1
|
Muhammad AA, Basto C, Peterlini T, Guirouilh-Barbat J, Thomas M, Veaute X, Busso D, Lopez B, Mazon G, Le Cam E, Masson JY, Dupaigne P. Human RAD52 stimulates the RAD51-mediated homology search. Life Sci Alliance 2024; 7:e202201751. [PMID: 38081641 PMCID: PMC10713436 DOI: 10.26508/lsa.202201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.
Collapse
Affiliation(s)
- Ali Akbar Muhammad
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Clara Basto
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Thibaut Peterlini
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Melissa Thomas
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Xavier Veaute
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Bernard Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Gerard Mazon
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Eric Le Cam
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| |
Collapse
|
2
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
3
|
Brannvoll A, Xue X, Kwon Y, Kompocholi S, Simonsen AKW, Viswalingam KS, Gonzalez L, Hickson ID, Oestergaard VH, Mankouri HW, Sung P, Lisby M. The ZGRF1 Helicase Promotes Recombinational Repair of Replication-Blocking DNA Damage in Human Cells. Cell Rep 2020; 32:107849. [PMID: 32640219 PMCID: PMC7473174 DOI: 10.1016/j.celrep.2020.107849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 01/05/2023] Open
Abstract
Replication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks. Consistent with a direct role in promoting recombinational DNA repair, we show that ZGRF1 is a 5'-to-3' helicase that catalyzes D-loop dissociation and Holliday junction branch migration. Moreover, ZGRF1 physically interacts with RAD51 and stimulates strand exchange catalyzed by RAD51-RAD54. On the basis of these data, we propose that ZGRF1 promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination.
Collapse
Affiliation(s)
- André Brannvoll
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | - Leticia Gonzalez
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hocine W Mankouri
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
4
|
Tavares EM, Wright WD, Heyer WD, Le Cam E, Dupaigne P. In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat Commun 2019; 10:4058. [PMID: 31492866 PMCID: PMC6731316 DOI: 10.1038/s41467-019-12082-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022] Open
Abstract
Homologous recombination (HR) uses a homologous template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. During homology search, Rad51 nucleoprotein filaments probe and interact with dsDNA, forming the synaptic complex that is stabilized on a homologous sequence. Strand intertwining leads to the formation of a displacement-loop (D-loop). In yeast, Rad54 is essential for HR in vivo and required for D-loop formation in vitro, but its exact role remains to be fully elucidated. Using electron microscopy to visualize the DNA-protein complexes, here we find that Rad54 is crucial for Rad51-mediated synaptic complex formation and homology search. The Rad54−K341R ATPase-deficient mutant protein promotes formation of synaptic complexes but not D-loops and leads to the accumulation of stable heterologous associations, suggesting that the Rad54 ATPase is involved in preventing non-productive intermediates. We propose that Rad51/Rad54 form a functional unit operating in homology search, synaptic complex and D-loop formation. Homologous recombination uses a template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. Here authors use electron microscopy to investigate the role of Rad54 in homology search and synaptic complex formation.
Collapse
Affiliation(s)
- Eliana Moreira Tavares
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France.
| |
Collapse
|
5
|
Abstract
Homologous Recombination (HR) is a high-fidelity process with a range of biologic functions from generation of genetic diversity to repair of DNA double-strand breaks (DSBs). In mammalian cells, BRCA2 facilitates the polymerization of RAD51 onto ssDNA to form a presynaptic nucleoprotein filament. This filament can then strand invade a homologous dsDNA to form the displacement loop (D-loop) structure leading to the eventual DSB repair. Here, we have found that RAD51 in stoichiometric excess over ssDNA can cause D-loop disassembly in vitro; furthermore, we show that this RAD51 activity is countered by BRCA2. These results demonstrate that BRCA2 may have a previously unexpected activity: regulation of HR at a post-synaptic stage by modulating RAD51-mediated D-loop dissociation. Our in vitro results suggest a mechanistic underpinning of homeostasis between RAD51 and BRCA2, which is an important factor of HR in mammalian cells.
Collapse
|
6
|
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 2018; 293:10524-10535. [PMID: 29599286 DOI: 10.1074/jbc.tm118.000372] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination enables the cell to access and copy intact DNA sequence information in trans, particularly to repair DNA damage affecting both strands of the double helix. Here, we discuss the DNA transactions and enzymatic activities required for this elegantly orchestrated process in the context of the repair of DNA double-strand breaks in somatic cells. This includes homology search, DNA strand invasion, repair DNA synthesis, and restoration of intact chromosomes. Aspects of DNA topology affecting individual steps are highlighted. Overall, recombination is a dynamic pathway with multiple metastable and reversible intermediates designed to achieve DNA repair with high fidelity.
Collapse
Affiliation(s)
| | | | - Wolf-Dietrich Heyer
- From the Departments of Microbiology and Molecular Genetics and .,Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
7
|
Abstract
Proteins of the Rad51 family play a key role in homologous recombination by carrying out DNA strand exchange. Here, we present the methodology and the protocols for the 4-strand exchange between gapped circular DNA and homologous linear duplex DNA promoted by human Rad51 and Escherichia coli RecA orthologs. This reaction includes formation of joint molecules and their extension by branch migration in a polar manner. The presented methodology may be used for reconstitution of the medial-to-late stages of homologous recombination in vitro as well as for investigation of the mechanisms of branch migration by helicase-like proteins, e.g., Rad54, BLM, or RecQ1.
Collapse
|
8
|
Goyal N, Rossi MJ, Mazina OM, Chi Y, Moritz RL, Clurman BE, Mazin AV. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat Commun 2018; 9:34. [PMID: 29295984 PMCID: PMC5750232 DOI: 10.1038/s41467-017-02497-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.
Collapse
Affiliation(s)
- Nadish Goyal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Bruce E Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
9
|
Human RAD52 Captures and Holds DNA Strands, Increases DNA Flexibility, and Prevents Melting of Duplex DNA: Implications for DNA Recombination. Cell Rep 2017; 18:2845-2853. [PMID: 28329678 PMCID: PMC5379009 DOI: 10.1016/j.celrep.2017.02.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
Abstract
Human RAD52 promotes annealing of complementary single-stranded DNA (ssDNA). In-depth knowledge of RAD52-DNA interaction is required to understand how its activity is integrated in DNA repair processes. Here, we visualize individual fluorescent RAD52 complexes interacting with single DNA molecules. The interaction with ssDNA is rapid, static, and tight, where ssDNA appears to wrap around RAD52 complexes that promote intra-molecular bridging. With double-stranded DNA (dsDNA), interaction is slower, weaker, and often diffusive. Interestingly, force spectroscopy experiments show that RAD52 alters the mechanics dsDNA by enhancing DNA flexibility and increasing DNA contour length, suggesting intercalation. RAD52 binding changes the nature of the overstretching transition of dsDNA and prevents DNA melting, which is advantageous for strand clamping during or after annealing. DNA-bound RAD52 is efficient at capturing ssDNA in trans. Together, these effects may help key steps in DNA repair, such as second-end capture during homologous recombination or strand annealing during RAD51-independent recombination reactions. RAD52 binds ssDNA rapidly and tightly using wrapping and bridging modes RAD52 binding to dsDNA is slower, weaker, and often diffusive RAD52 changes dsDNA mechanics and intercalates into the double helix RAD52 prevents DNA melting by clamping DNA strands
Collapse
|
10
|
Ma CJ, Kwon Y, Sung P, Greene EC. Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex. J Biol Chem 2017; 292:11702-11713. [PMID: 28551686 PMCID: PMC5512066 DOI: 10.1074/jbc.m117.794545] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/24/2017] [Indexed: 11/06/2022] Open
Abstract
Rad52 is a highly conserved protein involved in the repair of DNA damage. Human RAD52 has been shown to mediate single-stranded DNA (ssDNA) and is synthetic lethal with mutations in other key recombination proteins. For this study, we used single-molecule imaging and ssDNA curtains to examine the binding interactions of human RAD52 with replication protein A (RPA)-coated ssDNA, and we monitored the fate of RAD52 during assembly of the presynaptic complex. We show that RAD52 binds tightly to the RPA-ssDNA complex and imparts an inhibitory effect on RPA turnover. We also found that during presynaptic complex assembly, most of the RPA and RAD52 was displaced from the ssDNA, but some RAD52-RPA-ssDNA complexes persisted as interspersed clusters surrounded by RAD51 filaments. Once assembled, the presence of RAD51 restricted formation of new RAD52-binding events, but additional RAD52 could bind once RAD51 dissociated from the ssDNA. Together, these results provide new insights into the behavior and dynamics of human RAD52 during presynaptic complex assembly and disassembly.
Collapse
Affiliation(s)
- Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York 10032
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York 10032.
| |
Collapse
|
11
|
Uranga LA, Reyes ED, Patidar PL, Redman LN, Lusetti SL. The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks. Nat Commun 2017; 8:15282. [PMID: 28513583 PMCID: PMC5442325 DOI: 10.1038/ncomms15282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
RecN is a cohesin-like protein involved in DNA double-strand break repair in bacteria. The RecA recombinase functions to mediate repair via homologous DNA strand invasion to form D-loops. Here we provide evidence that the RecN protein stimulates the DNA strand invasion step of RecA-mediated recombinational DNA repair. The intermolecular DNA tethering activity of RecN protein described previously cannot fully explain this novel activity since stimulation of RecA function is species-specific and requires RecN ATP hydrolysis. Further, DNA-bound RecA protein increases the rate of ATP hydrolysis catalysed by RecN during the DNA pairing reaction. DNA-dependent RecN ATPase kinetics are affected by RecA protein in a manner suggesting a specific order of protein-DNA assembly, with RecN acting after RecA binds DNA. We present a model for RecN function that includes presynaptic stimulation of the bacterial repair pathway perhaps by contributing to the RecA homology search before ternary complex formation.
Collapse
Affiliation(s)
- Lee A. Uranga
- Department of Chemistry and Biochemistry, New Mexico State University, P.O. Box 30001, MSC 3C, Las Cruces, New Mexico 88003, USA
| | - Emigdio D. Reyes
- Department of Chemistry and Biochemistry, New Mexico State University, P.O. Box 30001, MSC 3C, Las Cruces, New Mexico 88003, USA
| | - Praveen L. Patidar
- Department of Chemistry and Biochemistry, New Mexico State University, P.O. Box 30001, MSC 3C, Las Cruces, New Mexico 88003, USA
| | - Lindsay N. Redman
- Department of Chemistry and Biochemistry, New Mexico State University, P.O. Box 30001, MSC 3C, Las Cruces, New Mexico 88003, USA
| | - Shelley L. Lusetti
- Department of Chemistry and Biochemistry, New Mexico State University, P.O. Box 30001, MSC 3C, Las Cruces, New Mexico 88003, USA
| |
Collapse
|
12
|
Kelso AA, Goodson SD, Watts LE, Ledford LL, Waldvogel SM, Diehl JN, Shah SB, Say AF, White JD, Sehorn MG. The β-isoform of BCCIP promotes ADP release from the RAD51 presynaptic filament and enhances homologous DNA pairing. Nucleic Acids Res 2016; 45:711-725. [PMID: 27694622 PMCID: PMC5314795 DOI: 10.1093/nar/gkw877] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is a template-driven repair pathway that mends DNA double-stranded breaks (DSBs), and thus helps to maintain genome stability. The RAD51 recombinase facilitates DNA joint formation during HR, but to accomplish this task, RAD51 must be loaded onto the single-stranded DNA. DSS1, a candidate gene for split hand/split foot syndrome, provides the ability to recognize RPA-coated ssDNA to the tumor suppressor BRCA2, which is complexed with RAD51. Together BRCA2-DSS1 displace RPA and load RAD51 onto the ssDNA. In addition, the BRCA2 interacting protein BCCIP normally colocalizes with chromatin bound BRCA2, and upon DSB induction, RAD51 colocalizes with BRCA2-BCCIP foci. Down-regulation of BCCIP reduces DSB repair and disrupts BRCA2 and RAD51 foci formation. While BCCIP is known to interact with BRCA2, the relationship between BCCIP and RAD51 is not known. In this study, we investigated the biochemical role of the β-isoform of BCCIP in relation to the RAD51 recombinase. We demonstrate that BCCIPβ binds DNA and physically and functionally interacts with RAD51 to stimulate its homologous DNA pairing activity. Notably, this stimulatory effect is not the result of RAD51 nucleoprotein filament stabilization; rather, we demonstrate that BCCIPβ induces a conformational change within the RAD51 filament that promotes release of ADP to help maintain an active presynaptic filament. Our findings reveal a functional role for BCCIPβ as a RAD51 accessory factor in HR.
Collapse
Affiliation(s)
- Andrew A Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Steven D Goodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Leah E Watts
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - LeAnna L Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Sarah M Waldvogel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - J Nathaniel Diehl
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Shivani B Shah
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Amanda F Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Julie D White
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA
- Clemson University School of Health Research, Clemson, SC 29634, USA
| |
Collapse
|
13
|
Foertsch F, Szambowska A, Weise A, Zielinski A, Schlott B, Kraft F, Mrasek K, Borgmann K, Pospiech H, Grosse F, Melle C. S100A11 plays a role in homologous recombination and genome maintenance by influencing the persistence of RAD51 in DNA repair foci. Cell Cycle 2016; 15:2766-79. [PMID: 27590262 DOI: 10.1080/15384101.2016.1220457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca(2+), a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.
Collapse
Affiliation(s)
- Franziska Foertsch
- a Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| | - Anna Szambowska
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany
| | - Anja Weise
- c Institute of Human Genetics , Jena University Hospital , Jena , Germany
| | - Alexandra Zielinski
- d Radiobiology & Experimental Radiooncology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Bernhard Schlott
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany
| | - Florian Kraft
- c Institute of Human Genetics , Jena University Hospital , Jena , Germany
| | - Kristin Mrasek
- c Institute of Human Genetics , Jena University Hospital , Jena , Germany
| | - Kerstin Borgmann
- d Radiobiology & Experimental Radiooncology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Pospiech
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany.,e Faculty of Biochemistry and Molecular Medicine , University of Oulu , Finland
| | - Frank Grosse
- b Research Group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute , Jena , Germany
| | - Christian Melle
- a Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| |
Collapse
|
14
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
15
|
Richter KS, Ende L, Jeske H. Rad54 is not essential for any geminiviral replication mode in planta. PLANT MOLECULAR BIOLOGY 2015; 87:193-202. [PMID: 25492528 DOI: 10.1007/s11103-014-0270-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The circular single-stranded DNA of phytopathogenic geminiviruses is propagated by three modes: complementary strand replication (CSR), rolling circle replication (RCR) and recombination-dependent replication (RDR), which need host plant factors to be carried out. In addition to necessary host polymerases, proteins of the homologous recombination repair pathway may be considered essential, since geminiviruses are particularly prone to recombination. Among several others, Rad54 was suggested to be necessary for the RCR of Mungbean yellow mosaic India virus. This enzyme is a double-stranded DNA-dependent ATPase and chromatin remodeller and was found to bind and modulate the viral replication-initiator protein in vitro and in Saccharomyces cerevisiae. In contrast to the previous report, we scrutinized the requirement of Rad54 in planta for two distinct fully infectious geminiviruses with respect to the three replication modes. Euphorbia yellow mosaic virus and Cleome leaf crumple virus were inoculated into Rad54-deficient and wildtype Arabidopsis thaliana plant lines to compare the occurrence of viral DNA forms. Replication intermediates were displayed in the time course of infection by one and two-dimensional agarose gel electrophoresis and Southern hybridization. The experiments showed that Rad54 was neither essential for CSR, RCR nor RDR, and it had no significant influence on virus titers during systemic infection.
Collapse
Affiliation(s)
- Kathrin S Richter
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | | | | |
Collapse
|
16
|
Wright WD, Heyer WD. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol Cell 2014; 53:420-32. [PMID: 24486020 DOI: 10.1016/j.molcel.2013.12.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/03/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unknown. Moreover, a seemingly disparate function of Rad54 is removal of Rad51 from heteroduplex DNA (hDNA) to allow HR-associated DNA synthesis. Here, we uncover features of D loop formation/dissociation dynamics, employing Rad51 filaments formed on ssDNAs that mimic the physiological length and structure of in vivo substrates. The Rad54 motor is activated by Rad51 bound to synapsed DNAs and guided by a ssDNA-binding domain. We present a unified model wherein Rad54 acts as an hDNA pump that drives D loop formation while simultaneously removing Rad51 from hDNA, consolidating both ATP-dependent activities of Rad54 into a single mechanistic step.
Collapse
Affiliation(s)
- William Douglass Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA.
| |
Collapse
|
17
|
Pezza RJ, Voloshin ON, Volodin AA, Boateng KA, Bellani MA, Mazin AV, Camerini-Otero RD. The dual role of HOP2 in mammalian meiotic homologous recombination. Nucleic Acids Res 2013; 42:2346-57. [PMID: 24304900 PMCID: PMC3936763 DOI: 10.1093/nar/gkt1234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2–MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1−/− spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2–MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis.
Collapse
Affiliation(s)
- Roberto J Pezza
- Oklahoma Medical Research Foundation, Oklahoma City, 73104 OK, USA, Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, 73126 OK, USA, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892 MD, USA, Institute of Molecular Genetics of the Russian Academy of Sciences, 123182 Moscow, Russia, Biomedical Research Center, National Institute of Aging, Baltimore, 21224 MA, USA and Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, 19102 PA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Burkovics P, Sebesta M, Balogh D, Haracska L, Krejci L. Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res 2013; 42:1711-20. [PMID: 24198246 PMCID: PMC3919600 DOI: 10.1093/nar/gkt1040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stalling of replication forks at unrepaired DNA lesions can result in discontinuities opposite the damage in the newly synthesized DNA strand. Translesion synthesis or facilitating the copy from the newly synthesized strand of the sister duplex by template switching can overcome such discontinuities. During template switch, a new primer–template junction has to be formed and two mechanisms, including replication fork reversal and D-loop formation have been suggested. Genetic evidence indicates a major role for yeast Rad5 in template switch and that both Rad5 and its human orthologue, Helicase-like transcription factor (HLTF), a potential tumour suppressor can facilitate replication fork reversal. This study demonstrates the ability of HLTF and Rad5 to form a D-loop without requiring ATP binding and/or hydrolysis. We also show that this strand-pairing activity is independent of RAD51 in vitro and is not mechanistically related to that of another member of the SWI/SNF family, RAD54. In addition, the 3′-end of the invading strand in the D-loop can serve as a primer and is extended by DNA polymerase. Our data indicate that HLTF is involved in a RAD51-independent D-loop branch of template switch pathway that can promote repair of gaps formed during replication of damaged DNA.
Collapse
Affiliation(s)
- Peter Burkovics
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, HU-6726 Szeged, Hungary, Department of Biology, Masaryk University, Brno, Czech Republic, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic and International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
Deakyne JS, Huang F, Negri J, Tolliday N, Cocklin S, Mazin AV. Analysis of the activities of RAD54, a SWI2/SNF2 protein, using a specific small-molecule inhibitor. J Biol Chem 2013; 288:31567-80. [PMID: 24043618 PMCID: PMC3814753 DOI: 10.1074/jbc.m113.502195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
RAD54, an important homologous recombination protein, is a member of the SWI2/SNF2 family of ATPase-dependent DNA translocases. In vitro, RAD54 stimulates RAD51-mediated DNA strand exchange and promotes branch migration of Holliday junctions. It is thought that an ATPase-dependent DNA translocation is required for both of these RAD54 activities. Here we identified, by high-throughput screening, a specific RAD54 inhibitor, streptonigrin (SN), and used it to investigate the mechanisms of RAD54 activities. We found that SN specifically targets the RAD54 ATPase, but not DNA binding, through direct interaction with RAD54 and generation of reactive oxygen species. Consistent with the dependence of branch migration (BM) on the ATPase-dependent DNA translocation of RAD54, SN inhibited RAD54 BM. Surprisingly, the ability of RAD54 to stimulate RAD51 DNA strand exchange was not significantly affected by SN, indicating a relatively smaller role of RAD54 DNA translocation in this process. Thus, the use of SN enabled us to identify important differences in the effect of the RAD54 ATPase and DNA translocation on two major activities of RAD54, BM of Holliday junctions and stimulation of DNA pairing.
Collapse
Affiliation(s)
- Julianna S. Deakyne
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Fei Huang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Joseph Negri
- the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Nicola Tolliday
- the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Alexander V. Mazin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
20
|
Combined optical and topographic imaging reveals different arrangements of human RAD54 with presynaptic and postsynaptic RAD51-DNA filaments. Proc Natl Acad Sci U S A 2013; 110:11385-90. [PMID: 23801766 DOI: 10.1073/pnas.1306467110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Essential genome transactions, such as homologous recombination, are achieved by concerted and dynamic interactions of multiple protein components with DNA. Which proteins do what and how, will be reflected in their relative arrangements. However, obtaining high-resolution structural information on the variable arrangements of these complex assemblies is a challenge. Here we demonstrate the versatility of a combined total internal reflection fluorescence and scanning force microscope (TIRF-SFM) to pinpoint fluorescently labeled human homologous recombination protein RAD54 interacting with presynaptic (ssDNA) and postsynaptic (dsDNA) human recombinase RAD51 nucleoprotein filaments. Labeled proteins were localized by superresolution imaging on complex structures in the SFM image with high spatial accuracy. We observed some RAD54 at RAD51 filament ends, as expected. More commonly, RAD54 interspersed along RAD51-DNA filaments. RAD54 promotes RAD51-mediated DNA strand exchange and has been described to both stabilize and destabilize RAD51-DNA filaments. The different architectural arrangements we observe for RAD54 with RAD51-DNA filaments may reflect the diverse roles of this protein in homologous recombination.
Collapse
|
21
|
Opposing roles for two molecular forms of replication protein A in Rad51-Rad54-mediated DNA recombination in Plasmodium falciparum. mBio 2013; 4:e00252-13. [PMID: 23631919 PMCID: PMC3648904 DOI: 10.1128/mbio.00252-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bacterial RecA protein and its eukaryotic homologue Rad51 play a central role in the homologous DNA strand exchange reaction during recombination and DNA repair. Previously, our lab has shown that PfRad51, the Plasmodium falciparum homologue of Rad51, exhibited ATPase activity and promoted DNA strand exchange in vitro. In this study, we evaluated the catalytic functions of PfRad51 in the presence of putative interacting partners, especially P. falciparum homologues of Rad54 and replication protein A. PfRad54 accelerated PfRad51-mediated pairing between single-stranded DNA (ssDNA) and its homologous linear double-stranded DNA (dsDNA) in the presence of 0.5 mM CaCl2. We also present evidence that recombinant PfRPA1L protein serves the function of the bacterial homologue single-stranded binding protein (SSB) in initiating homologous pairing and strand exchange activity. More importantly, the function of PfRPA1L was negatively regulated in a dose-dependent manner by PfRPA1S, another RPA homologue in P. falciparum. Finally, we present in vivo evidence through comet assays for methyl methane sulfonate-induced DNA damage in malaria parasites and accompanying upregulation of PfRad51, PfRad54, PfRPA1L, and PfRPA1S at the level of transcript and protein needed to repair DNA damage. This study provides new insights into the role of putative Rad51-interacting proteins involved in homologous recombination and emphasizes the physiological role of DNA damage repair during the growth of parasites. Homologous recombination plays a major role in chromosomal rearrangement, and Rad51 protein, aided by several other proteins, plays a central role in DNA strand exchange reaction during recombination and DNA repair. This study reports on the characterization of the role of P. falciparum Rad51 in homologous strand exchange and DNA repair and evaluates the functional contribution of PfRad54 and PfRPA1 proteins. Data presented here provide mechanistic insights into DNA recombination and DNA damage repair mechanisms in this parasite. The importance of these research findings in future work will be to investigate if Rad51-dependent mechanisms are involved in chromosomal rearrangements during antigenic variation in P. falciparum. A prominent determinant of antigenic variation, the extraordinary ability of the parasite to rapidly change its surface molecules, is associated with var genes, and antigenic variation presents a major challenge to vaccine development.
Collapse
|
22
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
24
|
Huang F, Mazina OM, Zentner IJ, Cocklin S, Mazin AV. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J Med Chem 2012; 55:3011-20. [PMID: 22380680 DOI: 10.1021/jm201173g] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The homologous recombination (HR) pathway plays a crucial role in the repair of DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs). RAD51, a key protein of HR, possesses a unique activity: DNA strand exchange between homologous DNA sequences. Recently, using a high-throughput screening (HTS), we identified compound 1 (B02), which specifically inhibits the DNA strand exchange activity of human RAD51. Here, we analyzed the mechanism of inhibition and found that 1 disrupts RAD51 binding to DNA. We then examined the effect of 1 on HR and DNA repair in the cell. The results show that 1 inhibits HR and increases cell sensitivity to DNA damage. We propose to use 1 for analysis of cellular functions of RAD51. Because DSB- and ICL-inducing agents are commonly used in anticancer therapy, specific inhibitors of RAD51 may also help to increase killing of cancer cells.
Collapse
Affiliation(s)
- Fei Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
25
|
Mazina OM, Rossi MJ, Deakyne JS, Huang F, Mazin AV. Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins. J Biol Chem 2012; 287:11820-32. [PMID: 22356911 DOI: 10.1074/jbc.m112.341347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | | | | | |
Collapse
|
26
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Abstract
Double-stranded DNA breaks (DSB), the most harmful type of DNA lesions, cause cell death and genome instability. Homologous recombination repairs DSB using homologous DNA sequences as templates. Here we describe a set of reactions that lead to reconstitution of the double-stranded DNA break repair process in vitro employing purified human homologous recombination proteins and DNA polymerase η. Reconstitution of critical steps of DSB repair in vitro may help to better understand the mechanisms of recombinational DNA repair and the role of various human homologous recombination proteins in this process.
Collapse
|
28
|
Ceballos SJ, Heyer WD. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:509-23. [PMID: 21704205 PMCID: PMC3171615 DOI: 10.1016/j.bbagrm.2011.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 11/25/2022]
Abstract
Homologous recombination is a central pathway to maintain genomic stability and is involved in the repair of DNA damage and replication fork support, as well as accurate chromosome segregation during meiosis. Rad54 is a dsDNA-dependent ATPase of the Snf2/Swi2 family of SF2 helicases, although Rad54 lacks classical helicase activity and cannot carry out the strand displacement reactions typical for DNA helicases. Rad54 is a potent and processive motor protein that translocates on dsDNA, potentially executing several functions in recombinational DNA repair. Rad54 acts in concert with Rad51, the central protein of recombination that performs the key reactions of homology search and DNA strand invasion. Here, we will review the role of the Rad54 protein in homologous recombination with an emphasis on mechanistic studies with the yeast and human enzymes. We will discuss how these results relate to in vivo functions of Rad54 during homologous recombination in somatic cells and during meiosis. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Shannon J. Ceballos
- Department of Microbiology, University of California, Davis, Davis, CA 95616-8665
| | - Wolf-Dietrich Heyer
- Department of Microbiology, University of California, Davis, Davis, CA 95616-8665
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665
| |
Collapse
|
29
|
Takaku M, Tsujita T, Horikoshi N, Takizawa Y, Qing Y, Hirota K, Ikura M, Ikura T, Takeda S, Kurumizaka H. Purification of the human SMN-GEMIN2 complex and assessment of its stimulation of RAD51-mediated DNA recombination reactions. Biochemistry 2011; 50:6797-805. [PMID: 21732698 DOI: 10.1021/bi200828g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A deficiency in the SMN gene product causes the motor neuron degenerative disease spinal muscular atrophy. GEMIN2 was identified as an SMN-interacting protein, and the SMN-GEMIN2 complex constitutes part of the large SMN complex, which promotes the assembly of the spliceosomal small nuclear ribonucleoprotein (snRNP). In addition to its splicing function, we previously found that GEMIN2 alone stimulates RAD51-mediated recombination in vitro, and functions in DNA double-strand-break (DSB) repair through homologous recombination in vivo. However, the function of SMN in homologous recombination has not been reported. In the present study, we successfully purified the SMN-GEMIN2 complex as a fusion protein. The SMN-GEMIN2 fusion protein complemented the growth-defective phenotype of GEMIN2-knockout cells. The purified SMN-GEMIN2 fusion protein enhanced the RAD51-mediated homologous pairing much more efficiently than GEMIN2 alone. SMN-GEMIN2 possessed DNA-binding activity, which was not observed with the GEMIN2 protein, and significantly stimulated the secondary duplex DNA capture by the RAD51-single-stranded DNA complex during homologous pairing. These results provide the first evidence that the SMN-GEMIN2 complex plays a role in homologous recombination, in addition to spliceosomal snRNP assembly.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV. Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol 2011; 6:628-35. [PMID: 21428443 DOI: 10.1021/cb100428c] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RAD51 is a key protein of homologous recombination that plays a critical role in the repair of DNA double-strand breaks (DSB) and interstrand cross-links (ICL). To better understand the cellular function(s) of human RAD51, we propose to develop specific RAD51 inhibitors. RAD51 inhibitors may also help to increase the potency of anticancer drugs that act by inducing DSBs or ICLs, e.g., cisplatin or ionizing radiation. In vitro, RAD51 promotes DNA strand exchange between homologous ss- and dsDNA. Here, we developed a DNA strand exchange assay based on fluorescence resonance energy transfer and used this assay to identify RAD51 inhibitors by high-throughput screening of the NIH Small Molecule Repository (>200,000 compounds). Seventeen RAD51 inhibitors were identified and analyzed for selectivity using additional nonfluorescent DNA-based assays. As a result, we identified a compound (B02) that specifically inhibited human RAD51 (IC(50) = 27.4 μM) but not its E. coli homologue RecA (IC(50) > 250 μM). Two other compounds (A03 and A10) were identified that inhibited both RAD51 and RecA but not the structurally unrelated RAD54 protein. The structure-activity relationship (SAR) analysis allowed us to identify the structural components of B02 that are critical for RAD51 inhibition. The described approach can be used for identification of specific inhibitors of other human proteins that play an important role in DNA repair, e.g., RAD54 or Bloom's syndrome helicase.
Collapse
Affiliation(s)
- Fei Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Nuzhat A. Motlekar
- Penn center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19102, United States
| | - Chelsea M. Burgwin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Andrew D. Napper
- Penn center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19102, United States
| | - Scott L. Diamond
- Penn center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19102, United States
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
31
|
Takaku M, Ueno H, Kurumizaka H. Biochemical analysis of the human ENA/VASP-family proteins, MENA, VASP and EVL, in homologous recombination. J Biochem 2011; 149:721-9. [PMID: 21398369 DOI: 10.1093/jb/mvr029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MENA, VASP and EVL are members of the ENA/VASP family of proteins and are involved in cytoplasmic actin remodeling. Previously, we found that EVL directly interacts with RAD51, an essential protein in the homologous recombinational repair of double-strand breaks (DSBs) and stimulates the RAD51-mediated recombination reactions in vitro. The EVL-knockdown MCF7 cells exhibited a clear reduction in RAD51-foci formation, suggesting that EVL may function in the DSB repair pathway through RAD51-mediated homologous recombination. However, the DSB repair defects were less significant in the EVL-knockdown cells, implying that two EVL paralogues, MENA and VASP, may complement the EVL function in human cells. Therefore, in the present study, we purified human MENA, VASP and EVL as recombinant proteins, and compared their biochemical activities in vitro. We found that all three proteins commonly exhibited the RAD51 binding, DNA binding and DNA-annealing activities. Stimulation of the RAD51-mediated homologous pairing was also observed with all three proteins. In addition, surface plasmon resonance analyses revealed that MENA, VASP and EVL mutually interacted. These results support the ideas that the ENA/VASP-family proteins are functionally redundant in homologous recombination, and that all three may be involved in the DSB repair pathway in humans.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Neal JA, Meek K. Choosing the right path: does DNA-PK help make the decision? Mutat Res 2011; 711:73-86. [PMID: 21376743 DOI: 10.1016/j.mrfmmm.2011.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 12/30/2022]
Abstract
DNA double-strand breaks are extremely harmful lesions that can lead to genomic instability and cell death if not properly repaired. There are at least three pathways that are responsible for repairing DNA double-strand breaks in mammalian cells: non-homologous end joining, homologous recombination and alternative non-homologous end joining. Here we review each of these three pathways with an emphasis on the role of the DNA-dependent protein kinase, a critical component of the non-homologous end joining pathway, in influencing which pathway is ultimately utilized for repair.
Collapse
Affiliation(s)
- Jessica A Neal
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | | |
Collapse
|
33
|
Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol 2010; 18:56-60. [PMID: 21151113 PMCID: PMC3058924 DOI: 10.1038/nsmb.1946] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/01/2010] [Indexed: 12/31/2022]
Abstract
The ubiquitously expressed Rad51 and the meiosis-specific Dmc1 recombinases promote the formation of strand invasion products (D-loops) between homologous molecules. Strand invasion products are processed by either the double strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to being processed by SDSA need to dissociate producing noncrossovers (NCOs) and those destined for DSBR should resist dissociation to generate crossovers (COs). The mechanism that channels recombination intermediates into different HR pathways is unknown. Here we demonstrate that D-loops in a DMC1 driven reaction are substantially more resistant to dissociation by branch migration proteins such as RAD54, than those formed by RAD51. We propose that the intrinsic resistance to dissociation of DMC1 strand invasion intermediates may account for why DMC1 is essential to ensure the proper segregation of chromosomes in meiosis.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
34
|
Paz-Y-Miño C, López-Cortés A, Muñoz MJ, Castro B, Cabrera A, Sánchez ME. Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia. Genet Mol Biol 2010; 33:646-9. [PMID: 21637572 PMCID: PMC3036142 DOI: 10.1590/s1415-47572010005000095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/13/2010] [Indexed: 11/29/2022] Open
Abstract
The hRAD54 gene is a key member of the RAD52 epistasis group involved in repair of double-strand breaks (DSB) by homologous recombination (HR). Thus, alterations of the normal function of these genes could generate genetic instability, shifting the normal process of the cell cycle, leading the cells to develop into cancer. In this work we analyzed exon 18 of the hRAD54 gene, which has been previously reported by our group to carry a silent polymorphism, 2290 C/T (Ala730Ala), associated to meningiomas. We performed a PCR-SSCP method to detect the polymorphism in 239 samples including leukemia and normal control population. The results revealed that the 2290 C/T polymorphism has frequencies of 0.1 for the leukemia and 0.1 for the control group. These frequencies show no statistical differences. Additionally, we dissected the leukemia group in chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) to evaluate the polymorphism. The frequencies found in these subgroups were 0.14 for CML and 0.05 for ALL. We found statistically significant differences between CML patients and the control group (p < 0.05) but we did not find significant differences between ALL and the control group (p > 0.05). These results suggest a possible link between the 2290 C/T polymorphism of the hRAD54 gene and CML.
Collapse
Affiliation(s)
- César Paz-Y-Miño
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de las Américas, Quito Ecuador
| | | | | | | | | | | |
Collapse
|
35
|
Bugreev DV, Rossi MJ, Mazin AV. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res 2010; 39:2153-64. [PMID: 21097884 PMCID: PMC3064783 DOI: 10.1093/nar/gkq1139] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA lesions cause stalling of DNA replication forks, which can be lethal for the cell. Homologous recombination (HR) plays an important role in DNA lesion bypass. It is thought that Rad51, a key protein of HR, contributes to the DNA lesion bypass through its DNA strand invasion activity. Here, using model stalled replication forks we found that RAD51 and RAD54 by acting together can promote DNA lesion bypass in vitro through the ‘template-strand switch’ mechanism. This mechanism involves replication fork regression into a Holliday junction (‘chicken foot structure’), DNA synthesis using the nascent lagging DNA strand as a template and fork restoration. Our results demonstrate that RAD54 can catalyze both regression and restoration of model replication forks through its branch migration activity, but shows strong bias toward fork restoration. We find that RAD51 modulates this reaction; by inhibiting fork restoration and stimulating fork regression it promotes accumulation of the chicken foot structure, which we show is essential for DNA lesion bypass by DNA polymerase in vitro. These results indicate that RAD51 in cooperation with RAD54 may have a new role in DNA lesion bypass that is distinct from DNA strand invasion.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|
36
|
Urena DE, Zhang Z, Tsai YC, Wang YZ, Chen J. From strand exchange to branch migration; bypassing of non-homologous sequences by human Rad51 and Rad54. J Mol Biol 2010; 405:77-91. [PMID: 21056573 DOI: 10.1016/j.jmb.2010.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
Rad51 and Rad54 play crucial roles during homologous recombination. The biochemical activities of human Rad51 (hRad51) and human Rad54 (hRad54) and their interactions with each other are well documented. However, it is not known how these two proteins work together to bypass heterologous sequences; i.e. mismatched base pairs, during homologous recombination. In this study, we used a fluorescence resonance energy transfer assay to monitor homologous recombination processes in real time so that the interactions between hRad54 and hRad51 during DNA strand exchange and branch migration, which are two core steps of homologous recombination, could be characterized. Our results indicate that hRad54 can facilitate hRad51-promoted strand exchange through various degrees of mismatching. We propose that the main roles of hRad51 in homologous recombination is to initiate the homology recognition and strand-exchange steps and those of hRad54 are to promote efficient branch migration, bypass potential mismatches and facilitate long-range strand exchanges through branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Damian E Urena
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
37
|
Somyajit K, Subramanya S, Nagaraju G. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 2010; 31:2031-8. [PMID: 20952512 PMCID: PMC2994284 DOI: 10.1093/carcin/bgq210] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
38
|
Abstract
Homologous recombination is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome metabolism and maintenance. The homologous recombination reaction is mediated by the Rad51 recombinase. In the presence of ATP, Rad51 polymerizes on single-stranded DNA (ssDNA) to form a nucleoprotein filament that is commonly referred to as the "presynaptic filament." The presynaptic filament is capable of locating a homologous duplex DNA molecule and catalyzing invasion of the duplex to form a DNA displacement loop called the "D-loop." This protocol describes an in vitro D-loop assay that uses a radiolabeled ssDNA oligonucleotide and a nonlabeled homologous supercoiled duplex DNA as substrates, and agarose gel electrophoresis together with PhosphorImaging for product analysis. To enhance the efficiency of the D-loop reaction, an ancillary factor (the Hop2-Mnd1 complex or Rad54) is included in the reaction. This reconstituted system provides researchers a biochemical means to dissect the mechanisms of the homologous recombination machinery.
Collapse
|
39
|
Takizawa Y, Qing Y, Takaku M, Ishida T, Morozumi Y, Tsujita T, Kogame T, Hirota K, Takahashi M, Shibata T, Kurumizaka H, Takeda S. GEMIN2 promotes accumulation of RAD51 at double-strand breaks in homologous recombination. Nucleic Acids Res 2010; 38:5059-74. [PMID: 20403813 PMCID: PMC2926616 DOI: 10.1093/nar/gkq271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
41
|
Rossi MJ, Mazina OM, Bugreev DV, Mazin AV. Analyzing the branch migration activities of eukaryotic proteins. Methods 2010; 51:336-46. [PMID: 20167275 DOI: 10.1016/j.ymeth.2010.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/06/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022] Open
Abstract
The Holliday junction is a key intermediate of DNA repair, recombination, and replication. Branch migration of Holliday junctions is a process in which one DNA strand is progressively exchanged for another. Branch migration of Holliday junctions may serve several important functions such as affecting the length of genetic information transferred between homologous chromosomes during meiosis, restarting stalled replication forks, and ensuring the faithful repair of double strand DNA breaks by homologous recombination. Several proteins that promote branch migration of Holliday junctions have been recently identified. These proteins, which function during DNA replication and repair, possess the ability to bind Holliday junctions and other branched DNA structures and drive their branch migration by translocating along DNA in an ATPase-dependent manner. Here, we describe methods employing a wide range of DNA substrates for studying proteins that catalyze branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | | | |
Collapse
|
42
|
Kumari A, Mazina OM, Shinde U, Mazin AV, Lu H. A role for SSRP1 in recombination-mediated DNA damage response. J Cell Biochem 2009; 108:508-18. [PMID: 19639603 DOI: 10.1002/jcb.22280] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A possible role for structure-specific recognition protein 1 (SSRP1) in replication-associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication-associated DNA damage, in mammalian cells. Surprisingly, over-expression of SSRP1 reduced the number of hprt(+) recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double-strand break formation. In correlation, we found that the depletion of SSRP1 in HU-treated human cells elevated the number of Rad51 and H2AX foci, while over-expression of the wild-type SSRP1 markedly reduced HU-induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54-promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication-associated DNA damage response by suppressing avoidable HR repair events.
Collapse
Affiliation(s)
- Anuradha Kumari
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
43
|
Bugreev DV, Mazina OM, Mazin AV. Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism. J Biol Chem 2009; 284:26349-59. [PMID: 19632996 PMCID: PMC2786030 DOI: 10.1074/jbc.m109.029371] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/21/2009] [Indexed: 01/08/2023] Open
Abstract
Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.
Collapse
Affiliation(s)
- Dmitry V. Bugreev
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192 and
- the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Olga M. Mazina
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192 and
| | - Alexander V. Mazin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192 and
| |
Collapse
|
44
|
Burgess RC, Lisby M, Altmannova V, Krejci L, Sung P, Rothstein R. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. ACTA ACUST UNITED AC 2009; 185:969-81. [PMID: 19506039 PMCID: PMC2711611 DOI: 10.1083/jcb.200810055] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 “anti-recombinase” restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we cytologically characterize Srs2 function in vivo and describe a novel mechanism for regulating the initiation of HR. We find that Srs2 is recruited separately to replication and repair centers and identify the genetic requirements for recruitment. In the absence of Srs2 activity, Rad51 foci accumulate, and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2 removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR.
Collapse
Affiliation(s)
- Rebecca C Burgess
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
45
|
Takaku M, Machida S, Hosoya N, Nakayama S, Takizawa Y, Sakane I, Shibata T, Miyagawa K, Kurumizaka H. Recombination activator function of the novel RAD51- and RAD51B-binding protein, human EVL. J Biol Chem 2009; 284:14326-36. [PMID: 19329439 DOI: 10.1074/jbc.m807715200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Haseltine CA, Kowalczykowski SC. An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA. Nucleic Acids Res 2009; 37:2757-70. [PMID: 19282450 PMCID: PMC2677860 DOI: 10.1093/nar/gkp068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein–DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a prokaryotic organism. The Sulfolobus solfataricus Rad54 (SsoRad54) protein is a double-strand DNA-dependent ATPase that can alter the topology of duplex DNA. Like its eukaryotic homolog, it interacts directly with the S. solfataricus Rad51 homologue, SsoRadA, to stimulate DNA strand exchange. Confirmation of this protein as an authentic Rad54 homolog establishes an essential phylogenetic bridge for identifying Rad54 homologs in the archaeal and bacterial domains.
Collapse
Affiliation(s)
- Cynthia A Haseltine
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
47
|
Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc Natl Acad Sci U S A 2009; 106:361-8. [PMID: 19122145 DOI: 10.1073/pnas.0811965106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rad51 protein (Rad51) is central to recombinational repair of double-strand DNA breaks. It polymerizes onto DNA and promotes strand exchange between homologous chromosomes. We visualized the real-time assembly and disassembly of human Rad51 nucleoprotein filaments on double-stranded DNA by single-molecule fluorescence microscopy. Rad51 assembly extends the DNA by approximately 65%. Nucleoprotein filament formation occurs via rapid nucleation followed by growth from these nuclei. Growth does not continue indefinitely, however, and nucleoprotein filaments terminate when approximately 2 mum in length. The dependence of nascent filament formation on Rad51 concentration suggests that 2-3 Rad51 monomers are involved in nucleation. Rad51 nucleoprotein filaments are stable and remain extended when ATP hydrolysis is prevented; however, when permitted, filaments decrease in length as a result of conversion to ADP-bound nucleoprotein complexes and partial protein dissociation. Dissociation of Rad51 from dsDNA is slow and incomplete, thereby rationalizing the need for other proteins that facilitate disassembly.
Collapse
|
48
|
Abstract
Rad54, a key protein of homologous recombination, physically interacts with a DNA structure-specific endonuclease, Mus81-Eme1. Genetic data indicate that Mus81-Eme1 and Rad54 might function together in the repair of damaged DNA. In vitro, Rad54 promotes branch migration of Holliday junctions, whereas the Mus81-Eme1 complex resolves DNA junctions by endonucleolytic cleavage. Here, we show that human Rad54 stimulates Mus81-Eme1 endonuclease activity on various Holliday junction-like intermediates. This stimulation is the product of specific interactions between the human Rad54 (hRad54) and Mus81 proteins, considering that Saccharomyces cerevisiae Rad54 protein does not stimulate human Mus81-Eme1 endonuclease activity. Stimulation of Mus81-Eme1 cleavage activity depends on formation of specific Rad54 complexes on DNA substrates occurring in the presence of ATP and, to a smaller extent, of other nucleotide cofactors. Thus, our results demonstrate a functional link between the branch migration activity of hRad54 and the structure-specific endonuclease activity of hMus81-Eme1, suggesting that the Rad54 and Mus81-Eme1 proteins may cooperate in the processing of Holliday junction-like intermediates during homologous recombination or DNA repair.
Collapse
|
49
|
Rossi MJ, Mazin AV. Rad51 protein stimulates the branch migration activity of Rad54 protein. J Biol Chem 2008; 283:24698-706. [PMID: 18617519 DOI: 10.1074/jbc.m800839200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rad51 and Rad54 proteins play important roles during homologous recombination in eukaryotes. Rad51 forms a nucleoprotein filament on single-stranded DNA and performs the initial steps of double strand break repair. Rad54 belongs to the Swi2/Snf2 family of ATP-dependent DNA translocases. We previously showed that Rad54 promotes branch migration of Holliday junctions. Here we find that human Rad51 (hRad51) significantly stimulates the branch migration activity of hRad54. The stimulation appears to be evolutionarily conserved, as yeast Rad51 also stimulates the branch migration activity of yeast Rad54. We further investigated the mechanism of this stimulation. Our results demonstrate that the stimulation of hRad54-promoted branch migration by hRad51 is driven by specific protein-protein interactions, and the active form of the hRad51 filament is more stimulatory than the inactive one. The current results support the hypothesis that the hRad51 conformation state has a strong effect on interaction with hRad54 and ultimately on the function of hRad54 in homologous recombination.
Collapse
Affiliation(s)
- Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | |
Collapse
|
50
|
Bugreev DV, Brosh RM, Mazin AV. RECQ1 possesses DNA branch migration activity. J Biol Chem 2008; 283:20231-42. [PMID: 18495662 DOI: 10.1074/jbc.m801582200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are essential for the maintenance of genome stability. Five members of the RecQ family have been found in humans, including RECQ1, RECQ5, BLM, WRN, and RECQ4; the last three are associated with human diseases. At this time, only BLM and WRN helicases have been extensively characterized, and the information on the other RecQ helicases has only started to emerge. Our current paper is focused on the biochemical properties of human RECQ1 helicase. Recent cellular studies have shown that RECQ1 may participate in DNA repair and homologous recombination, but the exact mechanisms of how RECQ1 performs its cellular functions remain largely unknown. Whereas RECQ1 possesses poor helicase activity, we found here that the enzyme efficiently promotes DNA branch migration. Further analysis revealed that RECQ1 catalyzes unidirectional three-stranded branch migration with a 3' --> 5' polarity. We show that this RECQ1 activity is instrumental in specific disruption of joint molecules (D-loops) formed by a 5' single-stranded DNA invading strand, which may represent dead end intermediates of homologous recombination in vivo. The newly found enzymatic properties of the RECQ1 helicase may have important implications for the function of RECQ1 in maintenance of genomic stability.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|