1
|
Zeng S, Zhang J, Jiang W, Zeng C. The paradoxical role of SERPINB5 in gastrointestinal cancers: oncogene or tumor suppressor? Mol Biol Rep 2025; 52:188. [PMID: 39899168 DOI: 10.1007/s11033-025-10293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND SERPINB5, also known as Maspin, is a non-inhibitory member of the serine protease inhibitor superfamily. SERPINB5 exerts diverse effects on a variety of human cancers, including cell proliferation, angiogenesis, apoptosis, tumor invasion, and metastasis. SERPINB5 has traditionally been regarded as a tumor suppressor gene, but emerging evidences supports its oncogenic properties. METHODS We conducted a comprehensive review of the existing literature on SERPINB5 in gastrointestinal cancers, synthesizing data on its expression patterns, subcellular localization, epigenetic modifications, and clinical significance. RESULTS Depending on its subcellular localization and epigenetic modifications, SERPINB5 demonstrate either protumor or antitumor activity in different gastrointestinal cancers, such as colorectal cancer, gastric cancer, pancreatic cancer, gallbladder cancer and liver cancer. We elucidate its potential as a predictive and prognostic biomarker, with a focus on its implications for diagnosis, prognosis, and therapeutic intervention, emphasizing its utility in early lesion detection and treatment. CONCLUSIONS SERPINB5 plays a complex and context-dependent role in gastrointestinal cancers, highlighting further research to dissect the true significance of SERPINB5 expression and the molecular mechanisms underlying its divergent clinical behaviors in cancer.
Collapse
Affiliation(s)
- Shuyan Zeng
- Huankui Academy of Nanchang University, Nanchang, China
| | - Jiayu Zhang
- Huankui Academy of Nanchang University, Nanchang, China
| | - Wanyi Jiang
- Huankui Academy of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, 90 BaYi Avenue, Nanchang, 330000, Jiangxi, China.
- Huankui Academy of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Anwar M, Haseeb M, Choi S, Kim KP. P176S Mutation Rewires Electrostatic Interactions That Alter Maspin Functionality. ACS OMEGA 2023; 8:28258-28267. [PMID: 37576651 PMCID: PMC10413834 DOI: 10.1021/acsomega.3c01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/21/2023] [Indexed: 08/15/2023]
Abstract
Maspin is known to regress tumors by inhibiting angiogenesis; however, its roles have been reported to be context- and sequence-dependent. Various proteins and cofactors bind to maspin, possibly explaining its conflicting roles. Moreover, polymorphic forms of maspin have also been linked to tumor regression and survival; for instance, maspin with Ser at 176 (maspin-S176) promotes tumors, while maspin with Pro at 176 (maspin-P176) has opposing roles in cancer pathogenesis. With the help of long molecular dynamics simulations, a possible link between polymorphic forms and tumor progression has been established. First, maspin is dynamically stable with either amino acid at the 176 position. Second, differential contacts have been observed among various regions; third, these contacts have significantly altered the electrostatic energetics of various residues; finally, these altered electrostatics of maspin-S176 and maspin-P176 rewire the polar contacts that abolished the allosteric control of the protein. By combining these factors, the altered electrostatics substantially affect the localization and preference of maspin-binding partners, thus culminating in a different maspin-protein(cofactor)-interaction landscape that may have been manifested in previous conflicting reports. Here, the underlying reason has been highlighted and discussed, which may be helpful for better therapeutic manipulation.
Collapse
Affiliation(s)
- Muhammad
Ayaz Anwar
- Department
of Applied Chemistry, Institute of Natural Science, Global Center
for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic
of Korea
| | - Muhammad Haseeb
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Republic
of Korea
| | - Sangdun Choi
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Republic
of Korea
| | - Kwang Pyo Kim
- Department
of Applied Chemistry, Institute of Natural Science, Global Center
for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic
of Korea
- Department
of Biomedical Science and Technology, Kyung
Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Traore DAK, Torres VVL, Akhtar N, Gummer AM, Flanigan SF, Coulibaly F, Adams V, Whisstock JC, Rood JI. TcpA from the Clostridiumperfringens plasmid pCW3 is more closely related to the DNA translocase FtsK than to coupling proteins. Structure 2023; 31:455-463.e4. [PMID: 36841236 DOI: 10.1016/j.str.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
Conjugative DNA transfer is a major factor in the dissemination of antibiotic resistance and virulence genes. In the Gram-positive pathogen Clostridium perfringens, the majority of conjugative plasmids share the conserved tcp locus that governs the assembly of the transfer system. Here, we describe multiple structures of the coupling protein TcpA, an essential ATPase that is suggested to provide the mechanical force to propel the DNA through the transfer apparatus. The structures of TcpA in the presence and absence of nucleotides revealed conformational rearrangements and highlight a crucial role for the unstructured C terminus. Our findings reveal that TcpA shares most structural similarity with the FtsK DNA translocase, a central component of the bacterial cell division machinery. Our structural data suggest that conjugation in C. perfringens may have evolved from the bacterial chromosome segregation system and, accordingly, suggest the possibility that double-stranded DNA is transferred through the Tcp conjugation apparatus.
Collapse
Affiliation(s)
- Daouda A K Traore
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Faculté des Sciences et Techniques, Université des Sciences Techniques et Technologiques de Bamako (USTTB), Bamako, Mali; Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK; Life Sciences Group, Institut Laue Langevin, Grenoble, France.
| | - Von Vergel L Torres
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Naureen Akhtar
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Alexandra M Gummer
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sarena F Flanigan
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Fasséli Coulibaly
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Vicki Adams
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - James C Whisstock
- Infection Program, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Julian I Rood
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
The vulnerable primed cancer stem cells in disguise: demystifying the role of Maspin. Cancer Metastasis Rev 2022; 41:965-974. [PMID: 36451067 PMCID: PMC9713111 DOI: 10.1007/s10555-022-10070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Epithelial-specific Maspin is widely known as a tumor suppressor. However, while the level of maspin expression is inversely correlated with tumor grade and stage, emerging clinical evidence shows a correlation between seemingly better differentiated tumor cells that express Maspin in both the nucleus and the cytoplasm, (n + c)Maspin, with a poor prognosis of many types of cancer. Biological studies demonstrate that Maspin plays an essential role in stem cell differentiation. In light of the recently established characterization of primed stem cells (P-SCs) in development, we propose, for the first time, that cancer stem cells (CSCs) also need to undergo priming (P-CSCs) before their transition to various progeny phenotypes. We envisage major differences in the steady state kinetics between P-SCs and P-CSCs. We further propose that P-CSCs of carcinoma are both marked and regulated by (n + c)Maspin. The concept of P-CSCs helps explain the apparent dichotomous relationships of (n + c)Maspin expression with cancer diagnosis and prognosis, and is supported by the evidence from mechanistic studies. We believe that the potential utility of (n + c)Maspin as a molecular marker of P-CSCs may significantly accelerate the advancement in our understanding of the genesis of tumor phenotypic plasticity in response to changes of tumor microenvironments (TME) or drug treatments. The vulnerabilities of the cellular state of (n + c)Maspin-expressing P-CSCs are also discussed as the rationale for future development of P-CSC-targeted chemotherapeutic and immunotherapeutic strategies.
Collapse
|
5
|
PI3K-AKT, JAK2-STAT3 pathways and cell-cell contact regulate maspin subcellular localization. Cell Commun Signal 2021; 19:86. [PMID: 34391444 PMCID: PMC8364028 DOI: 10.1186/s12964-021-00758-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Maspin (SERPINB5) is a potential tumor suppressor gene with pleiotropic biological activities, including regulation of cell proliferation, death, adhesion, migration and gene expression. Several studies indicate that nuclear localization is essential for maspin tumor suppression activity. We have previously shown that the EGFR activation leads to maspin nuclear localization in MCF-10A cells. The present study investigated which EGFR downstream signaling molecules are involved in maspin nuclear localization and explored a possible role of cell–cell contact in this process. Methods MCF-10A cells were treated with pharmacological inhibitors against EGFR downstream pathways followed by EGF treatment. Maspin subcellular localization was determined by immunofluorescence. Proteomic and interactome analyses were conducted to identify maspin-binding proteins in EGF-treated cells only. To investigate the role of cell–cell contact these cells were either treated with chelating agents or plated on different cell densities. Maspin and E-cadherin subcellular localization was determined by immunofluorescence. Results We found that PI3K-Akt and JAK2-STAT3, but not MAP kinase pathway, regulate EGF-induced maspin nuclear accumulation in MCF-10A cells. We observed that maspin is predominantly nuclear in sparse cell culture, but it is redistributed to the cytoplasm in confluent cells even in the presence of EGF. Proteomic and interactome results suggest a role of maspin on post-transcriptional and translation regulation, protein folding and cell–cell adhesion. Conclusions Maspin nuclear accumulation is determined by an interplay between EGFR (via PI3K-Akt and JAK2-STAT3 pathways) and cell–cell contact.![]() Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00758-3.
Collapse
|
6
|
Sakharkar MK, Dhillon SK, Mazumder M, Yang J. Key drug-targeting genes in pancreatic ductal adenocarcinoma. Genes Cancer 2021; 12:12-24. [PMID: 33884102 PMCID: PMC8045979 DOI: 10.18632/genesandcancer.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal type of cancer. In this study,
we undertook a pairwise comparison of gene expression pattern between tumor tissue and its
matching adjacent normal tissue for 45 PDAC patients and identified 22 upregulated and 32
downregulated genes. PPI network revealed that fibronectin 1 and serpin peptidase
inhibitor B5 were the most interconnected upregulated-nodes. Virtual screening identified
bleomycin exhibited reasonably strong binding to both proteins. Effect of bleomycin on
cell viability was examined against two PDAC cell lines, AsPC-1 and MIA PaCa-2. AsPC-1 did
not respond to bleomycin, however, MIA PaCa-2 responded to bleomycin with an
IC50 of 2.6 μM. This implicates that bleomycin could be repurposed for the
treatment of PDAC, especially in combination with other chemotherapy agents. In
vivo mouse xenograft studies and patient clinical trials are warranted to
understand the functional mechanism of bleomycin towards PDAC and optimize its therapeutic
efficacy. Furthermore, we will evaluate the antitumor activity of the other identified
drugs in our future studies.
Collapse
Affiliation(s)
- Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarinder Kaur Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Mahananda B, Vinay J, Palo A, Singh A, Sahu SK, Singh SP, Dixit M. SERPINB5 Genetic Variants rs2289519 and rs2289521 are Significantly Associated with Gallbladder Cancer Risk. DNA Cell Biol 2021; 40:706-712. [PMID: 33691472 DOI: 10.1089/dna.2021.0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serine protease inhibitor b5 (SERPINB5) is a tumor suppressor gene that plays a critical role in various cellular processes. In gallbladder cancer (GBC), SERPINB5's aberrant expression is reported but its role in genetic predisposition is not known. We enrolled 270 cases and 296 controls and genotyped them for single nucleotide polymorphisms (SNPs) using direct DNA sequencing, followed by genotype-phenotype analysis in GBC and other cancer cell lines. Luciferase assay was done to determine the role of rs2289521 SNP on expression regulation. We found that two SERPINB5 variants rs2289519 and rs2289521 are significantly associated with GBC and contribute to genetic predisposition. The TT genotype of variant rs2289519 was found to be significantly associated (p = 0.008) with GBC in a recessive model. C allele of rs2289521 increased the risk for GBC significantly at genotypic (CT, p = 0.026) and allelic (p = 0.04) levels. In silico analysis and luciferase assay uncovered the probable regulatory role of the rs2289521 variant on expression. Genotype-phenotype correlation in GBC and breast cancer cell lines showed reduced expression of SERPINB5 in the presence of C allele that was consistent with the result of luciferase assay. Overall, our study reveals the genetic association of two SERPINB5 variants with GBC and rs2289521's possible role in the regulation of expression.
Collapse
Affiliation(s)
- Biswaheree Mahananda
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - J Vinay
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Ananya Palo
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| | - Ayaskanta Singh
- Department of Gastroenterology and Hepato-Biliary Sciences, IMS & SUM Hospital, Sikshya O Anusandhan University, Bhubaneswar, India
| | - Saroj Kanta Sahu
- Department of Gastroenterology and Hepato-Biliary Sciences, IMS & SUM Hospital, Sikshya O Anusandhan University, Bhubaneswar, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, Sriram Chandra Bhanja Medical College and Hospital, Cuttack, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Tang S, Lian X, Jiang J, Cheng H, Guo J, Huang C, Meng H, Li X. Tumor Suppressive Maspin-Sensitized Prostate Cancer to Drug Treatment Through Negative Regulating Androgen Receptor Expression. Front Cell Dev Biol 2020; 8:573820. [PMID: 33195208 PMCID: PMC7649228 DOI: 10.3389/fcell.2020.573820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Overactivation of androgen receptor (AR)-mediated signal has been extensively implicated in prostate cancer (CaP) development, progression, and recurrence, which makes it an attractive therapeutic target. Meanwhile, as an endogenous inhibitor of histone deacetylase 1 (HDAC 1), tumor-suppressive mammary serine protease inhibitor (maspin) was reported to sensitize drug-induced apoptosis with a better therapeutic outcome in CaP, but the relationship between AR and maspin remains unclear. In the current study, treatment of 5'-Aza or MS-275/enzalutamide induced poly (ADP-ribose) polymerase (PARP) cleavage and p-H2A.X in CaP cells with an increase of maspin expression but a decrease of AR. Then, treatment with protease inhibitor MG132 did not rescue the above drug-induced loss of AR. In addition, modulation of maspin expression by gene recombinant or siRNA technology showed an inverse correlation between expression of maspin and AR, consequently affecting the AR-regulated downstream gene transcription (e.g., NKX3.1 and TMPRSS2). Bioinformatics analysis of the data extracted from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database also revealed an inverse correlation between low maspin expression and high AR level in advanced CaP. Furthermore, chromatin immunoprecipitation (ChIP) assay using anti-maspin antibody identified that a portion of AR promoter sequence was co-precipitated and presented in the immunoprecipitated complex. Finally, maspin-mediated repression of AR was induced by treatment of MS-275, which promoted enzalutamide treatment efficacy with decrease of prostate-specific antigen (PSA) expression in LNCaP and 22RV1 cells. Taken together, the data not only demonstrated maspin-mediated repression of AR to augment drug anti-tumor activity but also provided in-depth support for combination of HDAC inhibitors with AR antagonist in CaP therapy.
Collapse
Affiliation(s)
- Sijie Tang
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Xueqi Lian
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Jiajia Jiang
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Huiying Cheng
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Jiaqian Guo
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Can Huang
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, United States
| | - Xiaohua Li
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
- The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Laboratory, Hefei, China
- National Center for Gene Testing Technology Application & Demonstration (Anhui), Hefei, China
| |
Collapse
|
9
|
Spatiotemporal regulation of PEDF signaling by type I collagen remodeling. Proc Natl Acad Sci U S A 2020; 117:11450-11458. [PMID: 32385162 DOI: 10.1073/pnas.2004034117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix affects many cellular processes, either directly or indirectly, through the regulation of soluble ligands; however, the mechanistic details of this process remain largely unknown. Here we propose that type I collagen remodeling regulates the receptor-binding activity of pigment epithelium-derived factor (PEDF), a widely expressed secreted glycoprotein that has multiple important biological functions in tissue and organ homeostasis. We determined the crystal structure of PEDF in complex with a disulfide cross-linked heterotrimeric collagen peptide, in which the α(I) chain segments-each containing the respective PEDF-binding region (residues 930 to 938)-are assembled with an α2α1α1 staggered configuration. The complex structure revealed that PEDF specifically interacts with a unique amphiphilic sequence, KGHRGFSGL, of the type I collagen α1 chain, with its proposed receptor-binding sites buried extensively. Molecular docking demonstrated that the PEDF-binding surface of type I collagen contains the cross-link-susceptible Lys930 residue of the α1 chain and provides a good foothold for stable docking with the α1(I) N-telopeptide of an adjacent triple helix in the fibril. Therefore, the binding surface is completely inaccessible if intermolecular crosslinking between two crosslink-susceptible lysyl residues, Lys9 in the N-telopeptide and Lys930, is present. These structural analyses demonstrate that PEDF molecules, once sequestered around newly synthesized pericellular collagen fibrils, are gradually liberated as collagen crosslinking increases, making them accessible for interaction with their target cell surface receptors in a spatiotemporally regulated manner.
Collapse
|
10
|
Akazawa T, Ogawa M, Hayakawa S. Migration of chicken egg-white protein ovalbumin-related protein X and its alteration in heparin-binding affinity during embryogenesis of fertilized egg. Poult Sci 2019; 98:5100-5108. [DOI: 10.3382/ps/pez335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
|
11
|
Reina J, Zhou L, Fontes MRM, Panté N, Cella N. Identification of a putative nuclear localization signal in the tumor suppressor maspin sheds light on its nuclear import regulation. FEBS Open Bio 2019; 9:1174-1183. [PMID: 31144423 PMCID: PMC6609763 DOI: 10.1002/2211-5463.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor activity of maspin (mammary serine protease inhibitor) has been associated with its nuclear localization. In this study we explore the regulation of maspin nuclear translocation. An in vitro nuclear import assay suggested that maspin can passively enter the nucleus. However, in silico analysis identified a putative maspin nuclear localization signal (NLS), which was able to mediate the nuclear translocation of a chimeric protein containing this NLS fused to five green fluorescent protein molecules in tandem (5GFP). Dominant‐negative Ran‐GTPase mutants RanQ69L or RanT24N suppressed this process. Unexpectedly, the full‐length maspin fused to 5GFP failed to enter the nucleus. As maspin's putative NLS is partially hidden in its three‐dimensional structure, we suggest that maspin nuclear transport could be conformationally regulated. Our results suggest that maspin nuclear translocation involves both passive and active mechanisms.
Collapse
Affiliation(s)
- Jeffrey Reina
- Department of Cell and Developmental Biology, Institute of Biomedical Science of University of São Paulo, Brazil
| | - Lixin Zhou
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Nathalie Cella
- Department of Cell and Developmental Biology, Institute of Biomedical Science of University of São Paulo, Brazil
| |
Collapse
|
12
|
Nelson AC, Machado HL, Schwertfeger KL. Breaking through to the Other Side: Microenvironment Contributions to DCIS Initiation and Progression. J Mammary Gland Biol Neoplasia 2018; 23:207-221. [PMID: 30168075 PMCID: PMC6237657 DOI: 10.1007/s10911-018-9409-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Refinements in early detection, surgical and radiation therapy, and hormone receptor-targeted treatments have improved the survival rates for breast cancer patients. However, the ability to reliably identify which non-invasive lesions and localized tumors have the ability to progress and/or metastasize remains a major unmet need in the field. The current diagnostic and therapeutic strategies focus on intrinsic alterations within carcinoma cells that are closely associated with proliferation. However, substantial accumulating evidence has indicated that permissive changes in the stromal tissues surrounding the carcinoma play an integral role in breast cancer tumor initiation and progression. Numerous studies have suggested that the stromal environment surrounding ductal carcinoma in situ (DCIS) lesions actively contributes to enhancing tumor cell invasion and immune escape. This review will describe the current state of knowledge regarding the mechanisms through which the microenvironment interacts with DCIS lesions focusing on recent studies that describe the contributions of myoepithelial cells, fibroblasts and immune cells to invasion and subsequent progression. These mechanisms will be considered in the context of developing biomarkers for identifying lesions that will progress to invasive carcinoma and/or developing approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Traore DAK, Wisniewski JA, Flanigan SF, Conroy PJ, Panjikar S, Mok YF, Lao C, Griffin MDW, Adams V, Rood JI, Whisstock JC. Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3. Nat Commun 2018; 9:3732. [PMID: 30213934 PMCID: PMC6137059 DOI: 10.1038/s41467-018-06096-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
Conjugation is fundamental for the acquisition of new genetic traits and the development of antibiotic resistance in pathogenic organisms. Here, we show that a hypothetical Clostridium perfringens protein, TcpK, which is encoded by the tetracycline resistance plasmid pCW3, is essential for efficient conjugative DNA transfer. Our studies reveal that TcpK is a member of the winged helix-turn-helix (wHTH) transcription factor superfamily and that it forms a dimer in solution. Furthermore, TcpK specifically binds to a nine-nucleotide sequence that is present as tandem repeats within the pCW3 origin of transfer (oriT). The X-ray crystal structure of the TcpK–TcpK box complex reveals a binding mode centered on and around the β-wing, which is different from what has been previously shown for other wHTH proteins. Structure-guided mutagenesis experiments validate the specific interaction between TcpK and the DNA molecule. Additional studies highlight that the TcpK dimer is important for specific DNA binding. Conjugative transfer of antibiotic resistance plasmid pCW3 in Clostridium perfringens is mediated by the tcp locus. Here, the authors identify a wHTH-type protein, TcpK, that is essential for efficient plasmid transfer and interacts with the plasmid oriT region in a unique manner.
Collapse
Affiliation(s)
- Daouda A K Traore
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia.,Faculté des Sciences et Techniques, Université des Sciences Techniques et Technologiques de Bamako (USTTB), BP E3206, Bamako, Mali
| | - Jessica A Wisniewski
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Sarena F Flanigan
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Paul J Conroy
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Santosh Panjikar
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia.,Australian Synchrotron, Clayton, 3168, VIC, Australia
| | - Yee-Foong Mok
- Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Carmen Lao
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Michael D W Griffin
- Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Vicki Adams
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia.
| | - Julian I Rood
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia.
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia. .,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, 3800, VIC, Australia. .,EMBL Australia, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
14
|
Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1826:9-39. [PMID: 30194591 DOI: 10.1007/978-1-4939-8645-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deciphering the X-ray crystal structures of serine protease inhibitors (serpins) and serpin complexes has been an integral part of understanding serpin function and inhibitory mechanisms. In addition, high-resolution structural information of serpins derived from the three domains of life (bacteria, archaea, and eukaryotic) and viruses has provided valuable insights into the hereditary and evolutionary history of this unique superfamily of proteins. This chapter will provide an overview of the predominant biophysical method that has yielded this information, X-ray crystallography. In addition, details of up-and-coming methods, such as neutron crystallography, cryo-electron microscopy, and small- and wide-angle solution scattering, and their potential applications to serpin structural biology will be briefly discussed. As serpins remain important both biologically and medicinally, the information provided in this chapter will aid in future experiments to expand our knowledge of this family of proteins.
Collapse
|
15
|
Dean I, Dzinic SH, Bernardo MM, Zou Y, Kimler V, Li X, Kaplun A, Granneman J, Mao G, Sheng S. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein. Oncotarget 2018; 8:8043-8056. [PMID: 28009978 PMCID: PMC5352381 DOI: 10.18632/oncotarget.13302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/22/2016] [Indexed: 12/13/2022] Open
Abstract
Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ivory Dean
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,Department of Oncology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Current address: Center for Bioengineering and Tissue Regeneration, The University of California San Francisco, San Francisco, CA, USA
| | - Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA
| | - Yi Zou
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, USA
| | - Vickie Kimler
- Department of Chemical Engineering and Materials Science, Wayne State University, MI, USA.,Current address: Ocular Structure and Imaging Facility, Eye Research Institute, Oakland University, Rochester Hills, MI, USA
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Current address: Zhangjiagang Aoyang Hospital, Nanjing Medical University, Jiangsu, China
| | - Alexander Kaplun
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Current address: Variantyx, Framingham, MA, USA
| | - James Granneman
- The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, USA
| | - Guangzhao Mao
- The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Department of Chemical Engineering and Materials Science, Wayne State University, MI, USA
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,Department of Oncology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA
| |
Collapse
|
16
|
Bernardo MM, Dzinic SH, Matta MJ, Dean I, Saker L, Sheng S. The Opportunity of Precision Medicine for Breast Cancer With Context-Sensitive Tumor Suppressor Maspin. J Cell Biochem 2017; 118:1639-1647. [PMID: 28262971 DOI: 10.1002/jcb.25969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
To improve the precision of molecular diagnosis and to develop and guide targeted therapies of breast cancer, it is essential to determine the mechanisms that underlie the specific tumor phenotypes. To this end, the application of a snapshot of gene expression profile for breast cancer diagnosis and prognosis is fundamentally challenged since the tissue-based data are derived from heterogonous cell types and are not likely to reflect the dynamics of context-dependent tumor progression and drug sensitivity. The intricate network of epithelial differentiation program can be concertedly controlled by tumor suppressor maspin, a homologue of clade B serine protease inhibitors (serpin), through its multifaceted molecular interactions in multiple subcellular localizations. Unlike most other serpins that are expressed in multiple cell types, maspin is epithelial specific and has distinct roles in luminal and myoepithelial cells. Endogenously expressed maspin has been found in the nucleus and cytoplasm, and detected on the surface of cell membrane. It is also secreted free and as an exosomal cargo protein. Research in the field has led to the identification of the maspin targets and maspin-associated molecules, as well as the structural determinants of its suppressive functions. The current review discusses the possibility for maspin to serve as a cell type-specific and context-sensitive marker to improve the precision of breast cancer diagnosis and prognosis. These advancements further suggest a new window of opportunity for designing novel maspin-based chemotherapeutic agents with improved anti-cancer potency. J. Cell. Biochem. 118: 1639-1647, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margarida M Bernardo
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit 48201, Michigan
| | - Sijana H Dzinic
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit 48201, Michigan
| | - Maria J Matta
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit 48201, Michigan
| | - Ivory Dean
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit 48201, Michigan
| | - Lina Saker
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit 48201, Michigan
| | - Shijie Sheng
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit 48201, Michigan
| |
Collapse
|
17
|
Dzinic SH, Bernardo MM, Li X, Fernandez-Valdivia R, Ho YS, Mi QS, Bandyopadhyay S, Lonardo F, Vranic S, Oliveira DSM, Bonfil RD, Dyson G, Chen K, Omerovic A, Sheng X, Han X, Wu D, Bi X, Cabaravdic D, Jakupovic U, Wahba M, Pang A, Harajli D, Sakr WA, Sheng S. An Essential Role of Maspin in Embryogenesis and Tumor Suppression. Cancer Res 2016; 77:886-896. [PMID: 27923833 DOI: 10.1158/0008-5472.can-16-2219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023]
Abstract
Maspin (SerpinB5) is an epithelial-specific tumor suppressor gene product that displays context-dependent cellular functions. Maspin-deficient mouse models created to date have not definitively established maspin functions critical for cancer suppression. In this study, we generated a mouse strain in which exon 4 of the Maspin gene was deleted, confirming its essential role in development but also enabling a breeding scheme to bypass embryonic lethality. Phenotypic characterization of this viable strain established that maspin deficiency was associated with a reduction in maximum body weight and a variety of context-dependent epithelial abnormalities. Specifically, maspin-deficient mice exhibited pulmonary adenocarcinoma, myoepithelial hyperplasia of the mammary gland, hyperplasia of luminal cells of dorsolateral and anterior prostate, and atrophy of luminal cells of ventral prostate and stratum spinosum of epidermis. These cancer phenotypes were accompanied by increased inflammatory stroma. These mice also displayed the autoimmune disorder alopecia aerate. Overall, our findings defined context-specific tumor suppressor roles for maspin in a clinically relevant model to study maspin functions in cancer and other pathologies. Cancer Res; 77(4); 886-96. ©2017 AACR.
Collapse
Affiliation(s)
- Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Rodrigo Fernandez-Valdivia
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Qing-Sheng Mi
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Dermatology, Henry Ford Health Systems, Detroit, Michigan
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Fulvio Lonardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Semir Vranic
- Division of Experimental Pathology, Department of Pathology, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Daniel S M Oliveira
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Urology, Wayne State University School of Medicine, Detroit, Michigan
| | - R Daniel Bonfil
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Urology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Gregory Dyson
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kang Chen
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Urology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Detroit, Michigan.,Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Almasa Omerovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiujie Sheng
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiang Han
- Peking University Health Science Center, The Third Affiliated Hospital, Beijing, P.R. China
| | - Dinghong Wu
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Dermatology, Henry Ford Health Systems, Detroit, Michigan
| | - Xinling Bi
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Dermatology, Henry Ford Health Systems, Detroit, Michigan
| | - Dzenana Cabaravdic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Una Jakupovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Marian Wahba
- Department of Internal Medicine, Sinai Grace Hospital, Detroit Medical Center, Detroit, Michigan
| | - Aaron Pang
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Deanna Harajli
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wael A Sakr
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. .,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
18
|
Identification of novel peptide motifs in the serpin maspin that affect vascular smooth muscle cell function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:336-344. [PMID: 27888098 DOI: 10.1016/j.bbamcr.2016.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/30/2016] [Accepted: 11/19/2016] [Indexed: 11/20/2022]
Abstract
Maspin is a non-inhibitory member of the serpin family that affects cell behaviours related to migration and survival. We have previously shown that peptides of the isolated G α-helix (G-helix) domain of maspin show bioactivity. Migration, invasion, adhesion and proliferation of vascular smooth muscle cells (VSMC) are important processes that contribute to the build-up of atherosclerotic plaques. Here we report the use of functional assays of these behaviours to investigate whether other maspin-derived peptides impact directly on VSMC; focusing on potential anti-atherogenic properties. We designed 18 new peptides from the structural moieties of maspin above ten amino acid residues in length and considered them beside the existing G-helix peptides. Of the novel peptides screened those with the sequences of maspin strand 4 and 5 of beta sheet B (S4B and S5B) reduced VSMC migration, invasion and proliferation, as well as increasing cell adhesion. A longer peptide combining these consecutive sequences showed a potentiation of responses, and a 7-mer contained all essential elements for functionality. This is the first time that these parts of maspin have been highlighted as having key roles affecting cell function. We present evidence for a mechanism whereby S4B and S5B act through ERK1/2 and AMP-activated protein kinase (AMPK) to influence VSMC responses.
Collapse
|
19
|
Yang SF, Yeh CB, Chou YE, Lee HL, Liu YF. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma. Sci Rep 2016; 6:26605. [PMID: 27221742 PMCID: PMC4879545 DOI: 10.1038/srep26605] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.
Collapse
Affiliation(s)
- Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Teoh SSY, Vieusseux J, Prakash M, Berkowicz S, Luu J, Bird CH, Law RHP, Rosado C, Price JT, Whisstock JC, Bird PI. Maspin is not required for embryonic development or tumour suppression. Nat Commun 2016; 5:3164. [PMID: 24445777 PMCID: PMC3905777 DOI: 10.1038/ncomms4164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Maspin (SERPINB5) is accepted as an important tumour suppressor lost in many cancers. Consistent with a critical role in development or differentiation maspin knockout mice die during early embryogenesis, yet clinical data conflict on the prognostic utility of maspin expression. Here to reconcile these findings we made conditional knockout mice. Surprisingly, maspin knockout embryos develop into overtly normal animals. Contrary to original reports, maspin re-expression does not inhibit tumour growth or metastasis in vivo, or influence cell migration, invasion or survival in vitro. Bioinformatic analyses reveal that maspin is not commonly under-expressed in cancer, and that perturbation of genes near maspin may in fact explain poor survival in certain patient cohorts with low maspin expression. A role for the serpin maspin has been described in both development and cancer. In this study, the authors demonstrate that maspin knockout mice develop normally and that maspin does not function as a tumour suppressor, suggesting that another gene at the maspin locus may be responsible for this activity.
Collapse
Affiliation(s)
- Sonia S Y Teoh
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Jessica Vieusseux
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Monica Prakash
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Susan Berkowicz
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Jennii Luu
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Catherina H Bird
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Ruby H P Law
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia [2] Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Carlos Rosado
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia [2] Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - John T Price
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - James C Whisstock
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia [2] Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
21
|
RGD and polyhistidine tumor homing peptides potentiates the action of human Maspin as an antineoplastic candidate. Appl Microbiol Biotechnol 2016; 100:6209-6218. [PMID: 26846625 DOI: 10.1007/s00253-016-7345-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Maspin, a non-inhibitory member of serine protease family, acts as an effective tumor suppressor by inhibiting cell inhesion and mobility. We found that exogenous wild-type rMaspin had a low effect on tumor growth in vivo. However, when the peptide Arg-Gly-Asp-hexahistidine (RGD-6His) was introduced into rMaspin, the modified rMaspin showed significant inhibitory activity in angiogenic assays and tumor-bearing animal models. Overall, our data suggested that both the RGD and hexahistidine fragments contributed to improve the fusion protein activity and polyhistidine peptide could be considered as flexible linker to separate RGD and Maspin moieties to avoid function interference. Besides, it is an efficient tag to achieve purified recombinant proteins. Furthermore, rMaspin fusing with RGD and hexahistidine could be a viable anticancer candidate.
Collapse
|
22
|
Wisniewski JA, Traore DA, Bannam TL, Lyras D, Whisstock JC, Rood JI. TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens. Mol Microbiol 2015; 99:884-96. [PMID: 26560080 DOI: 10.1111/mmi.13270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
Conjugative transfer of toxin and antibiotic resistance plasmids in Clostridium perfringens is mediated by the tcp conjugation locus. Surprisingly, neither a relaxase gene nor an origin of transfer (oriT) has been identified on these plasmids, which are typified by the 47 kb tetracycline resistance plasmid pCW3. The tcpM gene (previously called intP) encodes a potential tyrosine recombinase that was postulated to be an atypical relaxase. Mutagenesis and complementation studies showed that TcpM was required for wild-type transfer of pCW3 and that a tyrosine residue, Y259, was essential for TcpM activity, which was consistent with the need for a relaxase-mediated hydrophilic attack at the oriT site. Other catalytic residues conserved in tyrosine recombinases were not required for TcpM activity, suggesting that TcpM was not a site-specific recombinase. Mobilization studies led to the identification of the oriT site, which was located in the 391 bp intergenic region upstream of tcpM. The oriT site was localized to a 150 bp region, and gel mobility shift studies showed that TcpM could bind to this region. Based on these studies we postulate that conjugative transfer of pCW3 involves the atypical relaxase TcpM binding to and processing the oriT site to initiate plasmid transfer.
Collapse
Affiliation(s)
- Jessica A Wisniewski
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Daouda A Traore
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Trudi L Bannam
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Dena Lyras
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - James C Whisstock
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Julian I Rood
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
23
|
Berardi R, Morgese F, Savini A, Onofri A, Cascinu S. Maspin Staining and Its Use as Biomarker in Lung Cancer. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Zha RH, Sur S, Boekhoven J, Shi HY, Zhang M, Stupp SI. Supramolecular assembly of multifunctional maspin-mimetic nanostructures as a potent peptide-based angiogenesis inhibitor. Acta Biomater 2015; 12:1-10. [PMID: 25462852 PMCID: PMC4274202 DOI: 10.1016/j.actbio.2014.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/06/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022]
Abstract
Aberrant angiogenesis plays a large role in pathologies ranging from tumor growth to macular degeneration. Anti-angiogenic proteins have thus come under scrutiny as versatile, potent therapeutics but face problems with purification and tissue retention. We report here on the synthesis of supramolecular nanostructures that mimic the anti-angiogenic activity of maspin, a class II tumor suppressor protein. These maspin-mimetic nanostructures are formed via self-assembly of small peptide amphiphiles containing the g-helix motif of maspin. Using tubulogenesis assays with human umbilical vein endothelial cells, we demonstrate that maspin-mimetic nanostructures show anti-angiogenic activity at concentrations that are significantly lower than those necessary for the g-helix peptide. Furthermore, in vivo assays in the chick chorioallantoic membrane show maspin-mimetic nanostructures to be effective over controls at inhibiting angiogenesis. Thus, the nanostructures investigated here offer an attractive alternative to the use of anti-angiogenic recombinant proteins in the treatment of cancer or other diseases involving abnormal blood vessel formation.
Collapse
Affiliation(s)
- R Helen Zha
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie Suite 11-131, Chicago, IL 60611, USA
| | - Shantanu Sur
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie Suite 11-131, Chicago, IL 60611, USA
| | - Job Boekhoven
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie Suite 11-131, Chicago, IL 60611, USA
| | - Heidi Y Shi
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 320 East Superior Street, Searle Suite 8-150, Chicago, IL 60611, USA
| | - Ming Zhang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 320 East Superior Street, Searle Suite 8-150, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie Suite 11-131, Chicago, IL 60611, USA; Department of Medicine, Northwestern University, 251 East Huron Street, Galter Suite 3-150, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Triulzi T, Ratti M, Tortoreto M, Ghirelli C, Aiello P, Regondi V, Di Modica M, Cominetti D, Carcangiu ML, Moliterni A, Balsari A, Casalini P, Tagliabue E. Maspin influences response to doxorubicin by changing the tumor microenvironment organization. Int J Cancer 2013; 134:2789-97. [PMID: 24242003 DOI: 10.1002/ijc.28608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022]
Abstract
Altered degradation and deposition of extracellular matrix are hallmarks of tumor progression and response to therapy. From a microarray supervised analysis on a dataset of chemotherapy-treated breast carcinoma patients, maspin, a member of the serpin protease inhibitor family, has been the foremost variable identified in non-responsive versus responsive tumors. Accordingly, in a series of 52 human breast carcinomas, we detected high maspin expression in tumors that progressed under doxorubicin (DXR)-based chemotherapy. Our analysis of the role of maspin in response to chemotherapy in human MCF7 and MDAMB231 breast and SKOV3 ovarian carcinoma cells transfected to overexpress maspin and injected into mice showed that maspin overexpression led to DXR resistance through the maspin-induced collagen-enriched microenvironment and that an anti-maspin neutralizing monoclonal antibody reversed the collagen-dependent DXR resistance. Impaired diffusion and decreased DXR activity were also found in tumors derived from Matrigel-embedded cells, where abundant collagen fibers characterize the tumor matrix. Conversely, liposome-based DXR reached maspin-overexpressing tumor cells despite the abundant extracellular matrix and was more efficient in reducing tumor growth. Our results identify maspin-induced accumulation of collagen fibers as a cause of disease progression under DXR chemotherapy for breast cancer. Use of a more hydrophilic DXR formulation or of a maspin inhibitor in combination with chemotherapy holds the promise of more consistent responses to maspin-overexpressing tumors and dense-matrix tumors in general.
Collapse
Affiliation(s)
- Tiziana Triulzi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The present study resolves the molecular mechanism behind the key first steps in the action of an essential immune protein, cytotoxic lymphocyte perforin, binding to the plasma membrane of a target cell and initiation of pore formation.
Collapse
|
27
|
Dzinic SH, Kaplun A, Li X, Bernardo M, Meng Y, Dean I, Krass D, Stemmer P, Shin N, Lonardo F, Sheng S. Identification of an intrinsic determinant critical for maspin subcellular localization and function. PLoS One 2013; 8:e74502. [PMID: 24278104 PMCID: PMC3837015 DOI: 10.1371/journal.pone.0074502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
Maspin, a multifaceted tumor suppressor, belongs to the serine protease inhibitor superfamily, but only inhibits serine protease-like enzymes such as histone deacetylase 1 (HDAC1). Maspin is specifically expressed in epithelial cells and it is differentially regulated during tumor progression. A new emerging consensus suggests that a shift in maspin subcellular localization from the nucleus to the cytoplasm stratifies with poor cancer prognosis. In the current study, we employed a rational mutagenesis approach and showed that maspin reactive center loop (RCL) and its neighboring sequence are critical for maspin stability. Further, when expressed in multiple tumor cell lines, single point mutation of Aspartate(346) (D(346)) to Glutamate (E(346)), maspin(D346E), was predominantly nuclear, whereas wild type maspin (maspin(WT)) was both cytoplasmic and nuclear. Evidence from cellular fractionation followed by immunological and proteomic protein identification, combined with the evidence from fluorescent imaging of endogenous proteins, fluorescent protein fusion constructs, as well as bimolecular fluorescence complementation (BiFC) showed that the increased nuclear enrichment of maspin(D346E) was, at least in part, due to its increased affinity to HDAC1. Maspin(D346E) was also more potent than maspin(WT) as an HDAC inhibitor. Taken together, our evidence demonstrates that D(346) is a critical cis-element in maspin sequence that determines the molecular context and subcellular localization of maspin. A mechanistic model derived from our evidence suggests a new window of opportunity for the development of maspin-based biologically competent HDAC inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Sijana H. Dzinic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Alexander Kaplun
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Yonghong Meng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ivory Dean
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - David Krass
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Paul Stemmer
- The Institute of Environmental Health Sciences, Proteomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Namhee Shin
- The Institute of Environmental Health Sciences, Proteomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Fulvio Lonardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Institute of Environmental Health Sciences, Proteomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- The Tumor and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| |
Collapse
|
28
|
Bodenstine TM, Seftor REB, Khalkhali-Ellis Z, Seftor EA, Pemberton PA, Hendrix MJC. Maspin: molecular mechanisms and therapeutic implications. Cancer Metastasis Rev 2013; 31:529-51. [PMID: 22752408 DOI: 10.1007/s10555-012-9361-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maspin, a non-inhibitory member of the serine protease inhibitor superfamily, has been characterized as a tumor suppressor gene in multiple cancer types. Among the established anti-tumor effects of Maspin are the inhibition of cancer cell invasion, attachment to extracellular matrices, increased sensitivity to apoptosis, and inhibition of angiogenesis. However, while significant experimental data support the role of Maspin as a tumor suppressor, clinical data regarding the prognostic implications of Maspin expression have led to conflicting results. This highlights the need for a better understanding of the context dependencies of Maspin in normal biology and how these are perturbed in the context of cancer. In this review, we outline the regulation and roles of Maspin in normal and developmental biology while discussing novel evidence and emerging theories related to its functions in cancer. We provide insight into the immense therapeutic potential of Maspin and the challenges related to its successful clinical translation.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
29
|
Teoh SSY, Wang H, Risbridger GP, Whisstock JC, Bird PI. A versatile monoclonal antibody specific to human SERPINB5. Hybridoma (Larchmt) 2013; 31:333-9. [PMID: 23098299 DOI: 10.1089/hyb.2012.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Maspin (SERPINB5) is a member of the Clade B subgroup of the large superfamily of serine protease inhibitors. It is proposed that maspin is a tumor suppressor; however, its molecular role remains to be elucidated. Here we report the characterization of a mouse monoclonal antibody directed against human maspin. This antibody, 16F7, recognizes maspin in both its native and denatured form, unlike several other commercial antibodies tested in this study. It will be a useful and versatile tool for future analyses of the biological function of maspin.
Collapse
Affiliation(s)
- Sonia S Y Teoh
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
30
|
Mahajan N, Shi HY, Lukas TJ, Zhang M. Tumor-suppressive maspin functions as a reactive oxygen species scavenger: importance of cysteine residues. J Biol Chem 2013; 288:11611-20. [PMID: 23471964 DOI: 10.1074/jbc.m112.410852] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maspin is a member of the serine protease inhibitor (serpin) superfamily and displays tumor-suppressing activity by controlling cell migration, proliferation, apoptosis, and adhesion. Here, we provide evidence that maspin acts as a reactive oxygen species (ROS) scavenger through oxidation of three structurally exposed cysteine thiols to sulfenic acid. Ablation of these cysteine residues in maspin resulted in a significant increase in total ROS production in mouse mammary TM40D cells. Also, cells containing a triple-cysteine mutant of maspin showed elevated ERK1/2 activity, a downstream target of ROS, and enhanced proliferation and colony formation. These findings establish a novel mechanism by which maspin utilizes its cysteine thiols to inhibit oxidative stress and cell growth.
Collapse
Affiliation(s)
- Nitin Mahajan
- Department of Molecular Pharmacology and Biological Chemistry and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Maspin (mammary serine protease inhibitor), is a member of the serine protease inhibitor/non-inhibitor superfamily. Its expression is down-regulated in breast, prostate, gastric and melanoma cancers but over-expressed in pancreatic, gallbladder, colorectal, and thyroid cancers suggesting that maspin may play different activities in different cell types. However, maspin expression seems to be correlated with better prognosis in prostate, bladder, lung, gastric, colorectal, head and neck, thyroid and melanoma cancer. In breast and ovarian cancer maspin significance is associated with its subcellular localization: nucleus maspin expression correlates with a good prognosis, whilst in pancreatic cancer it predicts a poor prognosis. Since tumor metastasis requires the detachment and invasion of tumor cells through the basement membrane and stroma, a selectively increased adhesion by the presence of maspin may contribute to the inhibition of tumor metastasis. Furthermore the different position of maspin inside the cell or its epigenetic modifications may explain the different behavior of the expression of maspin between tumors. The expression of maspin might be useful as a prognostic and possibly predictive factor for patients with particular types of cancer and data can guide physicians in selecting therapy. Its expression in circulating tumor cells especially in breast cancer, could be also useful in clinical practice along with other factors, such as age, comorbidities, blood examinations in order to select the best therapy to be carried out. Focusing on the malignancies in which maspin showed a positive prognostic value, therapeutic approaches studied so far aimed to re-activate a dormant tumor suppressor gene by designed transcription factors, to hit the system that inhibits the expression of maspin, to identify natural substances that can determine the activation and the expression of maspin or possible “molecules binds” to introduce maspin in cancer cell and gene therapy capable of up-regulating the maspin in an attempt to reduce primarily the risk of metastasis. Further studies in these directions are necessary to better define the therapeutic implication of maspin.
Collapse
|
32
|
Abstract
Essentially the same steps are required to solve the crystal structure of a serpin as for any other protein: produce and purify protein, grow crystals, collect diffraction data, find estimates of the phase angles, and then refine and validate the structure. For the phasing step, experimental phasing methods involving heavy atom soaks were required for the first few structures, but with the large number of serpin structures now available, molecular replacement has become the method of choice. Two things are special about serpins. First, because of the central role of conformational change in serpin mechanism, it is advisable to consider a variety of molecular replacement models in different conformations and then to allow for rigid-body motions in the initial refinement steps. Second, probably owing to the flexibility of serpins, the average serpin crystal is significantly less well ordered than the average crystal of another protein, which increases the difficulty of solving and refining their structures.
Collapse
|
33
|
Goulet B, Chan G, Chambers AF, Lewis JD. An emerging role for the nuclear localization of maspin in the suppression of tumor progression and metastasis. Biochem Cell Biol 2011; 90:22-38. [PMID: 22047058 DOI: 10.1139/o11-053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Maspin, a member of the serpin family of serine protease inhibitors, was originally identified as a tumor suppressor that is expressed in normal mammary epithelial cells but is reduced or absent in breast carcinomas. Early enthusiasm for maspin as a biomarker for disease progression has been tempered by clinical data that associates maspin with favourable outcomes in some studies and poor prognosis in others. Here, we review all of the published clinical studies for maspin in breast and ovarian cancers and propose that the apparent discordance between clinical reports is a consequence of differential cellular distribution of maspin. Indeed, it was thought that an extracellular pool of maspin possessed tumor suppressor activity, acting by inhibiting migration and increasing cell adhesion. Recent evidence from our group and others indicates, however, that the nuclear localization of maspin in cancer cells is necessary for its tumor suppressor activity. We provide additional data here to demonstrate that nuclear-localized maspin binds to chromatin and is required to effectively prevent cells from metastasizing. Our knowledge of other serpins that localize to the nucleus should help to inform future studies of nuclear maspin. Elucidation of the molecular mechanisms regulating the localization and activities of maspin should pave the way for the development of improved diagnostics and therapies for cancer.
Collapse
Affiliation(s)
- Brigitte Goulet
- London Regional Cancer Program, Translational Prostate Cancer Research Group, London, ON N6A 4L6, Canada
| | | | | | | |
Collapse
|
34
|
Bernardo MM, Meng Y, Lockett J, Dyson G, Dombkowski A, Kaplun A, Li X, Yin S, Dzinic S, Olive M, Dean I, Krass D, Moin K, Bonfil RD, Cher M, Sakr W, Sheng S. Maspin reprograms the gene expression profile of prostate carcinoma cells for differentiation. Genes Cancer 2011; 2:1009-22. [PMID: 22737267 PMCID: PMC3379563 DOI: 10.1177/1947601912440170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 12/22/2011] [Accepted: 01/01/2012] [Indexed: 02/06/2023] Open
Abstract
Maspin is an epithelial-specific tumor suppressor gene. Previous data suggest that maspin expression may redirect poorly differentiated tumor cells to better differentiated phenotypes. Further, maspin is the first and only endogenous polypeptide inhibitor of histone deacetylase 1 (HDAC1) identified thus far. In the current study, to address what central program of tumor cell redifferentiation is regulated by maspin and how tumor microenvironments further define the effects of maspin, we conducted a systematic and extensive comparison of prostate tumor cells grown in 2-dimensional culture, in 3-dimensional collagen I culture, and as in vivo bone tumors. We showed that maspin was sufficient to drive prostate tumor cells through a spectrum of temporally and spatially polarized cellular processes of redifferentiation, a reversal of epithelial-to-mesenchymal transition (EMT). Genes commonly regulated by maspin were a small subset of HDAC target genes that are closely associated with epithelial differentiation and TGFβ signaling. These results suggest that a specific endogenous HDAC inhibitor may regulate one functionally related subset of HDAC target genes, although additional maspin-induced changes of gene expression may result from tumor interaction with its specific microenvironments. Currently, EMT is recognized as a critical step in tumor progression. To this end, our current study uncovered a link between maspin and a specific mechanism of prostate epithelial differentiation that can reverse EMT.
Collapse
Affiliation(s)
| | - Yonghong Meng
- University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaron Lockett
- The National Institute of Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | - Xiaohua Li
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Shuping Yin
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana Dzinic
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Mary Olive
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Ivory Dean
- Wayne State University School of Medicine, Detroit, MI, USA
| | - David Krass
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Kamiar Moin
- Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Michael Cher
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Wael Sakr
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Shijie Sheng
- Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
35
|
Payne CM, Holubec H, Crowley-Skillicorn C, Nguyen H, Bernstein H, Wilcox G, Bernstein C. Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:239-53. [PMID: 22162927 PMCID: PMC3234125 DOI: 10.2147/ceg.s24093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased maspin expression in the colon is related to colon cancer risk and patient survival. Maspin is induced by the hydrophobic bile acid, deoxycholate (DOC), which is an endogenous carcinogen and inducer of oxidative stress and DNA damage in the colon. Persistent exposure of colon epithelial cells, in vitro, to high physiologic levels of DOC results in increased constitutive levels of maspin protein expression associated with the development of apoptosis resistance. When an apoptosis-resistant colon epithelial cell line (HCT-116RC) developed in the authors' laboratory was treated with a maspin-specific siRNA probe, there was a statistically significant increase in apoptosis compared to treatment with an siRNA control probe. These results indicate, for the first time, that maspin is an anti-apoptotic protein in the colon. Immunohistochemical evaluation of maspin expression in human colonic epithelial cells during sporadic colon carcinogenesis (131 human tissues evaluated) indicated a statistically significant increase in maspin protein expression beginning at the polyp stage of carcinogenesis. There was no statistically significant difference in maspin expression between hyperplastic/adenomatous polyps and colonic adenocarcinomas. The absence of "field defects" in the non-neoplastic colonic mucosa of patients with colonic neoplasia indicates that maspin may drive the growth of tumors, in part, through its anti-apoptotic function.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona
| | | | | | | | | | | | | |
Collapse
|
36
|
Li X, Kaplun A, Lonardo F, Heath E, Sarkar FH, Irish J, Sakr W, Sheng S. HDAC1 inhibition by maspin abrogates epigenetic silencing of glutathione S-transferase pi in prostate carcinoma cells. Mol Cancer Res 2011; 9:733-45. [PMID: 21622623 PMCID: PMC3612175 DOI: 10.1158/1541-7786.mcr-10-0505] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both maspin and glutathione S-transferase pi (GSTp) are implicated as tumor suppressors and downregulated in human prostate cancer. It is well established that GSTp downregulation is through DNA methylation-based silencing. We report here that maspin expression in prostate cancer cell line DU145 reversed GSTp DNA methylation, as measured by methylation- specific PCR, MethyLight assay, and bisulfite sequencing. The effect of maspin on GSTp expression was similar to that of the combination of a synthetic histone deacetylase (HDAC) inhibitor and DNA methylation inhibitor 5-aza-2'-deoxycytidine. Maspin expression also led to an increased level of acetylated histone 3, decreased level of methyl transferase, and methyl-CpG-binding domain proteins at the site of demethylated GSTp promoter DNA. Earlier, we have shown that maspin inhibits HDAC1. In PC3 cells, where both maspin and GSTp are expressed at a reduced level, maspin knockdown led to a significant reduction in GSTp expression, whereas dual knockdown of maspin and HDAC1 barely increased the level of GSTp expression. Thus, HDAC1 may play an essential role in cellular response to maspin-mediated GSTp desilencing. Maspin has been shown to increase tumor cell sensitivity to drug-induced apoptosis. Interestingly, GSTp reexpression in the absence of maspin expression perturbation blocked the phosphorylation of histone 2A.X, the induction of hypoxia-induced factor 1α (HIF-1α), and cell death of LNCaP cells under oxidative stress. Because DNA hypermethylation-based silencing may couple with and depend on histone deacetylation, our study suggests that endogenous HDAC inhibition by maspin may prevent pathologic gene silencing in prostate tumor progression.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Alexander Kaplun
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Fulvio Lonardo
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Elisabeth Heath
- Department of Internal Medicine, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Fazlul H. Sarkar
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Jonathan Irish
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Wael Sakr
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
| | - Shijie Sheng
- Department of Pathology, The Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201
- Address correspondence to: 313-993-4112 (Tel);313-993-4112 (Fax);
| |
Collapse
|
37
|
Endsley MP, Hu Y, Deng Y, He X, Warejcka DJ, Twining SS, Gonias SL, Zhang M. Maspin, the molecular bridge between the plasminogen activator system and beta1 integrin that facilitates cell adhesion. J Biol Chem 2011; 286:24599-607. [PMID: 21606500 DOI: 10.1074/jbc.m111.235788] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maspin is a non-inhibitory serine protease inhibitor (serpin) that influences many cellular functions including adhesion, migration, and invasion. The underlying molecular mechanisms that facilitate these actions are still being elucidated. In this study we determined the mechanism by which maspin mediates increased MCF10A cell adhesion. Utilizing competition peptides and mutation analyses, we discovered two unique regions (amino acid residues 190-202 and 260-275) involved in facilitating the increased adhesion function of maspin. In addition, we demonstrate that the urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) complex is required for the localization and adhesion function of maspin. Finally, we showed that maspin, uPAR, and β1 integrin co-immunoprecipitate, suggesting a novel maspin-uPA-uPAR-β1 integrin mega-complex that regulates mammary epithelial cell adhesion.
Collapse
Affiliation(s)
- Michael P Endsley
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lonardo F, Li X, Kaplun A, Soubani A, Sethi S, Gadgeel S, Sheng S. The natural tumor suppressor protein maspin and potential application in non small cell lung cancer. Curr Pharm Des 2011; 16:1877-81. [PMID: 20337574 DOI: 10.2174/138161210791208974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/22/2010] [Indexed: 12/14/2022]
Abstract
The grim prognosis of lung cancer, that has an overall 10-15% survival at 5 years, remains in the US the leading cause of cancer mortality, provides a compelling rationale for studying the molecular basis of this malignancy. Surmising the common, general association with smoking, lung cancers differ at the microscopic, anatomical, epidemiological and clinical level and harbor complex genetic and epigenetic alterations. Currently, lung cancer is divided into small cell lung carcinoma (SCLC) and non small cell lung carcinoma (NSCLC) for the purpose of clinical management. (NSCLC) constitutes 80-85% of lung cancers and is further divided into histological subtypes such as adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, etc. The ultimate goal for lung cancer research is to develop a strategy to block the tumor progression and improve the prognosis of lung cancer. This goal can realistically be achieved only when the biological complexity of this disease is taken into account. To this end, identification and understanding of molecular markers that are mechanistically involved in tumor progression is needed. Our recent studies suggest histological subtype-dependent distinct correlations between the expression and/or subcellular localization of tumor suppressive maspin with the progression and prognosis of NSCLC. Maspin is an epithelial specific member of the serine protease inhibitor (serpin) superfamily but recently identified as an endogenous inhibitor of histone deacetylase 1 (HDAC1). This novel biochemical activity coincides with a consensus emerged recently from the evidence that nuclear maspin confers better differentiated epithelial phenotypes, decreased tumor angiogenesis, increased tumor sensitivity to drug-induced apoptosis, and a more favorable prognosis. In the current review, we discuss the evidence that maspin may be a marker that stratifies the progression and prognosis of different subtypes of NSCLC.
Collapse
Affiliation(s)
- Fulvio Lonardo
- Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Ravenhill L, Wagstaff L, Edwards DR, Ellis V, Bass R. G-helix of maspin mediates effects on cell migration and adhesion. J Biol Chem 2010; 285:36285-92. [PMID: 20837467 DOI: 10.1074/jbc.m110.177253] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin is a member of the serine protease inhibitor (serpin) superfamily that lacks protease inhibitory ability, although displaying tumor metastasis-suppressing activity resulting from its influence on cell migration, invasion, proliferation, apoptosis, and adhesion. The molecular mechanisms of these actions of maspin are as yet undefined. Here, we sought to identify critical functional motifs by the expression of maspin with point mutations at sites potentially involved in protein-protein interactions: the G α-helix (G-helix), an internal salt bridge or the P1 position of the reactive center loop. Our findings indicate that only mutations in the G-helix attenuated inhibition of cell migration by maspin and that this structural element is also involved in the effect of maspin on cell adhesion. The action of maspin on cell migration could be mimicked by a 15-mer G-helix peptide, indicating that the G-helix is both essential and sufficient for this effect. In addition, we provide evidence that the effects of the G-helix of maspin are dependent on β1 integrins. These data reveal that the major extracellular functions associated with the tumor suppressive action of maspin likely involve interactions in which the G-helix plays a key role.
Collapse
Affiliation(s)
- Lorna Ravenhill
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Langendorf CG, Key TLG, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, Tuck KL, Law RHP, Whisstock JC. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. PLoS One 2010; 5:e9280. [PMID: 20174634 PMCID: PMC2823781 DOI: 10.1371/journal.pone.0009280] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/23/2010] [Indexed: 01/14/2023] Open
Abstract
Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.
Collapse
Affiliation(s)
- Christopher G. Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Trevor L. G. Key
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wan-Ting Kan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| |
Collapse
|
42
|
Teoh SSY, Whisstock JC, Bird PI. Maspin (SERPINB5) is an obligate intracellular serpin. J Biol Chem 2010; 285:10862-9. [PMID: 20123984 DOI: 10.1074/jbc.m109.073171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin (SERPINB5) is a tumor suppressor lost in breast and prostate cancer whose molecular function is unknown. It is a non-inhibitory member of the clade B serpins suggested to play a role in a plethora of intracellular and extracellular settings, yet its normal cellular distribution has never been clarified. Here we investigate the distribution of maspin in non-transformed human epithelial cells. By indirect immunofluorescence, maspin has a nucleocytoplasmic distribution in breast (MCF10A) and prostate (RWPE-1) cells and, by immunoblotting and pulse-chase analyses, is neither glycosylated nor secreted. Cell surface biotinylation studies also show that maspin is not present at the cell surface. Differentiation of MCF10A cells into three-dimensional acini results in the redistribution of maspin from the nucleus to the cytoplasm but does not result in secretion. Addition of an efficient conventional signal peptide to maspin directs it into the secretory pathway and results in glycosylation but not secretion. We further show that maspin in the cytoplasm of MCF10A cells is a soluble monomeric protein that is not detectably associated with the cytoskeleton or other extractable components. Taken together, these results suggest that maspin is restricted to an intracellular, possibly nuclear, role in which it influences cell-matrix interactions indirectly. It is probably released only as a consequence of cell damage or necrosis.
Collapse
Affiliation(s)
- Sonia S Y Teoh
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
43
|
Bass R, Wagstaff L, Ravenhill L, Ellis V. Binding of extracellular maspin to beta1 integrins inhibits vascular smooth muscle cell migration. J Biol Chem 2009; 284:27712-20. [PMID: 19638634 DOI: 10.1074/jbc.m109.038919] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the beta1 integrin subunit, and subsequently both alpha3beta1 and alpha5beta1, but not alphavbeta3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to alpha5beta1 was confirmed using a recombinant alpha5beta1-Fc fusion protein. Using conformation-dependent anti-beta1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of alpha5beta1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human alpha5 integrin, but not those lacking alpha5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment.
Collapse
Affiliation(s)
- Rosemary Bass
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
44
|
Narayan M, Twining S. Focus on molecules: maspin. Exp Eye Res 2009; 90:2-3. [PMID: 19615364 DOI: 10.1016/j.exer.2009.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 07/07/2009] [Indexed: 11/25/2022]
Affiliation(s)
- Malathi Narayan
- Department of Biochemistry and Ophthalmology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
45
|
Askew DJ, Cataltepe S, Kumar V, Edwards C, Pace SM, Howarth RN, Pak SC, Askew YS, Brömme D, Luke CJ, Whisstock JC, Silverman GA. SERPINB11 Is a New Noninhibitory Intracellular Serpin. J Biol Chem 2007; 282:24948-60. [PMID: 17562709 DOI: 10.1074/jbc.m703182200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SERPINB11, the last of 13 human clade B serpins to be described, gave rise to seven different isoforms. One cDNA contained a premature termination codon, two contained splice variants, and four contained full-length open reading frames punctuated by eight single nucleotide polymorphisms (SNPs). The SNPs encoded amino acid variants located within the serpin scaffold but not the reactive site loop (RSL). Although the mouse orthologue, Serpinb11, could inhibit trypsin-like peptidases, SERPINB11 showed no inhibitory activity. To determine whether the human RSL targeted a different class of peptidases or the serpin scaffold was unable to support inhibitory activity, we synthesized chimeric human and mouse proteins, in which the RSLs had been swapped. The human RSL served as a trypsin inhibitor when supported by mouse scaffold sequences. Conversely, the mouse RSL on the human scaffold showed no inhibitory activity. These findings suggested that variant residues in the SERPINB11 scaffold impaired serpin function. SDS-PAGE analysis supported this notion as RSL-cleaved SERPINB11 was unable to undergo the stressed-to-relaxed transition typical of inhibitory type serpins. Mutagenesis studies supported this hypothesis, since the reversion of amino acid sequences in helices D and I to those conserved in other clade B serpins partially restored the ability of SERPINB11 to form covalent complexes with trypsin. Taken together, these findings suggested that SERPINB11 SNPs encoded amino acids in the scaffold that impaired RSL mobility, and HapMap data showed that the majority of genomes in different human populations harbored these noninhibitory SERPINB11 alleles. Like several other serpin superfamily members, SERPINB11 has lost inhibitory activity and may have evolved a noninhibitory function.
Collapse
Affiliation(s)
- David J Askew
- University of Pittsburgh Medical Center Newborn Medicine Program, Children's Hospital of Pittsburgh and Magee--Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Klieber MA, Underhill C, Hammond GL, Muller YA. Corticosteroid-binding globulin, a structural basis for steroid transport and proteinase-triggered release. J Biol Chem 2007; 282:29594-603. [PMID: 17644521 DOI: 10.1074/jbc.m705014200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Corticosteroid-binding globulin (CBG) is a serine proteinase inhibitor (serpin) family member that transports glucocorticoids in blood and regulates their access to target cells. The 1.9A crystal structure of rat CBG shows that its steroid-binding site resembles the thyroxin-binding site in the related serpin, thyroxin-binding globulin, and mutagenesis studies have confirmed the contributions of key residues that constitute the steroid-binding pocket. Unlike thyroxin-bound thyroxin-binding globulin, the cortisol-bound CBG displays an "active" serpin conformation with the proteinase-sensitive, reactive center loop (RCL) fully expelled from the regulatory beta-sheet A. Moreover, the CBG structure allows us to predict that complete insertion of the proteolytically cleaved RCL into the serpin fold occurs in concert with a displacement and unwinding of helix D that would disrupt the steroid-binding site. This allosteric coupling between RCL positioning and occupancy of the CBG steroid-binding site, which resembles the ligand (glycosamino-glycan)-dependent activation of the thrombin inhibitory serpins heparin cofactor II and anti-thrombin RCLs, ensures both optimal recognition of CBG by target proteinases and efficient release of steroid to sites of action.
Collapse
Affiliation(s)
- Michael A Klieber
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|
47
|
Li X, Yin S, Meng Y, Sakr W, Sheng S. Endogenous Inhibition of Histone Deacetylase 1 by Tumor-Suppressive Maspin. Cancer Res 2006; 66:9323-9. [PMID: 16982778 DOI: 10.1158/0008-5472.can-06-1578] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maspin, a noninhibitory serine protease inhibitor, exerts multifaceted tumor-suppressive effects. Maspin expression is associated with better differentiated phenotypes, better cancer prognosis, and better drug sensitivity. Consistently, maspin also correlates with increased expression of Bax and p21WAF1/CIP1. Interestingly, histone deacetylase 1 (HDAC1), a major HDAC responsible for histone deacetylation, was shown to interact with maspin in a yeast two-hybrid screening. In this study, we confirmed the maspin/HDAC1 interaction in human prostate tissues, in prostate cancer cell lines, and with purified maspin. We produced several lines of evidence that support an inhibitory effect of maspin on HDAC1 through direct molecular interaction, which was detected in both the nucleus and the cytoplasm. Both endogenously expressed maspin and purified maspin inhibited HDAC1. In contrast, small interfering RNA (siRNA) silencing of maspin in PC3 cells increased HDAC activity. Accordingly, maspin-transfected DU145 cells exhibited increased expression of HDAC1 target genes Bax, cytokeratin 18 (CK18), and p21(WAF1/CIP1), whereas maspin siRNA decreased CK18 expression in PC3 cells. The maspin effect on HDAC1 correlated with an increased sensitivity to cytotoxic HDAC inhibitor M344. Interestingly, glutathione S-transferase (GST, another maspin partner) was detected in the maspin/HDAC1 complex. Furthermore, a COOH-terminally truncated maspin mutant, which bound to HDAC1 but not GST, did not increase histone acetylation. Although HDACs, especially the highly expressed HDAC1, are promising therapeutic targets in cancer intervention, our data raise a novel hypothesis that the endogenous inhibitory effect of maspin on HDAC1 is coupled with glutathione-based protein modification, and provide new leads toward future developments of specific HDAC1-targeting strategies.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
48
|
Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. An overview of the serpin superfamily. Genome Biol 2006; 7:216. [PMID: 16737556 PMCID: PMC1779521 DOI: 10.1186/gb-2006-7-5-216] [Citation(s) in RCA: 503] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serpins are a broadly distributed family of protease inhibitors that use a conformational change to inhibit target enzymes. They are central in controlling many important proteolytic cascades, including the mammalian coagulation pathways. Serpins are conformationally labile and many of the disease-linked mutations of serpins result in misfolding or in pathogenic, inactive polymers.
Collapse
Affiliation(s)
- Ruby HP Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Qingwei Zhang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Gary A Silverman
- Magee-Womens Research Institute, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wilson Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Carlos J Rosado
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Chris G Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Rob N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Philip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Magee-Womens Research Institute, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
49
|
Cella N, Contreras A, Latha K, Rosen JM, Zhang M. Maspin is physically associated with [beta]1 integrin regulating cell adhesion in mammary epithelial cells. FASEB J 2006; 20:1510-2. [PMID: 16720730 DOI: 10.1096/fj.05-5500fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Maspin is a tumor-suppressor serpin (serine protease inhibitor), which inhibits cell invasion and migration. Here, we analyzed maspin function in cell adhesion in nontransformed mammary epithelial cells and investigated the underlying mechanism involved in this process. We report that maspin acts in the early steps in the cell adhesion process. Addition of recombinant maspin rapidly increased MCF-10A cell adhesion to the endogenously deposited matrix, and conversely both an antimaspin antibody (Ab) and maspin knockdown by RNA interference resulted in decreased cell adhesion. Mutation analyses revealed that a region of 86 amino acids located between aa 139 and aa 225 was responsible for maspin effect on adhesion. In addition, we show that maspin is associated with detergent-insoluble cortical cytoskeleton elements. Collectively, these results suggest that maspin is part of the supramolecular structure of the adhesion plaque and it modulates cell adhesion via a beta1 integrin-dependent mechanism.
Collapse
Affiliation(s)
- Nathalie Cella
- Baylor College of Medicine, Department of Molecular and Cellular Biology, ALKEK Bldg., Rm. N630, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
For most cancer cell types, the acquisition of metastatic activity leads to clinically incurable disease. Improvements in surgery and radiotherapy, and the development of new chemotherapeutic agents or their use in new combinations, have, so far, only incrementally improved patient survival. Despite the obvious importance of metastasis, the process remains incompletely characterized at the molecular and biochemical levels. Tumor metastasis is a complex process and requires multiple cellular functions over time. From cellular invasion, extravasation from the primary tumor, intravasation to the secondary organs, to successful colonization, tumor cells utilize many cellular or biochemical mechanisms to complete the metastatic spread. During the process of metastasis, there are consistent changes in gene expression. Studies of genes that are reduced or silenced have yielded surprising insights into in vivo mechanisms of regulating tumor metastasis. This review describes a tumor suppressor gene, Maspin, which is often silenced in cancer cells and exhibits suppressing activity against tumor growth and metastasis. Maspin has been shown to be involved in processes that are important to both tumor growth and metastasis such as cell invasion, angiogenesis, and more recently apoptosis. Hence, many efforts have been devoted to deciphering the molecular mechanism of maspin. While some insights have come from the protease inhibitory effect of maspin, more perceptive results on how maspin may function in suppressing tumor metastasis have come from studies of gene manipulation, protein interactions and global protein profiling.
Collapse
Affiliation(s)
- Emily I Chen
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|