC5636793 DOI: 10.1038/s41467-017-00981-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor β-retinoic X receptor α (RARβ-RXRα) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RARβ ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within their quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its heterodimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.Nuclear receptors (NR) are multidomain proteins, which makes their crystallization challenging. Here the authors present the crystal structure of the retinoic acid receptor β-retinoic X receptor α (RARβ-RXRα) heterodimer bound to DNA, ligands and coactivator peptides, which shows that NR quaternary architectures are variable.
Collapse
Affiliation(s)
- Vikas Chandra
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA
| | - Dalei Wu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Sheng Li
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA, 92023, USA
| | - Nalini Potluri
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA
| | - Youngchang Kim
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Fraydoon Rastinejad
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, 32827, USA.
| |
Collapse
|
32
|
Narayanasamy S, Sun J, Pavlovicz RE, Eroglu A, Rush CE, Sunkel BD, Li C, Harrison EH, Curley RW. Synthesis of apo-13- and apo-15-lycopenoids, cleavage products of lycopene that are retinoic acid antagonists. J Lipid Res 2017; 58:1021-1029. [PMID: 28250025 PMCID: PMC5408601 DOI: 10.1194/jlr.d073148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
Consumption of the tomato carotenoid, lycopene, has been associated with favorable health benefits. Some of lycopene's biological activity may be due to metabolites resulting from cleavage of the lycopene molecule. Because of their structural similarity to the retinoic acid receptor (RAR) antagonist, β-apo-13-carotenone, the "first half" putative oxidative cleavage products of the symmetrical lycopene have been synthesized. All transformations proceed in moderate to good yield and some with high stereochemical integrity allowing ready access to these otherwise difficult to obtain terpenoids. In particular, the methods described allow ready access to the trans isomers of citral (geranial) and pseudoionone, important flavor and fragrance compounds that are not readily available isomerically pure and are building blocks for many of the longer apolycopenoids. In addition, all of the apo-11, apo-13, and apo-15 lycopenals/lycopenones/lycopenoic acids have been prepared. These compounds have been evaluated for their effect on RAR-induced genes in cultured hepatoma cells and, much like β-apo-13-carotenone, the comparable apo-13-lycopenone and the apo-15-lycopenal behave as RAR antagonists. Furthermore, molecular modeling studies demonstrate that the apo-13-lycopenone efficiently docked into the ligand binding site of RARα. Finally, isothermal titration calorimetry studies reveal that apo-13-lycopenone acts as an antagonist of RAR by inhibiting coactivator recruitment to the receptor.
Collapse
Affiliation(s)
- Sureshbabu Narayanasamy
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Jian Sun
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210
| | - Ryan E Pavlovicz
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Abdulkerim Eroglu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Cassandra E Rush
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Benjamin D Sunkel
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Robert W Curley
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
Haffez H, Chisholm DR, Valentine R, Pohl E, Redfern C, Whiting A. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. MEDCHEMCOMM 2017; 8:578-592. [PMID: 30108774 PMCID: PMC6072416 DOI: 10.1039/c6md00680a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023]
Abstract
All-trans-retinoic acid (ATRA) and its synthetic analogues EC23 and EC19 direct cellular differentiation by interacting as ligands for the retinoic acid receptor (RARα, β and γ) family of nuclear receptor proteins. To date, a number of crystal structures of natural and synthetic ligands complexed to their target proteins have been solved, providing molecular level snap-shots of ligand binding. However, a deeper understanding of receptor and ligand flexibility and conformational freedom is required to develop stable and effective ATRA analogues for clinical use. Therefore, we have used molecular modelling techniques to define RAR interactions with ATRA and two synthetic analogues, EC19 and EC23, and compared their predicted biochemical activities to experimental measurements of relative ligand affinity and recruitment of coactivator proteins. A comprehensive molecular docking approach that explored the conformational space of the ligands indicated that ATRA is able to bind the three RAR proteins in a number of conformations with one extended structure being favoured. In contrast the biologically-distinct isomer, 9-cis-retinoic acid (; 9CRA), showed significantly less conformational flexibility in the RAR binding pockets. These findings were used to inform docking studies of the synthetic retinoids EC23 and EC19, and their respective methyl esters. EC23 was found to be an excellent mimic for ATRA, and occupied similar binding modes to ATRA in all three target RAR proteins. In comparison, EC19 exhibited an alternative binding mode which reduces the strength of key polar interactions in RARα/γ but is well-suited to the larger RARβ binding pocket. In contrast, docking of the corresponding esters revealed the loss of key polar interactions which may explain the much reduced biological activity. Our computational results were complemented using an in vitro binding assay based on FRET measurements, which showed that EC23 was a strongly binding, pan-agonist of the RARs, while EC19 exhibited specificity for RARβ, as predicted by the docking studies. These findings can account for the distinct behaviour of EC23 and EC19 in cellular differentiation assays, and additionally, the methods described herein can be further applied to the understanding of the molecular basis for the selectivity of different retinoids to RARα, β and γ.
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
- Department of Biochemistry and Molecular Biology , Pharmacy College , Helwan University , Cairo , Egypt
| | - David R Chisholm
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Ehmke Pohl
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
| | - Christopher Redfern
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
| | - Andrew Whiting
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
34
|
Shao Y, Chen QZ, Zeng YH, Li Y, Ren WY, Zhou LY, Liu RX, Wu K, Yang JQ, Deng ZL, Yu Y, Sun WJ, He BC. All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts. Int J Mol Med 2016; 38:1693-1702. [PMID: 27779644 PMCID: PMC5117762 DOI: 10.3892/ijmm.2016.2782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
Rosiglitazone (RSG) is a potent drug used in the treatment of insulin resistance; however, it is associated with marked skeletal toxicity. RSG-induced osteoporosis may contribute to the promotion of adipogenic differentiation at the expense of osteogenic differentiation in bone marrow stromal cells. The aim of this study was to investigate whether RSG-induced bone toxicity can be reversed by combined treatment with all-trans retinoic acid (ATRA). We examined different osteogenic markers in mouse embryonic fibroblasts (MEFs) following treatment with RSG, ATRA, or RSG and ATRA in combination. We examined the effects of RSG and/or ATRA on ectopic bone formation, and dissected the possible molecular mechanisms underlying this process. We found that ATRA or RSG both induced alkaline phosphatase (ALP) activity in the MEFs, and that the ATRA-induced ALP activity was enhanced by RSG and vice versa. However, only the combination of RSG and ATRA increased the expression of osteopontin and osteocalcin, promoted matrix mineralization, and induced ectopic ossification in MEFs. Mechanistically, we found that the osteogenic differentiation induced by the combination of RSG and ATRA may be mediated partly by suppressing RSG-induced adipogenic differentiation and activating bone morphogenetic protein (BMP)/Smad signaling. On the whole, our findings demonstrate that RSG in combination with ATRA promotes the commitment of MEFs to the osteoblast lineage. Thus, the combination of these two agents may prove to be a promising and novel therapeutic regimen for insulin resistance without skeletal toxicity. It may also be a better strategy with which to prevent RSG-induced osteoporosis.
Collapse
Affiliation(s)
- Ying Shao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Qian-Zhao Chen
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Yu-Hua Zeng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Yang Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Wen-Yan Ren
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Lin-Yun Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Rong-Xin Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Jun-Qing Yang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Zhong-Liang Deng
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Yu Yu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016, P.R. China
| |
Collapse
|
35
|
Glover K, Mei Y, Sinha SC. Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1455-63. [PMID: 27179590 DOI: 10.1016/j.bbapap.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023]
Abstract
Many proteins contain intrinsically disordered regions (IDRs) lacking stable secondary and ordered tertiary structure. IDRs are often implicated in macromolecular interactions, and may undergo structural transitions upon binding to interaction partners. However, as binding partners of many protein IDRs are unknown, these structural transitions are difficult to verify and often are poorly understood. In this study we describe a method to identify IDRs that are likely to undergo helical transitions upon binding. This method combines bioinformatics analyses followed by circular dichroism spectroscopy to monitor 2,2,2-trifluoroethanol (TFE)-induced changes in secondary structure content of these IDRs. Our results demonstrate that there is no significant change in the helicity of IDRs that are not predicted to fold upon binding. IDRs that are predicted to fold fall into two groups: one group does not become helical in the presence of TFE and includes examples of IDRs that form β-strands upon binding, while the other group becomes more helical and includes examples that are known to fold into helices upon binding. Therefore, we propose that bioinformatics analyses combined with experimental evaluation using TFE may provide a general method to identify IDRs that undergo binding-induced disorder-to-helix transitions.
Collapse
Affiliation(s)
- Karen Glover
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Yang Mei
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Sangita C Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
36
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V, Nowak J, Chalmers MJ, Marciano DP, Kamenecka TM, Shulman AI, Rance M, Griffin PR, Bruning JB, Nettles KW. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nat Commun 2015; 6:8013. [PMID: 26289479 PMCID: PMC4547401 DOI: 10.1038/ncomms9013] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/06/2015] [Indexed: 12/14/2022] Open
Abstract
A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. Some nuclear receptors dimerize with retinoid X receptor to allow ligand-dependent signalling. Here, Kojetin et al. use structural and biophysical techniques to identify structural changes that guide these complex signalling networks.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Edna Matta-Camacho
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Travis S Hughes
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Sathish Srinivasan
- Department of Cancer Biology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Jerome C Nwachukwu
- Department of Cancer Biology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Valerie Cavett
- Department of Cancer Biology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Jason Nowak
- Department of Cancer Biology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Michael J Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - David P Marciano
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Andrew I Shulman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - John B Bruning
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kendall W Nettles
- Department of Cancer Biology, The Scripps Research Institute-Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| |
Collapse
|
38
|
Rühl R, Krzyżosiak A, Niewiadomska-Cimicka A, Rochel N, Szeles L, Vaz B, Wietrzych-Schindler M, Álvarez S, Szklenar M, Nagy L, de Lera AR, Krężel W. 9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice. PLoS Genet 2015; 11:e1005213. [PMID: 26030625 PMCID: PMC4451509 DOI: 10.1371/journal.pgen.1005213] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/13/2015] [Indexed: 01/08/2023] Open
Abstract
The retinoid X receptors (RXRs) are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho)-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s) for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/-) display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA), which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand. Daily nutrition, in addition to being a source of energy, contains micronutrients, a class of nutrients including vitamins which are essential for life and which act by orchestrating a vast number of developmental and physiological processes. During metabolism, micronutrients are frequently transformed into their bioactive forms. Nuclear hormone receptors are a family of proteins functioning as ligand-regulated transcription factors which can sense such bioactive molecules and translate those signals into transcriptional, adaptive responses. Retinoid X receptors occupy a central place in this signaling as they directly interact, and thereby control, activities of several nuclear hormone receptors. We report here the identification of a novel bioactive form of vitamin A, which is the first endogenous form of this vitamin capable to bind and activate retinoid X receptors. Accordingly, we show that this single molecule displays biological activity similar to synthetic agonists of retinoid X receptors and coordinates transcriptional activities of several nuclear receptor signaling pathways. Those findings may have immediate biomedical implications, as retinoid X receptors are implicated in the control of a number of physiological functions and their pathology.
Collapse
Affiliation(s)
- Ralph Rühl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Debrecen, Hungary
- Paprika Bioanalytics BT, Debrecen, Hungary
- * E-mail: (RR); (ARdL); (WK)
| | - Agnieszka Krzyżosiak
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Lajos Szeles
- DE-MTA “Lendület” Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Belén Vaz
- Departamento de Química Orgánica and CINBIO, Facultad de Química, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | - Marta Wietrzych-Schindler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Susana Álvarez
- Departamento de Química Orgánica and CINBIO, Facultad de Química, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | | | - Laszlo Nagy
- DE-MTA “Lendület” Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Angel R. de Lera
- Departamento de Química Orgánica and CINBIO, Facultad de Química, Universidade de Vigo, Vigo, Spain
- Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
- * E-mail: (RR); (ARdL); (WK)
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Inserm, U 964
- CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
- * E-mail: (RR); (ARdL); (WK)
| |
Collapse
|
39
|
Nadendla E, Teyssier C, Delfosse V, Vivat V, Krishnasamy G, Gronemeyer H, Bourguet W, Germain P. An Unexpected Mode Of Binding Defines BMS948 as A Full Retinoic Acid Receptor β (RARβ, NR1B2) Selective Agonist. PLoS One 2015; 10:e0123195. [PMID: 25933005 PMCID: PMC4416907 DOI: 10.1371/journal.pone.0123195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/19/2015] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid is an important regulator of cell differentiation which plays major roles in embryonic development and tissue remodeling. The biological action of retinoic acid is mediated by three nuclear receptors denoted RARα, β and γ. Multiple studies support that RARβ possesses functional characteristics of a tumor suppressor and indeed, its expression is frequently lost in neoplastic tissues. However, it has been recently reported that RARβ could also play a role in mammary gland tumorigenesis, thus demonstrating the important but yet incompletely understood function of this receptor in cancer development. As a consequence, there is a great need for RARβ-selective agonists and antagonists as tools to facilitate the pharmacological analysis of this protein in vitro and in vivo as well as for potential therapeutic interventions. Here we provide experimental evidences that the novel synthetic retinoid BMS948 is an RARβ-selective ligand exhibiting a full transcriptional agonistic activity and activating RARβ as efficiently as the reference agonist TTNPB. In addition, we solved the crystal structures of the RARβ ligand-binding domain in complex with BMS948 and two related compounds, BMS641 and BMS411. These structures provided a rationale to explain how a single retinoid can be at the same time an RARα antagonist and an RARβ full agonist, and revealed the structural basis of partial agonism. Finally, in addition to revealing that a flip by 180° of the amide linker, that usually confers RARα selectivity, accounts for the RARβ selectivity of BMS948, the structural analysis uncovers guidelines for the rational design of RARβ-selective antagonists.
Collapse
Affiliation(s)
- Eswarkumar Nadendla
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Universités Montpellier 1 & 2, Montpellier, France
- CAS in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Catherine Teyssier
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Universités Montpellier 1 & 2, Montpellier, France
| | - Vanessa Delfosse
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Universités Montpellier 1 & 2, Montpellier, France
| | | | | | - Hinrich Gronemeyer
- IGBMC, CNRS/INSERM/UdS/CERBM, Illkirch-Cedex, C.U. de Strasbourg, France
| | - William Bourguet
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Universités Montpellier 1 & 2, Montpellier, France
- * E-mail: (WB); (PG)
| | - Pierre Germain
- Inserm U1054, Centre de Biochimie Structurale, Montpellier, France
- CNRS UMR5048, Universités Montpellier 1 & 2, Montpellier, France
- * E-mail: (WB); (PG)
| |
Collapse
|
40
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
41
|
Rastinejad F, Ollendorff V, Polikarpov I. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem Sci 2014; 40:16-24. [PMID: 25435400 DOI: 10.1016/j.tibs.2014.10.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
The crystal structures of three nuclear receptor (NR) complexes have emerged to reveal their multidomain architectures on DNA. These pictures provide unprecedented views of interfacial couplings between the DNA-binding domains (DBDs) and ligand-binding domains (LBDs). The detailed pictures contrast with previous interpretations of low-resolution electron microscopy (EM) and small angle X-ray scattering (SAXS) data, which had suggested a common architecture with noninteracting DBDs and LBDs. Revisiting both historical and recent interpretations of NR architecture, we invoke new principles underlying higher-order quaternary organization and the allosteric transmission of signals between domains. We also discuss how NR architectures are being probed in living cells to understand dimerization and DNA-binding events in real time.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Sanford-Burnham Medical Research Institute, Metabolic Disease Program, 6400 Sanger Road, Lake Nona, FL 32827, USA.
| | - Vincent Ollendorff
- INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060 Montpellier Université Montpellier 1, F-34000 Montpellier - Université Montpellier 2, F-34000 Montpellier, France
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
42
|
Fattori J, Indolfo NDC, Campos JCLDO, Videira NB, Bridi AV, Doratioto TR, Assis MAD, Figueira ACM. Investigation of Interactions between DNA and Nuclear Receptors: A Review of the Most Used Methods. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Nathalia de Carvalho Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | | | - Natália Bernardi Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Aline Villanova Bridi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Tábata Renée Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Michelle Alexandrino de Assis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), P.O. Box 6192, Campinas-SP, Brazil
| |
Collapse
|
43
|
Yang C, Li Q, Li Y. Targeting nuclear receptors with marine natural products. Mar Drugs 2014; 12:601-35. [PMID: 24473166 PMCID: PMC3944506 DOI: 10.3390/md12020601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qianrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
44
|
Abstract
Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| | | |
Collapse
|
45
|
Abstract
Nuclear Retinoic Acid receptors (RARs) consist of three subtypes, α, β, and γ, encoded by separate genes. They function as ligand-dependent transcriptional regulators, forming heterodimers with Retinoid X receptors (RXRs). RARs mediate the effects of retinoic acid (RA), the active metabolite of Vitamin A, and regulate many biological functions such as embryonic development, organogenesis, homeostasis, vision, immune functions, and reproduction. During the two last decades, a number of in-depth structure-function relationship studies have been performed, in particular with drug design perspectives in the therapeutics for cancer, dermatology, metabolic disease, and other human diseases. Recent structural results concerning integral receptors in diverse functional states, obtained using a combination of different methods, allow a better understanding of the mechanisms involved in molecular regulation. The structural data highlight the importance of DNA sequences for binding selectivity and the role of promoter response elements in the spatial organization of the protein domains into functional complexes.
Collapse
Affiliation(s)
- Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964, Centre National de Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, 67404, Illkirch, France,
| | | |
Collapse
|
46
|
le Maire A, Bourguet W. Retinoic acid receptors: structural basis for coregulator interaction and exchange. Subcell Biochem 2014; 70:37-54. [PMID: 24962880 DOI: 10.1007/978-94-017-9050-5_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the form of heterodimers with retinoid X receptors (RXRs), retinoic acid receptors (RARs) are master regulators of gene expression in humans and important drug targets. They act as ligand-dependent transcription factors that regulate a large variety of gene networks controlling cell growth, differentiation, survival and death. The biological functions of RARs rely on a dynamic series of coregulator exchanges controlled by ligand binding. Unliganded RARs exert a repressor activity by interacting with transcriptional corepressors which themselves serve as docking platforms for the recruitment of histone deacetylases that impose a higher order structure on chromatin which is not permissive to gene transcription. Upon ligand binding, the receptor undergoes conformational changes inducing corepressor release and the recruitment of coactivators with histone acetylase activities allowing chromatin decompaction and gene transcription. In the following, we review the structural determinants of the interaction between RAR and either type of coregulators both at the level of the individual receptor and in the context of the RAR-RXR heterodimers. We also discuss the molecular details of the fine tuning of these associations by the various pharmacological classes of ligands.
Collapse
Affiliation(s)
- Albane le Maire
- Inserm U1054, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090, Montpellier, France,
| | | |
Collapse
|
47
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
48
|
Paterson EK, Ho H, Kapadia R, Ganesan AK. 9-cis retinoic acid is the ALDH1A1 product that stimulates melanogenesis. Exp Dermatol 2013; 22:202-9. [PMID: 23489423 DOI: 10.1111/exd.12099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 12/29/2022]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyses the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalysing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli's salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Biological Chemistry, University of California, Irvine, CA 92697-2400, USA
| | | | | | | |
Collapse
|
49
|
Structural and functional analysis of the human nuclear xenobiotic receptor PXR in complex with RXRα. J Mol Biol 2013; 425:2561-77. [PMID: 23602807 PMCID: PMC3699901 DOI: 10.1016/j.jmb.2013.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023]
Abstract
The human nuclear xenobiotic receptor PXR recognizes a range of potentially harmful drugs and endobiotic chemicals but must complex with the nuclear receptor RXRα to control the expression of numerous drug metabolism genes. To date, the structural basis and functional consequences of this interaction have remained unclear. Here we present 2.8-Å-resolution crystal structures of the heterodimeric complex formed between the ligand-binding domains of human PXR and RXRα. These structures establish that PXR and RXRα form a heterotetramer unprecedented in the nuclear receptor family of ligand-regulated transcription factors. We further show that both PXR and RXRα bind to the transcriptional coregulator SRC-1 with higher affinity when they are part of the PXR/RXRα heterotetramer complex than they do when each ligand-binding domain is examined alone. Furthermore, we purify the full-length forms of each receptor from recombinant bacterial expression systems and characterize their interactions with a range of direct and everted repeat DNA elements. Taken together, these data advance our understanding of PXR, the master regulator of drug metabolism gene expression in humans, in its functional partnership with RXRα.
Collapse
|
50
|
Zorrilla S, Pérez-Sala D. Combined biophysical and cell-based approaches for the assessment of ligand binding to PPARγ. Methods Mol Biol 2013; 952:237-52. [PMID: 23100238 DOI: 10.1007/978-1-62703-155-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Transcription factors of the peroxisome proliferator-activated receptor (PPAR) family are ligand-activated receptors that play key roles in lipid metabolism and inflammation. The γ isoform (PPARγ) is involved in adipocyte differentiation, insulin sensitization, and vascular pathophysiology, including inflammation and atherosclerosis, for which it is considered an important drug target. PPARγ ligands display varied structures and include fatty acids, electrophilic lipids, and certain drugs. These agonists promote conformational changes allowing interaction of PPARγ with coactivators and hence transcriptional regulation. Here we present a panoply of methods to study PPARγ interactions with ligands and activation in vitro and in cells. The first method is based on the competition of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) with PPARγ ligands for the ligand binding pocket, allowing detection and quantification of ligand binding to PPARγ. This method is specific for PPARγ while ANS displays negligible interaction with other nuclear receptors such as PPARα and retinoid X receptor α (RXRα). The ANS competition assay has been validated through comparison of the affinities determined for well-known PPARγ ligands by this method with those reported in the literature. We also describe here gel-based competition assays that show limited performance with non-covalently bound ligands. In addition, we present a fluorescence anisotropy assay to analyze PPARγ activation by ligands in vitro through their capacity of eliciting PPARγ interaction with a fluorescently labeled peptide derived from one of its coactivators (SRC-1). Finally, we show cell-based assays to investigate PPARγ activation by interaction with its ligands. We believe that combined approaches using ANS, fluorescent coactivator peptides, and in-cell assays to monitor PPARγ binding and interactions may provide valuable strategies for the identification and characterization of PPARγ ligands.
Collapse
|