1
|
Gu J, Isaji T. Specific sialylation of N-glycans and its novel regulatory mechanism. Glycoconj J 2024; 41:175-183. [PMID: 38958800 PMCID: PMC11329402 DOI: 10.1007/s10719-024-10157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by β-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three β-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3β1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.
Collapse
Affiliation(s)
- Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
2
|
Isaji T, Gu J. Novel regulatory mechanisms of N-glycan sialylation: Implication of integrin and focal adhesion kinase in the regulation. Biochim Biophys Acta Gen Subj 2024; 1868:130617. [PMID: 38614280 DOI: 10.1016/j.bbagen.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
3
|
Matveichuk OV, Ciesielska A, Hromada-Judycka A, Nowak N, Ben Amor I, Traczyk G, Kwiatkowska K. Flotillins affect LPS-induced TLR4 signaling by modulating the trafficking and abundance of CD14. Cell Mol Life Sci 2024; 81:191. [PMID: 38652315 PMCID: PMC11039508 DOI: 10.1007/s00018-024-05221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.
Collapse
Affiliation(s)
- Orest V Matveichuk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ichrak Ben Amor
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
Stalder D, Yakunin I, Pereira C, Eden J, Gershlick DC. Recruitment of PI4KIIIβ to the Golgi by ACBD3 is dependent on an upstream pathway of a SNARE complex and golgins. Mol Biol Cell 2024; 35:ar20. [PMID: 38134218 PMCID: PMC7615549 DOI: 10.1091/mbc.e23-09-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
ACBD3 is a protein localised to the Golgi apparatus and recruits other proteins, such as PI4KIIIβ, to the Golgi. However, the mechanism through which ACBD3 itself is recruited to the Golgi is poorly understood. This study demonstrates there are two mechanisms for ACBD3 recruitment to the Golgi. First, we identified that an MWT374-376 motif in the unique region upstream of the GOLD domain in ACBD3 is essential for Golgi localization. Second, we use unbiased proteomics to demonstrate that ACBD3 interacts with SCFD1, a Sec1/Munc-18 (SM) protein, and a SNARE protein, SEC22B. CRISPR-KO of SCFD1 causes ACBD3 to become cytosolic. We also found that ACBD3 is redundantly recruited to the Golgi apparatus by two golgins: golgin-45 and giantin, which bind to ACBD3 through interaction with the MWT374-376 motif. Taken together, our results suggest that ACBD3 is recruited to the Golgi in a two-step sequential process, with the SCFD1-mediated interaction occurring upstream of the interaction with the golgins.
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Igor Yakunin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
5
|
Daly C, Plouffe B. Gα q signalling from endosomes: A new conundrum. Br J Pharmacol 2023. [PMID: 37740273 DOI: 10.1111/bph.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors, and are involved in the transmission of a variety of extracellular stimuli such as hormones, neurotransmitters, light and odorants into intracellular responses. They regulate every aspect of physiology and, for this reason, about one third of all marketed drugs target these receptors. Classically, upon binding to their agonist, GPCRs are thought to activate G-proteins from the plasma membrane and to stop signalling by subsequent desensitisation and endocytosis. However, accumulating evidence indicates that, upon internalisation, some GPCRs can continue to activate G-proteins in endosomes. Importantly, this signalling from endomembranes mediates alternative cellular responses other than signalling at the plasma membrane. Endosomal G-protein signalling and its physiological relevance have been abundantly documented for Gαs - and Gαi -coupled receptors. Recently, some Gαq -coupled receptors have been reported to activate Gαq on endosomes and mediate important cellular processes. However, several questions relative to the series of cellular events required to translate endosomal Gαq activation into cellular responses remain unanswered and constitute a new conundrum. How are these responses in endosomes mediated in the quasi absence of the substrate for the canonical Gαq -activated effector? Is there another effector? Is there another substrate? If so, how does this alternative endosomal effector or substrate produce a downstream signal? This review aims to unravel and discuss these important questions, and proposes possible routes of investigation.
Collapse
Affiliation(s)
- Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
7
|
Stojilkovic SS, Balla T. PI(4,5)P2-dependent and -independent roles of PI4P in the control of hormone secretion by pituitary cells. Front Endocrinol (Lausanne) 2023; 14:1118744. [PMID: 36777340 PMCID: PMC9911653 DOI: 10.3389/fendo.2023.1118744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Plasma membrane and organelle membranes are home to seven phosphoinositides, an important class of low-abundance anionic signaling lipids that contribute to cellular functions by recruiting cytoplasmic proteins or interacting with the cytoplasmic domains of membrane proteins. Here, we briefly review the functions of three phosphoinositides, PI4P, PI(4,5)P2, and PI(3,4,5)P3, in cellular signaling and exocytosis, focusing on hormone-producing pituitary cells. PI(4,5)P2, acting as a substrate for phospholipase C, plays a key role in the control of pituitary cell functions, including hormone synthesis and secretion. PI(4,5)P2 also acts as a substrate for class I PI3-kinases, leading to the generation of two intracellular messengers, PI(3,4,5)P3 and PI(3,4)P2, which act through their intracellular effectors, including Akt. PI(4,5)P2 can also influence the release of pituitary hormones acting as an intact lipid to regulate ion channel gating and concomitant calcium signaling, as well as the exocytic pathway. Recent findings also show that PI4P is not only a precursor of PI(4,5)P2, but also a key signaling molecule in many cell types, including pituitary cells, where it controls hormone secretion in a PI(4,5)P2-independent manner.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA. The interdependent transport of yeast vacuole Ca 2+ and H + and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 2022; 298:102672. [PMID: 36334632 PMCID: PMC9706634 DOI: 10.1016/j.jbc.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory E Miner
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
9
|
Zhang C, Balutowski A, Feng Y, Calderin JD, Fratti RA. High throughput analysis of vacuolar acidification. Anal Biochem 2022; 658:114927. [PMID: 36167157 DOI: 10.1016/j.ab.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H+-ATPase (V-ATPase). In the endolysosomal pathway, copies of complete V-ATPase complexes accumulate as membranes mature from early endosomes to late endosomes and lysosomes. Thus, each compartment becomes more acidic as maturation proceeds. Lysosome acidification is essential for the breakdown of macromolecules delivered from endosomes as well as cargo from different autophagic pathways, and dysregulation of this process is linked to various diseases. Thus, it is important to understand the regulation of the V-ATPase. Here we describe a high-throughput method for screening inhibitors/activators of V-ATPase activity using Acridine Orange (AO) as a fluorescent reporter for acidified yeast vacuolar lysosomes. Through this method, the acidification of purified vacuoles can be measured in real-time in half-volume 96-well plates or a larger 384-well format. This not only reduces the cost of expensive low abundance reagents, but it drastically reduces the time needed to measure individual conditions in large volume cuvettes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Kutchukian C, Vivas O, Casas M, Jones JG, Tiscione SA, Simó S, Ory DS, Dixon RE, Dickson EJ. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. EMBO J 2021; 40:e105990. [PMID: 34019311 PMCID: PMC8246069 DOI: 10.15252/embj.2020105990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann-Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4-phosphate (PtdIns4P) countertransport cycle between Golgi-endoplasmic reticulum (ER), as well as lysosome-ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4-kinases-PI4KIIα and PI4KIIIβ-which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.
Collapse
Affiliation(s)
- Candice Kutchukian
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Oscar Vivas
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
- Present address:
Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Maria Casas
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Julia G Jones
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Scott A Tiscione
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Sergi Simó
- Department of Cell Biology & Human AnatomyUniversity of CaliforniaDavisCAUSA
| | - Daniel S Ory
- Department of Internal MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Rose E Dixon
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Eamonn J Dickson
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
11
|
The PKD-Dependent Biogenesis of TGN-to-Plasma Membrane Transport Carriers. Cells 2021; 10:cells10071618. [PMID: 34203456 PMCID: PMC8303525 DOI: 10.3390/cells10071618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 01/30/2023] Open
Abstract
Membrane trafficking is essential for processing and transport of proteins and lipids and to establish cell compartmentation and tissue organization. Cells respond to their needs and control the quantity and quality of protein secretion accordingly. In this review, we focus on a particular membrane trafficking route from the trans-Golgi network (TGN) to the cell surface: protein kinase D (PKD)-dependent pathway for constitutive secretion mediated by carriers of the TGN to the cell surface (CARTS). Recent findings highlight the importance of lipid signaling by organelle membrane contact sites (MCSs) in this pathway. Finally, we discuss our current understanding of multiple signaling pathways for membrane trafficking regulation mediated by PKD, G protein-coupled receptors (GPCRs), growth factors, metabolites, and mechanosensors.
Collapse
|
12
|
Highland CM, Fromme JC. Arf1 directly recruits the Pik1-Frq1 PI4K complex to regulate the final stages of Golgi maturation. Mol Biol Cell 2021; 32:1064-1080. [PMID: 33788598 PMCID: PMC8101487 DOI: 10.1091/mbc.e21-02-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIβ) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein-protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
13
|
Wang HY, Bharti D, Levental I. Membrane Heterogeneity Beyond the Plasma Membrane. Front Cell Dev Biol 2020; 8:580814. [PMID: 33330457 PMCID: PMC7710808 DOI: 10.3389/fcell.2020.580814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The structure and organization of cellular membranes have received intense interest, particularly in investigations of the raft hypothesis. The vast majority of these investigations have focused on the plasma membrane of mammalian cells, yielding significant progress in understanding membrane heterogeneity in terms of lipid composition, molecular structure, dynamic regulation, and functional relevance. In contrast, investigations on lipid organization in other membrane systems have been comparatively scarce, despite the likely relevance of membrane domains in these contexts. In this review, we summarize recent observations on lipid organization in organellar membranes, including endoplasmic reticulum, Golgi, endo-lysosomes, lipid droplets, and secreted membranes like lung surfactant, milk fat globule membranes, and viral membranes. Across these non-plasma membrane systems, it seems that the biophysical principles underlying lipid self-organization contribute to lateral domains.
Collapse
Affiliation(s)
- Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Deepti Bharti
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- National Institute of Technology, Rourkela, India
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Petrov AM, Astafev AA, Mast N, Saadane A, El-Darzi N, Pikuleva IA. The Interplay between Retinal Pathways of Cholesterol Output and Its Effects on Mouse Retina. Biomolecules 2019; 9:biom9120867. [PMID: 31842366 PMCID: PMC6995521 DOI: 10.3390/biom9120867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
In mammalian retina, cholesterol excess is mainly metabolized to oxysterols by cytochromes P450 27A1 (CYP27A1) and 46A1 (CYP46A1) or removed on lipoprotein particles containing apolipoprotein E (APOE). In contrast, esterification by sterol-O-acyltransferase 1 (SOAT) plays only a minor role in this process. Accordingly, retinal cholesterol levels are unchanged in Soat1-/- mice but are increased in Cyp27a1-/-Cyp46a1-/- and Apoe-/- mice. Herein, we characterized Cyp27a1-/-Cyp46a1-/-Soat1-/- and Cyp27a1-/-Cyp46a1-/-Apoe-/- mice. In the former, retinal cholesterol levels, anatomical gross structure, and vasculature were normal, yet the electroretinographic responses were impaired. Conversely, in Cyp27a1-/-Cyp46a1-/-Apoe-/- mice, retinal cholesterol levels were increased while anatomical structure and vasculature were unaffected with only male mice showing a decrease in electroretinographic responses. Sterol profiling, qRT-PCR, proteomics, and transmission electron microscopy mapped potential compensatory mechanisms in the Cyp27a1-/-Cyp46a1-/-Soat1-/- and Cyp27a1-/-Cyp46a1-/-Apoe-/- retina. These included decreased cholesterol biosynthesis along with enhanced formation of intra- and extracellular vesicles, possibly a reserve mechanism for lowering retinal cholesterol. In addition, there was altered abundance of proteins in Cyp27a1-/-Cyp46a1-/-Soat1-/- mice that can affect photoreceptor function, survival, and retinal energy homeostasis (glucose and fatty acid metabolism). Therefore, the levels of retinal cholesterol do not seem to predict retinal abnormalities, and it is rather the network of compensatory mechanisms that appears to determine retinal phenotype.
Collapse
|
15
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
16
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Delang L, Harak C, Benkheil M, Khan H, Leyssen P, Andrews M, Lohmann V, Neyts J. PI4KIII inhibitor enviroxime impedes the replication of the hepatitis C virus by inhibiting PI3 kinases. J Antimicrob Chemother 2019; 73:3375-3384. [PMID: 30219827 DOI: 10.1093/jac/dky327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Objectives Many positive-stranded RNA viruses, including HCV, drastically remodel intracellular membranes to generate specialized environments for RNA replication. Phosphatidylinositol 4-kinase III (PI4KIII)α plays an essential role in the formation of HCV replication complexes and has therefore been explored as a potential drug target. Here, we characterized the anti-HCV activity of the PI4KIII inhibitors enviroxime and BF738735 and elucidated their mechanism of action. Methods Antiviral assays were performed using HCV subgenomic replicons and infectious HCV. Enviroxime- and BF738735-resistant HCV replicons were generated by long-term culture with increasing compound concentrations. Intracellular localization of phosphatidylinositol 4-phosphate (PI4P) lipids was analysed by confocal microscopy. Results HCV subgenomic replicons resistant to either enviroxime or BF738735 proved cross-resistant and carried mutations in the NS3, NS4B and NS5A genes. Knockdown of PI4KIIIβ by small interfering RNA (siRNA) did not affect the replication of the HCV subgenomic replicon in this study. Furthermore, the compounds did not affect PI4P lipid levels at the replication complexes nor the phosphorylation status of NS5A, activities attributed to PI4KIIIα. Interestingly, the broad-spectrum phosphoinositide 3-kinase (PI3K) inhibitor LY294002 proved to be 10-fold less effective against the resistant replicons. In addition, enviroxime and BF738735 inhibited several PI3Ks in enzymatic assays. Conclusions Contrary to assumptions, our data indicate that PI4KIIIα and PI4KIIIβ are not the main targets for the anti-HCV activity of enviroxime and BF738735. Instead, we demonstrated that both molecules impede HCV replication at least partially by an inhibitory effect on PI3Ks. Moreover, HCV is able to bypass PI3K inhibition by acquiring mutations in its genome.
Collapse
Affiliation(s)
- Leen Delang
- Rega Institute for Medical Research, University of Leuven, Herestraat 49, Leuven, Belgium
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Mohammed Benkheil
- Rega Institute for Medical Research, University of Leuven, Herestraat 49, Leuven, Belgium
| | - Hayat Khan
- Department of Microbiology, University of Swabi, Swabi, Pakistan
| | - Pieter Leyssen
- Rega Institute for Medical Research, University of Leuven, Herestraat 49, Leuven, Belgium
| | | | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Herestraat 49, Leuven, Belgium
| |
Collapse
|
18
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
19
|
Miller TE, Henkels KM, Huddleston M, Salisbury R, Hussain SM, Sasaki AT, Cho KJ. Depletion of phosphatidylinositol 4-phosphate at the Golgi translocates K-Ras to mitochondria. J Cell Sci 2019; 132:jcs.231886. [PMID: 31331963 DOI: 10.1242/jcs.231886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/12/2019] [Indexed: 01/05/2023] Open
Abstract
Ras proteins are small GTPases localized to the plasma membrane (PM), which regulate cellular proliferation, apoptosis and differentiation. After a series of post-translational modifications, H-Ras and N-Ras traffic to the PM from the Golgi via the classical exocytic pathway, but the exact mechanism of K-Ras trafficking to the PM from the ER is not fully characterized. ATP5G1 (also known as ATP5MC1) is one of the three proteins that comprise subunit c of the F 0 complex of the mitochondrial ATP synthase. In this study, we show that overexpression of the mitochondrial targeting sequence of ATP5G1 perturbs glucose metabolism, inhibits oncogenic K-Ras signaling, and redistributes phosphatidylserine (PtdSer) to mitochondria and other endomembranes, resulting in K-Ras translocation to mitochondria. Also, it depletes phosphatidylinositol 4-phosphate (PI4P) at the Golgi. Glucose supplementation restores PtdSer and K-Ras PM localization and PI4P at the Golgi. We further show that inhibition of the Golgi-localized PI4-kinases (PI4Ks) translocates K-Ras, and PtdSer to mitochondria and endomembranes, respectively. We conclude that PI4P at the Golgi regulates the PM localization of PtdSer and K-Ras.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Taylor E Miller
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, OH 45435, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, OH 45435, USA
| | - Mary Huddleston
- Human Signatures Branch, Human-Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Richard Salisbury
- Human Signatures Branch, Human-Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Saber M Hussain
- Human Signatures Branch, Human-Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, OH 45435, USA
| |
Collapse
|
20
|
von Blume J, Hausser A. Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network. FEBS Lett 2019; 593:2412-2427. [PMID: 31344259 PMCID: PMC8048779 DOI: 10.1002/1873-3468.13552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting and trafficking. In recent years, it has become evident that a complex network of lipid–lipid and lipid–protein interactions contributes to these key functions. This review addresses the role of lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal coordination of protein transport to the plasma membrane.
Collapse
Affiliation(s)
- Julia von Blume
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Germany
| |
Collapse
|
21
|
Wang Y, Mousley CJ, Lete MG, Bankaitis VA. An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems. Curr Opin Cell Biol 2019; 59:58-72. [PMID: 31039522 DOI: 10.1016/j.ceb.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Recent years have witnessed the evolution of the cell biology of lipids into an extremely active area of investigation. Deciphering the involvement of lipid metabolism and lipid signaling in membrane trafficking pathways defines a major nexus of contemporary experimental activity on this front. Significant effort in that direction is invested in understanding the trans-Golgi network/endosomal system where unambiguous connections between membrane trafficking and inositol lipid and phosphatidylcholine metabolism were first discovered. However, powered by new advances in contemporary cell biology, the march of science is rapidly expanding that window of inquiry to include ever more diverse arms of the lipid metabolome, and to include other compartments of the secretory pathway as well.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
22
|
Park S, Lim JM, Park SH, Kim S, Heo S, Balla T, Jeong W, Rhee SG, Kang D. Inactivation of the PtdIns(4)P phosphatase Sac1 at the Golgi by H 2O 2 produced via Ca 2+-dependent Duox in EGF-stimulated cells. Free Radic Biol Med 2019; 131:40-49. [PMID: 30476538 DOI: 10.1016/j.freeradbiomed.2018.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/27/2022]
Abstract
Binding of epidermal growth factor (EGF) to its cell surface receptor induces production of H2O2, which serves as an intracellular messenger. We have shown that exogenous H2O2 reversibly inactivates the phosphatidylinositol 4-phosphate [PtdIns(4)P] phosphatase Sac1 (suppressor of actin 1) at the Golgi complex of mammalian cells by oxidizing its catalytic cysteine residue and thereby increases both the amount of Golgi PtdIns(4)P and the rate of protein secretion. Here we investigated the effects of EGF on Sac1 oxidation and PtdIns(4)P abundance at the Golgi in A431 cells. EGF induced a transient increase in Golgi PtdIns(4)P as well as a transient oxidation of Sac1 in a manner dependent on elevation of the intracellular Ca2+ concentration and on H2O2. Oxidation of Sac1 occurred at the Golgi, as revealed with the use of the Golgi-confined Sac1-K2A mutant. Knockdown of Duox enzymes implicated these Ca2+-dependent members of the NADPH oxidase family as the major source of H2O2 for Sac1 oxidation. Expression of a Golgi-targeted H2O2 probe revealed transient EGF-induced H2O2 production at this organelle. Our findings have thus uncovered a previously unrecognized EGF signaling pathway that links intracellular Ca2+ mobilization to events at the Golgi including Duox activation, H2O2 production, Sac1 oxidation, and PtdIns(4)P accumulation.
Collapse
Affiliation(s)
- Sujin Park
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jung Mi Lim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon Hwa Park
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suree Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sukyeong Heo
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institutes of Health, Bethesda, MD 20892, USA
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
23
|
Isaji T, Im S, Kameyama A, Wang Y, Fukuda T, Gu J. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J Biol Chem 2019; 294:4425-4436. [PMID: 30659093 DOI: 10.1074/jbc.ra118.005208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Aberrant N-glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of N-glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3β1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3β1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3β1.
Collapse
Affiliation(s)
- Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Akihiko Kameyama
- the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and
| | - Yuqin Wang
- the Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu 226001, China
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan,
| |
Collapse
|
24
|
Lim JM, Park S, Lee MS, Balla T, Kang D, Rhee SG. Accumulation of PtdIns(4)P at the Golgi mediated by reversible oxidation of the PtdIns(4)P phosphatase Sac1 by H 2O 2. Free Radic Biol Med 2019; 130:426-435. [PMID: 30448513 DOI: 10.1016/j.freeradbiomed.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol 4-phosphate [PtdIns(4)P] plays a key role in the biogenesis of transport vesicles at the Golgi complex by recruiting coat proteins and their accessory factors. The PtdIns(4)P content of the Golgi is determined by the concerted action of PtdIns 4-kinase (PI4K) and PtdIns(4)P phosphatase enzymes. Sac1 (suppressor of actin 1) is the major PtdIns(4)P phosphatase and is localized to the Golgi and endoplasmic reticulum. The targeting of both PI4Ks and Sac1 to the Golgi membrane is extensively regulated, as is the catalytic activity of PI4Ks at the Golgi. However, regulation of the catalytic activity of Sac1 has been largely unexplored. Here we show that Sac1undergoes reversible inactivation in mammalian cells when its catalytic Cys389 residue is oxidized by exogenous H2O2 to form an intramolecular disulfide with Cys392. The oxidative inactivation of Sac1 results in the accumulation of PtdIns(4)P at the Golgi, with this effect also being supported by the H2O2-induced activation of p38 mitogen-activated protein kinase (MAPK), which was previously shown to promote the translocation of Sac1 from the Golgi to the endoplasmic reticulum. The increase in Golgi PtdIns(4)P due to Sac1 inactivation, however, is faster than that due to Sac1 translocation. Exposure of cells to H2O2 also increased membrane protein trafficking from the Golgi to the plasma membrane as well as protein secretion.
Collapse
Affiliation(s)
- Jung Mi Lim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujin Park
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mi-Sook Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tamas Balla
- Section on Molecular Signal Transduction, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
25
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Grabon A, Bankaitis VA, McDermott MI. The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 2018; 60:242-268. [PMID: 30504233 DOI: 10.1194/jlr.r089730] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositides are key regulators of a large number of diverse cellular processes that include membrane trafficking, plasma membrane receptor signaling, cell proliferation, and transcription. How a small number of chemically distinct phosphoinositide signals are functionally amplified to exert specific control over such a diverse set of biological outcomes remains incompletely understood. To this end, a novel mechanism is now taking shape, and it involves phosphatidylinositol (PtdIns) transfer proteins (PITPs). The concept that PITPs exert instructive regulation of PtdIns 4-OH kinase activities and thereby channel phosphoinositide production to specific biological outcomes, identifies PITPs as central factors in the diversification of phosphoinositide signaling. There are two evolutionarily distinct families of PITPs: the Sec14-like and the StAR-related lipid transfer domain (START)-like families. Of these two families, the START-like PITPs are the least understood. Herein, we review recent insights into the biochemical, cellular, and physiological function of both PITP families with greater emphasis on the START-like PITPs, and we discuss the underlying mechanisms through which these proteins regulate phosphoinositide signaling and how these actions translate to human health and disease.
Collapse
Affiliation(s)
- Aby Grabon
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Vytas A Bankaitis
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Mark I McDermott
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| |
Collapse
|
27
|
Goto A, Charman M, Ridgway ND. Protein kinase D1 and oxysterol-binding protein form a regulatory complex independent of phosphorylation. Traffic 2018; 19:854-866. [DOI: 10.1111/tra.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Asako Goto
- Department of Pediatrics; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
- Department of Molecular Biology and Molecular Biology; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
| | - Mark Charman
- Department of Pediatrics; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
- Department of Molecular Biology and Molecular Biology; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
| | - Neale D. Ridgway
- Department of Pediatrics; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
- Department of Molecular Biology and Molecular Biology; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
28
|
Banerjee S, Aponte-Diaz D, Yeager C, Sharma SD, Ning G, Oh HS, Han Q, Umeda M, Hara Y, Wang RYL, Cameron CE. Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein. PLoS Pathog 2018; 14:e1007086. [PMID: 29782554 PMCID: PMC5983871 DOI: 10.1371/journal.ppat.1007086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways. Picornaviruses replicate their genomes in association with host membranes. Early during infection, existing membranes are used but remodeled to contain a repertoire of lipids best suited for virus multiplication. Later, new membrane synthesis occurs, which requires biosynthesis of phosphatidylcholine in addition to the other more specialized lipids. We have learned that a single picornaviral protein is able to induce membrane biogenesis and decorate these membranes with some of the specialized lipids induced by the virus. A detailed mechanism of induction has been elucidated for one of these lipids. The ability of a single viral protein to commandeer host pathways that lead to membrane biogenesis was unexpected. This discovery reveals a new target for antiviral therapy with the potential to completely derail all aspects of the viral lifecycle requiring membrane biogenesis.
Collapse
Affiliation(s)
- Sravani Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David Aponte-Diaz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Calvin Yeager
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Suresh D. Sharma
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gang Ning
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hyung S. Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qingxia Han
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Robert Y. L. Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou, Taiwan
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Selective enrichment of the polyphosphoinositides (PPIn), such as PtdIns(4,5)P2 and PtdIns4P, helps to determine the identity of the plasma membrane (PM) and regulates many aspects of cell biology through a vast number of protein effectors. Polarity proteins had long been assumed to be non-PPIn-binding proteins that mainly associate with PM/cell cortex through their extensive protein-protein interaction network. However, recent studies began to reveal that several key polarity proteins electrostatically bind to PPIn through their positively charged protein domains or structures and such PPIn-binding property is essential for their direct and specific attachment to PM. Although the physical nature of the charge-based PPIn binding appears to be simple and nonspecific, it serves as an elegant mechanism that can be efficiently and specifically regulated for achieving polarized PM targeting of polarity proteins. As an unexpected consequence, subcellular localization of PPIn-binding polarity proteins are also subject to regulations by physiological conditions such as hypoxia and ischemia that acutely and reversibly depletes PPIn from PM.
Collapse
Affiliation(s)
- Gerald R Hammond
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
30
|
Hepatitis C Virus Subverts Human Choline Kinase-α To Bridge Phosphatidylinositol-4-Kinase IIIα (PI4KIIIα) and NS5A and Upregulates PI4KIIIα Activation, Thereby Promoting the Translocation of the Ternary Complex to the Endoplasmic Reticulum for Viral Replication. J Virol 2017; 91:JVI.00355-17. [PMID: 28566381 PMCID: PMC5533930 DOI: 10.1128/jvi.00355-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, we elucidated the mechanism by which human choline kinase-α (hCKα) interacts with nonstructural protein 5A (NS5A) and phosphatidylinositol-4-kinase IIIα (PI4KIIIα), the lipid kinase crucial for maintaining the integrity of virus-induced membranous webs, and modulates hepatitis C virus (HCV) replication. hCKα activity positively modulated phosphatidylinositol-4-phosphate (PI4P) levels in HCV-expressing cells, and hCKα-mediated PI4P accumulation was abolished by AL-9, a PI4KIIIα-specific inhibitor. hCKα colocalized with NS5A and PI4KIIIα or PI4P; NS5A expression increased hCKα and PI4KIIIα colocalization; and hCKα formed a ternary complex with PI4KIIIα and NS5A, supporting the functional interplay of hCKα with PI4KIIIα and NS5A. PI4KIIIα inactivation by AL-9 or hCKα inactivation by CK37, a specific hCKα inhibitor, impaired the endoplasmic reticulum (ER) localization and colocalization of these three molecules. Interestingly, hCKα knockdown or inactivation inhibited PI4KIIIα-NS5A binding. In an in vitro PI4KIIIα activity assay, hCKα activity slightly increased PI4KIIIα basal activity but greatly augmented NS5A-induced PI4KIIIα activity, supporting the essential role of ternary complex formation in robust PI4KIIIα activation. Concurring with the upregulation of PI4P production and viral replication, overexpression of active hCKα-R (but not the D288A mutant) restored PI4KIIIα and NS5A translocation to the ER in hCKα stable knockdown cells. Furthermore, active PI4KIIIα overexpression restored PI4P production, PI4KIIIα and NS5A translocation to the ER, and viral replication in CK37-treated cells. Based on our results, hCKα functions as an indispensable regulator that bridges PI4KIIIα and NS5A and potentiates NS5A-stimulated PI4KIIIα activity, which then facilitates the targeting of the ternary complex to the ER for viral replication. IMPORTANCE The mechanisms by which hCKα activity modulates the transport of the hCKα-NS5A complex to the ER are not understood. In the present study, we investigated how hCKα interacts with PI4KIIIα (a key element that maintains the integrity of the “membranous web” structure) and NS5A to regulate viral replication. We demonstrated that HCV hijacks hCKα to bridge PI4KIIIα and NS5A, forming a ternary complex, which then stimulates PI4KIIIα activity to produce PI4P. Pronounced PI4P synthesis then redirects the translocation of the ternary complex to the ER-derived, PI4P-enriched membrane for assembly of the viral replication complex and viral replication. Our study provides novel insights into the indispensable modulatory role of hCKα in the recruitment of PI4KIIIα to NS5A and in NS5A-stimulated PI4P production and reveals a new perspective for understanding the impact of profound PI4KIIIα activation on the targeting of PI4KIIIα and NS5A to the PI4P-enriched membrane for viral replication complex formation.
Collapse
|
31
|
Charman M, Goto A, Ridgway ND. Oxysterol-binding protein recruitment and activity at the endoplasmic reticulum-Golgi interface are independent of Sac1. Traffic 2017; 18:519-529. [DOI: 10.1111/tra.12491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Mark Charman
- The Atlantic Research Centre, Department of Pediatrics, and Biochemistry & Molecular Biology; Dalhousie University; Halifax Canada
| | - Asako Goto
- The Atlantic Research Centre, Department of Pediatrics, and Biochemistry & Molecular Biology; Dalhousie University; Halifax Canada
| | - Neale D. Ridgway
- The Atlantic Research Centre, Department of Pediatrics, and Biochemistry & Molecular Biology; Dalhousie University; Halifax Canada
| |
Collapse
|
32
|
Shiwarski DJ, Darr M, Telmer CA, Bruchez MP, Puthenveedu MA. PI3K class II α regulates δ-opioid receptor export from the trans-Golgi network. Mol Biol Cell 2017; 28:2202-2219. [PMID: 28566554 PMCID: PMC5531736 DOI: 10.1091/mbc.e17-01-0030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
The interplay between signaling and trafficking by G protein-coupled receptors (GPCRs) has focused mainly on endocytic trafficking. Whether and how surface delivery of newly synthesized GPCRs is regulated by extracellular signals is less understood. Here we define a signaling-regulated checkpoint at the trans-Golgi network (TGN) that controls the surface delivery of the delta opioid receptor (δR). In PC12 cells, inhibition of phosphoinositide-3 kinase (PI3K) activity blocked export of newly synthesized δR from the Golgi and delivery to the cell surface, similar to treatment with nerve growth factor (NGF). Depletion of class II phosphoinositide-3 kinase α (PI3K C2A), but not inhibition of class I PI3K, blocked δR export to comparable levels and attenuated δR-mediated cAMP inhibition. NGF treatment displaced PI3K C2A from the Golgi and optogenetic recruitment of the PI3K C2A kinase domain to the TGN-induced δR export downstream of NGF. Of importance, PI3K C2A expression promotes export of endogenous δR in primary trigeminal ganglion neurons. Taken together, our results identify PI3K C2A as being required and sufficient for δR export and surface delivery in neuronal cells and suggest that it could be a key modulator of a novel Golgi export checkpoint that coordinates GPCR delivery to the surface.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marlena Darr
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Manojkumar A Puthenveedu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 .,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
33
|
Alli-Balogun GO, Gewinner CA, Jacobs R, Kriston-Vizi J, Waugh MG, Minogue S. Phosphatidylinositol 4-kinase IIβ negatively regulates invadopodia formation and suppresses an invasive cellular phenotype. Mol Biol Cell 2016; 27:4033-4042. [PMID: 27798239 PMCID: PMC5156544 DOI: 10.1091/mbc.e16-08-0564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
The type II phosphatidylinositol 4-kinase (PI4KII) enzymes synthesize the lipid phosphatidylinositol 4-phosphate (PI(4)P), which has been detected at the Golgi complex and endosomal compartments and recruits clathrin adaptors. Despite common mechanistic similarities between the isoforms, the extent of their redundancy is unclear. We found that depletion of PI4KIIα and PI4KIIβ using small interfering RNA led to actin remodeling. Depletion of PI4KIIβ also induced the formation of invadopodia containing membrane type I matrix metalloproteinase (MT1-MMP). Depletion of PI4KII isoforms also differentially affected trans-Golgi network (TGN) pools of PI(4)P and post-TGN traffic. PI4KIIβ depletion caused increased MT1-MMP trafficking to invasive structures at the plasma membrane and was accompanied by reduced colocalization of MT1-MMP with membranes containing the endosomal markers Rab5 and Rab7 but increased localization with the exocytic Rab8. Depletion of PI4KIIβ was sufficient to confer an aggressive invasive phenotype on minimally invasive HeLa and MCF-7 cell lines. Mining oncogenomic databases revealed that loss of the PI4K2B allele and underexpression of PI4KIIβ mRNA are associated with human cancers. This finding supports the cell data and suggests that PI4KIIβ may be a clinically significant suppressor of invasion. We propose that PI4KIIβ synthesizes a pool of PI(4)P that maintains MT1-MMP traffic in the degradative pathway and suppresses the formation of invadopodia.
Collapse
Affiliation(s)
- Ganiyu Olabanji Alli-Balogun
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | | | - Ruth Jacobs
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Mark G Waugh
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Shane Minogue
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
34
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
35
|
Wakana Y, Kotake R, Oyama N, Murate M, Kobayashi T, Arasaki K, Inoue H, Tagaya M. CARTS biogenesis requires VAP-lipid transfer protein complexes functioning at the endoplasmic reticulum-Golgi interface. Mol Biol Cell 2015; 26:4686-99. [PMID: 26490117 PMCID: PMC4678024 DOI: 10.1091/mbc.e15-08-0599] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Biogenesis of the TGN-derived transport carriers CARTS requires the ER protein VAP and Golgi lipid transfer proteins, ceramide transfer protein and OSBP. Sac1 lipid phosphatase is recruited to a VAP–OSBP complex formed at an ER subdomain closely apposed to the trans-Golgi/TGN. Association–dissociation dynamics of ER–Golgi contacts are important for CARTS formation. Vesicle-associated membrane protein–associated protein (VAP) is an endoplasmic reticulum (ER)-resident integral membrane protein that controls a nonvesicular mode of ceramide and cholesterol transfer from the ER to the Golgi complex by interacting with ceramide transfer protein and oxysterol-binding protein (OSBP), respectively. We report that VAP and its interacting proteins are required for the processing and secretion of pancreatic adenocarcinoma up-regulated factor, whose transport from the trans-Golgi network (TGN) to the cell surface is mediated by transport carriers called “carriers of the trans-Golgi network to the cell surface” (CARTS). In VAP-depleted cells, diacylglycerol level at the TGN was decreased and CARTS formation was impaired. We found that VAP forms a complex with not only OSBP but also Sac1 phosphoinositide phosphatase at specialized ER subdomains that are closely apposed to the trans-Golgi/TGN, most likely reflecting membrane contact sites. Immobilization of ER–Golgi contacts dramatically reduced CARTS production, indicating that association–dissociation dynamics of the two membranes are important. On the basis of these findings, we propose that the ER–Golgi contacts play a pivotal role in lipid metabolism to control the biogenesis of transport carriers from the TGN.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Richika Kotake
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nanako Oyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
36
|
De Matteis MA, Rega LR. Endoplasmic reticulum-Golgi complex membrane contact sites. Curr Opin Cell Biol 2015; 35:43-50. [PMID: 25950841 DOI: 10.1016/j.ceb.2015.04.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022]
Abstract
Although they were identified as long ago as the 1960s, there are still many unknowns regarding the functions and composition of membrane contact sites between the endoplasmic reticulum (ER) and the trans-Golgi (TG). While it seems to be fairly well established that they facilitate lipid exchange between the two organelles, much less is known about how they are regulated. A bottleneck in the study of the ER-TG contact sites has been the absence of methods for their biochemical isolation and visualization by light microscopy. Herein we provide an overview of current knowledge about ER-TG contact sites with a particular emphasis on the questions that remain to be explored.
Collapse
Affiliation(s)
| | - Laura Rita Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - Scientific Institute, Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| |
Collapse
|
37
|
Hammond GRV, Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:746-58. [PMID: 25732852 DOI: 10.1016/j.bbalip.2015.02.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Yamaji T, Hanada K. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 2014; 16:101-22. [PMID: 25382749 DOI: 10.1111/tra.12239] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
Abstract
In recent decades, many sphingolipid enzymes, sphingolipid-metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide-1-phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four-phosphate adaptor protein 2 (FAPP2) and ceramide-1-phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids.
Collapse
Affiliation(s)
- Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | |
Collapse
|
39
|
Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D, De Camilli P, Nagai H, Roy CR. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog 2014; 10:e1004222. [PMID: 24992562 PMCID: PMC4081824 DOI: 10.1371/journal.ppat.1004222] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis. The intracellular pathogen Legionella pneumophila encodes at least 270 effectors that modulate trafficking of the pathogen-occupied vacuole. The mechanisms by which effectors are controlled in host cells are of key interest. Spatial and temporal regulation of effector function has been proposed to involve effector binding to host phosphoinositides. We present results showing that L. pneumophila utilizes the host kinase PI4KIIIα to generate PI4P on the bacterial vacuole and this signature mediates the localization of DrrA and subsequent recruitment of the GTPase Rab1. Additionally, it was found that the host PI4P phosphatase Sac1 was involved in consuming PI4P on the vacuole, which reduced DrrA-mediated recruitment of Rab1 to the LCV. Our data supports the recent concept that PI4KIIIα is important for generation of the plasma-membrane pool of PI4P in host cells, and demonstrates a functional consequence for PI4P-binding by an L. pneumophila effector protein.
Collapse
Affiliation(s)
- Andree Hubber
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- * E-mail: (AH); (CRR)
| | - Kohei Arasaki
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Fubito Nakatsu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Camille Hardiman
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David Lambright
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Pietro De Camilli
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Craig R. Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (AH); (CRR)
| |
Collapse
|
40
|
Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current. Proc Natl Acad Sci U S A 2014; 111:E2281-90. [PMID: 24843134 DOI: 10.1073/pnas.1407133111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.
Collapse
|
41
|
Hammond GRV, Machner MP, Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. ACTA ACUST UNITED AC 2014; 205:113-26. [PMID: 24711504 PMCID: PMC3987136 DOI: 10.1083/jcb.201312072] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Characterization of a new biosensor for PtdIns4P reveals a wider cellular distribution for the polyphosphoinositide than the Golgi localization reported previously, including pools in both the plasma membrane and late endosomes/lysosomes. Polyphosphoinositides are an important class of lipid that recruit specific effector proteins to organelle membranes. One member, phosphatidylinositol 4-phosphate (PtdIns4P) has been localized to Golgi membranes based on the distribution of lipid binding modules from PtdIns4P effector proteins. However, these probes may be biased by additional interactions with other Golgi-specific determinants. In this paper, we derive a new PtdIns4P biosensor using the PtdIns4P binding of SidM (P4M) domain of the secreted effector protein SidM from the bacterial pathogen Legionella pneumophila. PtdIns4P was necessary and sufficient for localization of P4M, which revealed pools of the lipid associated not only with the Golgi but also with the plasma membrane and Rab7-positive late endosomes/lysosomes. PtdIns4P distribution was determined by the localization and activities of both its anabolic and catabolic enzymes. Therefore, P4M reports a wider cellular distribution of PtdIns4P than previous probes and therefore will be valuable for dissecting the biological functions of PtdIns4P in its assorted membrane compartments.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Program in Developmental Neuroscience and 2 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
42
|
Klinkenberg D, Long KR, Shome K, Watkins SC, Aridor M. A cascade of ER exit site assembly that is regulated by p125A and lipid signals. J Cell Sci 2014; 127:1765-78. [PMID: 24522181 DOI: 10.1242/jcs.138784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The inner and outer layers of COPII mediate cargo sorting and vesicle biogenesis. Sec16A and p125A (officially known as SEC23IP) proteins interact with both layers to control coat activity, yet the steps directing functional assembly at ER exit sites (ERES) remain undefined. By using temperature blocks, we find that Sec16A is spatially segregated from p125A-COPII-coated ERES prior to ER exit at a step that required p125A. p125A used lipid signals to control ERES assembly. Within p125A, we defined a C-terminal DDHD domain found in phospholipases and PI transfer proteins that recognized PA and phosphatidylinositol phosphates in vitro and was targeted to PI4P-rich membranes in cells. A conserved central SAM domain promoted self-assembly and selective lipid recognition by the DDHD domain. A basic cluster and a hydrophobic interface in the DDHD and SAM domains, respectively, were required for p125A-mediated functional ERES assembly. Lipid recognition by the SAM-DDHD module was used to stabilize membrane association and regulate the spatial segregation of COPII from Sec16A, nucleating the coat at ERES for ER exit.
Collapse
Affiliation(s)
- David Klinkenberg
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
43
|
Tan J, Oh K, Burgess J, Hipfner DR, Brill JA. PI4KIIIα is required for cortical integrity and cell polarity during Drosophila oogenesis. J Cell Sci 2014; 127:954-66. [PMID: 24413170 DOI: 10.1242/jcs.129031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Phosphoinositides regulate myriad cellular processes, acting as potent signaling molecules in conserved signaling pathways and as organelle gatekeepers that recruit effector proteins to membranes. Phosphoinositide-generating enzymes have been studied extensively in yeast and cultured cells, yet their roles in animal development are not well understood. Here, we analyze Drosophila melanogaster phosphatidylinositol 4-kinase IIIα (PI4KIIIα) during oogenesis. We demonstrate that PI4KIIIα is required for production of plasma membrane PtdIns4P and PtdIns(4,5)P2 and is crucial for actin organization, membrane trafficking and cell polarity. Female germ cells mutant for PI4KIIIα exhibit defects in cortical integrity associated with failure to recruit the cytoskeletal-membrane crosslinker Moesin and the exocyst subunit Sec5. These effects reflect a unique requirement for PI4KIIIα, as egg chambers from flies mutant for either of the other Drosophila PI4Ks, fwd or PI4KII, show Golgi but not plasma membrane phenotypes. Thus, PI4KIIIα is a vital regulator of a functionally distinct pool of PtdIns4P that is essential for PtdIns(4,5)P2-dependent processes in Drosophila development.
Collapse
Affiliation(s)
- Julie Tan
- Program in Cell Biology, The Hospital for Sick Children, PGCRL, 686 Bay Street, Room 15.9716, Toronto, ON, M5G 0A4, Canada
| | | | | | | | | |
Collapse
|
44
|
PtdIns(4)P signalling and recognition systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:59-83. [PMID: 23775691 DOI: 10.1007/978-94-007-6331-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Golgi apparatus is a sorting platform that exchanges extensively with the endoplasmic reticulum (ER), endosomes (Es) and plasma membrane (PM) compartments. The last compartment of the Golgi, the trans-Golgi Network (TGN) is a large complex of highly deformed membranes from which vesicles depart to their targeted organelles but also are harbored from retrograde pathways. The phosphoinositide (PI) composition of the TGN is marked by an important contingent of phosphatidylinositol-4-phosphate (PtdIns(4)P). Although this PI is present throughout the Golgi, its proportion grows along the successive cisternae and peaks at the TGN. The levels of this phospholipid are controlled by a set of kinases and phosphatases that regulate its concentrations in the Golgi and maintain a dynamic gradient that determines the cellular localization of several interacting proteins. Though not exclusive to the Golgi, the synthesis of PtdIns(4)P in other membranes is relatively marginal and has unclear consequences. The significance of PtdIns(4)P within the TGN has been demonstrated for numerous cellular events such as vesicle formation, lipid metabolism, and membrane trafficking.
Collapse
|
45
|
Abstract
This article describes a procedure to prepare a raft-like intracellular membrane fraction enriched for the trans-Golgi network (TGN) and endosomal compartments. The initial step in this technique involves cell disruption by homogenization, followed by clearance of the plasma membrane, late endosomes, mitochondria and the endoplasmic reticulum by differential sedimentation. Carbonate treatment, sonication and sucrose density-gradient ultracentrifugation are subsequently used to isolate the target membranes. The isolated subcellular fraction contains less than 1% of the total cellular proteins, but it is highly enriched for syntaxin-6 and Rab11. Typically, 40-60% of the cellular pool of GM1 glycosphingolipid and 10-20% of the total cellular cholesterol cofractionate with this buoyant membrane fraction. Given the role of GM1 as a cell-surface receptor for the cholera toxin and that levels of both GM1 and cholesterol in the TGN-endosomal compartment are upregulated in some inherited diseases, this protocol can potentially be applied to the analysis of disease-associated changes to GM1-enriched intracellular membranes. The isolated membranes are very well separated from caveolin-rich domains of the plasma membrane, the TGN and recycling endosomes. The entire protocol can be completed in as little as 1 d.
Collapse
Affiliation(s)
- Mark G Waugh
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| |
Collapse
|
46
|
Yang G, Zhou X, Zhu J, Liu R, Zhang S, Coquinco A, Chen Y, Wen Y, Kojic L, Jia W, Cynader MS. JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking. Sci Signal 2013; 6:ra57. [DOI: 10.1126/scisignal.2003727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
48
|
RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol 2013; 8:629. [PMID: 23212246 PMCID: PMC3542528 DOI: 10.1038/msb.2012.59] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022] Open
Abstract
RNAi screening and automated image analysis reveal 180 kinases and phosphatases regulating the organization of the Golgi apparatus. Most of these genes also control the expression of specific glycans, pointing to a web of interactions between signaling cascades and glycosylation at the Golgi. ![]()
Golgi organization was probed with three markers of different Golgi compartments and quantitative morphological analysis. Knockdowns of ∼20% of all known kinases and phosphatases affected the Golgi globally or in a compartment-specific manner, and were comparable in degree to the depletion of known membrane traffic regulators such as SNAREs. Several cell surface receptors, their cognate ligands and downstream effectors regulate Golgi organization, suggesting a large regulatory network. Most signaling genes affected both Golgi morphology and the expression of specific glycans.
The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.
Collapse
|
49
|
Clayton EL, Minogue S, Waugh MG. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog Lipid Res 2013; 52:294-304. [PMID: 23608234 PMCID: PMC3989048 DOI: 10.1016/j.plipres.2013.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
Abstract
The four mammalian phosphatidylinositol 4-kinases modulate inter-organelle lipid trafficking, phosphoinositide signalling and intracellular vesicle trafficking. In addition to catalytic domains required for the synthesis of PI4P, the phosphatidylinositol 4-kinases also contain isoform-specific structural motifs that mediate interactions with proteins such as AP-3 and the E3 ubiquitin ligase Itch, and such structural differences determine isoform-specific roles in membrane trafficking. Moreover, different permutations of phosphatidylinositol 4-kinase isozymes may be required for a single cellular function such as occurs during distinct stages of GPCR signalling and in Golgi to lysosome trafficking. Phosphatidylinositol 4-kinases have recently been implicated in human disease. Emerging paradigms include increased phosphatidylinositol 4-kinase expression in some cancers, impaired functioning associated with neurological pathologies, the subversion of PI4P trafficking functions in bacterial infection and the activation of lipid kinase activity in viral disease. We discuss how the diverse and sometimes overlapping functions of the phosphatidylinositol 4-kinases present challenges for the design of isoform-specific inhibitors in a therapeutic context.
Collapse
Affiliation(s)
- Emma L Clayton
- UCL Institute for Liver & Digestive Health, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | |
Collapse
|
50
|
Abstract
Eukaryotes possess seven different phosphoinositides (PIPs) that help form the unique signatures of various intracellular membranes. PIPs serve as docking sites for the recruitment of specific proteins to mediate membrane alterations and integrate various signaling cascades. The spatio-temporal regulation of PI kinases and phosphatases generates distinct intracellular hubs of PIP signaling. Hepatitis C virus (HCV), like other plus-strand RNA viruses, promotes the rearrangement of intracellular membranes to assemble viral replication complexes. HCV stimulates enrichment of phosphatidylinositol 4-phosphate (PI4P) pools near endoplasmic reticulum (ER) sites by activating PI4KIIIα, the kinase responsible for generation of ER-specific PI4P pools. Inhibition of PI4KIIIα abrogates HCV replication. PI4P, the most abundant phosphoinositide, predominantly localizes to the Golgi and plays central roles in Golgi secretory functions by recruiting effector proteins involved in transport vesicle generation. The PI4P effector proteins also include the lipid-transfer and structural proteins such as ceramide transfer protein (CERT), oxysterol binding protein (OSBP) and Golgi phosphoprotein 3 (GOLPH3) that help maintain Golgi-membrane composition and structure. Depletion of Golgi-specific PI4P pools by silencing PI4KIIIβ, expression of dominant negative CERT and OSBP mutants, or silencing GOLPH3 perturb HCV secretion. In this review we highlight the role of PIPs and specifically PI4P in the HCV life cycle.
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Biological Sciences, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Gulam Syed
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Aleem Siddiqui
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Author to whom correspondence should be addressed; ; Tel.: +858-822-1750; Fax: +858-822-1749
| |
Collapse
|