1
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
2
|
Sec61 channel subunit Sbh1/Sec61β promotes ER translocation of proteins with suboptimal targeting sequences and is fine-tuned by phosphorylation. J Biol Chem 2023; 299:102895. [PMID: 36639027 PMCID: PMC9947333 DOI: 10.1016/j.jbc.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
The highly conserved endoplasmic reticulum (ER) protein translocation channel contains one nonessential subunit, Sec61β/Sbh1, whose function is poorly understood so far. Its intrinsically unstructured cytosolic domain makes transient contact with ER-targeting sequences in the cytosolic channel vestibule and contains multiple phosphorylation sites suggesting a potential for regulating ER protein import. In a microscopic screen, we show that 12% of a GFP-tagged secretory protein library depends on Sbh1 for translocation into the ER. Sbh1-dependent proteins had targeting sequences with less pronounced hydrophobicity and often no charge bias or an inverse charge bias which reduces their insertion efficiency into the Sec61 channel. We determined that mutating two N-terminal, proline-flanked phosphorylation sites in the Sbh1 cytosolic domain to alanine phenocopied the temperature-sensitivity of a yeast strain lacking SBH1 and its ortholog SBH2. The phosphorylation site mutations reduced translocation into the ER of a subset of Sbh1-dependent proteins, including enzymes whose concentration in the ER lumen is critical for ER proteostasis. In addition, we found that ER import of these proteins depended on the activity of the phospho-S/T-specific proline isomerase Ess1 (PIN1 in mammals). We conclude that Sbh1 promotes ER translocation of substrates with suboptimal targeting sequences and that its activity can be regulated by a conformational change induced by N-terminal phosphorylation.
Collapse
|
3
|
Palumbo RJ, McKean N, Leatherman E, Namitz KEW, Connell L, Wolfe A, Moody K, Gostinčar C, Gunde-Cimerman N, Bah A, Hanes SD. Coevolution of the Ess1-CTD axis in polar fungi suggests a role for phase separation in cold tolerance. SCIENCE ADVANCES 2022; 8:eabq3235. [PMID: 36070379 PMCID: PMC9451162 DOI: 10.1126/sciadv.abq3235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/14/2023]
Abstract
Most of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, Saccharomyces cerevisiae. By contrast, polar CTDs diverge from the consensus (YSPTSPS)26 and are not fully functional in S. cerevisiae. These CTDs retain the critical Ess1 Ser-Pro target motifs, but substitutions at Y1, T4, and S7 profoundly affected their ability to undergo phase separation in vitro and localize in vivo. We propose that environmentally tuned phase separation by the CTD and other intrinsically disordered regions plays an adaptive role in cold tolerance by concentrating enzymes and substrates to overcome energetic barriers to metabolic activity.
Collapse
Affiliation(s)
- Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Nathan McKean
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Erinn Leatherman
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Laurie Connell
- School of Marine Sciences and Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Aaron Wolfe
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kelsey Moody
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Selles B, Dhalleine T, Boutilliat A, Rouhier N, Couturier J. A Redox-Sensitive Cysteine Is Required for PIN1At Function. FRONTIERS IN PLANT SCIENCE 2021; 12:735423. [PMID: 34975936 PMCID: PMC8716364 DOI: 10.3389/fpls.2021.735423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Parvulins are ubiquitous peptidyl-prolyl isomerases (PPIases) required for protein folding and regulation. Among parvulin members, Arabidopsis PIN1At, human PIN1, and yeast ESS1 share a conserved cysteine residue but differ by the presence of an N-terminal WW domain, absent in PIN1At. In this study, we have explored whether the cysteine residue of Arabidopsis PIN1At is involved in catalysis and subject to oxidative modifications. From the functional complementation of yeast ess1 mutant, we concluded that the cysteine at position 69 is mandatory for PIN1At function in vivo, unless being replaced by an Asp which is found in a few parvulin members. This result correlates with a decrease of the in vitro PPIase activity of non-functional PIN1At cysteinic variants. A decrease of PIN1At activity was observed upon H2O2 treatment. The in vitro oxidation of cysteine 69, which has an acidic pKa value of 4.9, leads to the formation of covalent dimers that are reduced by thioredoxins, or to sulfinic or sulfonic acid forms at higher H2O2 excess. These investigations highlight the importance of the sole cysteine residue of PIN1At for activity. The reversible formation of an intermolecular disulfide bond might constitute a protective or regulatory mechanism under oxidizing conditions.
Collapse
Affiliation(s)
| | | | | | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, Nancy, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. J Mol Biol 2021; 433:166912. [PMID: 33676925 PMCID: PMC8184622 DOI: 10.1016/j.jmb.2021.166912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (Y1S2P3T4S5P6S7) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.
Collapse
Affiliation(s)
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
6
|
Namitz KEW, Zheng T, Canning AJ, Alicea-Velazquez NL, Castañeda CA, Cosgrove MS, Hanes SD. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Commun Biol 2021; 4:398. [PMID: 33767358 PMCID: PMC7994582 DOI: 10.1038/s42003-021-01906-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
Accurate gene transcription in eukaryotes depends on isomerization of serine-proline bonds within the carboxy-terminal domain (CTD) of RNA polymerase II. Isomerization is part of the "CTD code" that regulates recruitment of proteins required for transcription and co-transcriptional RNA processing. Saccharomyces cerevisiae Ess1 and its human ortholog, Pin1, are prolyl isomerases that engage the long heptad repeat (YSPTSPS)26 of the CTD by an unknown mechanism. Here, we used an integrative structural approach to decipher Ess1 interactions with the CTD. Ess1 has a rigid linker between its WW and catalytic domains that enforces a distance constraint for bivalent interaction with the ends of long CTD substrates (≥4-5 heptad repeats). Our binding results suggest that the Ess1 WW domain anchors the proximal end of the CTD substrate during isomerization, and that linker divergence may underlie evolution of substrate specificity.
Collapse
Affiliation(s)
- Kevin E. W. Namitz
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA ,grid.29857.310000 0001 2097 4281Present Address: Department of Chemistry, Pennsylvania State University, University Park, PA USA
| | - Tongyin Zheng
- grid.264484.80000 0001 2189 1568Departments of Biology and Chemistry, Syracuse University, Syracuse, NY USA
| | - Ashley J. Canning
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA
| | - Nilda L. Alicea-Velazquez
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA ,grid.247980.00000 0001 2184 3689Present Address: Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT USA
| | - Carlos A. Castañeda
- grid.264484.80000 0001 2189 1568Departments of Biology and Chemistry, Syracuse University, Syracuse, NY USA
| | - Michael S. Cosgrove
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA
| | - Steven D. Hanes
- grid.411023.50000 0000 9159 4457Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
7
|
Zhu Y, Berg MD, Yang P, Loll-Krippleber R, Brown GW, Brandl CJ. Mistranslating tRNA identifies a deleterious S213P mutation in theSaccharomyces cerevisiaeeco1-1allele. Biochem Cell Biol 2020; 98:624-630. [DOI: 10.1139/bcb-2020-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNASerUGG, G26A, which mistranslates proline codons by inserting serine, and eco1-1, a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion. The suppression was partial, with a tRNA that inserts alanine at proline codons and not apparent for a tRNA that inserts serine at arginine codons. Sequencing of the eco1-1 allele revealed a mutation that would convert the highly conserved serine 213 within β7 of the GCN5-related N-acetyltransferase core to proline. Mutation of P213 in eco1-1 back to the wild-type serine restored the function of the enzyme at elevated temperatures. Our results indicate the utility of mistranslating tRNA variants to identify functionally relevant mutations and identify eco1 as a reporter for mistranslation. We propose that mistranslation could be used as a tool to treat genetic disease.
Collapse
Affiliation(s)
- Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Phoebe Yang
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Raphaël Loll-Krippleber
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Grant W. Brown
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei. Infect Immun 2019; 87:IAI.00528-19. [PMID: 31331957 DOI: 10.1128/iai.00528-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomallei ΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.
Collapse
|
9
|
Rougemaille M, Libri D. Control of cryptic transcription in eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 702:122-31. [PMID: 21713682 DOI: 10.1007/978-1-4419-7841-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Over the last few years, the development of large-scale technologies has radically modified our conception of genome-wide transcriptional control by unveiling an unexpected high complexity of the eukaryotic transcriptome. In organisms ranging from yeast to human, a considerable number of novel small RNA species have been discovered in regions that were previously thought to be incompatible with high levels of transcription. Intriguingly, these transcripts, which are rapidly targeted for degradation by the exosome, appear to be devoid of any coding potential and may be the consequence of unwanted transcription events. However, the notion that an important fraction of these RNAs represent by-products of regulatory transcription is progressively emerging. In this chapter, we discuss the recent advances made in our understanding of the shape of the eukaryotic transcriptome. We also focus on the molecular mechanisms that cells exploit to prevent cryptic transcripts from interfering with the expression of protein-coding genes. Finally, we summarize data obtained in different systems suggesting that such RNAs may play a critical role in the regulation of gene expression as well as the evolution of genomes.
Collapse
Affiliation(s)
- Mathieu Rougemaille
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire, CNRS-UPR2167, Gif-sur-Yvette, France,
| | | |
Collapse
|
10
|
Naicker MC, Kim YH, Lee K, Im H. Yeast Cyclophilins Prevent Cold Denaturation of Proteins. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Yang-Hee Kim
- Department of Molecular Biology; Sejong University; Seoul 05006 Korea
| | - Kyunghee Lee
- Department of Chemistry; Sejong University; Seoul 05006 Korea
| | - Hana Im
- Department of Molecular Biology; Sejong University; Seoul 05006 Korea
| |
Collapse
|
11
|
von Brunn A, Ciesek S, von Brunn B, Carbajo-Lozoya J. Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication. Curr Opin Virol 2015; 14:56-61. [PMID: 26318518 PMCID: PMC7102849 DOI: 10.1016/j.coviro.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Replication of coronaviruses is inhibited in vitro by cyclosporin A, a well-known immunosuppressive drug which binds to cellular cyclophilins thus inactivating their enzymatic cis-trans peptidyl-prolyl isomerase function. Latter is required for proper folding of cellular proteins and of proteins of several viruses. Here, we summarize present knowledge on the role of cyclophilin A during coronavirus replication. We present data on the effect of cyclophilin A single nucleotide polymorphism mutants on the replication of human CoV-229E demonstrating the requirement of proper cyclophilin A function for virus propagation. Results define cellular cyclophilin A as a host target for inhibition of coronaviruses ranging from relatively mild common cold to highly pathogenic SARS-CoV and MERS-CoV viruses with the perspective of disclosing non-immunosuppressive cyclosporin A analogs to broadly inactivate the coronavirus family.
Collapse
Affiliation(s)
- Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany.
| | - Sandra Ciesek
- German Center for Infection Research (DZIF), Germany; Department of Gastroenterology, Hepatology und Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany
| | - Javier Carbajo-Lozoya
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research (DZIF), Germany
| |
Collapse
|
12
|
Jha BK, Jung HJ, Seo I, Suh SI, Suh MH, Baek WK. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species. Exp Parasitol 2015; 159:100-6. [PMID: 26358271 DOI: 10.1016/j.exppara.2015.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/15/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022]
Abstract
Juglone (5-hydroxy-1,4-naphthoquinone) is a major chemical constituent of Juglans mandshruica Maxim. Recent studies have demonstrated that juglone exhibits anti-cancer, anti-bacterial, anti-viral, and anti-parasitic properties. However, its effect against Acanthamoeba has not been defined yet. The aim of this study was to investigate the effect of juglone on Acanthamoeba. We demonstrate that juglone significantly inhibits the growth of Acanthamoeba castellanii at 3-5 μM concentrations. Juglone increased the production of reactive oxygen species (ROS) and caused cell death of A. castellanii. Inhibition of ROS by antioxidant N-acetyl-l-cysteine (NAC) restored the cell viability. Furthermore, our results show that juglone increased the uptake of mitochondrial specific dye. Collectively, these results indicate that ROS played a significant role in the juglone-induced cell death of Acanthamoeba.
Collapse
Affiliation(s)
- Bijay Kumar Jha
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hui-Jung Jung
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Incheol Seo
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seong-Il Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Min-Ho Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
13
|
Abstract
The RNA polymerase II transcription cycle is often divided into three major stages: initiation, elongation, and termination. Research over the last decade has blurred these divisions and emphasized the tightly regulated transitions that occur as RNA polymerase II synthesizes a transcript from start to finish. Transcription termination, the process that marks the end of transcription elongation, is regulated by proteins that interact with the polymerase, nascent transcript, and/or chromatin template. The failure to terminate transcription can cause accumulation of aberrant transcripts and interfere with transcription at downstream genes. Here, we review the mechanism, regulation, and physiological impact of a termination pathway that targets small noncoding transcripts produced by RNA polymerase II. We emphasize the Nrd1-Nab3-Sen1 pathway in yeast, in which the process has been extensively studied. The importance of understanding small RNA termination pathways is underscored by the need to control noncoding transcription in eukaryotic genomes.
Collapse
Affiliation(s)
- Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | |
Collapse
|
14
|
Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape. Biochim Biophys Acta Gen Subj 2015; 1850:2077-86. [PMID: 25766872 DOI: 10.1016/j.bbagen.2015.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. SCOPE OF REVIEW We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. MAJOR CONCLUSIONS The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. GENERAL SIGNIFICANCE As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
15
|
Ghosh S, Gupta SK, Jha G. Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani. Curr Genet 2014; 60:327-41. [PMID: 25070039 DOI: 10.1007/s00294-014-0438-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
Abstract
Rhizoctonia solani is an important necrotrophic fungal pathogen which causes disease on diverse plant species. It has been classified into 14 genetically distinct anastomosis groups (AGs), however, very little is known about their genomic diversity. AG1-IA causes sheath blight disease in rice and controlling this disease remains a challenge for sustainable rice cultivation. Recently the draft genome sequences of AG1-IA (rice isolate) and AG1-IB (lettuce isolate) had become publicly available. In this study, using comparative genomics, we report identification of 3,942 R. solani genes that are uniquely present in AG1-IA. Many of these genes encode important biological, molecular functions and exhibit dynamic expression during in-planta growth of the pathogen in rice. Based upon sequence similarity with genes that are required for plant and human/zoonotic diseases, we identified several putative virulence/pathogenicity determinants amongst AG1-IA specific genes. While studying the expression of 19 randomly selected genes, we identified three genes highly up-regulated during in-planta growth. The detailed in silico characterization of these genes and extent of their up-regulation in different rice genotypes, having variable degree of disease susceptibility, suggests their importance in rice-Rhizoctonia interactions. In summary, the present study reports identification, functional characterization of AG1-IA specific genes and predicts important virulence determinants that might enable the pathogen to grow inside hostile plant environment. Further characterization of these genes would shed useful insights about the pathogenicity mechanism of AG1-IA on rice.
Collapse
Affiliation(s)
- Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | |
Collapse
|
16
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
17
|
Abstract
The Ess1 prolyl isomerase from Saccharomyces cerevisiae and its human ortholog, Pin1, play critical roles in transcription by regulating RNA polymerase II. In human cells, Pin1 also regulates a variety of signaling proteins, and Pin1 misexpression is linked to several human diseases. To gain insight into Ess1/Pin1 function, we carried out a synthetic genetic array screen to identify novel targets of Ess1 in yeast. We identified potential targets of Ess1 in transcription, stress, and cell-cycle pathways. We focused on the cell-cycle regulators Swi6 and Whi5, both of which show highly regulated nucleocytoplasmic shuttling during the cell cycle. Surprisingly, Ess1 did not control their transcription but instead was necessary for their nuclear localization. Ess1 associated with Swi6 and Whi5 in vivo and bound directly to peptides corresponding to their nuclear localization sequences in vitro. Binding by Ess1 was significant only if the Swi6 and Whi5 peptides were phosphorylated at Ser-Pro motifs, the target sites of cyclin-dependent kinases. On the basis of these results, we propose a model in which Ess1 induces a conformational switch (cis-trans isomerization) at phospho-Ser-Pro sites within the nuclear targeting sequences of Swi6 and Whi5. This switch would promote nuclear entry and/or retention during late M and G1 phases and might work by stimulating dephosphorylation at these sites by the Cdc14 phosphatase. This is the first study to identify targets of Ess1 in yeast other than RNA polymerase II.
Collapse
|
18
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
19
|
Cho KI, Patil H, Senda E, Wang J, Yi H, Qiu S, Yoon D, Yu M, Orry A, Peachey NS, Ferreira PA. Differential loss of prolyl isomerase or chaperone activity of Ran-binding protein 2 (Ranbp2) unveils distinct physiological roles of its cyclophilin domain in proteostasis. J Biol Chem 2014; 289:4600-25. [PMID: 24403063 DOI: 10.1074/jbc.m113.538215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2(WT-HA)) or without PPIase activities (Tg-Ranbp2(R2944A-HA)). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2(CLDm-HA)::Ranbp2(-/-), harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results unveil distinct mechanistic and biological links between PPIase and chaperone activities of Ranbp2 cyclophilin toward proteostasis of selective substrates and with novel therapeutic potential.
Collapse
Affiliation(s)
- Kyoung-in Cho
- From the Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
21
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
22
|
Samaranayake D, Atencio D, Morse R, Wade JT, Chaturvedi V, Hanes SD. Role of Ess1 in growth, morphogenetic switching, and RNA polymerase II transcription in Candida albicans. PLoS One 2013; 8:e59094. [PMID: 23516603 PMCID: PMC3597612 DOI: 10.1371/journal.pone.0059094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a fungal pathogen that causes potentially fatal infections among immune-compromised individuals. The emergence of drug resistant C. albicans strains makes it important to identify new antifungal drug targets. Among potential targets are enzymes known as peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze isomerization of peptide bonds preceding proline. We are investigating a PPIase called Ess1, which is conserved in all major human pathogenic fungi. Previously, we reported that C. albicans Ess1 is essential for growth and morphogenetic switching. In the present study, we re-evaluated these findings using more rigorous genetic analyses, including the use of additional CaESS1 mutant alleles, distinct marker genes, and the engineering of suitably-matched isogenic control strains. The results confirm that CaEss1 is essential for growth in C. albicans, but show that reduction of CaESS1 gene dosage by half (δ/+) does not interfere with morphogenetic switching. However, further reduction of CaEss1 levels using a conditional allele does reduce morphogenetic switching. We also examine the role of the linker α-helix that distinguishes C. albicans Ess1 from the human Pin1 enzyme, and present results of a genome-wide transcriptome analysis. The latter analysis indicates that CaEss1 has a conserved role in regulation of RNA polymerase II function, and is required for efficient termination of small nucleolar RNAs and repression of cryptic transcription in C. albicans.
Collapse
Affiliation(s)
- Dhanushki Samaranayake
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- Division of Genetics, Wadsworth Center, NY State Department of Health, Albany, New York, United States of America
| | - David Atencio
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Randall Morse
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- Division of Genetics, Wadsworth Center, NY State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- Division of Genetics, Wadsworth Center, NY State Department of Health, Albany, New York, United States of America
| | - Vishnu Chaturvedi
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- Mycology Laboratory, Wadsworth Center, NY State Department of Health, Albany, New York, United States of America
| | - Steven D. Hanes
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- Division of Infectious Disease, Wadsworth Center, NY State Department of Health, Albany, New York, United States of America
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
23
|
Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D, Loehr F, Hofr C, Vanacova S, Stefl R. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev 2012; 26:1891-6. [PMID: 22892239 DOI: 10.1101/gad.192781.112] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recruitment of appropriate RNA processing factors to the site of transcription is controlled by post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II (RNAP II). Here, we report the solution structure of the Ser5 phosphorylated (pSer5) CTD bound to Nrd1. The structure reveals a direct recognition of pSer5 by Nrd1 that requires the cis conformation of the upstream pSer5-Pro6 peptidyl-prolyl bond of the CTD. Mutations at the complex interface diminish binding affinity and impair processing or degradation of noncoding RNAs. These findings underpin the interplay between covalent and noncovalent changes in the CTD structure that constitute the CTD code.
Collapse
Affiliation(s)
- Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Multiple roles for the Ess1 prolyl isomerase in the RNA polymerase II transcription cycle. Mol Cell Biol 2012; 32:3594-607. [PMID: 22778132 DOI: 10.1128/mcb.00672-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ess1 prolyl isomerase in Saccharomyces cerevisiae regulates RNA polymerase II (pol II) by isomerizing peptide bonds within the pol II carboxy-terminal domain (CTD) heptapeptide repeat (YSPTSPS). Ess1 preferentially targets the Ser5-Pro6 bond when Ser5 is phosphorylated. Conformational changes in the CTD induced by Ess1 control the recruitment of essential cofactors to the pol II complex and may facilitate the ordered transition between initiation, elongation, termination, and RNA processing. Here, we show that Ess1 associates with the phospho-Ser5 form of polymerase in vivo, is present along the entire length of coding genes, and is critical for regulating the phosphorylation of Ser7 within the CTD. In addition, Ess1 represses the initiation of cryptic unstable transcripts (CUTs) and is required for efficient termination of mRNA transcription. Analysis using strains lacking nonsense-mediated decay suggests that as many as half of all yeast genes depend on Ess1 for efficient termination. Finally, we show that Ess1 is required for trimethylation of histone H3 lysine 4 (H3K4). Thus, Ess1 has direct effects on RNA polymerase transcription by controlling cofactor binding via conformationally induced changes in the CTD and indirect effects by influencing chromatin modification.
Collapse
|
25
|
Bataille AR, Jeronimo C, Jacques PÉ, Laramée L, Fortin MÈ, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 2012; 45:158-70. [PMID: 22284676 DOI: 10.1016/j.molcel.2011.11.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 11/04/2011] [Indexed: 11/17/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is not uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phosphoisoforms in wild-type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes.
Collapse
Affiliation(s)
- Alain R Bataille
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A Burkholderia pseudomallei macrophage infectivity potentiator-like protein has rapamycin-inhibitable peptidylprolyl isomerase activity and pleiotropic effects on virulence. Infect Immun 2011; 79:4299-307. [PMID: 21859853 DOI: 10.1128/iai.00134-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophage infectivity potentiators (Mips) are a group of virulence factors encoded by pathogenic bacteria such as Legionella, Chlamydia, and Neisseria species. Mips are part of the FK506-binding protein (FKBP) family, whose members typically exhibit peptidylprolyl cis-trans isomerase (PPIase) activity which is inhibitable by the immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization of BPSS1823, a Mip-like protein in the intracellular pathogen Burkholderia pseudomallei. Recombinant BPSS1823 protein has rapamycin-inhibitable PPIase activity, indicating that it is a functional FKBP. A mutant strain generated by deletion of BPSS1823 in B. pseudomallei exhibited a reduced ability to survive within cells and significant attenuation in vivo, suggesting that BPSS1823 is important for B. pseudomallei virulence. In addition, pleiotropic effects were observed with a reduction in virulence mechanisms, including resistance to host killing mechanisms, swarming motility, and protease production.
Collapse
|
27
|
Helbig AO, Daran-Lapujade P, van Maris AJA, de Hulster EAF, de Ridder D, Pronk JT, Heck AJR, Slijper M. The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2011; 7:3316-26. [DOI: 10.1039/c1mb05250k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 2010; 286:5717-26. [PMID: 21159777 DOI: 10.1074/jbc.m110.197129] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P)(5) CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P)(5)-Pro(6) motif in the cis configuration. We show that the cis-Ser(P)(5)-Pro(6) isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerization facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology.
Collapse
Affiliation(s)
- Jon W Werner-Allen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jouvet N, Poschmann J, Douville J, Bulet L, Ramotar D. Rrd1 isomerizes RNA polymerase II in response to rapamycin. BMC Mol Biol 2010; 11:92. [PMID: 21129186 PMCID: PMC3019149 DOI: 10.1186/1471-2199-11-92] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/03/2010] [Indexed: 01/11/2023] Open
Abstract
Background In Saccharomyces cerevisiae, the immunosuppressant rapamycin engenders a profound modification in the transcriptional profile leading to growth arrest. Mutants devoid of Rrd1, a protein possessing in vitro peptidyl prolyl cis/trans isomerase activity, display striking resistance to the drug, although how Rrd1 activity is linked to the biological responses has not been elucidated. Results We now provide evidence that Rrd1 is associated with the chromatin and it interacts with RNA polymerase II. Circular dichroism revealed that Rrd1 mediates structural changes onto the C-terminal domain (CTD) of the large subunit of RNA polymerase II (Rpb1) in response to rapamycin, although this appears to be independent of the overall phosphorylation status of the CTD. In vitro experiments, showed that recombinant Rrd1 directly isomerizes purified GST-CTD and that it releases RNA polymerase II from the chromatin. Consistent with this, we demonstrated that Rrd1 is required to alter RNA polymerase II occupancy on rapamycin responsive genes. Conclusion We propose as a mechanism, that upon rapamycin exposure Rrd1 isomerizes Rpb1 to promote its dissociation from the chromatin in order to modulate transcription.
Collapse
Affiliation(s)
- Nathalie Jouvet
- Maisonneuve-Rosemont Hospital, Research Center, Department of Immunology and Oncology, University of Montreal, 5415 de l'Assomption, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
31
|
Giuseppe PO, Von Atzingen M, Nascimento ALTO, Zanchin NIT, Guimarães BG. The crystal structure of the leptospiral hypothetical protein LIC12922 reveals homology with the periplasmic chaperone SurA. J Struct Biol 2010; 173:312-22. [PMID: 20970503 DOI: 10.1016/j.jsb.2010.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 12/22/2022]
Abstract
Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes.
Collapse
Affiliation(s)
- Priscila O Giuseppe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Identification of an atypical peptidyl-prolyl cis/trans isomerase from trypanosomatids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1028-37. [DOI: 10.1016/j.bbamcr.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 11/24/2022]
|
33
|
Goh JY, Lai CY, Tan LC, Yang D, He CY, Liou YC. Functional characterization of two novel parvulins in Trypanosoma brucei. FEBS Lett 2010; 584:2901-8. [PMID: 20466001 DOI: 10.1016/j.febslet.2010.04.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/19/2010] [Accepted: 04/30/2010] [Indexed: 01/22/2023]
Abstract
Parvulins belong to a family of peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze the cis/trans conformations of prolyl-peptidyl bonds. Herein, we characterized two novel parvulins, TbPIN1 and TbPAR42, in Trypanosoma brucei. TbPIN1, a 115 amino-acid protein, contains a single PPIase domain but lacks the N-terminal WW domain. Using NMR spectroscopy, TbPIN1 was found to exhibit PPIase activity toward a phosphorylated substrate. Overexpression of TbPIN1 can rescue the impaired temperature-sensitive phenotype in a mutant yeast strain. TbPAR42, containing 383 amino acids, comprises a novel FHA domain at its N terminus and a C-terminal PPIase domain but is a non-Pin1-type PPIase. Functionally, a knockdown of TbPAR42 in its procyclic form results in reduced proliferation rates suggesting an important role in cell growth.
Collapse
Affiliation(s)
- Jian Yuan Goh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
34
|
McNaughton L, Li Z, Van Roey P, Hanes SD, LeMaster DM. Restricted domain mobility in the Candida albicans Ess1 prolyl isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1537-41. [PMID: 20304107 DOI: 10.1016/j.bbapap.2010.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 01/08/2023]
Abstract
Ess1 is a peptidyl prolyl cis/trans isomerase that is required for virulence of the pathogenic fungi Candida albicans and Cryptococcus neoformans. The enzyme isomerizes the phospho-Ser-Pro linkages in the C-terminal domain of RNA polymerase II. Its human homolog, Pin1, has been implicated in a wide range of human diseases, including cancer and Alzheimer's disease. Crystallographic and NMR studies have demonstrated that the sequence linking the catalytic isomerase domain and the substrate binding WW domain of Pin1 is unstructured and that the two domains are only loosely associated in the absence of the substrate. In contrast, the crystal structure of C. albicans Ess1 revealed a highly ordered linker that contains a three turn alpha-helix and extensive association between the two tightly juxtaposed domains. In part to address the concern that the marked differences in the domain interactions for the human and fungal structures might reflect crystal lattice effects, NMR chemical shift analysis and 15N relaxation measurements have been employed to confirm that the linker of the fungal protein is highly ordered in solution. With the exception of two loops within the active site of the isomerase domain, the local backbone geometry observed in the crystal structure appears to be well preserved throughout the protein chain. The marked differences in interdomain interactions and linker flexibility between the human and fungal enzymes provide a structural basis for therapeutic targeting of the fungal enzymes.
Collapse
Affiliation(s)
- Lynn McNaughton
- Wadsworth Center, New York State Department of Health, School of Public Health, University at Albany, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
35
|
Singh N, Ma Z, Gemmill T, Wu X, Defiglio H, Rossettini A, Rabeler C, Beane O, Morse RH, Palumbo MJ, Hanes SD. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol Cell 2009; 36:255-66. [PMID: 19854134 DOI: 10.1016/j.molcel.2009.08.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/03/2009] [Accepted: 08/13/2009] [Indexed: 12/17/2022]
Abstract
Genome-wide studies have identified abundant small, noncoding RNAs, including small nuclear RNAs, small nucleolar RNAs (snoRNAs), cryptic unstable transcripts (CUTs), and upstream regulatory RNAs (uRNAs), that are transcribed by RNA polymerase II (pol II) and terminated by an Nrd1-dependent pathway. Here, we show that the prolyl isomerase Ess1 is required for Nrd1-dependent termination of noncoding RNAs. Ess1 binds the carboxy-terminal domain (CTD) of pol II and is thought to regulate transcription by conformational isomerization of Ser-Pro bonds within the CTD. In ess1 mutants, expression of approximately 10% of the genome was altered, due primarily to defects in termination of snoRNAs, CUTs, stable unannotated transcripts, and uRNAs. Ess1 promoted dephosphorylation of Ser5 (but not Ser2) within the CTD, most likely by the Ssu72 phosphatase. We also provide evidence for a competition between Nrd1 and Pcf11 for CTD binding that is regulated by Ess1. These data indicate that a prolyl isomerase is required for specifying the "CTD code."
Collapse
Affiliation(s)
- Navjot Singh
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Mol Cell Biol 2009; 29:2925-34. [PMID: 19332564 DOI: 10.1128/mcb.01655-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a reiterated heptad sequence (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) that plays a key role in the transcription cycle, coordinating the exchange of transcription and RNA processing factors. The structure of the CTD is flexible and undergoes conformational changes in response to serine phosphorylation and proline isomerization. Here we report that the Ess1 peptidyl prolyl isomerase functionally interacts with the transcription initiation factor TFIIB and with the Ssu72 CTD phosphatase and Pta1 components of the CPF 3'-end processing complex. The ess1(A144T) and ess1(H164R) mutants, initially described by Hanes and coworkers (Yeast 5:55-72, 1989), accumulate the pSer5 phosphorylated form of Pol II; confer phosphate, galactose, and inositol auxotrophies; and fail to activate PHO5, GAL10, and INO1 reporter genes. These mutants are also defective for transcription termination, but in vitro experiments indicate that this defect is not caused by altering the processing efficiency of the cleavage/polyadenylation machinery. Consistent with a role in initiation and termination, Ess1 associates with the promoter and terminator regions of the PMA1 and PHO5 genes. We propose that Ess1 facilitates pSer5-Pro6 dephosphorylation by generating the CTD structural conformation recognized by the Ssu72 phosphatase and that pSer5 dephosphorylation affects both early and late stages of the transcription cycle.
Collapse
|
37
|
Arabidopsis thaliana PRP40s are RNA polymerase II C-terminal domain-associating proteins. Arch Biochem Biophys 2009; 484:30-8. [PMID: 19467629 DOI: 10.1016/j.abb.2009.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 11/22/2022]
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II functions as a scaffold for RNA processing machineries that recognize differentially phosphorylated conserved (YSPTSPS)(n) repeats. Evidence indicates that proteins that regulate the phosphorylation status of the CTD are determinants of growth, development, and stress responses of plants; however, little is known about the mechanisms that translate the CTD phosphoarray into physiological outputs. We report the bioinformatic identification of a family of three phospho-CTD-associated proteins (PCAPs) in Arabidopsis and the characterization of the AtPRP40 (Arabidopsis thaliana PRE-mRNA-PROCESSING PROTEIN 40) family as PCAPs. AtPRP40s-CTD/CTD-PO(4) interactions were confirmed using the yeast two-hybrid assay and far-Western blotting. WW domains at the N-terminus of AtPRP40b mediate the AtPRP40b-CTD/CTD-PO(4) interaction. Although AtPRP40s interact with both phosphorylated and unphosphorylated CTD in vitro, there is a strong preference for the phosphorylated form in Arabidopsis cell extract. AtPRP40s are ubiquitously expressed and localize to the nucleus. These results establish that AtPRP40s are specific PCAPs, which is consistent with the predicted function of the AtPRP40 family in pre-mRNA splicing.
Collapse
|
38
|
Bailey ML, Shilton BH, Brandl CJ, Litchfield DW. The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. Biochemistry 2008; 47:11481-9. [PMID: 18844375 DOI: 10.1021/bi800964q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic domain of the peptidyl-prolyl cis/ trans isomerase Pin1 is a member of the FKBP superfold family. Within its active site are two highly conserved histidine residues, H59 and H157. Despite their sequence conservation in parvulin PPIase domains, the role of these histidine residues remains unclear. Our previous work (Behrsin et al. (2007) J. Mol. Biol. 365, 1143- 1162.) was consistent with a model where one or both histidines had critical roles in a hydrogen bonding network in the active site. Here, we test this model by looking at the effect of mutations to H59 and H157 on Pin1 function, activity, and protein stability. Using a yeast complementation assay, we show that both H59 and H157 can be mutated to non-hydrogen bonding residues and still support viability. Surprisingly, a nonfunctional H59L mutation can be rescued by a mutation of H157, to leucine. This double mutation (H59L/H157L) also had about 5-fold greater isomerase activity than the H59L mutation with a phosphorylated substrate. Structural analyses suggest that rescue of function and activity results from partial rescue of protein stability. Our findings indicate that H59 and H157 are not required for hydrogen bonding within the active site, and in contrast to the active site C113, they do not participate directly in catalysis. Instead, we suggest these histidines play a key role in domain structure or stability.
Collapse
Affiliation(s)
- Melanie L Bailey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
39
|
Mueller JW, Bayer P. Small family with key contacts: par14 and par17 parvulin proteins, relatives of pin1, now emerge in biomedical research. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008; 2:11-20. [PMID: 19787094 PMCID: PMC2746571 DOI: 10.4137/pmc.s496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The parvulin-type peptidyl-prolyl cis/trans isomerase Pin1 is subject of intense biochemical and clinical research as it seems to be involved in the pathogenesis of certain cancers and protein folding illnesses like Alzheimer's and Parkinson's disease. In addition to Pin1, the human genome only contains a single other parvulin locus encoding two protein species-Par14 and Par17. Much less is known about these enzymes although their sequences are highly conserved in all metazoans. Parvulin has been proposed to function as Pin1 complementing enzyme in cell cycle regulation and in chromatin remodelling. Pharmaceutical modulation of Par14 might therefore have benefits for certain types of cancer. Moreover, the Par17 protein that has been shown to be confined to anthropoid primate species only might provide a deeper understanding for human-specific brain development. This review aims at stimulating further research on Par14 and Par17 that are overlooked drug targets in the shadow of an overwhelming plethora of Pin1 literature by summarising all current knowledge on these parvulin proteins.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Institute for Structural and Medicinal Biochemistry, Centre for Medical Biotechnology—ZMB, University of Duisburg-Essen, 45117 Essen, Germany
- Molecular Structure, National Institute for Medical Research (MRC), The Ridgeway, NW7 1AA, London, U.K
| | - Peter Bayer
- Institute for Structural and Medicinal Biochemistry, Centre for Medical Biotechnology—ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
40
|
Wildemann D, Hernandez Alvarez B, Stoller G, Zhou XZ, Lu KP, Erdmann F, Ferrari D, Fischer G. An essential role for Pin1 in Xenopus laevis embryonic development revealed by specific inhibitors. Biol Chem 2008; 388:1103-11. [PMID: 17937625 DOI: 10.1515/bc.2007.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peptidyl prolyl cis/trans isomerase (PPIase) Pin1 plays an important role in phosphorylation-dependent events of the cell cycle. This function is linked to its display of two phosphothreonine/phosphoserine-proline binding motifs, one within the type IV WW domain and a second within the parvulin-like catalytic domain. By microinjection of the compound Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2, which inhibits Xenopus laevis Pin1 with a Ki value of 19.4+/-1.5 nM, into the animal pole of X. laevis embryos at the two-cell stage, the impact of Pin1 PPIase activity on cell cycle progression and embryonic development could be analysed, independent of WW domain-mediated phosphoprotein binding. Injected embryos showed a dramatically decreased survival rate at late stages of development that could only be partially compensated by co-injection with mRNAs of enzymatically active Pin1 variants, demonstrating that the phosphorylation-specific PPIase activity of Pin1 is essential for cell division and development in X. laevis.
Collapse
Affiliation(s)
- Dirk Wildemann
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lippens G, Landrieu I, Smet C. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. FEBS J 2007; 274:5211-22. [PMID: 17892493 DOI: 10.1111/j.1742-4658.2007.06057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since its discovery 10 years ago, Pin1, a prolyl cis/trans isomerase essential for cell cycle progression, has been implicated in a large number of molecular processes related to human diseases, including cancer and Alzheimer's disease. Pin1 is made up of a WW interaction domain and a C-terminal catalytic subunit, and several high-resolution structures are available that have helped define its function. The enzymatic activity of Pin1 towards short peptides containing the pSer/Thr-Pro motif has been well documented, and we discuss the available evidence for the molecular mechanisms of its isomerase activity. We further focus on those studies that examine its cis/trans isomerase function using full-length protein substrates. The interpretation of this research has been further complicated by the observation that many of its pSer/Thr-Pro substrate motifs are located in natively unstructured regions of polypeptides, and are characterized by minor populations of the cis conformer. Finally, we review the data on the possibility of alternative modes of substrate binding and the complex role that Pin1 plays in the degradation of its substrates. After considering the available work, it seems that further analysis is required to determine whether binding or catalysis is the primary mechanism through which Pin1 affects cell cycle progression.
Collapse
Affiliation(s)
- G Lippens
- CNRS UMR 8576 Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1-59655, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
42
|
Daum S, Lücke C, Wildemann D, Schiene-Fischer C. On the benefit of bivalency in peptide ligand/pin1 interactions. J Mol Biol 2007; 374:147-61. [PMID: 17931657 DOI: 10.1016/j.jmb.2007.09.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/31/2007] [Accepted: 09/05/2007] [Indexed: 11/17/2022]
Abstract
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO(3)H(2))/Thr(PO(3)H(2))-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.
Collapse
Affiliation(s)
- Sebastian Daum
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
PIN1 is a peptidyl-prolyl isomerase that can alter the conformation of phosphoproteins and so affect protein function and/or stability. PIN1 regulates a number of proteins important for cell-cycle progression and, based on gain- and loss-of-function studies, is presumed to operate as a molecular timer of this important process. Therefore, it seems logical that alterations in the level of PIN1 can influence hyperproliferative diseases such as cancer. However, the precise role of PIN1 in cancer remains controversial.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
44
|
Shaw PE. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? EMBO Rep 2007; 8:40-5. [PMID: 17203101 PMCID: PMC1796747 DOI: 10.1038/sj.embor.7400873] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/23/2006] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic transcription is regulated predominantly by the post-translational modification of the participating components. One such modification is the cis-trans isomerization of peptidyl-prolyl bonds, which results in a conformational change in the protein involved. Enzymes that carry out this reaction include the yeast peptidyl-prolyl cis/trans isomerase Ess1 and its human counterpart Pin1, both of which recognize phosphorylated target motifs exclusively. Consequently, they operate together with proline-directed serine-threonine kinases and phosphatases. High-profile client proteins involved in transcription include steroid hormone receptors, cell-cycle regulators and immune mediators. Other key targets are elements of the transcription machinery, including the multiply phosphorylated carboxy-terminal domain of RNA polymerase II. Changes in isomerase activity have been shown to alter the transactivation potential, protein stability or intracellular localization of these client proteins. The resulting disruption to developmental processes and cell proliferation has been linked, in some cases, to human cancers.
Collapse
Affiliation(s)
- Peter E Shaw
- Centre for Biochemistry and Cell Biology (CBCB), School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
45
|
Behrsin CD, Bailey ML, Bateman KS, Hamilton KS, Wahl LM, Brandl CJ, Shilton BH, Litchfield DW. Functionally Important Residues in the Peptidyl-prolyl Isomerase Pin1 Revealed by Unigenic Evolution. J Mol Biol 2007; 365:1143-62. [PMID: 17113106 DOI: 10.1016/j.jmb.2006.10.078] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 01/23/2023]
Abstract
Pin1 is a phosphorylation-dependent member of the parvulin family of peptidyl-prolyl isomerases exhibiting functional conservation between yeast and man. To perform an unbiased analysis of the regions of Pin1 essential for its functions, we generated libraries of randomly mutated forms of the human Pin1 cDNA and identified functional Pin1 alleles by their ability to complement the Pin1 homolog Ess1 in Saccharomyces cerevisiae. We isolated an extensive collection of functional mutant Pin1 clones harboring a total of 356 amino acid substitutions. Surprisingly, many residues previously thought to be critical in Pin1 were found to be altered in this collection of functional mutants. In fact, only 17 residues were completely conserved in these mutants and in Pin1 sequences from other eukaryotic organisms, with only two of these conserved residues located within the WW domain of Pin1. Examination of invariant residues provided new insights regarding a phosphate-binding loop that distinguishes a phosphorylation-dependent peptidyl-prolyl isomerase such as Pin1 from other parvulins. In addition, these studies led to an investigation of residues involved in catalysis including C113 that was previously implicated as the catalytic nucleophile. We demonstrate that substitution of C113 with D does not compromise Pin1 function in vivo nor does this substitution abolish catalytic activity in purified recombinant Pin1. These findings are consistent with the prospect that the function of residue 113 may not be that of a nucleophile, thus raising questions about the model of nucleophilic catalysis. Accordingly, an alternative catalytic mechanism for Pin1 is postulated.
Collapse
Affiliation(s)
- C D Behrsin
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pemberton TJ. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC Genomics 2006; 7:244. [PMID: 16995943 PMCID: PMC1618848 DOI: 10.1186/1471-2164-7-244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/22/2006] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. RESULTS PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. CONCLUSION Given this data, we would hypothesize that: (i) the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii) evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii) whilst the cyclophilins and parvulins have evolved to perform conserved functions, the FKBPs have evolved to perform more variable roles. Also, the repertoire of Cryptococcus neoformans may represent a better model fungal system within which to study the functions of the PPIases as its genome size and genetic tractability are equal to those of Saccharomyces cerevisiae, whilst its repertoires exhibits greater orthology to that of humans. However, further experimental investigations are required to confirm this.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
47
|
Daum S, Fanghänel J, Wildemann D, Schiene-Fischer C. Thermodynamics of Phosphopeptide Binding to the Human Peptidyl Prolyl cis/trans Isomerase Pin1. Biochemistry 2006; 45:12125-35. [PMID: 17002312 DOI: 10.1021/bi0608820] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins containing phosphorylated Ser/Thr-Pro motifs play key roles in numerous regulatory processes in the cell. The peptidyl prolyl cis/trans isomerase Pin1 specifically catalyzes the conformational transition of phosphorylated Ser/Thr-Pro motifs. Here we report the direct analysis of the thermodynamic properties of the interaction of the PPIase Pin1 with its substrate-analogue inhibitor Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2 specifically targeted to the PPIase active site based on the combination of isothermal titration calorimetry and studies on inhibition of enzymatic activity of wt Pin1 and active site variants. Determination of the thermodynamic parameters revealed an enthalpically and entropically favored interaction characterized by binding enthalpy deltaH(ITC) of -6.3 +/- 0.1 kcal mol(-1) and a TdeltaS(ITC) of 4.1 +/- 0.1 kcal mol(-1). The resulting dissociation constant KD for binding of the peptidic inhibitor with 1.8 x 10(-8) M resembles the dissociation constant of a Pin1 substrate in the transition state, suggesting a transition state analogue conformation of the bound inhibitor. The strongly decreased affinity of Pin1 for ligand at increasing ionic strength implicates that the potential of bidentate binding of a substrate protein by the PPIase and the WW domain of Pin1 may be required to deploy improved efficiency and specificity of Pin1 under conditions of physiological ionic strength.
Collapse
Affiliation(s)
- Sebastian Daum
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
Many proteins have developed the potential to sequester a client polypeptide chain in its various folding states as a specific intermolecular ligand and, thus, exhibit the properties of a holding chaperone. The resulting complexes can be of a diverse nature in terms of structure and reaction dynamics and are characterized on the basis of various microscopic properties including formation and decay of encounter and Michaelis complexes as well as reactant and product stability. Interpretation of the functional consequences of complex formation in the cell generally tends to be rather complicated, with notable exceptions including complexes formed during the reaction pathways of proteases, protein kinases and protein phosphatases. Peptide bond cis/trans isomerases take up an intermediate position among the poly(oligo)peptide binding proteins because, although the relationship between chain sequestration and catalysis of isomerization can easily be delineated in vitro, it is sometimes difficult to resolve in the cell. Time-resolved studies on interactions involving peptide bond cis/trans isomerases have led to the establishment of generally applicable methods for studying protein-poly(oligo)peptide interactions that are capable of identifying new types of biocatalysis.
Collapse
Affiliation(s)
- Gunter Fischer
- Max-Planck Research Unit for Enzymology of Protein Folding, Max Planck Society, Weinbergweg 22, D-06120 Halle/Saale, Germany.
| | | |
Collapse
|
49
|
Fanghänel J, Akiyama H, Uchida C, Uchida T. Comparative analysis of enzyme activities and mRNA levels of peptidyl prolylcis/transisomerases in various organs of wild type andPin1−/−mice. FEBS Lett 2006; 580:3237-45. [PMID: 16697379 DOI: 10.1016/j.febslet.2006.04.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 03/17/2006] [Accepted: 04/26/2006] [Indexed: 11/18/2022]
Abstract
We investigated the enzyme activity of peptidyl prolyl cis/trans isomerases (PPIases) in brain, testis, lung, liver, and mouse embryonic fibroblasts (MEF) of Pin1+/+ and Pin1-/- mice. The aim of this study is to determine if other PPIases can substitute for the loss of Pin1 activity in Pin1-/- mice and what influence Pin1 depletion has on the activities of other PPIases members. The results show that high PPIase activities of Pin1 are found in organs that have the tendency to develop Pin1 knockout phenotypes and, therefore, provide for the first time an enzymological basis for these observations. Furthermore we determined the specific activity (k(cat)/K(M)) of endogenous Pin1 and found that it is strongly reduced as compared with the recombinant protein in all investigated organs. These results suggest that posttranslational modifications may influence the PPIase activity in vivo. The activities originating from cyclophilin and FKBP are not influenced by the Pin1 knockout, but a basal enzymatic activity towards phosphorylated substrates could be found in Pin1-/- lysates. Real time PCR experiments of all PPIases in different mouse organs and MEF of Pin1+/+ and Pin1-/- mice support the finding and reveal the specific expression profiles of PPIases in mice.
Collapse
Affiliation(s)
- Jörg Fanghänel
- Center for Interdisciplinary Research, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | | | | | | |
Collapse
|
50
|
Wildemann D, Erdmann F, Alvarez BH, Stoller G, Zhou XZ, Fanghänel J, Schutkowski M, Lu KP, Fischer G. Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J Med Chem 2006; 49:2147-50. [PMID: 16570909 DOI: 10.1021/jm060036n] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The peptidyl prolyl cis/trans isomerase Pin1 has been implicated in the development of cancer, Alzheimer's disease and asthma, but highly specific and potent Pin1 inhibitors remain to be identified. Here, by screening a combinatorial peptide library, we identified a series of nanomolar peptidic inhibitors. Nonproteinogenic amino acids, incorporated into 5-mer to 8-mer oligopeptides containing a d-phosphothreonine as a central template, yielded selective inhibitors that blocked cell cycle progression in HeLa cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Dirk Wildemann
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|