1
|
Censi S, Barollo S, Watutantrige-Fernando S, Manso J, Ferrara AM, Mian C. A Novel Thyroid Hormone Receptor Beta Mutation (G357R) in a Family with Resistance to Thyroid Hormone Beta: Extending the Borders of the "Hot" Region in the THRB Gene. Thyroid 2019; 29:449-451. [PMID: 30458118 DOI: 10.1089/thy.2018.0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Resistance to thyroid hormone beta (RTHβ) is a syndrome characterized by high serum levels of thyroid hormone and unsuppressed serum thyrotropin concentrations. RTHβ is caused by mutations in the thyroid hormone receptor beta (THRB) gene, which are mostly clustered in three "hot" regions along the gene. Here, a report is given on a family with RTHβ caused by a novel mutation in the THRB gene (c.1069 G>C, p.G357R) occurring outside the historically known "hot" regions.
Collapse
Affiliation(s)
- Simona Censi
- 1 Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Susi Barollo
- 1 Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Jacopo Manso
- 1 Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Caterina Mian
- 1 Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
2
|
Kollitz EM, De Carbonnel L, Stapleton HM, Lee Ferguson P. The Affinity of Brominated Phenolic Compounds for Human and Zebrafish Thyroid Receptor β: Influence of Chemical Structure. Toxicol Sci 2018; 163:226-239. [PMID: 29409039 PMCID: PMC5920296 DOI: 10.1093/toxsci/kfy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brominated phenolic compounds (BPCs) are found in the environment, and in human and wildlife tissues, and some are considered to have endocrine disrupting activities. The goal of this study was to determine how structural differences of 3 BPC classes impact binding affinities for the thyroid receptor beta (TRβ) in humans and zebrafish. BPC classes included halogenated bisphenol A derivatives, halogenated oxidative transformation products of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and brominated phenols. Affinities were assessed using recombinant TRβ protein in competitive binding assays with 125I-triiodothyronine (125I-T3) as the radioligand. Zebrafish and human TRβ displayed similar binding affinities for T3 (Ki = 0.40 and 0.49 nM) and thyroxine (T4, Ki = 6.7 and 6.8 nM). TRβ affinity increased with increasing halogen mass and atomic radius for both species, with the iodinated compounds having the highest affinity within their compound classes. Increasing halogen mass and radius increases the molecular weight, volume, and hydrophobicity of a compound, which are all highly correlated with increasing affinity. TRβ affinity also increased with the degree of halogenation for both species. Human TRβ displayed higher binding affinities for the halogenate bisphenol A compounds, whereas zebrafish TRβ displayed higher affinities for 2,4,6-trichlorophenol and 2,4,6-trifluorophenol. Observed species differences may be related to amino acid differences within the ligand binding domains. Overall, structural variations impact TRβ affinities in a similar manner, supporting the use of zebrafish as a model for TRβ disruption. Further studies are necessary to investigate how the identified structural modifications impact downstream receptor activities and potential in vivo effects.
Collapse
Affiliation(s)
| | | | | | - Patrick Lee Ferguson
- Nicholas School of the Environment
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708
| |
Collapse
|
3
|
Schweizer U, Towell H, Vit A, Rodriguez-Ruiz A, Steegborn C. Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Mol Cell Endocrinol 2017; 458:57-67. [PMID: 28131741 DOI: 10.1016/j.mce.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormones and their metabolites constitute a vast class of related iodothyronine compounds that contribute to the regulation of metabolic activity and cell differentiation. They are in turn transported, transformed and recognized as signaling molecules through binding to a variety of proteins from a wide range of evolutionary unrelated protein families, which renders these proteins and their iodothyronine binding sites an example for extensive convergent evolution. In this review, we will briefly summarize what is known about iodothyronine binding sites in proteins, the modes of protein/iodothyronine interaction, and the ligand conformations. We will then discuss physiological and synthetic compounds, including popular drugs and food components, that can interfere with iodothyronine binding and recognition by these proteins. The discussion also includes compounds persisting in the environment and acting as endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Holly Towell
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Allegra Vit
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Alfonso Rodriguez-Ruiz
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
Jimenez R, Privalsky ML. A resistance to thyroid hormone syndrome mutant operates through the target gene repertoire of the wild-type thyroid hormone receptor. Mol Cell Endocrinol 2017; 447:87-97. [PMID: 28257829 DOI: 10.1016/j.mce.2017.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormone receptors (TRs) play crucial roles in vertebrates. Wild-type (WT) TRs function primarily as hormone-regulated transcription factors. A human endocrine disease, Resistance to Thyroid Hormone (RTH)-Syndrome, is caused by inheritance of mutant TRs impaired in the proper regulation of target gene expression. To better understand the molecular basis of RTH we compared the target genes regulated by an RTH-TRβ1 mutant (R429Q) to those regulated by WT-TRβ1. With only a few potential exceptions, the vast majority of genes we were able to identify as regulated by the WT-TRβ1, positively or negatively, were also regulated by the RTH-TRβ1 mutant. We conclude that the actions of R429Q-TRβ1 in RTH-Syndrome most likely reflect the reduced hormone affinity observed for this mutant rather than an alteration in target gene repertoire. Our results highlight the importance of target gene specificity in defining the disease phenotype and improve our understanding of how clinical treatments impact RTH-Syndrome.
Collapse
Affiliation(s)
- Robyn Jimenez
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, USA.
| |
Collapse
|
5
|
Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J. Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–11 years of age: CHMS 2007–2009. Neurotoxicology 2016; 54:89-98. [DOI: 10.1016/j.neuro.2016.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022]
|
6
|
Nagavalli S, Fletterick RJ, Ford G, Boston BA, Gianoukakis AG. Computer modeling of a newly identified THRB gene mutation (S350L) associated with resistance to thyroid hormone in three unrelated patients. Thyroid 2014; 24:1430-1. [PMID: 24906004 PMCID: PMC4361411 DOI: 10.1089/thy.2014.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sravanthi Nagavalli
- Divisions of Endocrinology and Metabolism, Harbor-UCLA Medical Center, Torrance, California
| | - Robert J. Fletterick
- Departments of Biochemistry/Biophysics and Cellular/Molecular Pharmacology UCSF, San Francisco, California
| | - George Ford
- Oregon Health and Science University and Doernbecher Children's Hospital, Portland, Oregon
| | - Bruce A. Boston
- Oregon Health and Science University and Doernbecher Children's Hospital, Portland, Oregon
| | - Andrew G. Gianoukakis
- Divisions of Endocrinology and Metabolism, Harbor-UCLA Medical Center, Torrance, California
| |
Collapse
|
7
|
Souza PCT, Puhl AC, Martínez L, Aparício R, Nascimento AS, Figueira ACM, Nguyen P, Webb P, Skaf MS, Polikarpov I. Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 2014; 28:534-45. [PMID: 24552590 DOI: 10.1210/me.2013-1359] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.
Collapse
Affiliation(s)
- P C T Souza
- Institute of Chemistry (P.C.T.S., L.M., R.A., M.S.S.), State University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil; Institute of Physics of São Carlos (A.C.P., A.S.N., P.W., I.P.), University of São Paulo-USP, São Carlos, Sao Paulo, Brazil; National Laboratory of Biosciences (A.C.M.F.), CNPEM, Campinas, Sao Paulo, Brazil; University of California Medical Center (P.N.), Diabetes Center, San Francisco, California; and Genomic Medicine (P.W.), Houston Methodist Research Institute, Houston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Joharapurkar AA, Dhote VV, Jain MR. Selective Thyromimetics Using Receptor and Tissue Selectivity Approaches: Prospects for Dyslipidemia. J Med Chem 2012; 55:5649-75. [DOI: 10.1021/jm2004706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amit A. Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Sarkhej Bavla NH 8A, Moraiya,
Ahmedabad 382210, India
| | - Vipin V. Dhote
- Department of Pharmacology and Toxicology, Zydus Research Centre, Sarkhej Bavla NH 8A, Moraiya,
Ahmedabad 382210, India
| | - Mukul R. Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Sarkhej Bavla NH 8A, Moraiya,
Ahmedabad 382210, India
| |
Collapse
|
9
|
Rosen MD, Privalsky ML. Thyroid hormone receptor mutations in cancer and resistance to thyroid hormone: perspective and prognosis. J Thyroid Res 2011; 2011:361304. [PMID: 21760978 PMCID: PMC3134260 DOI: 10.4061/2011/361304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/16/2011] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.
Collapse
Affiliation(s)
- Meghan D Rosen
- Department of Microbiology, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|
10
|
Lee S, Young BM, Wan W, Chan IH, Privalsky ML. A mechanism for pituitary-resistance to thyroid hormone (PRTH) syndrome: a loss in cooperative coactivator contacts by thyroid hormone receptor (TR)beta2. Mol Endocrinol 2011; 25:1111-25. [PMID: 21622532 DOI: 10.1210/me.2010-0448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TR) are hormone-modulated transcription factors that regulate overall metabolic rate, lipid utilization, heart rate, and development. TR are expressed as a mix of interrelated receptor isoforms. The TRβ2 isoform is expressed in the hypothalamus and pituitary, where it plays an important role in the feedback regulation of thyroid hormone levels. TRβ2 exhibits unique transcriptional properties that parallel the ability of this isoform to bind to certain coactivators cooperatively through multiple contact surfaces. The more peripherally expressed TRβ1 isoform, in contrast, appears to recruit these coactivators through a single contact mechanism. We report here that clusters of charged amino acids in the TR hormone-binding domain are required for this enhanced mode of coactivator recruitment and that mutations in these charge clusters, by disrupting TRβ2 coactivator binding, are a molecular basis for pituitary resistance to thyroid hormone, a disease characterized by inappropriate thyroid hormone feedback regulation. We propose that the charge clusters allow wild-type TRβ2 to assume a conformation compatible with its mode of multiple contact coactivator recruitment, whereas disruption of these charge clusters disrupts normal T(3) homeostasis by reducing TRβ2 to a TRβ1-like, single contact mode of coactivator binding.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Microbiology, College of Biological Sciences, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
11
|
Figueira ACM, Saidemberg DM, Souza PCT, Martínez L, Scanlan TS, Baxter JD, Skaf MS, Palma MS, Webb P, Polikarpov I. Analysis of agonist and antagonist effects on thyroid hormone receptor conformation by hydrogen/deuterium exchange. Mol Endocrinol 2010; 25:15-31. [PMID: 21106879 DOI: 10.1210/me.2010-0202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH3. We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes.
Collapse
Affiliation(s)
- A C M Figueira
- Universidade de São Paulo, Departamento Física e Informática, Instituto de Física, Avenida Trabalhador Sãocarlense 400, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β. Toxicol In Vitro 2010; 24:638-44. [DOI: 10.1016/j.tiv.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 08/20/2009] [Accepted: 10/02/2009] [Indexed: 11/21/2022]
|
13
|
Gaining ligand selectivity in thyroid hormone receptors via entropy. Proc Natl Acad Sci U S A 2009; 106:20717-22. [PMID: 19926848 DOI: 10.1073/pnas.0911024106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TRbeta) vs. TRalpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TRbeta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331beta) in the TRbeta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3'-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TRbeta selectivity. TR x-ray structures reveal better fit of ligand with the TRalpha LBC. The TRbeta LBC, however, expands relative to TRalpha in the presence of Triac (549 A(3) vs. 461 A(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TRbeta and permits greater flexibility of the Triac carboxylate group in TRbeta than in TRalpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TRbeta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Collapse
|
14
|
Lima STC, Nguyen NH, Togashi M, Apriletti JW, Nguyen P, Polikarpov I, Scanlan TS, Baxter JD, Webb P. Differential effects of TR ligands on hormone dissociation rates: evidence for multiple ligand entry/exit pathways. J Steroid Biochem Mol Biol 2009; 117:125-31. [PMID: 19729063 PMCID: PMC2784034 DOI: 10.1016/j.jsbmb.2009.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/16/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
Abstract
Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself. This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here, we show that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2)<2h) of radiolabeled T(3) vs. T(3) (T(1/2) approximately 5-7h). We cannot discern relationships between this effect and ligand size, activity or affinity for TRbeta. One ligand, GC-24, binds the TR LBC and (weakly) to the TRbeta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation.
Collapse
Affiliation(s)
- Suzana T. Cunha Lima
- Department of General Biology, Biology Institute. Federal University of Bahia. 147, Barão de Geremoabo Street, - Campus of Ondina, Salvador, BA, 40170–290 Brazil
| | - Ngoc-Ha Nguyen
- Department of Biochemistry and Biophysics, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Marie Togashi
- Health Science Institute. Brasilia University, Asa Norte, Brasilia, DF 70919–970, Brazil
| | - James W. Apriletti
- Diabetes Center, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Phuong Nguyen
- Diabetes Center, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Igor Polikarpov
- Physics Institute of São Carlos, University of São Paulo. 400, Trabalhador São Carlense Av., São Carlos, SP 13560–970, Brazil
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR97239
| | - John D. Baxter
- The Methodist Hospital Research Institute. 6565 Fannin St. Houston, TX 77030, USA
| | - Paul Webb
- The Methodist Hospital Research Institute. 6565 Fannin St. Houston, TX 77030, USA
| |
Collapse
|
15
|
|
16
|
Jouravel N, Sablin E, Togashi M, Baxter JD, Webb P, Fletterick RJ. Molecular basis for dimer formation of TRbeta variant D355R. Proteins 2009; 75:111-7. [PMID: 18798561 PMCID: PMC2649980 DOI: 10.1002/prot.22225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein quality and stability are critical during protein purification for X-ray crystallography. A target protein that is easy to manipulate and crystallize becomes a valuable product useful for high-throughput crystallography for drug design and discovery. In this work, a single surface mutation, D355R, was shown to be crucial for converting the modestly stable monomeric ligand binding domain of the human thyroid hormone receptor (TR LBD) into a stable dimer. The structure of D335R TR LBD mutant was solved using X-ray crystallography and refined to 2.2 A resolution with R(free)/R values of 24.5/21.7. The crystal asymmetric unit reveals the TR dimer with two molecules of the hormone-bound LBD related by twofold symmetry. The ionic interface between the two LBDs comprises residues within loop H10-H11 and loop H6-H7 as well as the C-terminal halves of helices 8 of both protomers. Direct intermolecular contacts formed between the introduced residue Arg 355 of one TR molecule and Glu 324 of the second molecule become a part of the extended dimerization interface of 1330 A(2) characteristic for a strong complex assembly that is additionally strengthened by buffer solutes.
Collapse
Affiliation(s)
- Natalia Jouravel
- Department Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA. Tel: 415-476-5051; Fax: 415-476-1902; / /
| | - Elena Sablin
- Department Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA. Tel: 415-476-5051; Fax: 415-476-1902; / /
| | - Marie Togashi
- Diabetes Center & Dept. of Medicine, University California San Francisco (UCSF), 513 Parnassus Avenue, S-1222, Box 0540, Medical Sciences Building, San Francisco, CA 94143, USA. Tel: 415-476-6789; Fax: 415-564-5813; / /
| | - John D. Baxter
- Diabetes Center & Dept. of Medicine, University California San Francisco (UCSF), 513 Parnassus Avenue, S-1222, Box 0540, Medical Sciences Building, San Francisco, CA 94143, USA. Tel: 415-476-6789; Fax: 415-564-5813; / /
| | - Paul Webb
- Diabetes Center & Dept. of Medicine, University California San Francisco (UCSF), 513 Parnassus Avenue, S-1222, Box 0540, Medical Sciences Building, San Francisco, CA 94143, USA. Tel: 415-476-6789; Fax: 415-564-5813; / /
| | - Robert J. Fletterick
- Department Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA. Tel: 415-476-5051; Fax: 415-476-1902; / /
| |
Collapse
|
17
|
Figueira ACM, Neto MDO, Bernardes A, Dias SMG, Craievich AF, Baxter JD, Webb P, Polikarpov I. Low-resolution structures of thyroid hormone receptor dimers and tetramers in solution. Biochemistry 2007; 46:1273-83. [PMID: 17260956 DOI: 10.1021/bi061698h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution X-ray structures of thyroid hormone (TH) receptor (TR) DNA and ligand binding domains (DBD and LBD) have yielded significant insights into TR action. Nevertheless, the TR DBD and LBD act in concert to mediate TH effects upon gene expression, and TRs form multiple oligomers; however, structures of full-length TRs or DBD-LBD constructs that would clarify these influences are not available. Here, we report low-resolution X-ray structures of the TRbeta DBD-LBD construct in solution which define the shape of dimers and tetramers and likely positions of the DBDs and LBDs. The holo TRbeta DBD-LBD construct forms a homodimer with LBD-DBD pairs in close contact and DBDs protruding from the base in the same direction. The DBDs are connected to the LBDs by crossed extended D domains. The apo hTRbeta DBD-LBD construct forms tetramers that resemble bulged cylinders with pairs of LBD dimers in a head-to-head arrangement with DBD pairs packed tightly against the LBD core. Overall, there are similarities with our previous low-resolution structures of retinoid X receptors, but TRs exhibit two unique features. First, TR DBDs are closely juxtaposed in the dimer and tetramer forms. Second, TR DBDs are closely packed against LBDs in the tetramer, but not the dimer. These findings suggest that TRs may be able to engage in hitherto unknown interdomain interactions and that the D domain must rearrange in different oligomeric forms. Finally, the data corroborate our suggestion that apo TRs form tetramers in solution which dissociate into dimers upon hormone binding.
Collapse
Affiliation(s)
- Ana Carolina Migliorini Figueira
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, São Carlos, SP, Brazil 13560-970
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Velasco LFR, Togashi M, Walfish PG, Pessanha RP, Moura FN, Barra GB, Nguyen P, Rebong R, Yuan C, Simeoni LA, Ribeiro RCJ, Baxter JD, Webb P, Neves FAR. Thyroid hormone response element organization dictates the composition of active receptor. J Biol Chem 2007; 282:12458-66. [PMID: 17311926 DOI: 10.1074/jbc.m610700200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone (triiodothyronine, T(3)) is known to activate transcription by binding heterodimers of thyroid hormone receptors (TRs) and retinoid X receptors (RXRs). RXR-TRs bind to T(3) response elements (TREs) composed of direct repeats of the sequence AGGTCA spaced by four nucleotides (DR-4). In other TREs, however, the half-sites can be arranged as inverted palindromes and palindromes (Pal). Here we show that TR homodimers and monomers activate transcription from representative TREs with alternate half-site placements. TR beta activates transcription more efficiently than TR alpha at an inverted palindrome (F2), and this correlates with preferential TR beta homodimer formation at F2 in vitro. Furthermore, reconstruction of TR transcription complexes in yeast indicates that TR beta homodimers are active at F2, whereas RXR-TRs are active at DR-4 and Pal. Finally, analysis of TR beta mutations that block homodimer and/or heterodimer formation reveal TRE-selective requirements for these surfaces in mammalian cells, which suggest that TR beta homodimers are active at F2, RXR-TRs at DR-4, and TR monomers at Pal. TR beta requires higher levels of hormone for activation at F2 than other TREs, and this differential effect is abolished by a dimer surface mutation suggesting that it is related to composition of the TR.TRE complex. We propose that interactions of particular TR oligomers with different elements play unappreciated roles in TRE-selective actions of liganded TRs in vivo.
Collapse
Affiliation(s)
- Lara F R Velasco
- Molecular Pharmacology Laboratory, Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zoeller RT. Collision of Basic and Applied Approaches to Risk Assessment of Thyroid Toxicants. Ann N Y Acad Sci 2006; 1076:168-90. [PMID: 17119202 DOI: 10.1196/annals.1371.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone (TH) is essential for normal brain development; therefore, any environmental chemical that interferes sufficiently with thyroid function, TH metabolism, or TH action may exert adverse effects on brain development. Important known differences in aspects of thyroid endocrinology between the fetus, infant, and adult allow us to identify age-dependent vulnerabilities to thyroid toxicants with some confidence. These differences include the size of the hormone pool stored in the thyroid gland at different ages as well as the age-dependent sensitivity to mild TH insufficiency. Several recent studies that describe risk assessments of the environmental contaminant, ammonium perchlorate, provide good examples of conclusions based on the selective consideration of these known aspects of the thyroid system. Specifically, authors who consider age-dependent differences in thyroid endocrinology suggest that safe levels of perchlorate should be set at relatively low levels (low parts per billion). In contrast, authors who do not consider these known age-dependent differences in thyroid endocrinology recommend safe levels of perchlorate at high (hundreds) parts per billion to parts per million. Emerging evidence indicates that a variety of high production volume chemicals can directly interact with the TH receptor. As testing paradigms are designed by regulatory agencies, these age-dependent differences in thyroid endocrinology must be considered.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|