1
|
Kim S, Lee H, Hong J, Kim SHL, Kwon E, Park TH, Hwang NS. Bone-Targeted Delivery of Cell-Penetrating-RUNX2 Fusion Protein in Osteoporosis Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301570. [PMID: 37574255 PMCID: PMC10558633 DOI: 10.1002/advs.202301570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Indexed: 08/15/2023]
Abstract
The onset of osteoporosis leads to a gradual decrease in bone density due to an imbalance between bone formation and resorption. To achieve optimal drug efficacy with minimal side effects, targeted drug delivery to the bone is necessary. Previous studies have utilized peptides that bind to hydroxyapatite, a mineral component of bone, for bone-targeted drug delivery. In this study, a hydroxyapatite binding (HAB) tag is fused to 30Kc19α-Runt-related transcription factor 2 (RUNX2) for bone-targeting. This recombinant protein can penetrate the nucleus of human mesenchymal stem cells (hMSCs) and act as a master transcription factor for osteogenesis. The HAB tag increases the binding affinity of 30Kc19α-RUNX2 to mineral deposition in mature osteoblasts and bone tissue, without affecting its osteogenic induction capability. In the osteoporosis mouse model, intravenous injection of HAB-30Kc19α-RUNX2 results in preferential accumulation in the femur and promotes bone formation while reducing toxicity in the spleen. These findings suggest that HAB-30Kc19α-RUNX2 may be a promising candidate for bone-targeted therapy in osteoporosis.
Collapse
Affiliation(s)
- Seoyeon Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Haein Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jiyeon Hong
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung Hyun L. Kim
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Euntaek Kwon
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- BioMAX/N‐Bio InstituteInstitute of BioEngineerigSeoul National University1 Gwanakro, Gwanak‐guSeoul08826Republic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans University52, Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- BioMAX/N‐Bio InstituteInstitute of BioEngineerigSeoul National University1 Gwanakro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
2
|
Chou LY, Chen CH, Chuang SC, Cheng TL, Lin YH, Chou HC, Fu YC, Wang YH, Wang CZ. Discoidin Domain Receptor 1 Regulates Runx2 during Osteogenesis of Osteoblasts and Promotes Bone Ossification via Phosphorylation of p38. Int J Mol Sci 2020; 21:E7210. [PMID: 33003599 PMCID: PMC7582985 DOI: 10.3390/ijms21197210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Discoidin domain receptor 1 (Drd1) is a collagen-binding membrane protein, but its role in osteoblasts during osteogenesis remains undefined. We generated inducible osteoblast-specific Ddr1 knockout (OKOΔDdr1) mice; their stature at birth, body weight and body length were significantly decreased compared with those of control Ddr1f/f-4OHT mice. We hypothesize that Ddr1 regulates osteogenesis of osteoblasts. Micro-CT showed that compared to 4-week-old Ddr1f/f-4OHT mice, OKOΔDdr1 mice presented significant decreases in cancellous bone volume and trabecular number and significant increases in trabecular separation. The cortical bone volume was decreased in OKOΔDdr1 mice, resulting in decreased mechanical properties of femurs compared with those of Ddr1f/f-4OHT mice. In femurs of 4-week-old OKOΔDdr1 mice, H&E staining showed fewer osteocytes and decreased cortical bone thickness than Ddr1f/f-4OHT. Osteoblast differentiation markers, including BMP2, Runx2, alkaline phosphatase (ALP), Col-I and OC, were decreased compared with those of control mice. Ddr1 knockdown in osteoblasts resulted in decreased mineralization, ALP activity, phosphorylated p38 and protein levels of BMP2, Runx2, ALP, Col-I and OC during osteogenesis. Overexpression and knockdown of Ddr1 in osteoblasts demonstrated that DDR1 mediates the expression and activity of Runx2 and the downstream osteogenesis markers during osteogenesis through regulation of p38 phosphorylation.
Collapse
Affiliation(s)
- Liang-Yin Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Cardiovascular Research Centre, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Hsiung Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Chiao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Chih Fu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Min H, Son H, Jang W. Alpha‐pinene promotes osteoblast differentiation and attenuates TNFα‐induced inhibition of differentiation in MC3T3‐E1 pre‐osteoblasts. Clin Exp Pharmacol Physiol 2020; 47:831-837. [DOI: 10.1111/1440-1681.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeon‐Young Min
- Department of Biotechnology College of Engineering Daegu University Gyeongsan Korea
- Research Institute of Anti‐Aging Daegu University Gyeongsan Korea
| | - Hyo‐Eun Son
- Department of Biotechnology College of Engineering Daegu University Gyeongsan Korea
- Research Institute of Anti‐Aging Daegu University Gyeongsan Korea
| | - Won‐Gu Jang
- Department of Biotechnology College of Engineering Daegu University Gyeongsan Korea
- Research Institute of Anti‐Aging Daegu University Gyeongsan Korea
| |
Collapse
|
4
|
Exploring the Interface between Inflammatory and Therapeutic Glucocorticoid Induced Bone and Muscle Loss. Int J Mol Sci 2019; 20:ijms20225768. [PMID: 31744114 PMCID: PMC6888251 DOI: 10.3390/ijms20225768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023] Open
Abstract
Due to their potent immunomodulatory anti-inflammatory properties, synthetic glucocorticoids (GCs) are widely utilized in the treatment of chronic inflammatory disease. In this review, we examine our current understanding of how chronic inflammation and commonly used therapeutic GCs interact to regulate bone and muscle metabolism. Whilst both inflammation and therapeutic GCs directly promote systemic osteoporosis and muscle wasting, the mechanisms whereby they achieve this are distinct. Importantly, their interactions in vivo are greatly complicated secondary to the directly opposing actions of GCs on a wide array of pro-inflammatory signalling pathways that underpin catabolic and anti-anabolic metabolism. Several clinical studies have attempted to address the net effects of therapeutic glucocorticoids on inflammatory bone loss and muscle wasting using a range of approaches. These have yielded a wide array of results further complicated by the nature of inflammatory disease, underlying the disease management and regimen of GC therapy. Here, we report the latest findings related to these pathway interactions and explore the latest insights from murine models of disease aimed at modelling these processes and delineating the contribution of pre-receptor steroid metabolism. Understanding these processes remains paramount in the effective management of patients with chronic inflammatory disease.
Collapse
|
5
|
MacKenzie RK, Sankar PR, Bendall AJ. Dlx5 and Dlx6 can antagonize cell division at the G 1/S checkpoint. BMC Mol Cell Biol 2019; 20:8. [PMID: 31041891 PMCID: PMC6460778 DOI: 10.1186/s12860-019-0191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background Dlx5 and Dlx6 stimulate differentiation of diverse progenitors during embryonic development. Their actions as pro-differentiation transcription factors includes the up-regulation of differentiation markers but the extent to which differentiation may also be stimulated by regulation of the cell cycle has not been addressed. Results We document that expression of Dlx5 and Dlx6 antagonizes cell proliferation in a variety of cell types without inducing apoptosis or promoting cell cycle exit. Rather, a variety of evidence indicates that elevated Dlx5 and Dlx6 expression reduces the proportion of cells in S phase and affects the length of the cell cycle. Conclusions Antagonism of S-phase entry by Dlx5 and Dlx6 proteins likely represents a lineage-independent function to effect Dlx-mediated differentiation in multiple progenitor cell types.
Collapse
Affiliation(s)
- Rachel K MacKenzie
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Parvathy Ravi Sankar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
6
|
Giannoni P, Muraglia A, Giordano C, Narcisi R, Cancedda R, Quarto R, Chiesa R. Osteogenic Differentiation of Human Mesenchymal Stromal Cells on Surface-Modified Titanium Alloys for Orthopedic and Dental Implants. Int J Artif Organs 2018; 32:811-20. [DOI: 10.1177/039139880903201107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose Surface properties of titanium alloys, used for orthopedic and dental applications, are known to affect implant interactions with host tissues. Osteointegration, bone growth and remodeling in the area surrounding the implants can be implemented by specific biomimetic treatments; these allow the preparation of micro/nanostructured titanium surfaces with a thickened oxide layer, doped with calcium and phosphorus ions. We have challenged these experimental titanium alloys with primary human bone marrow stromal cells to compare the osteogenic differentiation outcomes of the cells once they are seeded onto the modified surfaces, thus simulating a prosthetic device-biological interface of clinical relevance. Methods A specific anodic spark discharge was the biomimetic treatment of choice, providing experimental titanium disks treated with different alkali etching approaches. The disks, checked by electron microscopy and spectroscopy, were subsequently used as substrates for the proliferation and osteogenic differentiation of human cells. Expression of markers of the osteogenic lineage was assessed by means of qualitative and quantitative PCR, by cytochemistry, immunohistochemistry Western blot and matrix metalloprotease activity analyses. Results Metal surfaces were initially less permissive for cell growth. Untreated control substrates were less efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells. Interestingly, bone sialo protein and matrix metalloprotease 2 levels were enhanced on experimental metals compared to control surfaces, particularly for titanium oxide coatings etched with KOH. Discussion As a whole, the KOH-modification of titanium surfaces seems to allow the best osteogenic differentiation of human mesenchymal stromal cells, representing a possible plus for future clinical prosthetic applications.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Advanced Biotechnology Center, Genoa - Italy
| | | | - Carmen Giordano
- Giulio Natta Department of Industrial Chemistry and Chemical Engineering, Milan Polytechnic University, Milan - Italy
| | - Roberto Narcisi
- Stem Cell Laboratory, Advanced Biotechnology Center, Genoa - Italy
| | - Ranieri Cancedda
- Laboratory of Regenerative Medicine, National Cancer Research Institute, University of Genoa - Italy
| | - Rodolfo Quarto
- Stem Cell Laboratory, Advanced Biotechnology Center, Genoa - Italy
| | - Roberto Chiesa
- Giulio Natta Department of Industrial Chemistry and Chemical Engineering, Milan Polytechnic University, Milan - Italy
| |
Collapse
|
7
|
RUNX2 promotes epithelial differentiation of ADSCs and burn wound healing via targeting E-cadherin. Oncotarget 2017; 9:2646-2659. [PMID: 29416798 PMCID: PMC5788666 DOI: 10.18632/oncotarget.23522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial differentiation of adipose-derived stem cells (ADSCs) is mediated by sophisticated interactions of various molecular functions and biological processes, including transcriptional regulation. Runt-related transcription factor 2 (RUNX2) increases osteoblast and adipocyte differentiation of ADSCs. However, the role of RUNX2 in epithelial differentiation of ADSCs is unknown. We first showed that ADSCs possess the potential to differentiate into epithelial lineage. Then, we employed the effect of RUNX2 on epithelial differentiation of ADSCs. Our data showed that RUNX2 promoted epithelial differentiation of ADSCs. Overexpression or knockdown of RUNX2 resulted in increase or decrease of E-cadherin expression, respectively. Abatement of E-cadherin in ADSCs attenuated RUNX2-activated epithelial conversion of ADSCs and epithelial markers cytokeratin 18 (CK18) and zonula occludens protein-1 (ZO-1). We also evaluated the effect of RUNX2 on burn wound healing in vivo. The wound re-epithelialization were accelerated by RUNX2. The wound closure indexs, demis regeneration and revascularization were all improved. Furthermore, RUNX2 binding directly to the E-cadherin promoter region was characterized in ADSCs by chromatin immunoprecipitation (ChIP) and luciferase promoter reporter assays. Taken together, the study demonstrates the role of RUNX2 in epithelial differentiation of ADSCs and suggests that RUNX2 promotes E-cadherin expression, at least in part, through its direct binding to the promoter.
Collapse
|
8
|
Artigas N, Gámez B, Cubillos-Rojas M, Sánchez-de Diego C, Valer JA, Pons G, Rosa JL, Ventura F. p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation. Cell Death Differ 2017; 24:2022-2031. [PMID: 28777372 PMCID: PMC5686339 DOI: 10.1038/cdd.2017.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Osteoblast differentiation is achieved by activating a transcriptional network in which Dlx5, Runx2 and Osx/SP7 have fundamental roles. The tumour suppressor p53 exerts a repressive effect on bone development and remodelling through an unknown mechanism that inhibits the osteoblast differentiation programme. Here we report a physical and functional interaction between Osx and p53 gene products. Physical interaction was found between overexpressed proteins and involved a region adjacent to the OSX zinc fingers and the DNA-binding domain of p53. This interaction results in a p53-mediated repression of OSX transcriptional activity leading to a downregulation of the osteogenic programme. Moreover, we show that p53 is also able to repress key osteoblastic genes in Runx2-deficient osteoblasts. The ability of p53 to suppress osteogenesis is independent of its DNA recognition ability but requires a native conformation of p53, as a conformational missense mutant failed to inhibit OSX. Our data further demonstrates that p53 inhibits OSX binding to their responsive Sp1/GC-rich sites in the promoters of their osteogenic target genes, such as IBSP or COL1A1. Moreover, p53 interaction to OSX sequesters OSX from binding to DLX5. This competition blocks the ability of OSX to act as a cofactor of DLX5 to activate homeodomain-containing promoters. Altogether, our data support a model wherein p53 represses OSX-DNA binding and DLX5-OSX interaction, and thereby deregulates the osteogenic transcriptional network. This mechanism might have relevant roles in bone pathologies associated to osteosarcomas and ageing.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Mónica Cubillos-Rojas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
9
|
Li Y, Ge C, Franceschi RT. MAP Kinase-Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation. J Cell Physiol 2017; 232:2427-2435. [PMID: 27514023 DOI: 10.1002/jcp.25517] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/01/2023]
Abstract
RUNX2, an essential transcription factor for osteoblast differentiation and bone formation is activated by ERK/MAP kinase-dependent phosphorylation. However, relationship between these early events and specific epigenetic modifications of chromatin during osteoblast differentiation have not been previously examined. Here, we explore these relationships using chromatin immunoprecipitation (ChIP) to detect chromatin modifications in RUNX2-binding regions of Bglap2 and Ibsp. Growth of MC3T3-E1c4 preosteoblast cells in differentiation conditions rapidly induced Bglap2 and lbsp mRNAs. For both genes, osteogenic stimulation increased chromatin-bound P-ERK, P-RUNX2, p300, and RNA polymerase II as well as histone H3K9 and H4K5 acetylation. The level of H3K4 di-methylation, another gene activation-associated histone mark, also increased. In contrast, levels of the gene repressive marks, H3K9 mono-, di-, and tri-methylation in the same regions were reduced. Inhibition of MAP kinase signaling blocked differentiation-dependent chromatin modifications and Bglap2 and Ibsp expression. To evaluate the role of RUNX2 phosphorylation in these responses, RUNX2-deficient C3H10T1/2 cells were transduced with adenovirus encoding wild type or phosphorylation site mutant RUNX2 (RUNX2 S301A/S319A). Wild type RUNX2, but not the non-phosphorylated mutant, increased H3K9 and H4K5 acetylation as well as chromatin-associated P-ERK, p300, and polymerase II. Thus, RUNX2 phosphorylation is necessary for subsequent epigenetic changes required for osteoblast gene expression. Taken together, this study reveals a molecular mechanism through which osteogenic genes are controlled by a MAPK and P-RUNX2-dependent process involving epigenetic modifications of specific promoter regions. J. Cell. Physiol. 232: 2427-2435, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Li
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan School of Engineering, Ann Arbor, Michigan
| |
Collapse
|
10
|
Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation. In Vitro Cell Dev Biol Anim 2016; 52:1026-1033. [PMID: 27401008 DOI: 10.1007/s11626-016-0068-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) inhibits osteogenic differentiation of murine bone marrow stromal cells, and transcription factor Runx2 serves as an essential regulation target in the process. The underlying mechanism may involve the regulation of Runx2 expression and the Runx2 activity in downstream gene transcription, which has not been fully elucidated. In this study, ST2 murine bone marrow-derived stromal cells were treated with bone morphogenetic protein-2 (BMP-2) and/or TNF-α in osteogenic medium, and the expression of Runx2 was estimated. Cells were transfected with Runx2, p65, inhibitor of κBα (IκBα), 9.0 kb bone sialoprotein (BSP) promoter-luciferase or osteoblast-specific cis-acting element 2 (OSE2)-luciferase reporter vectors, and then real time-PCR and dual luciferase analysis were used to investigate the effect of TNF-α on Runx2-activated osteogenic gene transcription and the molecular mechanism. We found that TNF-α inhibited BMP-2-induced osteogenic marker expression and both the spontaneous and BMP-2-induced Runx2 expression. TNF-α stimulation or overexpression of nuclear factor-kappa B (NF-κB) p65 subunit repressed the Runx2-activated BSP and osteocalcin (OC) transcriptions. The Runx2-induced 9.0 kb BSP promoter activity was attenuated by TNF-α or p65, while the OSE2 activity was not affected. Besides, blockage of NF-κB by IκBα overexpression eliminated these inhibitory effects of TNF-α on Runx2 signaling. These results suggest that in murine bone marrow stromal cells undergoing osteogenic differentiation, TNF-α and it activated NF-κB pathway inhibit the expression of Runx2 gene, and suppress the Runx2-mediated osteogenic gene transcription via the 9.0 kb BSP promoter.
Collapse
|
11
|
Guo R, Lu S, Merkel AR, Sterling JA, Guelcher SA. Substrate Modulus Regulates Osteogenic Differentiation of Rat Mesenchymal Stem Cells through Integrin β1 and BMP Receptor Type IA. J Mater Chem B 2016; 4:3584-3593. [PMID: 27551426 PMCID: PMC4991780 DOI: 10.1039/c5tb02747k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Osteoblast differentiation of mesenchymal stem cells is regulated by both soluble factor (e.g., bone morphogenetic proteins (BMP)) and mechanically transduced signaling, but the mechanisms have only been partially elucidated. In this study, physical association of BMP Receptor I (BMPRI) with integrin β1 sub-unit (Iβ1) was hypothesized to mediate osteoblast differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) on bone-like substrates. The effects of substrate modulus on osteoblast differentiation of MSCs were investigated for 2D poly(ester urethane) films with moduli varying from 5 - 266 MPa, which spans the range from collagen fibrils to trabecular bone. SMAD1/5 and p44/42 MAPK signaling, expression of markers of osteoblast differentiation, and matrix mineralization increased with increasing substrate modulus. The effects of substrate modulus on osteoblast differentiation were mediated by Iβ1, which was also expressed at higher levels on increasingly rigid substrates. Förster resonance energy transfer (FRET) and immunoprecipitation (IP) experiments showed that physical association of Iβ1 and BMP Receptor I (BMRPRI) increased with substrate modulus, resulting in activation of the BMP signaling pathway. Thus, these studies showed that integrin and BMP signaling converge to regulate osteoblast differentiation of MSCs, which may potentially guide the design of scaffolds and rhBMP-2 delivery systems for bone regeneration.
Collapse
Affiliation(s)
- R Guo
- Department of Chemical and BIomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - S Lu
- Department of Chemical and BIomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - A R Merkel
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J A Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - S A Guelcher
- Department of Chemical and BIomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Ouattara A, Cooke D, Gopalakrishnan R, Huang TH, Ables GP. Methionine restriction alters bone morphology and affects osteoblast differentiation. Bone Rep 2016; 5:33-42. [PMID: 28326345 PMCID: PMC4926829 DOI: 10.1016/j.bonr.2016.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/22/2022] Open
Abstract
Methionine restriction (MR) extends the lifespan of a wide variety of species, including rodents, drosophila, nematodes, and yeasts. MR has also been demonstrated to affect the overall growth of mice and rats. The objective of this study was to evaluate the effect of MR on bone structure in young and aged male and female C57BL/6J mice. This study indicated that MR affected the growth rates of males and young females, but not aged females. MR reduced volumetric bone mass density (vBMD) and bone mineral content (BMC), while bone microarchitecture parameters were decreased in males and young females, but not in aged females compared to control-fed (CF) mice. However, when adjusted for bodyweight, the effect of MR in reducing vBMD, BMC and microarchitecture measurements was either attenuated or reversed suggesting that the smaller bones in MR mice is appropriate for its body size. In addition, CF and MR mice had similar intrinsic strength properties as measured by nanoindentation. Plasma biomarkers suggested that the low bone mass in MR mice could be due to increased collagen degradation, which may be influenced by leptin, IGF-1, adiponectin and FGF21 hormone levels. Mouse preosteoblast cell line cultured under low sulfur amino acid growth media attenuated gene expression levels of Col1al, Runx2, Bglap, Alpl and Spp1 suggesting delayed collagen formation and bone differentiation. Collectively, our studies revealed that MR altered bone morphology which could be mediated by delays in osteoblast differentiation. MR affected the growth rates of males and young females, but not aged females. CF and MR mice had similar intrinsic strength properties. Low methionine media attenuated bone differentiation genes in MC3T3-E1 preosteoblast cells. The lower bone mass in MR mice is appropriate for its smaller body size.
Collapse
Key Words
- Aged mice
- BMC, bone mineral content
- BS, bone surface
- BV, bone volume
- CF, control-fed
- CTX-1, C-terminal telopeptide of type 1 collagen
- Conn.Dn., connectivity density
- FGF21, fibroblast growth factor-21
- HFD, high-fat diet
- HHCy, hyperhomocysteinemia
- IDI, indentation depth increase
- IGF-1, insulin-like growth factor-1
- Imax, maximal MOI
- Imin, minimal MOI
- LPD, low protein diet
- MC3T3-E1 subclone 4
- MOI, moment of inertia
- MR, methionine restriction
- Methionine restriction
- Micro-computed tomography
- Nanoindentation
- OC, osteocalcin
- OPG, osteoprotegerin
- P1NP, N-terminal propeptide of type 1 procollagen
- RANKL, receptor activator for nuclear factor κB ligand
- SMI, structure model index
- TV, total volume
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- pMOI, polar MOI
- vBMD, volumetric bone mass density
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Amadou Ouattara
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY 10516, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY 10516, USA
| | - Raj Gopalakrishnan
- School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tsang-hai Huang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Gene P. Ables
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY 10516, USA
- Corresponding author at: Orentreich Foundation for the Advancement of Science, Inc., 855 Route 301, Cold Spring, NY 10516, USA.Orentreich Foundation for the Advancement of Science, Inc.855 Route 301Cold SpringNY10516USA
| |
Collapse
|
13
|
Giannoni P, Villa F, Cordazzo C, Zardi L, Fattori P, Quarto R, Fiorini M. Rheological properties, biocompatibility and in vivo performance of new hydrogel-based bone fillers. Biomater Sci 2016; 4:1691-1703. [DOI: 10.1039/c6bm00478d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different heterologous substitutes for bone regeneration, manufactured with equine-derived cortical powder, cancellous chips and demineralized bone matrix granules, were compared in vitro and in vivo.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory
- Dept. of Experimental Medicine
- University of Genova
- c/o Advanced Biotechnology Centre
- 16132–Genova
| | - Federico Villa
- Stem Cell Laboratory
- Dept. of Experimental Medicine
- University of Genova
- c/o Advanced Biotechnology Centre
- 16132–Genova
| | - Cinzia Cordazzo
- Sirius-Biotech S.r.l
- c/o
- Advanced Biotechnology Centre
- 16132 Genova
- Italy
| | - Luciano Zardi
- Sirius-Biotech S.r.l
- c/o
- Advanced Biotechnology Centre
- 16132 Genova
- Italy
| | | | - Rodolfo Quarto
- Stem Cell Laboratory
- Dept. of Experimental Medicine
- University of Genova
- c/o Advanced Biotechnology Centre
- 16132–Genova
| | | |
Collapse
|
14
|
Guo F, Han X, Wu Z, Cheng Z, Hu Q, Zhao Y, Wang Y, Liu C. ATF6a, a Runx2-activable transcription factor, is a new regulator of chondrocyte hypertrophy. J Cell Sci 2015; 129:717-28. [PMID: 26527399 DOI: 10.1242/jcs.169623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
Our previous research has shown that the spliced isoform of XBP1 (XBP1s) is an important downstream mediator of BMP2 and is involved in BMP2-stimulated chondrocyte differentiation. Herein, we report that ATF6 and its cleaved N-terminal cytoplasmic domain (known as ATF6a) are expressed in growth plate chondrocytes. We find that these proteins are differentially induced during BMP2-triggered chondrocyte differentiation. This differential expression probably results from the activation of the ATF6 gene by Runx2 and its repression by the Sox6 transcription factor. Runx2 and Sox6 act through their respective binding elements on the ATF6 gene. When overexpressed, ATF6 and ATF6a intensify chondrogenesis; our studies demonstrate that under the stimulation of ATF6 and ATF6a, chondrocytes tend to be hypertrophied and mineralized, a process leading to bone formation. By contrast, lowering expression of ATF6a by use of its specific siRNA suppresses chondrocyte differentiation. Moreover, ATF6a interacts with Runx2 and augments the Runx2-mediated hypertrophication of chondrocytes. Importantly, overexpression and knockdown of ATF6a during the chondrocyte hypertrophy process also led to altered expressions of IHH and PTHrP (also known as PTHLH). Taken together, these findings indicate that ATF6a favorably controls chondrogenesis and bone formation (1) by acting as a co-factor of Runx2 and enhancing Runx2-incited hypertrophic chondrocyte differentiation, and (2) by affecting IHH and PTHrP signaling.
Collapse
Affiliation(s)
- Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaofeng Han
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhimeng Wu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Cheng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qin Hu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Chuanju Liu
- Departments of Orthopaedic Surgery and Cell Biology, New York University School of Medicine, New York, 10016 NY, USA
| |
Collapse
|
15
|
Global increase in O-linked N-acetylglucosamine modification promotes osteoblast differentiation. Exp Cell Res 2015; 338:194-202. [PMID: 26302267 DOI: 10.1016/j.yexcr.2015.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 01/04/2023]
Abstract
The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts, and an imbalance in this bone metabolism leads to osteoporosis. Here, we found that osteoblast differentiation in MC3T3-E1 cells is promoted by the inactivation of O-linked β-N-acetylglucosaminidase (O-GlcNAcase) and suppressed by the inactivation of O-GlcNAc transferase, as indicated by extracellular matrix calcification. The expression of osteogenic genes such as alp, ocn, and bsp during osteoblast differentiation was positively regulated in a O-GlcNAc glycosylation-dependent manner. Because it was confirmed that Ets1 and Runx2 are the two key transcription factors responsible for the expression of these osteogenic genes, their transcriptional activity might therefore be regulated by O-GlcNAc glycosylation. However, osteoclast differentiation of RAW264 cells, as indicated by the expression and activity of tartrate-resistant acid phosphatase, was unaffected by the inactivation of either O-GlcNAcase or O-GlcNAc transferase. Our findings suggest that an approach to manipulate O-GlcNAc glycosylation could be useful for developing the therapeutics for osteoporosis.
Collapse
|
16
|
Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 2014; 289:27105-27117. [PMID: 25122769 PMCID: PMC4175347 DOI: 10.1074/jbc.m114.576793] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
The transcription factors Runx2 and Osx (Osterix) are required for osteoblast differentiation and bone formation. Runx2 expression occurs at early stages of osteochondroprogenitor determination, followed by Osx induction during osteoblast maturation. We demonstrate that coexpression of Osx and Runx2 leads to cooperative induction of expression of the osteogenic genes Col1a1, Fmod, and Ibsp. Functional interaction of Osx and Runx2 in the regulation of these promoters is mediated by enhancer regions with adjacent Sp1 and Runx2 DNA-binding sites. These enhancers allow formation of a cooperative transcriptional complex, mediated by the binding of Osx and Runx2 to their specific DNA promoter sequences and by the protein-protein interactions between them. We also identified the domains involved in the interaction between Osx and Runx2. These regions contain the amino acids in Osx and Runx2 known to be phosphorylated by p38 and ERK MAPKs. Inhibition of p38 and ERK kinase activities or mutation of their known phosphorylation sites in Osx or Runx2 strongly disrupts their physical interaction and cooperative transcriptional effects. Altogether, our results provide a molecular description of a mechanism for Osx and Runx2 transcriptional cooperation that is subject to further regulation by MAPK-activating signals during osteogenesis.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Carlos Ureña
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
17
|
Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2014; 4:117. [PMID: 24073831 PMCID: PMC3854789 DOI: 10.1186/scrt328] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Collapse
|
18
|
Han SH, Jang G, Bae BK, Han SM, Koh YR, Ahn JO, Jung WS, Kang SK, Ra JC, Lee HW, Youn HY. Effect of ectopic OCT4 expression on canine adipose tissue-derived mesenchymal stem cell proliferation. Cell Biol Int 2014; 38:1163-73. [DOI: 10.1002/cbin.10295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Sang-Hun Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Bo-Kyoung Bae
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Sei-Myoung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Ye-Rin Koh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Woo-Sung Jung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Sung-Keun Kang
- Stem Cell Research Center; K-STEMCELL Co., Ltd; Seoul 153-768 Republic of Korea
| | - Jeong-Chan Ra
- Stem Cell Research Center; K-STEMCELL Co., Ltd; Seoul 153-768 Republic of Korea
| | - Hee-Woo Lee
- Research Institute for Veterinary Science, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine; Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
19
|
Sinha KM, Yasuda H, Zhou X, deCrombrugghe B. Osterix and NO66 histone demethylase control the chromatin of Osterix target genes during osteoblast differentiation. J Bone Miner Res 2014; 29:855-65. [PMID: 24115157 PMCID: PMC3961497 DOI: 10.1002/jbmr.2103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/07/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Commitment of Runx2-expressing precursor osteoblasts to functional osteoblasts and then to osteocytes is triggered by Osterix (Osx), which activates its target genes in those cells during bone formation. It is not yet known whether Osx has a role in remodeling the chromatin architecture of its target genes during the transition from preosteoblast to osteoblast. In testing the hypothesis that Osx is indispensable for active chromatin architecture, we first showed that in Osx-null calvarial cells occupancy of the transcriptional activators, including lysine 4 methyl transferase (Wdr5), c-Myc, and H2A.Z, at the Osx target gene Bsp was very markedly decreased. The levels of methylation of lysines 4 and 36 and acetylation of histone H3, markers for active chromatin, were also reduced at the Bsp gene in these cells. In contrast, occupancy of the transcriptional repressors HP1 and the nucleolar protein 66 (NO66), a histone demethylase previously identified as an Osx-interacting protein, was increased at the Bsp gene in Osx-null calvarial cells. Furthermore, the Bsp promoter was hypermethylated in embryonic stem (ES) cells and in embryonic day 9.5 (E9.5) embryos but was markedly hypomethylated in the calvaria of E18.5 embryos, coinciding with robust Bsp expression. In contrast, CpG methylation in the Bsp promoter remained high in Osx-null calvaria compared to Osx-wild-type calvaria. Our data also revealed that NO66 interacted with DNA Methyltransferase 1A (DNMT1A), histone deacetylase 1A (HDAC1A), and HP1, which are known to control histone and DNA methylation. In addition, HP1 stimulated the demethylase activity of NO66 for its substrates "trimethylation of histone H3 at lysine 4" (H3K4me3) and "trimethylation of histone H3 at lysine 36" (H3K36me3). Our findings strongly suggest that in the absence of Osx, the chromatin of Osx target genes is transcriptionally inactive. We propose that Osx is a molecular switch for the formation of an active chromatin state during osteoblast differentiation, whereas NO66 helps gene repression through histone demethylation and/or formation of a repressor complex, resulting in multilayered control of the chromatin architecture of specific osteoblast genes.
Collapse
Affiliation(s)
- Krishna M. Sinha
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Hideyo Yasuda
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Xin Zhou
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Benoit deCrombrugghe
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| |
Collapse
|
20
|
Yang G, Yuan G, Li X, Liu P, Chen Z, Fan M. BMP-2 Induction of Dlx3 Expression Is Mediated by p38/Smad5 Signaling Pathway in Osteoblastic MC3T3-E1 Cells. J Cell Physiol 2014; 229:943-54. [PMID: 24647893 DOI: 10.1002/jcp.24525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Pingxian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
21
|
Wu H, Whitfield TW, Gordon JAR, Dobson JR, Tai PWL, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol 2014; 15:R52. [PMID: 24655370 PMCID: PMC4056528 DOI: 10.1186/gb-2014-15-3-r52] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. RESULTS By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation--proliferation, matrix deposition and mineralization--we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. CONCLUSIONS Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.
Collapse
|
22
|
A Comparative Evaluation between New Ternary Zirconium Alloys as Alternative Metals for Orthopedic and Dental Prosthetic Devices. Int J Artif Organs 2014; 37:149-64. [DOI: 10.5301/ijao.5000287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/20/2022]
Abstract
Purpose We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5 VM1.0 ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. Methods Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. Results Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5 Nb1.5 Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5 Nb1.5 Mo1.0 and Zr97.5 Nb1.5 Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5 Nb1.5 Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5 Nb1.5 Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). Conclusions The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5 Nb1.5 Ta1.0 seems to be the most appealing.
Collapse
|
23
|
Weng JJ, Su Y. Nuclear matrix-targeting of the osteogenic factor Runx2 is essential for its recognition and activation of the alkaline phosphatase gene. Biochim Biophys Acta Gen Subj 2013; 1830:2839-52. [PMID: 23287548 DOI: 10.1016/j.bbagen.2012.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/02/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND A good understanding of the mechanism of gene regulation that is involved in bone mineralization is critical for the design of anabolic treatments for bone deficiency diseases. Alkaline phosphatase (ALP) expressed by osteoblasts plays an important role in promoting bone mineralization by hydrolyzing pyrophosphate. However, the mechanism by which the expression of ALP is regulated during osteoblast differentiation has not been thoroughly investigated. METHODS Chromatin immunoprecipitation. EMSA and mutagenesis were used to identify the Runx2 binding sites on ALP gene and to analyze the role of nuclear matrix-localization of Runx2 on the recognition and activation of ALP gene. RESULTS Using chromatin immunoprecipitation, we determined that both ectopic and endogenous Runx2 bound to ALP intron 1 in a region containing a cluster of five putative core-sites. The third one (11C3) among those fives was bound most strongly in vitro by Runx2 and acted as a Runx2-dependent transcriptional enhancer. Furthermore, a Runx2 mutant lacking the nuclear matrix-targeting sequence (Runx2deltaNMTS) bound to the ALP gene less efficiently than the wild-type protein and a Runx2 mutant that is deficient in its ability to bind to DNA (Runx2K120A) accumulated largely in the nuclear matrix. CONCLUSIONS Nuclear matrix-localization of Runx2 influences its ALP gene recognition. GENERAL SIGNIFICANCE Our results showed for the first time that ALP is a direct target gene of Runx2 and illustrated that the recognition/binding and activation of the ALP by this transcription factor are dependent on its nuclear matrix-targeting.
Collapse
Affiliation(s)
- Jing-Jie Weng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC.
| | | |
Collapse
|
24
|
Ortuño MJ, Susperregui ARG, Artigas N, Rosa JL, Ventura F. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone 2013; 52:548-56. [PMID: 23159876 DOI: 10.1016/j.bone.2012.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/10/2012] [Accepted: 11/07/2012] [Indexed: 01/24/2023]
Abstract
Bone-specific transcription factors promote differentiation of mesenchymal precursors toward the osteoblastic cell phenotype. Among them, Runx2 and Osterix have been widely accepted as master osteogenic factors, since neither Runx2 nor Osterix null mice form mature osteoblasts. Recruitment of Osterix to a number of promoters of bone-specific genes has been shown. However, little is known about the functional interactions between Osterix and the Col1a1 promoter. In this study we determined in several mesenchymal and osteoblastic cell types that either BMP-2 or Osterix overexpression increased Col1a1 transcription. We identified consensus Sp1 sequences, located in the proximal promoter and in the bone-enhancer, as Osterix binding regions in the Col1a1 promoter in vitro and in vivo. Furthermore, we show that p38 or Erk MAPK signaling is required for maximal transcriptional effects on Col1a1 expression. Runx2 has been shown to activate Col1a1 expression through binding to sites which are located close to the Sp1 sites where Osterix binds. Our data show that overexpression of Runx2 and Osterix leads to a cooperative effect on the expression of the Col1a1 endogenous gene and its promoter reporter construct. These effects mainly affect the long isoform of Osterix which suggest that the two Osterix isoforms might display some differential effects on the transactivation of bone-specific genes.
Collapse
Affiliation(s)
- Maria José Ortuño
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
25
|
Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev Rep 2012; 8:891-7. [PMID: 22139789 DOI: 10.1007/s12015-011-9337-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cbfa1/Runx2 is a bone transcription factor homologous to the Drosophila protein, Runt. Runx2 is a master gene that encodes for a protein involved in the osteogenic differentiation process from mesenchymal precursors. It is known that in Cbfa1 deficient mice (Cbfa1(-/-)) the lack of mature osteoblasts is associated to incomplete bone mineralization. An important aim of modern biology is the development of new molecular tools for identification of therapeutic approaches. Recent discoveries in cell and molecular biology enabled researchers in the bone tissue-engineering field to develop new strategies for gene and cell-based therapies. This review summarizes the process of osteogenic differentiation from mesenchymal stem cells and the importance of bone regeneration is discussed. In particular, given the increasing interest in the study of the transcription factor Runx2, this review highlights the role of this target gene and addresses recent strategies using Runx2 for bone regeneration.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, Clinic of Internal Medicine, section D, University of Verona, Piazzale Scuro, 10, 37134 Verona, Italy
| | | | | |
Collapse
|
26
|
Fisher S, Franz-Odendaal T. Evolution of the bone gene regulatory network. Curr Opin Genet Dev 2012; 22:390-7. [PMID: 22663778 DOI: 10.1016/j.gde.2012.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 11/18/2022]
Abstract
Current fossil, embryological and genetic data shed light on the evolution of the gene regulatory network (GRN) governing bone formation. The key proteins and genes involved in skeletogenesis are well accepted. We discuss when these essential components of the GRN evolved and propose that the Runx genes, master regulators of skeletogenesis, functioned in early cartilages well before they were co-opted to function in the making of bone. Two rounds of whole genome duplication, together with additional tandem gene duplications, created a genetic substrate for segregation of one GRN into several networks regulating the related tissues of cartilage, bone, enamel, and dentin. During this segregation, Runx2 assumed its position at the top of the bone GRN, and Sox9 was excluded from bone, retaining its ancient role in cartilage.
Collapse
Affiliation(s)
- Shannon Fisher
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
27
|
Li Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA, Franceschi RT. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res 2012; 27:1263-74. [PMID: 22337141 PMCID: PMC3532028 DOI: 10.1002/jbmr.1574] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone can adapt its structure in response to mechanical stimuli. At the cellular level, this involves changes in chromatin organization, gene expression, and differentiation, but the underlying mechanisms are poorly understood. Here we report on the involvement of RUNX2, a bone-related transcription factor, in this process. Fluid flow shear stress loading of preosteoblasts stimulated translocation of extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) to the nucleus where it phosphorylated RUNX2 on the chromatin of target genes, and increased histone acetylation and gene expression. MAPK signaling and two RUNX2 phosphoacceptor sites, S301 and S319, were critical for this response. Similarly, in vivo loading of mouse ulnae dramatically increased ERK and RUNX2 phosphorylation as well as expression of osteoblast-related genes. These findings establish ERK/MAPK-mediated phosphorylation of RUNX2 as a critical step in the response of preosteoblasts to dynamic loading and define a novel mechanism to explain how mechanical signals induce gene expression in bone.
Collapse
Affiliation(s)
- Yan Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Long
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dana L Begun
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jose A Rodriguez
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Goldstein
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G, Franceschi RT. Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem 2012; 112:3582-93. [PMID: 21793044 DOI: 10.1002/jcb.23289] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia-inducible factor-1α (HIF-1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF-1α by genetic or chemical means stimulates bone formation. On the other hand, deficiency of Runx2, a key osteogenic transcription factor, prevents vascular invasion of bone and VEGF expression. This study explores the possibility that HIF-1α and Runx2 interact to activate angiogenic signals. Runx2 over-expression in mesenchymal cells increased VEGF mRNA and protein under both normoxic and hypoxic conditions. In normoxia, Runx2 also dramatically increased HIF-1α protein. In all cases, the Runx2 response was inhibited by siRNA-mediated suppression of HIF-1α and completely blocked by the HIF-1α inhibitor, echinomycin. Similarly, treatment of preosteoblast cells with Runx2 siRNA reduced VEGF mRNA in normoxia or hypoxia. However, Runx2 is not essential for the HIF-1α response since VEGF is induced by hypoxia even in Runx2-null cells. Endogenous Runx2 and HIF-1α were colocalized to the nuclei of MC3T3-E1 preosteoblast cells. Moreover, HIF-1α and Runx2 physically interact using sites within the Runx2 RUNT domain. Chromatin immunoprecipitation also provided evidence for colocalization of Runx2 and HIF-1α on the VEGF promoter. In addition, Runx2 stimulated HIF-1α-dependent activation of an HRE-luciferase reporter gene without requiring a separate Runx2-binding enhancer. These studies indicate that Runx2 functions together with HIF-1α to stimulate angiogenic gene expression in bone cells and may in part explain the known requirement for Runx2 in bone vascularization.
Collapse
Affiliation(s)
- Tae-Geon Kwon
- Department of Periodontics & Oral Medicine and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kwon A, Park HJ, Baek K, Lee HL, Park JC, Woo KM, Ryoo HM, Baek JH. Suberoylanilide hydroxamic acid enhances odontoblast differentiation. J Dent Res 2012; 91:506-12. [PMID: 22447851 DOI: 10.1177/0022034512443367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that histone deacetylase (HDAC) inhibitors stimulate osteoblast differentiation in vitro and bone formation in vivo. However, the effects of HDAC inhibitors on odontoblasts have not been elucidated. Therefore, in this study, we examined the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on odontoblast differentiation using an MDPC23 odontoblast-like cell line. SAHA significantly enhanced matrix mineralization and the expression levels of odontoblast marker genes. SAHA increased the expression levels of nuclear factor I/C (Nfic) and dentin sialophosphoprotein (Dspp). Nfic bound directly to the Dspp promoter and stimulated Dspp transcription. SAHA increased both basal and Nfic-induced Dspp promoter activity. SAHA-induced Dspp promoter activity disappeared when mutations were introduced within the Nfic binding element of the Dspp promoter. Nfic knockdown by siRNA blocked SAHA stimulation of Dspp expression. These results indicate that SAHA enhances odontoblast differentiation and that SAHA increases Dspp expression, at least in part, by increasing the expression level of Nfic.
Collapse
Affiliation(s)
- A Kwon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, 28 Yeongun-dong, Jongno-gu, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Silvério KG, Davidson KC, James RG, Adams AM, Foster BL, Nociti FH, Somerman MJ, Moon RT. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J Periodontal Res 2011; 47:309-19. [PMID: 22150562 DOI: 10.1111/j.1600-0765.2011.01433.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation has been shown to occur through the canonical Wnt/βcatenin pathway, whereas factors promoting canonical Wnt signaling in cementoblasts inhibit cell differentiation and promote cell proliferation in vitro. The aim of this study was to investigate whether putative precursor cells of cementoblasts, dental follicle cells (murine SVF4 cells), when stimulated with BMP2, would exhibit changes in genes/proteins associated with the Wnt/β-catenin pathway. MATERIAL AND METHODS SVF4 cells were stimulated with BMP2, and the following assays were carried out: (i) Wnt/β-catenin pathway activation assessed by western blotting, β-catenin/transcription factor (TCF) reporter assays and expression of the lymphoid enhancer-binding factor-1 (Lef1), transcription factor 7 (Tcf7), Wnt inhibitor factor 1 (Wif1) and Axin2 (Axin2) genes; and (ii) cementoblast/osteoblast differentiation assessed by mineralization in vitro, and by the mRNA levels of runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), osteocalcin (Ocn) and bone sialoprotein (Bsp), determined by quantitative PCR after treatment with wingless-type MMTV integration site family, member 3A (WNT3A) and knockdown of β-catenin. RESULTS WNT3A induced β-catenin nuclear translocation and up-regulated the transcriptional activity of a canonical Wnt-responsive reporter, suggesting that the Wnt/β-catenin pathway functions in SVF4 cells. Activation of Wnt signaling with WNT3A suppressed BMP2-mediated induction of cementoblast/osteoblast maturation of SVF4 cells. However, β-catenin knockdown showed that the BMP2-induced expression of cementoblast/osteoblast differentiation markers requires endogenous β-catenin. WNT3A down-regulated transcripts for Runx2, Alp and Ocn in SVF4 cells compared with untreated cells. In contrast, BMP2 induction of Bsp transcripts occurred independently of Wnt/β-catenin signaling. CONCLUSION These data suggest that stabilization of β-catenin by WNT3A inhibits BMP2-mediated induction of cementoblast/osteoblast differentiation in SVF4 cells, although BMP2 requires endogenous Wnt/β-catenin signaling to promote cell maturation.
Collapse
Affiliation(s)
- K G Silvério
- Institute for Stem Cells and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Singh M, Del Carpio-Cano FE, Monroy MA, Popoff SN, Safadi FF. Homeodomain transcription factors regulate BMP-2-induced osteoactivin transcription in osteoblasts. J Cell Physiol 2011; 227:390-9. [PMID: 21503878 DOI: 10.1002/jcp.22791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Osteoactivin (OA) is required for the differentiation of osteoblast cells. OA expression is stimulated by bone morphogenetic protein-2 (BMP-2). BMP-2 recruits homeodomain transcription factors Dlx3, Dlx5, and Msx2 to selectively activate or repress transcription of osteogenic genes and hence tightly regulate their transcription during osteoblast differentiation. Considering the key roles of Dlx3, Dlx5, and Msx2 in osteoblast differentiation, here we hypothesize that homeodomain proteins regulate BMP-2-induced OA transcription during osteoblast differentiation. Four classical homeodomain binding sites were identified in the proximal 0.96 kb region of rat OA promoter. Deletions and mutagenesis studies of the OA promoter region indicated that all four homeodomain binding sites are crucial for BMP-2-induced OA promoter activity. Simultaneous disruption of homeodomain binding sites at -852 and -843 of the transcription start site of OA gene significantly decreased the BMP-2-induced OA transcription and inhibited binding of Dlx3, Dlx5, and Msx2 proteins to the OA promoter. Dlx3 and Dlx5 proteins were found to activate the OA transcription, whereas, Msx2 suppressed BMP-2-induced OA transcription. Using chromatin immunoprecipitation assays, we demonstrated that the OA promoter is predominantly occupied by Dlx3 and Dlx5 during the proliferation and matrix maturation stages of osteoblast differentiation, respectively. During the matrix mineralization stage, BMP-2 robustly enhanced the recruitment of Dlx5 and to a lesser extent of Dlx3 and Msx2 to the OA promoter region. Collectively, our results show that the BMP-2-induced OA transcription is differentially regulated by Dlx3, Dlx5, and Msx2 during osteoblast differentiation.
Collapse
Affiliation(s)
- Maneet Singh
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
32
|
Nam HK, Liu J, Li Y, Kragor A, Hatch NE. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) protein regulates osteoblast differentiation. J Biol Chem 2011; 286:39059-71. [PMID: 21930712 DOI: 10.1074/jbc.m111.221689] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase-1) is an established regulator of tissue mineralization. Previous studies demonstrated that ENPP1 is expressed in differentiated osteoblasts and that ENPP1 influences matrix mineralization by increasing extracellular levels of inorganic pyrophosphate. ENPP1 is also expressed in osteoblastic precursor cells when stimulated with FGF2, but the role of ENPP1 in preosteoblastic and other precursor cells is unknown. Here we investigate the function of ENPP1 in preosteoblasts. We find that ENPP1 expression is critical for osteoblastic differentiation and that this effect is not mediated by changes in extracellular concentration levels of phosphate or pyrophosphate or ENPP1 catalytic activity. MC3T3E1(C4) preosteoblastic cells, in which ENPP1 expression was suppressed by ENPP1-specific shRNA, and calvarial cells isolated from Enpp1 knock-out mice show defective osteoblastic differentiation upon stimulation with ascorbate, as indicated by a lack of cellular morphological change, a lack of osteoblast marker gene expression, and an inability to mineralize matrix. Additionally, MC3T3E1(C4) cells, in which wild type or catalytic inactive ENPP1 expression was increased, exhibited an increased tendency to differentiate, as evidenced by increased osteoblast marker gene expression and increased mineralization. Notably, treatment of cells with inorganic phosphate or pyrophosphate inhibited, as opposed to enhanced, expression of multiple genes that are expressed in association with osteoblast differentiation, matrix deposition, and mineralization. Our results indicate that ENPP1 plays multiple and distinct roles in the development of mineralized tissues and that the influence of ENPP1 on osteoblast differentiation and gene expression may include a mechanism that is independent of its catalytic activity.
Collapse
Affiliation(s)
- Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|
33
|
Zou D, Han W, You S, Ye D, Wang L, Wang S, Zhao J, Zhang W, Jiang X, Zhang X, Huang Y. In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Cell Prolif 2011; 44:234-43. [PMID: 21535264 DOI: 10.1111/j.1365-2184.2011.00747.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Hypoxia-inducible factor 1α (HIF-1α) is a pivotal regulator of hypoxic and ischaemic vascular responses that drives transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis and arteriogenesis. Previous reports based on gene knockout technology have demonstrated that HIF-1α can promote osteogenesis. However, this protein is easily degraded in a normoxic state, which makes in vitro studies of HIF-1α-induced mesenchymal stem cell (MSC) osteogenesis difficult. For better understanding of HIF-1α promoting osteogenesis, the role of HIF-1α-induced MSC osteogenesis in the normoxic state has been investigated here. MATERIALS AND METHODS HIF-1α was made to overexpress using a lentiviral vector, and its effects on bone marrow-derived mesenchymal stem cell (BMSC) osteogenesis were investigated. Real-time quantitative and western blotting (to assess expression levels of angiogenic and osteogenic related genes regulated by Lenti-HIF-1α), alkaline phosphatase (ALP) and alizarin red-S staining analyses, were performed. RESULTS In HIF-1α gene-transfected BMSCs, expression levels of angiogenic, cartilaginous and osteogenic genes were all increased significantly compared to Lenti LacZ-transfected cells, at both mRNA and protein levels. ALP activity and alizarin red-S staining were significantly enhanced in HIF-1α transduced cells compared to control cells, on day 21. CONCLUSIONS These results indicate that Lenti-HIF-1α can induce BMSC overexpression levels of angiogenic and osteogenic genes in vitro in the normoxic state. Further study will be focused on whether HIF-1α can also improve bone repair in vivo.
Collapse
Affiliation(s)
- D Zou
- School of Stomatology, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Agueda L, Velázquez-Cruz R, Urreizti R, Yoskovitz G, Sarrión P, Jurado S, Güerri R, Garcia-Giralt N, Nogués X, Mellibovsky L, Díez-Pérez A, Marie PJ, Balcells S, Grinberg D. Functional relevance of the BMD-associated polymorphism rs312009: novel involvement of RUNX2 in LRP5 transcriptional regulation. J Bone Miner Res 2011; 26:1133-44. [PMID: 21542013 DOI: 10.1002/jbmr.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
LRP5 is an osteoporosis susceptibility gene. Association analyses reveal that individual single-nucleotide polymorphisms (SNPs) determine variation in bone mineral density (BMD) among individuals as well as fracture risk. In a previous study, we identified a lumbar spine BMD-associated SNP, rs312009, located in the LRP5 5' region. A RUNX2 binding site was identified in this region by gel-shift experiments. Here we test the functionality of this SNP and examine whether RUNX2 is indeed a regulator of LRP5 expression. Gene reporter assays were used to test rs312009 functionality. Bioinformatic predictive tools and gel-shift and gene reporter assays were used to identify and characterize additional RUNX2 binding elements in the 3.3-kb region upstream of LRP5. Allelic differences in the transcriptional activity of rs312009 were observed in two osteoblastic cell lines, the T allele being a better transcriber than the C allele. RUNX2 cotransfection in HeLa cells revealed that the LRP5 5' region responded to RUNX2 in a dose-dependent manner and that the previously identified RUNX2 binding site participated in this response. Also, RUNX2 inhibition by RNAi led to nearly 60% reduction of endogenous LRP5 mRNA in U-2 OS cells. Four other RUNX2 binding sites were identified in the 5' region of LRP5. Luciferase experiments revealed the involvement of each of them in the RUNX2 response. The allelic differences observed point to the involvement of rs312009 as a functional SNP in the observed association. To our knowledge, this is the first time that the direct action of RUNX2 on LRP5 has been described. This adds evidence to previously described links between two important bone-regulating systems: the RUNX2 transcription-factor cascade and the Wnt signaling pathway.
Collapse
Affiliation(s)
- Lídia Agueda
- Department of Genetics, Faculty of Biology, University of Barcelona, IBUB, CIBERER, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rosalbino F, Macciò D, Giannoni P, Quarto R, Saccone A. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1293-1302. [PMID: 21461699 DOI: 10.1007/s10856-011-4301-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/18/2011] [Indexed: 05/30/2023]
Abstract
The in vitro corrosion behavior and biocompatibility of two Zr alloys, Zr-2.5Nb, employed for the manufacture of CANDU reactor pressure tubes, and Zr-1.5Nb-1Ta (at%), for use as implant materials have been assessed and compared with those of Grade 2 Ti, which is known to be a highly compatible metallic biomaterial. The in vitro corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy (EIS) measurements, as a function of exposure time to an artificial physiological environment (Ringer's solution). Open circuit potential values indicated that both the Zr alloys and Grade 2 Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Zr-1.5Nb-1Ta alloy and that this oxide has better corrosion protection characteristics than the ones formed on Grade 2 Ti or on the Zr-2.5Nb alloy. EIS study showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film presents on the metals surface, improving their resistance with exposure time, presenting the highest values to the Zr-1.5Nb-1Ta alloy. For the biocompatibility analysis human osteosarcoma cell line (Saos-2) and human primary bone marrow stromal cells (BMSC) were used. Biocompatibility tests showed that Saos-2 cells grow rapidly, independently of the surface, due to reduced dependency from matrix deposition and microenvironment recognition. BMSC instead display a reduced proliferation, possibly caused by a reduced crosstalk with the metal surface microenvironment. However, once the substrate has been colonized, BMSC seem to respond properly to osteoinduction stimuli, thus supporting a substantial equivalence in the biocompatibility among the Zr alloys and Grade 2 titanium. In summary, high in vitro corrosion resistance together with satisfactory biocompatibility make the Zr-2.5Nb and Zr-1.5Nb-1Ta crystalline alloys promising biomaterials for surgical implants.
Collapse
Affiliation(s)
- F Rosalbino
- Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.
| | | | | | | | | |
Collapse
|
36
|
Rodríguez-Carballo E, Ulsamer A, Susperregui ARG, Manzanares-Céspedes C, Sánchez-García E, Bartrons R, Rosa JL, Ventura F. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J Bone Miner Res 2011; 26:718-29. [PMID: 20878775 DOI: 10.1002/jbmr.260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Osteoblast differentiation depends on the coordinated network of evolutionary conserved transcription factors during bone formation and homeostasis. Evidence indicates that bone morphogenetic protein (BMP) and Wnt proteins regulate several steps of skeletal development. Here, we provide a molecular description of the cooperative effects of BMP and Wnt canonical pathway on the expression of the early osteogenic genes Dlx5, Msx2, and Runx2 in C2C12 cells, primary cultures of bone marrow-mesenchymal stem cells, and organotypic calvarial cultures. Coordinated regulation of these genes leads to the cooperative activation of their downstream osteogenic target gene osterix. Induction of these genes is mediated through enhancer regions with an evolutionary conserved structure encompassing both Smad and TCF/LEF1 DNA-binding sites. Formation of a cooperative complex is mediated through DNA binding of Smads and TCF4/β-catenin to their cognate sequences, as well as protein-protein interactions between them. The formation of these cooperative transcriptional complexes results in a more efficient recruitment of coactivators such as p300. We propose that evolutionary conserved regulatory regions in specific osteogenic master genes are key integrative modules during osteogenesis.
Collapse
Affiliation(s)
- Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Liu J, Hudson M, Kim S, Hatch NE. FGF2 promotes Msx2 stimulated PC-1 expression via Frs2/MAPK signaling. J Cell Biochem 2010; 111:1346-58. [DOI: 10.1002/jcb.22861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Rödelsperger C, Guo G, Kolanczyk M, Pletschacher A, Köhler S, Bauer S, Schulz MH, Robinson PN. Integrative analysis of genomic, functional and protein interaction data predicts long-range enhancer-target gene interactions. Nucleic Acids Res 2010; 39:2492-502. [PMID: 21109530 PMCID: PMC3074119 DOI: 10.1093/nar/gkq1081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multicellular organismal development is controlled by a complex network of transcription factors, promoters and enhancers. Although reliable computational and experimental methods exist for enhancer detection, prediction of their target genes remains a major challenge. On the basis of available literature and ChIP-seq and ChIP-chip data for enhanceosome factor p300 and the transcriptional regulator Gli3, we found that genomic proximity and conserved synteny predict target genes with a relatively low recall of 12–27% within 2 Mb intervals centered at the enhancers. Here, we show that functional similarities between enhancer binding proteins and their transcriptional targets and proximity in the protein–protein interactome improve prediction of target genes. We used all four features to train random forest classifiers that predict target genes with a recall of 58% in 2 Mb intervals that may contain dozens of genes, representing a better than two-fold improvement over the performance of prediction based on single features alone. Genome-wide ChIP data is still relatively poorly understood, and it remains difficult to assign biological significance to binding events. Our study represents a first step in integrating various genomic features in order to elucidate the genomic network of long-range regulatory interactions.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ortuño MJ, Ruiz-Gaspà S, Rodríguez-Carballo E, Susperregui ARG, Bartrons R, Rosa JL, Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 2010; 285:31985-94. [PMID: 20682789 DOI: 10.1074/jbc.m110.123612] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osterix, a zinc finger transcription factor, is specifically expressed in osteoblasts and osteocytes of all developing bones. Because no bone formation occurs in Osx-null mice, Osterix is thought to be an essential regulator of osteoblast differentiation. We report that, in several mesenchymal and osteoblastic cell types, BMP-2 induces an increase in expression of the two isoforms of Osterix arising from two alternative promoters. We identified a consensus Sp1 sequence (GGGCGG) as Osterix binding regions in the fibromodulin and the bone sialoprotein promoters in vitro and in vivo. Furthermore, we show that Osterix is a novel substrate for p38 MAPK in vitro and in vivo and that Ser-73 and Ser-77 are the regulatory sites phosphorylated by p38. Our data also demonstrate that Osterix is able to increase recruitment of p300 and Brg1 to the promoters of its target genes fibromodulin and bone sialoprotein in vivo and that it directly associates with these cofactors through protein-protein interactions. Phosphorylation of Osterix at Ser-73/77 increased its ability to recruit p300 and SWI/SNF to either fibromodulin or bone sialoprotein promoters. We therefore propose that Osterix binds to Sp1 sequences on target gene promoters and that its phosphorylation by p38 enhances recruitment of coactivators to form transcriptionally active complexes.
Collapse
Affiliation(s)
- María José Ortuño
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Park SJ, Jung SH, Jogeswar G, Ryoo HM, Yook JI, Choi HS, Rhee Y, Kim CH, Lim SK. The transcription factor snail regulates osteogenic differentiation by repressing Runx2 expression. Bone 2010; 46:1498-507. [PMID: 20215006 DOI: 10.1016/j.bone.2010.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Osteoblasts originate from mesenchymal stem cells by the coordinated activities of different signaling pathways that regulate the expression of osteoblast-specific genes. Runt-related transcription factor 2 (Runx2) is the master transcription factor for osteoblast differentiation. Despite the importance of Runx2 in the developing skeleton, how Runx2 expression is regulated remains a pivotal question. Snail, a zinc finger transcription factor, is essential for triggering epithelial-to-mesenchymal transitions (EMTs) during embryonic development and tumor progression. Here, we report that Runx2 expression is significantly up- or down-regulated relative to Snail expression. We demonstrate that Snail binds to the Runx2 promoter and that repression of Runx2 transcription by Snail is dependent on specific E-box sequence within the promoter. With antisense morpholino oligonucleotide (MO)-mediated knockdown of Snail expression in zebrafish, we observed alterations in osteogenic potential. These results indicate that Snail plays a crucial role in osteogenic differentiation by acting as a direct Runx2 repressor.
Collapse
Affiliation(s)
- Su Jin Park
- Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors. Mol Cell Biol 2010; 30:3531-41. [PMID: 20439491 DOI: 10.1128/mcb.00889-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abdominal-class homeodomain-containing (Hox) factors form multimeric complexes with TALE-class homeodomain proteins (Pbx, Meis) to regulate tissue morphogenesis and skeletal development. Here we have established that Pbx1 negatively regulates Hoxa10-mediated gene transcription in mesenchymal cells and identified components of a Pbx1 complex associated with genes in osteoblasts. Expression of Pbx1 impaired osteogenic commitment of C3H10T1/2 multipotent cells and differentiation of MC3T3-E1 preosteoblasts. Conversely, targeted depletion of Pbx1 by short hairpin RNA (shRNA) increased expression of osteoblast-related genes. Studies using wild-type and mutated osteocalcin and Bsp promoters revealed that Pbx1 acts through a Pbx-binding site that is required to attenuate gene activation by Hoxa10. Chromatin-associated Pbx1 and Hoxa10 were present at osteoblast-related gene promoters preceding gene expression, but only Hoxa10 was associated with these promoters during transcription. Our results show that Pbx1 is associated with histone deacetylases normally linked with chromatin inactivation. Loss of Pbx1 from osteoblast promoters in differentiated osteoblasts was associated with increased histone acetylation and CBP/p300 recruitment, as well as decreased H3K9 methylation. We propose that Pbx1 plays a central role in attenuating the ability of Hoxa10 to activate osteoblast-related genes in order to establish temporal regulation of gene expression during osteogenesis.
Collapse
|
42
|
Alford AI, Terkhorn SP, Reddy AB, Hankenson KD. Thrombospondin-2 regulates matrix mineralization in MC3T3-E1 pre-osteoblasts. Bone 2010; 46:464-71. [PMID: 19744582 PMCID: PMC2818128 DOI: 10.1016/j.bone.2009.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 12/22/2022]
Abstract
The matricellular protein thrombospondin-2 (TSP2) has context-dependent effects on osteoblast lineage proliferation and differentiation. Mice lacking TSP2 display increased endocortical bone thickness, which is associated with increased marrow stromal cell (MSC) number and in vitro proliferation. TSP2-null MSC also exhibit delayed osteoblastogenesis and enhanced adipogenesis compared to cells harvested from wild type mice. The goal of the present work was to more precisely characterize the contribution that TSP2 makes to the maturation of osteoblast-derived extracellular matrix (ECM) using a highly characterized pre-osteoblast cell line. Specifically, we asked whether TSP2 influences mineralization indirectly through its known effects on proliferation, or whether TSP2 directly promotes osteoblast differentiation. To pursue these questions, we used RNA-interference (RNAi) to inhibit TSP2 gene expression in MC3T3-E1 pre-osteoblasts. Introduction of siRNA oligonucleotides resulted in reduced TSP2 mRNA expression as early as 24 h post-transfection, and TSP2 mRNA levels remained low for 10 days. Similarly, TSP2 protein levels in both conditioned medium and the cell-matrix layer were reduced at 24 h post-transfection and remained reduced for 7 days. At day 21, mineralization was significantly reduced in cells transfected with TSP2 siRNA when compared to cells treated with scrambled siRNA. This decrease in mineralization occurred without a concomitant change in cell number. Twenty-four hours after transfection, runx2 gene expression was transiently enhanced in TSP2 siRNA-treated cultures. Between 6 and 14 days post-transfection, runx2, osterix, alkaline phosphatase, type I collagen, osteocalcin and bone sialoprotein all displayed moderate increases in gene expression with TSP2 RNAi. As well, soluble osteocalcin levels were markedly higher in the conditioned medium of cells treated with TSP2 siRNA than in control siRNA-treated cells. Increased soluble osteocalcin occurred without a concomitant change in the levels of osteocalcin in the cell-ECM layer. TSP2 reduction also elicited a transient change in the distribution of collagen between the acid soluble cell-ECM protein fraction and the insoluble matrix. Together, our data suggest that TSP2 may promote mineralization, by facilitating proper organization of the osteoblast-derived ECM.
Collapse
Affiliation(s)
- Andrea I Alford
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, Biological Sciences Research Building, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
43
|
Differentiation-dependent association of phosphorylated extracellular signal-regulated kinase with the chromatin of osteoblast-related genes. J Bone Miner Res 2010; 25:154-63. [PMID: 19580458 PMCID: PMC3153324 DOI: 10.1359/jbmr.090705] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ERK/MAP kinase pathway is an important regulator of gene expression and differentiation in postmitotic cells. To understand how this pathway controls gene expression in bone, we examined the subnuclear localization of P-ERK in differentiating osteoblasts. Induction of differentiation was accompanied by increased ERK phosphorylation and expression of osteoblast-related genes, including osteocalcin (Bglap2) and bone sialoprotein (Ibsp). Confocal immunofluorescence microscopy revealed that P-ERK colocalized with the RUNX2 transcription factor in the nuclei of differentiating cells. Interestingly, a portion of this nuclear P-ERK was directly bound to the proximal promoter regions of Bglap2 and Ibsp. Furthermore, the level of P-ERK binding to chromatin increased with differentiation, whereas RUNX2 binding remained relatively constant. The P-ERK-chromatin interaction was seen only in RUNX2-positive cells, required intact RUNX2-selective enhancer sequences, and was blocked with MAPK inhibition. These studies show for the first time that RUNX2 specifically targets P-ERK to the chromatin of osteoblast-related genes, where it may phosphorylate multiple substrates, including RUNX2, resulting in altered chromatin structure and gene expression.
Collapse
|
44
|
Hartmann C. Transcriptional networks controlling skeletal development. Curr Opin Genet Dev 2009; 19:437-43. [DOI: 10.1016/j.gde.2009.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022]
|
45
|
Alonso M, Claros S, Becerra J, Andrades JA. The effect of type I collagen on osteochondrogenic differentiation in adipose-derived stromal cells in vivo. Cytotherapy 2009; 10:597-610. [PMID: 18836915 DOI: 10.1080/14653240802242084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Recent studies have demonstrated that adipose-derived adult stromal cells (ADASCs) offer great promise for cell-based therapies due to their ability to differentiate towards bone, cartilage and fat [corrected] The objective of this study was to investigate whether type I collagen would elicit in vivo bone formation of passaged rat adipose-derived adult stromal cells (ADASC) placed extraskeletally. METHODS After expansion for 1-4 passages (P), cells were incubated in osteogenic medium containing dexamethasone, ascorbic acid and beta-glycerol phosphate for 2-4 weeks. Undifferentiated cells were maintained in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS). Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and von Kossa staining as well as by gene expression of ALP, osteopontin (OP), osteonectin (ON), osteocalcin (OC), collagen I (colI), collagen II (colII), bone sialoprotein (BSP), periostin (Postn), runx2, osterix (Osx), sox9, msx1 and msx2. Diffusion chambers were filled with 1x10(6) cells mixed with or without type I collagen gel and implanted subcutaneously into rats. Controls included chambers exposed to (1) undifferentiated cells (with or without collagen, (2) collagen without cells and (3) empty chambers (n=5 per group). RESULTS Four weeks after implantation, in vivo bone and cartilage formation was demonstrated in implants containing 4-week osteo-induced P1 and P4 cells wrapped in the collagen gel, as confirmed by Goldner's trichrome and Alcian blue staining, respectively. Newly formed bone stained positive for type I collagen. Control implants had no bone or cartilage and were primarily filled with fibrous tissue at that time interval. DISCUSSION Recent studies have demonstrated that ADASC offer great promise for cell-based therapies because of their ability to differentiate toward bone, cartilage and fat. However, the influence of different matrices on the in vivo osteogenic capability of ADASC is not fully understood. These findings suggest that type I collagen may support the survival and expression of osteogenic and chondrogenic phenotypes in passaged rat ADASC in vivo.
Collapse
Affiliation(s)
- M Alonso
- Dept. of Cell Biology, Genetics and Physiology, Laboratory of Bioengineering and Tissue Regeneration, Faculty of Sciences, University of Málaga, and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
| | | | | | | |
Collapse
|
46
|
Zhang J, Tu Q, Chen J. Applications of transgenics in studies of bone sialoprotein. J Cell Physiol 2009; 220:30-4. [PMID: 19326395 DOI: 10.1002/jcp.21768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone sialoprotein (BSP) is a major non-collagenous protein in mineralizing connective tissues such as dentin, cementum and calcified cartilage tissues. As a member of the Small Integrin-Binding Ligand, N-linked Glycoprotein (SIBLING) gene family of glycoproteins, BSP is involved in regulating hydroxyapatite crystal formation in bones and teeth, and has long been used as a marker gene for osteogenic differentiation. In the most recent decade, new discoveries in BSP gene expression and regulation, bone remodeling, bone metastasis, and bone tissue engineering have been achieved with the help of transgenic mice. In this review, we discuss these new discoveries obtained from the literatures and from our own laboratory, which were derived from the use of transgenic mouse mutants related to BSP gene or its promoter activity.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
47
|
Nemoto E, Koshikawa Y, Kanaya S, Tsuchiya M, Tamura M, Somerman MJ, Shimauchi H. Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone 2009; 44:805-12. [PMID: 19442631 DOI: 10.1016/j.bone.2008.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/01/2008] [Accepted: 12/30/2008] [Indexed: 11/16/2022]
Abstract
Cementoblasts, tooth root lining cells, are responsible for laying down cementum on the root surface, a process that is indispensable for establishing a functional periodontal ligament. Cementoblasts share phenotypical features with osteoblasts. Wnt signaling has been implicated in increased bone formation by controlling mesenchymal stem cell or osteoblastic cell functions; however the role of Wnt signaling on cementogenesis has not been examined. In this study, we have identified a consistent expression profile of Wnt signaling molecules in cementoblasts, in vitro by RT-PCR. Exposure of cells to LiCl, which promotes canonical Wnt signaling by inhibiting GSK-3beta, increased beta-catenin nuclear translocation and up-regulated the transcriptional activity of a canonical Wnt-responsive promoters, suggesting that an endogenous canonical Wnt pathway functions in cementoblasts. Activation of endogenous canonical Wnt signaling with LiCl suppressed alkaline phosphatase (ALP) activity and expression of genes associated with cementum function; ALP, bone sialoprotein (BSP), and osteocalcin (OCN). Exposure to Wnt3a, as a representative canonical Wnt member, also inhibited the expression of ALP, BSP, and OCN gene. This effect was accompanied by decreased gene expression of Runx2 and Osterix and by increased gene expression of lymphoid enhancer factor-1. Pretreatment with Dickkopf (Dkk)-1, a potent canonical Wnt antagonist, which binds to a low-density lipoprotein-receptor-related protein (LRP)-5/6 co-receptor, attenuated the suppressive effects of Wnt3a on mRNA expression of Runx2 and OCN on cementoblasts. These findings suggest that canonical Wnt signaling inhibits cementoblast differentiation via regulation of expression of selective transcription factors. Wnt3a also increased the expression of cyclin D1, known as a cell cycle regulator, as well as cell proliferation. In conclusion, these observations suggest that Wnt signaling inhibits cementoblast differentiation and promotes cell proliferation. Elucidating the role of Wnt in controlling cementoblast function will provide new tools needed to improve on existing periodontal regeneration therapies.
Collapse
Affiliation(s)
- Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi Aoba, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2. J Bone Miner Res 2009; 24:652-62. [PMID: 19049325 PMCID: PMC2659512 DOI: 10.1359/jbmr.081213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pyrophosphate is an established inhibitor of hydroxyapatite deposition and crystal growth, yet when hydrolyzed into phosphate, it becomes a substrate for hydroxyapatite deposition. Pyrophosphate-generating enzyme (PC-1), Ank, and tissue nonspecific alkaline phosphatase (Tnap) are three factors that regulate extracellular pyrophosphate levels through its generation, transport, and hydrolysis. We previously showed that fibroblast growth factor 2 (FGF2) induces PC-1 and Ank while inhibiting Tnap expression and mineralization in MC3T3E1(C4) calvarial pre-osteoblast cells. In this study, we showed similar FGF2 regulation of these genes in primary pre-osteoblast cultures. In contrast to Ank and Tnap that are regulated by FGF2 in multiple cell types, we found regulation of PC-1 to be selective to pre-osteoblastic cells and to require the osteoblast-related transcription factor, Runx2. Specifically, FGF2 was unable to induce PC-1 expression in Runx2-negative nonbone cells or in calvarial cells from Runx2-deficient mice. Transfection of these cells with a Runx2 expression vector restored FGF2 responsiveness. FGF2 was also shown to stimulate recruitment of Runx2 to the endogenous PC-1 promoter in MC3T3E1(C4) cells, as measured by chromatin immunoprecipitation. Taken together, our results establish that FGF2 is a specific inducer of PC-1 in pre-osteoblast cells and that FGF2 induces PC-1 expression through a mechanism involving Runx2.
Collapse
|
49
|
Jeong BC, Lee YS, Park YY, Bae IH, Kim DK, Koo SH, Choi HR, Kim SH, Franceschi RT, Koh JT, Choi HS. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation. J Biol Chem 2009; 284:14211-8. [PMID: 19324883 DOI: 10.1074/jbc.m808345200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity.
Collapse
Affiliation(s)
- Byung-Chul Jeong
- Dental Science Research Institute and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Watanabe T, Nakano K, Shimizu T, Okafuji N, Kurihara S, Yamada K, Kawakami T. Immunohistochemistry of the Periodontal Ligament Fibroblasts in Orthodontic Tension Sides. J HARD TISSUE BIOL 2009. [DOI: 10.2485/jhtb.18.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|