1
|
Reyes Ruiz A, Bhale AS, Venkataraman K, Dimitrov JD, Lacroix-Desmazes S. Binding Promiscuity of Therapeutic Factor VIII. Thromb Haemost 2025; 125:194-206. [PMID: 38950594 DOI: 10.1055/a-2358-0853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.
Collapse
Affiliation(s)
- Alejandra Reyes Ruiz
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya S Bhale
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Jarvi NL, Patel M, Shetty KA, Nguyen NH, Grasperge BF, Mager DE, Straubinger RM, Balu-Iyer SV. Immune regulatory adjuvant approach to mitigate subcutaneous immunogenicity of monoclonal antibodies. Front Immunol 2024; 15:1496169. [PMID: 39720710 PMCID: PMC11666448 DOI: 10.3389/fimmu.2024.1496169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Immunogenicity continues to be a challenge for development and clinical utility of monoclonal antibodies, and there are gaps in our current ability to prevent anti-drug antibody development in a safe and antigen-specific manner. Methods To mitigate immunogenicity of monoclonal antibodies administered subcutaneously, O-phospho-L-serine (OPLS)-the head group of the tolerance-inducing phospholipid, phosphatidylserine-was investigated as an immunoregulatory adjuvant. Results Formulations of adalimumab, trastuzumab or rituximab with OPLS showed reduction in relative immunogenicity in mice compared to vehicle formulations, indicated by reduced anti-drug antibody development and significant reductions in CD138+ plasma cell differentiation in bone marrow. Titer development toward recombinant human hyaluronidase, a dispersion enhancer that was co-formulated with monoclonal antibodies, was similarly reduced. Subcutaneous administration of adalimumab with OPLS resulted in a two-fold increase in expression of type 1 regulatory (Tr1) T cell subset in the spleen. This is consistent with in vitro studies where co-culturing of dendritic cells primed with ovalbumin in the presence and absence of OPLS and antigen specific T-cells induced expression of Tr1 phenotype on live CD4+ T cells. Conclusion This adjuvant does not impact immune competence of non-human primates and mice, and repeated administration of the adjuvant does not show renal or hepatic toxicity. Formulation of monoclonal antibodies with the immunoregulatory adjuvant, OPLS, was found to be safe and effective at mitigating immunogenicity.
Collapse
Affiliation(s)
- Nicole L. Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Manali Patel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Krithika A. Shetty
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | | | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Enhanced Pharmacodynamics, LLC, Buffalo, NY, United States
| | - Robert M. Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
3
|
Nguyen NH, Jarvi NL, Balu-Iyer SV. Immunogenicity of Therapeutic Biological Modalities - Lessons from Hemophilia A Therapies. J Pharm Sci 2023; 112:2347-2370. [PMID: 37220828 DOI: 10.1016/j.xphs.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The introduction and development of biologics such as therapeutic proteins, gene-, and cell-based therapy have revolutionized the scope of treatment for many diseases. However, a significant portion of the patients develop unwanted immune reactions against these novel biological modalities, referred to as immunogenicity, and no longer benefit from the treatments. In the current review, using Hemophilia A (HA) therapy as an example, we will discuss the immunogenicity issue of multiple biological modalities. Currently, the number of therapeutic modalities that are approved or recently explored to treat HA, a hereditary bleeding disorder, is increasing rapidly. These include, but are not limited to, recombinant factor VIII proteins, PEGylated FVIII, FVIII Fc fusion protein, bispecific monoclonal antibodies, gene replacement therapy, gene editing therapy, and cell-based therapy. They offer the patients a broader range of more advanced and effective treatment options, yet immunogenicity remains the most critical complication in the management of this disorder. Recent advances in strategies to manage and mitigate immunogenicity will also be reviewed.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA; Currently at Truvai Biosciences, Buffalo, NY, USA
| | - Nicole L Jarvi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Peters SC, Childers KC, Mitchell CE, Avery NG, Reese SS, Mitchell C, Wo SW, Swanson CD, Brison CM, Spiegel PC. Stable binding to phosphatidylserine-containing membranes requires conserved arginine residues in tandem C domains of blood coagulation factor VIII. Front Mol Biosci 2022; 9:1040106. [PMID: 36387287 PMCID: PMC9643838 DOI: 10.3389/fmolb.2022.1040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
At sites of vascular damage, factor VIII (fVIII) is proteolytically activated by thrombin and binds to activated platelet surfaces with activated factor IX (fIXa) to form the intrinsic "tenase" complex. Previous structural and mutational studies of fVIII have identified the C1 and C2 domains in binding to negatively charged membrane surfaces through β-hairpin loops with solvent-exposed hydrophobic residues and a ring of positively charged basic residues. Several hemophilia A-associated mutations within the C domains are suggested to disrupt lipid binding, preventing formation of the intrinsic tenase complex. In this study, we devised a novel platform for generating recombinant C1, C2, and C1C2 domain constructs and performed mutagenesis of several charged residues proximal to the putative membrane binding region of each C domain. Binding measurements between phosphatidylserine (PS)-containing lipid membrane surfaces and fVIII C domains demonstrated an ionic strength dependence on membrane binding affinity. Mutations to basic residues adjacent to the surface-exposed hydrophobic regions of C1 and C2 differentially disrupted membrane binding, with abrogation of binding occurring for mutations to conserved arginine residues in the C1 (R2163) and C2 (R2320) domains. Lastly, we determined the X-ray crystal structure of the porcine fVIII C2 domain bound to o-phospho-L-serine, the polar headgroup of PS, which binds to a basic cleft and makes charge-charge contact with R2320. We conclude that basic clefts in the fVIII C domains bind to PS-containing membranes through conserved arginine residues via a C domain modularity, where each C domain possesses modest electrostatic-dependent affinity and tandem C domains are required for high affinity binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - P. Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
5
|
Recombinant factor VIII protein aggregation and adsorption at the liquid-solid interface. J Colloid Interface Sci 2022; 628:820-828. [DOI: 10.1016/j.jcis.2022.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
6
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
7
|
Glassman FY, Dingman R, Yau HC, Balu-Iyer SV. Biological Function and Immunotherapy Utilizing Phosphatidylserine-based Nanoparticles. Immunol Invest 2020; 49:858-874. [PMID: 32204629 DOI: 10.1080/08820139.2020.1738456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatidylserine (PS) is a naturally occurring anionic phospholipid that is primarily located in the inner leaflet of eukaryotic cell membranes. The role of PS during apoptosis is one of the most studied biological functions of PS. Externalization of PS during apoptosis mediates an "eat me" signal for phagocytic uptake, leading to clearance of apoptotic cells and thus maintain self-tolerance by immunological ignorance. However, an emerging view is that PS exposure-mediated cellular uptake is not an immunologically silent event, but rather promoting an active tolerance towards self and foreign proteins. This biological property of PS has been exploited by parasites and viruses in order to evade immune surveillance of the host immune system. Further, this novel immune regulatory property of PS that results in tolerance induction can be harnessed for clinical applications, such as to treat autoimmune conditions and to reduce immunogenicity of therapeutic proteins. This review attempts to provide an overview of the biological functions of PS in the immune response and its potential therapeutic applications.
Collapse
Affiliation(s)
- Fiona Y Glassman
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA.,Clinical Pharmacology and Pharmacometrics, Currently at CSL Behring , King of Prussia, Pennsylvania, USA
| | - Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA
| | - Helena C Yau
- Department of Film and Media Studies, Washington University in St. Louis , St. Louis, Missouri, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA
| |
Collapse
|
8
|
Glassman FY, Schneider JL, Ramakrishnan R, Dingman RK, Ramanathan M, Bankert RB, Balu-Iyer SV. Phosphatidylserine Is Not Just a Cleanup Crew but Also a Well-Meaning Teacher. J Pharm Sci 2018; 107:2048-2054. [PMID: 29649469 DOI: 10.1016/j.xphs.2018.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022]
Abstract
Phosphatidylserine (PS) exposure during apoptosis leads to silent clearance of cells without adverse immune reactions to self-proteins. Given the biological functions of PS in cellular cleanup and global immunosuppression, we hypothesized that administration of PS-protein complexes would reduce immunogenicity. Here, we report that exposing Pompe disease mice to acid alpha glucosidase (rhGAA) with PS or immunosuppressant dexamethasone resulted in lower anti-rhGAA antibodies than in animals receiving rhGAA alone. However, upon rechallenge with rhGAA, only PS-rhGAA pre-exposed mice displayed a durable hyporesponsiveness even after PS administration was ceased. Thus, pre-exposure of antigens administered together with PS were not silently cleared, but the immune system acquired memory about the antigen that averted mounting of a response during rechallenge. In hemophilia A mice, PS hyporesponsiveness toward Factor VIII was reversed by administration of function-blocking antibody against the PS receptor T-cell immunoglobulin and mucin 4, implicating this receptor in PS's effect. Moreover, pre-exposure of myelin oligodendrocyte glycoprotein peptide with PS delayed the onset and reduced the severity of experimental autoimmune encephalomyelitis. These observations suggest that PS's function in apoptosis is not limited to silent antigen clearance without immune responses toward self-proteins but shows that PS reduces immune response during rechallenge to several antigens that also involves initiation of antigen tolerance.
Collapse
Affiliation(s)
- Fiona Y Glassman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Jennifer L Schneider
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Radha Ramakrishnan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Robert K Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Richard B Bankert
- Department of Immunology and Microbiology, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
9
|
Schneider JL, Balu-Iyer SV. Phosphatidylserine Converts Immunogenic Recombinant Human Acid Alpha-Glucosidase to a Tolerogenic Form in a Mouse Model of Pompe Disease. J Pharm Sci 2016; 105:3097-3104. [PMID: 27488899 PMCID: PMC5021602 DOI: 10.1016/j.xphs.2016.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
Development of unwanted immune responses against therapeutic proteins is a major clinical complication. Recently, we have shown that exposure of Factor VIII in the presence of phosphatidylserine (PS) induces antigen-specific hyporesponsiveness to Factor VIII rechallenge, suggesting that PS is not immune suppressive, but rather immune regulatory in that PS converts an immunogen to a tolerogen. Since PS is exposed in the outer leaflet during apoptosis, we hypothesize that PS imparts tolerogenic activity to this natural process. Thus, immunization with PS containing liposomes would mimic this natural process. Here, we investigate the immune regulatory effects of PS in inducing tolerance toward recombinant human acid alpha-glucosidase (rhGAA). rhGAA was found to complex with PS liposomes through hydrophobic interactions, and incubation PS-rhGAA with dendritic cells resulted in the increased secretion of transforming growth factor-β. Immunization with PS-rhGAA or O-phospho-L-serine-rhGAA led to a reduction in anti-rhGAA antibody response which persisted despite rechallenge with free rhGAA. Importantly, the titer levels in a majority of these animals remained unchanged after rechallenge and can be considered nonresponders. These data provide evidence that PS liposomes can be used to induce tolerance toward therapeutic proteins, in general.
Collapse
Affiliation(s)
- Jennifer L Schneider
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
10
|
Ramakrishnan R, Balu-Iyer SV. Effect of Biophysical Properties of Phosphatidylserine Particle on Immune Tolerance Induction Toward Factor VIII in a Hemophilia A Mouse Model. J Pharm Sci 2016; 105:3039-3045. [PMID: 27431011 DOI: 10.1016/j.xphs.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
A major complication in the replacement therapy of Factor VIII (FVIII) for Hemophilia A is the development of unwanted immune responses. Previous studies from our laboratory have shown that pretreatment of FVIII in the presence of phosphatidylserine (PS) resulted in hyporesponsiveness to subsequent administration of FVIII alone, due to the ability of PS to convert an immunogen to a tolerogen. We investigated the importance of biophysical properties of PS liposomes on its ability to convert an immunogen to a tolerogen. PS particles were prepared differing in size, protein-lipid topology, lamellarity, and % association to FVIII keeping the composition of the particle same. PS particles were prepared in 2 different sizes with differing biophysical properties: smaller particles in the nanometer range (200 nm) and larger size particles in the micron range (2 μm). Hemophilia A animals treated with both the nanometer and micron size PS particles showed a significant reduction in anti-FVIII antibody titers when compared to animals receiving free FVIII alone. Upon rechallenge with free FVIII animals that received FVIII along with the nanometer size particle continued to show reduced antibody responses. Animals receiving the micron size particle showed a slight increase in titers although they remained significantly lower than the free FVIII treated group. Upon culture with bone marrow derived dendritic cells, the nanometer size particle showed a reduction in CD40 expression and an increase in transforming growth factor-β cytokine production, which was not observed with the micron size particle. These results show that biophysical properties of PS play an important role in tolerance.
Collapse
Affiliation(s)
- Radha Ramakrishnan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215.
| |
Collapse
|
11
|
Ramakrishnan R, Davidowitz A, Balu-Iyer SV. Exposure of FVIII in the Presence of Phosphatidyl Serine Reduces Generation of Memory B-Cells and Induces Regulatory T-Cell-Mediated Hyporesponsiveness in Hemophilia A Mice. J Pharm Sci 2015; 104:2451-6. [PMID: 26038127 DOI: 10.1002/jps.24513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 01/19/2023]
Abstract
A major complication of replacement therapy with Factor VIII (FVIII) for hemophilia A (HA) is the development of unwanted immune responses. Previous studies showed that administration of FVIII in the presence of phosphatidyl serine (PS) reduced the development of anti-FVIII antibodies in HA mice. However, the impact of PS-mediated effects on immunological memory, such as generation of memory B-cells, is not clear. The effect of PS on memory B-cells was therefore investigated using adoptive transfer approach in FVIII(-/-) HA mice. Adoptive transfer of memory B-cells from a PS-FVIII-treated group to naïve mice followed by challenge of the recipient mice with FVIII showed a significantly reduced anti-FVIII antibody response in the recipient mice, compared with animals that received memory B-cells from free FVIII and FVIII-charge matched phosphatidyl glycerol (PG) group. The decrease in memory B-cell response is accompanied by an increase in FoxP3 expressing regulatory T-cells (Tregs). Flow cytometry studies showed that the generation of Tregs is higher in PS-treated animals as compared with FVIII and FVIII-PG treated animals. The PS-mediated hyporesponsiveness was found to be antigen-specific. The PS-FVIII immunization showed hyporesponsiveness toward FVIII rechallenge but not against ovalbumin (OVA) rechallenge, an unrelated antigen. This demonstrates that PS reduces immunologic memory of FVIII and induces antigen-specific peripheral tolerance in HA mice.
Collapse
Affiliation(s)
- Radha Ramakrishnan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14215
| | - Andrew Davidowitz
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14215
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14215
| |
Collapse
|
12
|
Gaitonde P, Purohit VS, Balu-Iyer SV. Intravenous administration of Factor VIII-O-Phospho-L-Serine (OPLS) complex reduces immunogenicity and preserves pharmacokinetics of the therapeutic protein. Eur J Pharm Sci 2015; 66:157-62. [PMID: 25459532 DOI: 10.1016/j.ejps.2014.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/28/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Hemophilia A is a bleeding disorder caused by the deficiency of an important coagulation factor; Factor VIII (FVIII). Replacement therapy using exogenously administered recombinant FVIII is the most commonly used method of treatment. However, approximately 30% of Hemophilia A patients develop neutralizing antibodies (Nabs) against the recombinant protein. Nabs abolish FVIII activity and drastically influence efficacy of the protein. The immunogenic epitopes of FVIII reside predominantly in the C2 domain of FVIII. However, the C2 domain also contains a lipid binding region. O-Phospho-L-Serine (OPLS) which is the head-group moiety of phosphatidylserine, interacts with the lipid binding region of FVIII. Previous studies have shown that FVIII complexed with OPLS lowered Nab development against FVIII following subcutaneous administration. In dendritic cell-T-cell co-culture studies, OPLS treatment increased the secretion of immunosuppressive cytokines (Transforming Growth Factor-β and Interleukin-10), and simultaneously decreased pro-inflammatory IL-17 cytokine. Here, we investigated FVIII immune response and pharmacokinetics upon intravenous administration of FVIII-OPLS complex. We studied the effect of FVIII-OPLS complex on the interaction between a professional antigen presenting cell; dendritic cell and T-cell, and T-cell clonal expansion. Pharmacokinetics parameters were estimated following intravenous administration of FVIII and FVIII-OPLS. The results suggest that OPLS lowers FVIII immune response following intravenous administration. OPLS also hinders FVIII-specific T-cell clonal proliferation and preserves FVIII PK profile. Thus, the ease of protein-lipid complexation, preservation of FVIII activity and in vivo behavior, and improved in vitro FVIII stability, makes OPLS an attractive excipient in the preparation of next generation or biosimilar FVIII products with improved safety profile.
Collapse
Affiliation(s)
- Puneet Gaitonde
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Vivek S Purohit
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| |
Collapse
|
13
|
Fathallah AM, Turner MR, Mager DE, Balu-Iyer SV. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration. Biopharm Drug Dispos 2014; 36:115-25. [PMID: 25377184 DOI: 10.1002/bdd.1925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/04/2014] [Accepted: 10/25/2014] [Indexed: 12/20/2022]
Abstract
The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability.
Collapse
Affiliation(s)
- Anas M Fathallah
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14215, USA
| | | | | | | |
Collapse
|
14
|
Fathallah AM, Ramakrishnan R, Balu‐Iyer SV. O‐Phospho‐ l ‐Serine mediates Hyporesponsiveness toward FVIII in Hemophilia A‐Murine Model by Inducing Tolerogenic Properties in Dendritic Cells. J Pharm Sci 2014; 103:3457-3463. [DOI: 10.1002/jps.24173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/07/2022]
|
15
|
Agile delivery of protein therapeutics to CNS. J Control Release 2014; 190:637-63. [PMID: 24956489 DOI: 10.1016/j.jconrel.2014.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
Collapse
|
16
|
Kosloski MP, Shetty KA, Wakabayashi H, Fay PJ, Balu-Iyer SV. Effects of replacement of factor VIII amino acids Asp519 and Glu665 with Val on plasma survival and efficacy in vivo. AAPS JOURNAL 2014; 16:1038-45. [PMID: 24934295 DOI: 10.1208/s12248-014-9627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
Abstract
Proteolytic cleavage of factor VIII (FVIII) to activated FVIIIa is required for participation in the coagulation cascade. The A2 domain is no longer covalently bound in the resulting activated heterotrimer and is highly unstable. Aspartic acid (D) 519 and glutamic acid (E) 665 at the A1-A2 and A2-A3 domain interfaces were identified as acidic residues in local hydrophobic pockets. Replacement with hydrophobic valine (V; D519V/E665V) improved the stability and activity of the mutant FVIII over the wild-type (WT) protein in several in vitro assays. In the current study, we examined the impact of mutations on secondary and tertiary structure as well as in vivo stability, pharmacokinetics (PK), efficacy, and immunogenicity in a murine model of Hemophilia A (HA). Biophysical characterization was performed with far-UV circular dichroism (CD) and fluorescence emission studies. PK and efficacy of FVIII was studied following i.v. bolus doses of 4, 10 and 40 IU/kg with chromogenic and tail clip assays. Immunogenicity was measured with the Bethesda assay and ELISA after a series of i.v. injections. Native secondary and tertiary structure was unaltered between variants. PK profiles were similar at higher doses, but at 4 IU/kg plasma survival of D519V/E665V was improved. Hemostasis at low concentrations was improved for the mutant. Immune response was similar between variants. Overall, these results demonstrate that stabilizing mutations in the A2 domain of FVIII can improve HA therapy in vivo.
Collapse
Affiliation(s)
- Matthew P Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, 359 Kapoor Hall, Buffalo, New York, 14214, USA
| | | | | | | | | |
Collapse
|
17
|
Fathallah AM, Bankert RB, Balu-Iyer SV. Immunogenicity of subcutaneously administered therapeutic proteins--a mechanistic perspective. AAPS JOURNAL 2013; 15:897-900. [PMID: 23856740 DOI: 10.1208/s12248-013-9510-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/01/2013] [Indexed: 01/26/2023]
Abstract
The administration of therapeutic proteins via the subcutaneous route (sc) is desired for compliance and convenience, but could be challenging due to perceived immunogenic potential or unwanted immune responses. There are clinical and preclinical data supporting as well as refuting the generalized notion that sc is more immunogenic. We provide a mechanistic perspective of immunogenicity of therapeutic proteins administered via the sc route and discuss strategies and opportunities for novel therapeutic approaches to mitigate immunogenicity.
Collapse
Affiliation(s)
- Anas M Fathallah
- Department of Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Kapoor Hall, Buffalo, New York, 14214, USA
| | | | | |
Collapse
|
18
|
Gaitonde P, Ramakrishnan R, Chin J, Kelleher RJ, Bankert RB, Balu-Iyer SV. Exposure to factor VIII protein in the presence of phosphatidylserine induces hypo-responsiveness toward factor VIII challenge in hemophilia A mice. J Biol Chem 2013; 288:17051-6. [PMID: 23649621 DOI: 10.1074/jbc.c112.396325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Administration of recombinant factor VIII (FVIII), an important co-factor in blood clotting cascade, elicits unwanted anti-FVIII antibodies in hemophilia A (HA) patients. Previously, FVIII associated with phosphatidylserine (PS) showed significant reduction in the anti-FVIII antibody response in HA mice. The reduction in the immune response to FVIII-PS could be due either to a failure of the immune system to recognize the antigen (i.e. immunological ignorance) or to an active induction of an antigen-specific nonresponsiveness (i.e. immunological tolerance). If it were a result of tolerance, one would predict that pre-exposure to FVIII-PS would render the mice hypo-responsive to a subsequent FVIII challenge. Here, we have demonstrated that naive HA mice that were pretreated with FVIII-PS showed a significantly reduced FVIII immune response to further challenge with native FVIII and that this decreased responsiveness could be adoptively transferred to other mice. An increase in number of FoxP3-expressing CD4(+) regulatory T-cells (Treg) was observed for the FVIII-PS-immunized group as compared with animals that received FVIII alone, suggesting the involvement of Treg in PS-mediated hypo-responsiveness. The PS-mediated reduction in antibody response was reversed by the co-administration of function-blocking anti-TGF-β antibody with FVIII-PS. The decreased response to FVIII induced by FVIII-PS was determined to be antigen-specific because the immune response to another non-cross-reactive antigen (ovalbumin) was not altered. These results are consistent with the notion that FVIII-PS is tolerogenic and suggest that immunization with this tolerogenic form of the protein could be a useful treatment option to minimize immunogenicity of FVIII and other protein-based therapeutics.
Collapse
Affiliation(s)
- Puneet Gaitonde
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | | | |
Collapse
|
19
|
Pisal DS, Kosloski MP, Middaugh CR, Bankert RB, Balu-Iyer SV. Native-like aggregates of factor VIII are immunogenic in von Willebrand factor deficient and hemophilia a mice. J Pharm Sci 2012; 101:2055-65. [PMID: 22388918 DOI: 10.1002/jps.23091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 01/13/2023]
Abstract
The administration of recombinant factor VIII (FVIII) is the first-line therapy for hemophilia A (HA), but 25%-35% of patients develop an inhibitory antibody response. In general, the presence of aggregates contributes to unwanted immunogenic responses against therapeutic proteins. FVIII has been shown to form both native-like and nonnative aggregates. Previously, we showed that nonnative aggregates of FVIII are less immunogenic than the native protein. Here, we investigated the effect of native-like aggregates of FVIII on immunogenicity in HA and von Willebrand factor knockout (vWF(-/-)) mice. Mice immunized with native-like aggregates showed significantly higher inhibitory antibody titers than animals that received native FVIII. Following restimulation in vitro with native FVIII, the activation of CD4+ T-cells isolated from mice immunized with native-like aggregates is approximately fourfold higher than mice immunized with the native protein. Furthermore, this is associated with increases in the secretion of proinflammatory cytokines IL-6 and IL-17 in the native-like aggregate treatment group. The results indicate that the native-like aggregates of FVIII are more immunogenic than native FVIII for both the B-cell and the T-cell responses.
Collapse
Affiliation(s)
- Dipak S Pisal
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, New York 14260, USA
| | | | | | | | | |
Collapse
|
20
|
Peng A, Kosloski MP, Nakamura G, Ding H, Balu-Iyer SV. PEGylation of a factor VIII-phosphatidylinositol complex: pharmacokinetics and immunogenicity in hemophilia A mice. AAPS JOURNAL 2011; 14:35-42. [PMID: 22173945 DOI: 10.1208/s12248-011-9309-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022]
Abstract
Hemophilia A is an X-linked bleeding disorder caused by the deficiency of factor VIII (FVIII). Exogenous FVIII is administered therapeutically, and due to a short half-life, frequent infusions are often required. Fifteen to thirty-five percent of severe hemophilia A patients develop inhibitory antibodies toward FVIII that complicate clinical management of the disease. Previously, we used phosphatidylinositol (PI) containing lipidic nanoparticles to improve the therapeutic efficacy of recombinant FVIII by reducing immunogenicity and prolonging the circulating half-life. The objective of this study is to investigate further improvements in the FVIII-PI formulation resulting from the addition of polyethylene glycol (PEG) to the particle. PEGylation was achieved by passive transfer of PEG conjugated lipid into the FVIII-PI complex. PEGylated FVIII-PI (FVIII-PI/PEG) was generated with high association efficiency. Reduced activity in vitro and improved retention of activity in the presence of antibodies suggested strong shielding of FVIII by the particle; thus, in vivo studies were conducted in hemophilia A mice. Following intravenous administration, the apparent terminal half-life was improved versus both free FVIII and FVIII-PI, but exposure determined by area under the curve was reduced. The formation of inhibitory antibodies after subcutaneous immunization with FVIII-PI/PEG was lower than free FVIII but resulted in a significant increase in inhibitors following intravenous administration. Passive transfer of PEG onto the FVIII-PI complex does not provide any therapeutic benefit.
Collapse
Affiliation(s)
- Aaron Peng
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, 14260, USA
| | | | | | | | | |
Collapse
|
21
|
van Haren SD, Wroblewska A, Fischer K, Voorberg J, Herczenik E. Requirements for immune recognition and processing of factor VIII by antigen-presenting cells. Blood Rev 2011; 26:43-9. [PMID: 22036515 DOI: 10.1016/j.blre.2011.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Generation of inhibitory antibodies upon repeated FVIII infusion represents a major complication in hemophilia care. Professional antigen presenting cells (APCs) are crucial for orchestration of humoral immune responses. APCs are capable of internalizing soluble as well as particulate antigens through various mechanisms resulting in loading of antigen-derived peptides on MHC class I or II for presentation to T cells. This review highlights how FVIII is recognized and processed by APCs. The significance and contribution of candidate receptors involved in FVIII uptake by APC are discussed. Recent findings defining the repertoire of FVIII peptides presented on MHC class II are addressed. Studies in murine models of hemophilia A suggest that modulation of APC function can reduce inhibitor formation. Based on this we anticipate that modulation of FVIII uptake by APCs may yield novel therapeutic approaches for treatment or prevention of inhibitor formation in patients with hemophilia A.
Collapse
Affiliation(s)
- Simon D van Haren
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory and Van Creveld Laboratory, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Pisal DS, Balu-Iyer SV. Phospholipid binding lowers immunogenicity of human recombinant factor VIII in von Willebrand factor knockout mice. Thromb Haemost 2011; 105:1115-8. [PMID: 21475771 DOI: 10.1160/th10-09-0628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/25/2011] [Indexed: 11/05/2022]
|
23
|
Abstract
Immunogenicity against therapeutic proteins is a clinical problem in the successful treatment of many diseases and, as such, immunogenicity risk assessment in preclinical setting would be useful to improve safety and efficacy of protein-based therapeutics in the product development stages. Here, we attempted a mechanism-based in vitro study as screening tool to capture clinically observed antibody-based immune response against two representative therapeutic proteins: recombinant human Erythropoietin-alpha (rHuEPO)and recombinant Factor VIII (rFVIII). Flow-cytometry was used to determine the maturation level of dendritic cells (DCs), a primary initiator of T-cell responses. Studies to capture T-lymphocyte proliferation upon challenge with free rFVIII were performed and secretion of immunomodulatory cytokines was analyzed by ELISA assay. These in vitro techniques could be used as risk assessment tool to determine the immunogenic potential of formulations of recombinant proteins in preclinical setting.
Collapse
|
24
|
Kosloski MP, Peng A, Varma PR, Fathallah AM, Miclea RD, Mager DE, Balu-iyer SV. Immunogenicity and pharmacokinetic studies of recombinant factor VIII containing lipid cochleates. Drug Deliv 2010; 18:246-54. [PMID: 21114461 DOI: 10.3109/10717544.2010.536269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replacement therapy using recombinant factor VIII (rFVIII) is currently the most common therapy for hemophilia A, a bleeding disorder caused by the deficiency of FVIII. However, 15-30% of patients develop inhibitory antibodies against administered rFVIII, which complicates the therapy. Encapsulation or association of protein with lipidic structures can reduce this immune response. Previous studies developed and characterized rFVIII-containing phosphatidylserine (PS) cochleate cylinders using biophysical techniques. It was hypothesized that these structures may provide a reduction in immunogenicity while avoiding the rapid clearance by the reticuloendothelial system (RES) previously observed with liposomal vesicles of similar composition. This study investigated in vivo behavior of the cochleates containing rFVIII including immunogenicity and pharmacokinetics in hemophilia A mice. The rFVIII-cochleate complex significantly reduced the level of inhibitory antibody developed against rFVIII following intravenous (i.v.) administration. Pharmacokinetic modeling allowed assessment of in vivo release kinetics. Cochleates acted as a delayed release delivery vehicle with an input peak of cochleates showed limited RES uptake and associated rFVIII displayed a similar disposition to the free protein upon release from the structure. Incomplete disassociation from the complex limits systemic availability of the protein. Further formulation efforts are warranted to regulate the rate and extent of release of rFVIII from cochleate complexes.
Collapse
Affiliation(s)
- Matthew P Kosloski
- University at Buffalo, SUNY, Pharmaceutical Sciences, H526 Hochstetter Hall, Buffalo 14260, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Phosphatidylserine reduces immune response against human recombinant Factor VIII in Hemophilia A mice by regulation of dendritic cell function. Clin Immunol 2010; 138:135-45. [PMID: 21094627 DOI: 10.1016/j.clim.2010.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/11/2010] [Indexed: 02/06/2023]
Abstract
A major clinical complication in the treatment of Hemophilia A using exogenously administered recombinant Factor VIII (FVIII) is the development of neutralizing antibodies. It has been shown previously that FVIII complexed with phosphatidylserine (PS) reduces the development of total and neutralizing antibody titers in hemophilic mice. The effect of complexation of FVIII with PS upon dendritic cell (DC) uptake, maturation and processing, T-cell proliferation and cytokine secretion profiles was investigated. Flow cytometric studies of DC showed that PS inhibited the up-regulation of cell surface co-stimulatory markers (CD86 and CD40). PS reduced T-cell proliferation and significantly increased levels of TGF-β and IL-10 but reduced secretion of IL-6 and IL-17 compared to controls. The data suggest that PS reduces immunogenicity of FVIII by regulating dendritic cell maturation and subsequent T-lymphocyte activity through modulation of cytokine secretion. A possible mechanism for PS-mediated induction of FVIII tolerance is discussed.
Collapse
|
26
|
Pisal DS, Balu-Iyer SV. Phospholipid binding improves plasma survival of factor VIII. Thromb Haemost 2010; 104:1073-5. [PMID: 20838749 DOI: 10.1160/th10-06-0422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/18/2010] [Indexed: 11/05/2022]
|
27
|
Peng A, Straubinger RM, Balu-Iyer SV. Phosphatidylinositol containing lipidic particles reduces immunogenicity and catabolism of factor VIII in hemophilia a mice. AAPS JOURNAL 2010; 12:473-81. [PMID: 20517659 DOI: 10.1208/s12248-010-9207-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/18/2010] [Indexed: 11/30/2022]
Abstract
Factor VIII (FVIII) is an important cofactor in blood coagulation cascade. It is a multidomain protein that consists of six domains, NH2-A1-A2-B-A3-C1-C2-COOH. The deficiency or dysfunction of FVIII causes hemophilia A, a life-threatening bleeding disorder. Replacement therapy using recombinant FVIII (rFVIII) is the first line of therapy, but a major clinical complication is the development of inhibitory antibodies that abrogate the pharmacological activity of the administered protein. FVIII binds to anionic phospholipids (PL), such as phosphatidylinositol (PI), via lipid binding region within the C2 domain of FVIII. This lipid binding site not only consists of immunodominant epitopes but is also involved in von Willebrand factor binding that protects FVIII from degradation in vivo. Thus, we hypothesize that FVIII-PL complex will influence immunogenicity and catabolism of FVIII. The biophysical studies showed that PI binding did not alter conformation of the protein but improved intrinsic stability as measured by thermal denaturation studies. ELISA studies confirmed the involvement of the C2 domain in binding to PI containing lipid particles. PI binding prolonged the in vivo circulation time and reduced catabolism of FVIII in hemophilia A mice. FVIII-PI complex reduced inhibitor development in hemophilia A mice following intravenous and subcutaneous administration. The data suggest that PI binding reduces catabolism and immunogenicity of FVIII and has potential to be a useful therapeutic approach for hemophilia A.
Collapse
Affiliation(s)
- Aaron Peng
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, 526 Hochstetter Hall, Amherst, New York 14260, USA
| | | | | |
Collapse
|
28
|
Abstract
The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g., liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches.
Collapse
Affiliation(s)
- Dipak S. Pisal
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Matthew P. Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| |
Collapse
|
29
|
Zhang AH, Skupsky J, Scott DW. Factor VIII inhibitors: risk factors and methods for prevention and immune modulation. Clin Rev Allergy Immunol 2009; 37:114-24. [PMID: 19199081 DOI: 10.1007/s12016-009-8122-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Patients with hemophilia A are deficient in coagulation Factor VIII. This bleeding disorder can be treated with Factor VIII replacement therapy, but close to a third of patients will be immunized to the treatment and begin to form inhibitory antibodies known as "inhibitors". These inhibitors will render the treatment ineffective and represent the most severe complication in the treatment of hemophilia A. In this review, we highlight factors involved in inhibitor development and emphasize research being done to modulate the immune response to this life-saving therapy.
Collapse
Affiliation(s)
- Ai Hong Zhang
- Department of Surgery, and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Room 319, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
30
|
Peng A, Gaitonde P, Kosloski MP, Miclea RD, Varma P, Balu-Iyer SV. Effect of route of administration of human recombinant factor VIII on its immunogenicity in Hemophilia A mice. J Pharm Sci 2009; 98:4480-4. [PMID: 19499565 PMCID: PMC2796435 DOI: 10.1002/jps.21765] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Factor VIII is a multi-domain glycoprotein and is an essential cofactor in the blood coagulation cascade. Its deficiency or dysfunction causes Hemophilia A, a bleeding disorder. Replacement using exogenous recombinant Factor VIII (FVIII) is the first line of therapy for Hemophilia A. Immunogenicity, the development of binding (total) and neutralizing (inhibitory) antibody against administered protein is a clinical complication of the therapy. There are several product related factors such as presence of aggregates, route and frequency of administration and glycosylation have been shown to contribute to immunogenicity. The effect of route of administration of FVIII on antibody development in Hemophilia A is not completely understood. Here we investigated the effect of route of administration (s.c. or i.v.) on immunogenicity in Hemophilia A mice. The total and inhibitory titers were determined using ELISA and modified Bethesda Assay respectively. The results indicated that s.c. is more immunogenic compared to i.v. route in terms of total antibody titer development (binding antibodies) but no significant differences in inhibitory titer levels could be established.
Collapse
Affiliation(s)
| | | | | | | | | | - Sathy V. Balu-Iyer
- Corresponding Author: Formerly Sathyamangalam V. Balasubramanian, Ph.D., Department of Pharmaceutical Sciences, 521 Hochstetter Hall, University at Buffalo, State University of New York Amherst, NY 14260, Telephone: (716) 645-2842 (x245), Fax: (716) 645-3693,
| |
Collapse
|
31
|
Kessel C, Kreuz W, Klich K, Becker-Peters K, Vorpahl F, Dietrich U, Klingebiel T, Königs C. Multimerization of peptide mimotopes for blocking of factor VIII neutralizing antibodies. ChemMedChem 2009; 4:1364-70. [PMID: 19533722 DOI: 10.1002/cmdc.200900023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
About 30 % of patients with severe hemophilia A develop neutralizing antibodies (inhibitors) to coagulation factor VIII (FVIII) upon treatment with exogenous factor preparations. Two peptides, C6 (NPVENMMDRDSQ) and H10 (QSPWQTWFTRAL), that mimic putative inhibitor epitopes (mimotopes), were previously selected by phage display screening of plasma samples from patients with inhibitors. Synthetic peptide mimotopes inhibited IgG binding to FVIII (IC(50): 30-50 microM). This effect was increased by an equimolar combination of both mimotopes. Mimotopes were fused to the C-terminal multimerization domain of the C4bp alpha-chain and expressed as multimers in 293T cells. Multimerized mimotopes showed improved binding to anti-FVIII IgG and prolonged in vitro half-life relative to synthetic peptides. The two mimotopes were combined in heteromultimers by co-transfection of 293T cells with respective vectors, resulting in bi-specific molecules that almost completely blocked polyclonal antibody binding to FVIII (IC(50): 2-3 microM). This strategy is capable of functionally improving synthetic peptides by multimerization and could provide a basis for novel therapeutic approaches for patients with hemophilia A and inhibitors.
Collapse
Affiliation(s)
- Christoph Kessel
- Department of Pediatrics III, JW Goethe University, 60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramani K, Purohit V, Miclea R, Gaitonde P, Straubinger RM, Balu-Iyer SV. Passive transfer of polyethylene glycol to liposomal-recombinant human FVIII enhances its efficacy in a murine model for hemophilia A. J Pharm Sci 2008; 97:3753-64. [PMID: 18300296 DOI: 10.1002/jps.21266] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The replacement therapy using recombinant human FVIII (rFVIII) is the first line of therapy for hemophilia A. Approximately 15-30% of the patients develop inhibitory antibodies. Recently, we reported that liposomes composed of phosphatidylserine (PS) could reduce the immunogenicity of rFVIII. However, PS containing liposomal-rFVIII is likely to reduce the systemic exposure and efficacy of FVIII due to rapid uptake of the PS containing liposomes by the reticuloendothelial system (RES). Here, we investigated whether phosphatidylserine (PS) liposomes containing Polyethylene glycol (PEG) (PEGylated), could reduce the immunogenicity of rFVIII and reverse the reduction in systemic exposure of rFVIII. Animals given PEGylated liposomal-rFVIII had lower total and inhibitory anti-rFVIII antibody titers, compared to animals treated with rFVIII alone. The mean stimulation index of CD4+ T-cells from animals given PEGylated liposomal-rFVIII also was lower than for animals that were given rFVIII alone. Pharmacokinetic studies following intravenous dosing indicated that the systemic exposure (area under the activity curve, AUAC(0-24h)) of PEGylated liposomal-rFVIII was approximately 59 IU/mL x h and significantly higher than that of non-PEGylated liposomal-rFVIII (AUAC(0-24h) approximately 36 IU/mL x h). Based on these studies, we speculate that PEGylated PS-containing liposomal rFVIII may improve efficacy of rFVIII.
Collapse
Affiliation(s)
- Karthik Ramani
- Department of Pharmaceutical Sciences, 521 Hochstetter Hall, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ramani K, Miclea RD, Purohit VS, Mager DE, Straubinger RM, Balu-Iyer SV. Phosphatidylserine containing liposomes reduce immunogenicity of recombinant human factor VIII (rFVIII) in a murine model of hemophilia A. J Pharm Sci 2008; 97:1386-98. [PMID: 17705286 PMCID: PMC2574438 DOI: 10.1002/jps.21102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Factor VIII (FVIII) is a multidomain protein that is deficient in hemophilia A, a clinically important bleeding disorder. Replacement therapy using recombinant human FVIII (rFVIII) is the main therapy. However, approximately 15-30% of patients develop inhibitory antibodies that neutralize rFVIII activity. Antibodies to epitopes in C2 domain, which is involved in FVIII binding to phospholipids, are highly prevalent. Here, we investigated the effect of phosphatidylserine (PS)-containing liposomes, which bind to C2 domain with high affinity and specificity, upon the immunogenicity of rFVIII. Circular dichroism studies showed that PS-containing liposomes interfered with aggregation of rFVIII. Immunogenicity of free- versus liposomal-rFVIII was evaluated in a murine model of hemophilia A. Animals treated with s.c. injections of liposomal-rFVIII had lower total- and inhibitory titers, compared to animals treated with rFVIII alone. Antigen processing by proteolytic enzymes was reduced in the presence of liposomes. Animals treated with s.c. injections of liposomal-rFVIII showed a significant increase in rFVIII plasma concentration compared to animals that received rFVIII alone. Based on these studies, we hypothesize that specific molecular interactions between PS-containing bilayers and rFVIII may provide a basis for designing lipidic complexes that improve the stability, reduce the immunogenicity of rFVIII formulations, and permit administration by s.c. route.
Collapse
Affiliation(s)
- Karthik Ramani
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | | | | | | | | | |
Collapse
|
34
|
Folding Considerations for Therapeutic Protein Formulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:255-70. [DOI: 10.1016/s0079-6603(08)00606-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Miclea RD, Varma PR, Peng A, Balu-Iyer SV. Development and characterization of lipidic cochleate containing recombinant factor VIII. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2890-8. [PMID: 17936245 DOI: 10.1016/j.bbamem.2007.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/18/2022]
Abstract
Hemophilia A, a life-threatening bleeding disorder, is caused by deficiency of factor VIII (FVIII). Replacement therapy using rFVIII is the first line therapy for hemophilia A. However, 15-30% of patients develop neutralizing antibody, mainly against the C2, A3 and A2 domains. It has been reported that PS-FVIII complex reduced total and neutralizing anti-rFVIII antibody titers in hemophilia A murine models. Here, we developed FVIII-containing cochleate cylinders, utilizing PS-Ca(2+) interactions and characterized these particles for optimal in vivo properties using biophysical and biochemical techniques. Approximately 75% of the protein was associated with cochleate cylinders. Sandwich ELISA, acrylamide quenching and enzymatic digestion studies established that rFVIII was shielded from the bulk aqueous phase by the lipidic structures, possibly leading to improved in vivo stability. Freeze-thawing and rate-limiting diffusion studies revealed that small cochleate cylinders with a particle size of 500 nm or less could be generated. The release kinetics and in vivo experiments suggested that there is slow and sustained release of FVIII from the complex upon systemic exposure. In vivo studies using tail clip method indicated that FVIII-cochleate complex is effective and protects hemophilic mice from bleeding. Based on these studies, we speculate that the molecular interaction between FVIII and PS may provide a basis for the design of novel FVIII lipidic structures for delivery applications.
Collapse
Affiliation(s)
- Razvan D Miclea
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
36
|
Miclea RD, Purohit VS, Balu-Iyer SV. O-phospho-L-serine, multi-functional excipient for B domain deleted recombinant factor VIII. AAPS JOURNAL 2007; 9:E251-9. [PMID: 17907766 PMCID: PMC2573386 DOI: 10.1208/aapsj0902028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Factor VIII (FVIII) is an important cofactor in the blood coagulation cascade. A deficiency or dysfunction of FVIII causes hemophilia A, a life-threatening bleeding disorder. FVIII circulates in plasma as a heterodimer comprising 6 domains (heavy chain, A1-A2-B and light chain, A3-C1-C2). Replacement therapy using FVIII is the leading therapy in the management of hemophilia A. However, approximately 15% to 30% of patients develop inhibitory antibodies that neutralize the activity of the protein. Neutralizing antibodies to epitopes in the lipid binding region of FVIII are commonly identified in patients' plasma. In this report, we investigated the effect of O-phospho-L-serine (OPLS), which binds to the lipid binding region, on the immunogenicity of B domain deleted recombinant factor VIII (BDDrFVIII). Sandwich enzyme-linked immunosorbent assay (ELISA) studies showed that OPLS specifically bind to the lipid binding region, localized in the C2 domain of the coagulation factor. Size exclusion chromatography and fluorescence anisotropy studies showed that OPLS interfered with the aggregation of BDDrFVIII. Immunogenicity of free- vs BDDrFVIII-OPLS complex was evaluated in a murine model of hemophilia A. Animals administered subcutaneous (sc) injections of BDDrFVIII-OPLS had lower neutralizing titers compared with animals treated with BDDrFVIII alone. Based on these studies, we hypothesize that specific molecular interactions between OPLS and BDDrFVIII may improve the stability and reduce the immunogenicity of BDDrFVIII formulations.
Collapse
Affiliation(s)
- Razvan D. Miclea
- />Department of Molecular & Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY
| | - Vivek S. Purohit
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 14260 Buffalo, NY
| | - Sathy V. Balu-Iyer
- />Department of Molecular & Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 14260 Buffalo, NY
| |
Collapse
|
37
|
Dasgupta S, Navarrete AM, Delignat S, Wootla B, Andre S, Nagaraja V, Lacroix-Desmazes S, Kaveri SV. Immune response against therapeutic factor VIII in hemophilia A patients—A survey of probable risk factors. Immunol Lett 2007; 110:23-8. [PMID: 17467813 DOI: 10.1016/j.imlet.2007.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/22/2007] [Indexed: 11/26/2022]
Abstract
A number of diseases are treated by passive administration of human proteins. Human coagulation factor VIII (FVIII) is one such protein which is administered to hemophilia A patients in order to manage and treat hemorrhagic incidences. This mode of therapy suffers from the side effect of generating anti-FVIII antibodies (inhibitors) which neutralizes the function of the infused FVIII. At a time when efficient viral screening procedures are at place, development of inhibitors poses the greatest threat to such a therapy. Various predisposing factors, both patient and product-related, are responsible for the development of inhibitory antibodies. A proper understanding of these "risk-factors" would eventually help to better design therapeutic regimen to tackle hemophilia A.
Collapse
|
38
|
Reipert BM, van Helden PMW, van den Helden PMW, Schwarz HP, Hausl C. Mechanisms of action of immune tolerance induction against factor VIII in patients with congenital haemophilia A and factor VIII inhibitors. Br J Haematol 2007; 136:12-25. [PMID: 17222196 DOI: 10.1111/j.1365-2141.2006.06359.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In its most severe form, haemophilia A is a life-threatening haemorrhagic bleeding disorder that is caused by mutations in the factor VIII (FVIII) gene. About 25% of patients who receive replacement therapy with intravenous FVIII products develop neutralising antibodies (FVIII inhibitors) that inhibit the function of substituted FVIII. Long-term application of high or low doses of FVIII has evolved as an effective strategy for eradicating antibodies and inducing long-lasting immune tolerance. Despite clinical experience with the therapy, little is known about the immunological mechanisms that cause the down modulation of FVIII-specific immune responses or the induction of long-lasting immune tolerance against FVIII. This review summarises current knowledge of the immunological mechanisms that might be involved in the induction of immune tolerance against FVIII in patients with haemophilia A who have FVIII inhibitors. In addition to data from patients with haemophilia A, data from patients who have had organ transplants or have immune-related disorders, such as autoimmune diseases, are considered as well as data from animal models.
Collapse
|
39
|
Purohit VS, Balasubramanian SV. Interaction of dicaproyl phosphatidylserine with recombinant factor VIII and its impact on immunogenicity. AAPS JOURNAL 2006; 8:E362-70. [PMID: 16796387 PMCID: PMC2574005 DOI: 10.1007/bf02854907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Replacement therapy with exogenous recombinant factor VIII (rFVIII) to control bleeding episodes results in the development of inhibitory antibodies in 15% to 30% of hemophilia A patients. The inhibitory antibodies are mainly directed against specific and universal immunodominant epitopes located in the C2 domain. Previously we have shown that complexation of O-phospho-L-serine (phosphatidylserine head group) with the phospholipid binding region of the C2 domain can lead to an overall reduction in the immunogenicity of rFVIII. Here, we have investigated the hypothesis that dicaproyl phosphatidylserine, a short-chain water-soluble phospholipid, can reduce the immunogenicity of rFVIII. Circular dichroism and fluorescence spectroscopy studies suggest that dicaproyl phosphatidylserine interacts with rFVIII, causing subtle changes in the tertiary and secondary structure of the protein. Sandwich enzyme-linked immunosorbent assay studies indicate that dicaproyl phosphatidylserine probably interacts with the phospholipid binding region of the C2 domain. The immunogenicity of FVIII-dicaproyl phosphatidylserine complexes prepared at concentrations above and below the critical micellar concentrations of the lipid were evaluated in hemophilia A mice. Our results suggest that micellar dicaproyl phosphatidylserine may be useful to reduce the immunogenicity of rFVIII preparations.
Collapse
Affiliation(s)
- Vivek S. Purohit
- />Department of Pharmaceutical Sciences, University at Buffalo State University of New York, 527 Hochstetter Hall, 14260-1200 Amherst, NY
| | - Sathyamangalam V. Balasubramanian
- />Department of Pharmaceutical Sciences, University at Buffalo State University of New York, 527 Hochstetter Hall, 14260-1200 Amherst, NY
| |
Collapse
|
40
|
Purohit VS, Middaugh CR, Balasubramanian SV. Influence of aggregation on immunogenicity of recombinant human Factor VIII in hemophilia A mice. J Pharm Sci 2006; 95:358-71. [PMID: 16372314 PMCID: PMC2574426 DOI: 10.1002/jps.20529] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recombinant human factor VIII (rFVIII), a multidomain glycoprotein is used in replacement therapy for treatment of hemophilia A. Unfortunately, 15%-30% of the treated patients develop inhibitory antibodies. The pathogenesis of antibody development is not completely understood. The presence of aggregated protein in formulations is generally believed to enhance the immune response. rFVIII has a tendency to aggregate but the effect of such aggregation on the immunogenicity of rFVIII is not known. We have, therefore, characterized aggregated rFVIII produced by thermal stress and evaluated its effect on the immunogenicity of rFVIII in hemophilia A mice. Aggregated rFVIII alone and mixtures of rFVIII with aggregated rFVIII were less immunogenic than native rFVIII. In vitro Th-cell proliferation studies and cytokine analyses conducted on splenocytes obtained from immunized animals suggest that aggregated rFVIII behaves as a unique antigen compared to native monomeric rFVIII. The antigenic properties of the aggregated and native rFVIII were compared using ELISAs (epitope availability) and cathepsin-B (an antigen processing enzyme) digestion. The data suggest significant differences in the antigenic properties of rFVIII and aggregated rFVIII. Overall it appears that aggregated rFVIII does not enhance the immunogenicity (inhibitor development) of rFVIII in hemophilia A mice but rather acts as a distinct antigen.
Collapse
Affiliation(s)
- Vivek S Purohit
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, 14260-1200, USA
| | | | | |
Collapse
|
41
|
Graw J, Brackmann HH, Oldenburg J, Schneppenheim R, Spannagl M, Schwaab R. Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet 2005; 6:488-501. [PMID: 15931172 DOI: 10.1038/nrg1617] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Haemophilia is caused by hundreds of different mutations and manifests itself in clinical conditions of varying severity. Despite being inherited in monogenic form, the clinical features of haemophilia can be influenced by other genetic factors, thereby confounding the boundary between monogenic and multifactorial disease. Unlike sufferers of other genetic diseases, haemophiliacs can be treated successfully by intravenous substitution of coagulation factors. Haemophilia is also the most attractive model for developing gene-therapy protocols, as the normal life expectancy of haemophiliacs allows the side effects of gene therapy, as well as its efficiency, to be monitored over long periods.
Collapse
Affiliation(s)
- Jochen Graw
- GSF-National Research Centre for Environment and Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|