1
|
Khatib JB, Dhoonmoon A, Moldovan GL, Nicolae CM. PARP10 promotes the repair of nascent strand DNA gaps through RAD18 mediated translesion synthesis. Nat Commun 2024; 15:6197. [PMID: 39043663 PMCID: PMC11266678 DOI: 10.1038/s41467-024-50429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Replication stress compromises genomic integrity. Fork blocking lesions such as those induced by cisplatin and other chemotherapeutic agents arrest replication forks. Repriming downstream of these lesions represents an important mechanism of replication restart, however the single stranded DNA (ssDNA) gaps left behind, unless efficiently filled, can serve as entry point for nucleases. Nascent strand gaps can be repaired by BRCA-mediated homology repair. Alternatively, gaps can also be filled by translesion synthesis (TLS) polymerases. How these events are regulated is still not clear. Here, we show that PARP10, a poorly-characterized mono-ADP-ribosyltransferase, is recruited to nascent strand gaps to promote their repair. PARP10 interacts with the ubiquitin ligase RAD18 and recruits it to these structures, resulting in the ubiquitination of the replication factor PCNA. PCNA ubiquitination, in turn, recruits the TLS polymerase REV1 for gap filling. We show that PARP10 recruitment to gaps and the subsequent REV1-mediated gap filling requires both the catalytic activity of PARP10, and its ability to interact with PCNA. We moreover show that PARP10 is hyperactive in BRCA-deficient cells, and its inactivation potentiates gap accumulations and cytotoxicity in these cells. Our work uncovers PARP10 as a regulator of ssDNA gap filling, which promotes genomic stability in BRCA-deficient cells.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Zhang J, Gao Y, Zhang Z, Zhao J, Jia W, Xia C, Wang F, Liu T. Multi-therapies Based on PARP Inhibition: Potential Therapeutic Approaches for Cancer Treatment. J Med Chem 2022; 65:16099-16127. [PMID: 36512711 DOI: 10.1021/acs.jmedchem.2c01352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear enzymes called poly(ADP-ribose)polymerases (PARPs) are known to catalyze the process of PARylation, which plays a vital role in various cellular functions. They have become important targets for the discovery of novel antitumor drugs since their inhibition can induce significant lethality in tumor cells. Therefore, researchers all over the world have been focusing on developing novel and potent PARP inhibitors for cancer therapy. Studies have shown that PARP inhibitors and other antitumor agents, such as EZH2 and EGFR inhibitors, play a synergistic role in cancer cells. The combined inhibition of PARP and the targets with synergistic effects may provide a rational strategy to improve the effectiveness of current anticancer regimens. In this Perspective, we sum up the recent advance of PARP-targeted agents, including single-target inhibitors/degraders and dual-target inhibitors/degraders, discuss the fundamental theory of developing these dual-target agents, and give insight into the corresponding structure-activity relationships of these agents.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yuqi Gao
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Jinbo Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Department of Chemistry and Biology, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Fugang Wang
- Department of Pharmacology, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
4
|
Di Paola S, Matarese M, Barretta ML, Dathan N, Colanzi A, Corda D, Grimaldi G. PARP10 Mediates Mono-ADP-Ribosylation of Aurora-A Regulating G2/M Transition of the Cell Cycle. Cancers (Basel) 2022; 14:5210. [PMID: 36358629 PMCID: PMC9659153 DOI: 10.3390/cancers14215210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Intracellular mono-ADP-ribosyltransferases (mono-ARTs) catalyze the covalent attachment of a single ADP-ribose molecule to protein substrates, thus regulating their functions. PARP10 is a soluble mono-ART involved in the modulation of intracellular signaling, metabolism and apoptosis. PARP10 also participates in the regulation of the G1- and S-phase of the cell cycle. However, the role of this enzyme in G2/M progression is not defined. In this study, we found that genetic ablation, protein depletion and pharmacological inhibition of PARP10 cause a delay in the G2/M transition of the cell cycle. Moreover, we found that the mitotic kinase Aurora-A, a previously identified PARP10 substrate, is actively mono-ADP-ribosylated (MARylated) during G2/M transition in a PARP10-dependent manner. Notably, we showed that PARP10-mediated MARylation of Aurora-A enhances the activity of the kinase in vitro. Consistent with an impairment in the endogenous activity of Aurora-A, cells lacking PARP10 show a decreased localization of the kinase on the centrosomes and mitotic spindle during G2/M progression. Taken together, our data provide the first evidence of a direct role played by PARP10 in the progression of G2 and mitosis, an event that is strictly correlated to the endogenous MARylation of Aurora-A, thus proposing a novel mechanism for the modulation of Aurora-A kinase activity.
Collapse
Affiliation(s)
- Simone Di Paola
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Matarese
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Luisa Barretta
- National Research Council (CNR), Piazzale Aldo Moro, 700185 Rome, Italy
- Steril Farma Srl, Via L. Da Vinci 128, 80055 Portici, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
5
|
Khatib JB, Schleicher EM, Jackson LM, Dhoonmoon A, Moldovan GL, Nicolae CM. Complementary CRISPR genome-wide genetic screens in PARP10-knockout and overexpressing cells identify synthetic interactions for PARP10-mediated cellular survival. Oncotarget 2022; 13:1078-1091. [PMID: 36187556 PMCID: PMC9518689 DOI: 10.18632/oncotarget.28277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/18/2022] [Indexed: 01/17/2023] Open
Abstract
PARP10 is a mono-ADP-ribosyltransferase with multiple cellular functions, including proliferation, apoptosis, metabolism and DNA repair. PARP10 is overexpressed in a significant proportion of tumors, particularly breast and ovarian cancers. Identifying genetic susceptibilities based on PARP10 expression levels is thus potentially relevant for finding new targets for precision oncology. Here, we performed a series of CRISPR genome-wide loss-of-function screens in isogenic control and PARP10-overexpressing or PARP10-knockout cell lines, to identify genetic determinants of PARP10-mediated cellular survival. We found that PARP10-overexpressing cells rely on multiple DNA repair genes for survival, including ATM, the master regulator of the DNA damage checkpoint. Moreover, we show that PARP10 impacts the recruitment of ATM to nascent DNA upon replication stress. Finally, we identify the CDK2-Cyclin E1 complex as essential for proliferation of PARP10-knockout cells. Our work identifies a network of functionally relevant PARP10 synthetic interactions, and reveals a set of factors which can potentially be targeted in personalized cancer therapy.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,These authors contributed equally to this work
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,These authors contributed equally to this work
| | - Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
7
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
8
|
Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Nucleic Acids Res 2021; 49:3634-3650. [PMID: 33693930 PMCID: PMC8053099 DOI: 10.1093/nar/gkab136] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The functionality of DNA, RNA and proteins is altered dynamically in response to physiological and pathological cues, partly achieved by their modification. While the modification of proteins with ADP-ribose has been well studied, nucleic acids were only recently identified as substrates for ADP-ribosylation by mammalian enzymes. RNA and DNA can be ADP-ribosylated by specific ADP-ribosyltransferases such as PARP1-3, PARP10 and tRNA 2'-phosphotransferase (TRPT1). Evidence suggests that these enzymes display different preferences towards different oligonucleotides. These reactions are reversed by ADP-ribosylhydrolases of the macrodomain and ARH families, such as MACROD1, TARG1, PARG, ARH1 and ARH3. Most findings derive from in vitro experiments using recombinant components, leaving the relevance of this modification in cells unclear. In this Survey and Summary, we provide an overview of the enzymes that ADP-ribosylate nucleic acids, the reversing hydrolases, and the substrates' requirements. Drawing on data available for other organisms, such as pierisin1 from cabbage butterflies and the bacterial toxin-antitoxin system DarT-DarG, we discuss possible functions for nucleic acid ADP-ribosylation in mammals. Hypothesized roles for nucleic acid ADP-ribosylation include functions in DNA damage repair, in antiviral immunity or as non-conventional RNA cap. Lastly, we assess various methods potentially suitable for future studies of nucleic acid ADP-ribosylation.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Katja Schäringer
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Jeffrey Momoh
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| |
Collapse
|
9
|
Lal S, Snape TJ. A therapeutic update on PARP inhibitors: implications in the treatment of glioma. Drug Discov Today 2020; 26:532-541. [PMID: 33157194 DOI: 10.1016/j.drudis.2020.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
Central nervous system (CNS) cancers are among the most aggressive and devastating. Further, due to unavailability of neuro-oncologists and neurosurgeons, the specialized treatment options of CNS cancers are still not completely available in most parts of the world. Among various strategies of inducing death in cancer cells, inhibition of poly(ADP-ribose) polymerase (PARP) has emerged as a beneficial therapy when combined with other anticancer agents. In this review, we provide a detailed therapeutic update of PARP inhibitors that have shown clinical activity against glioma.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram, 122413, Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
10
|
The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N 6-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020; 22:1319-1331. [PMID: 33020597 DOI: 10.1038/s41556-020-0576-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3β and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.
Collapse
|
11
|
Tian L, Yao K, Liu K, Han B, Dong H, Zhao W, Jiang W, Qiu F, Qu L, Wu Z, Zhou B, Zhong M, Zhao J, Qiu X, Zhong L, Guo X, Shi T, Hong X, Lu S. PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression. Oncogene 2020; 39:3145-3162. [PMID: 32060423 DOI: 10.1038/s41388-020-1205-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 11/09/2022]
Abstract
Dysregulation of PARP10 has been implicated in various tumor types and plays a vital role in delaying hepatocellular carcinoma (HCC) progression. However, the mechanisms controlling the expression and activity of PARP10 in HCC remain mostly unknown. The crosstalk between PLK1, PARP10, and NF-κB pathway in HCC was determined by performing different in vitro and in vivo assays, including mass spectrometry, kinase, MARylation, chromatin immunoprecipitation, and luciferase reporter measurements. Functional examination was performed by using small chemical drug, cell culture, and mice HCC models. Correlation between PLK1, NF-κB, and PARP10 expression was determined by analyzing clinical samples of HCC patients with using immunohistochemistry. PLK1, an important regulator for cell mitosis, directly interacts with and phosphorylates PARP10 at T601. PARP10 phosphorylation at T601 significantly decreases its binding to NEMO and disrupts its inhibition to NEMO ubiquitination, thereby enhancing the transcription activity of NF-κB toward multiple target genes and promoting HCC development. In turn, NF-κB transcriptionally inhibits the PARP10 promoter activity and leads to its downregulation in HCC. Interestingly, PLK1 is mono-ADP-ribosylated by PARP10 and the MARylation of PLK1 significantly inhibits its kinase activity and oncogenic function in HCC. Clinically, the expression levels of PLK1 and phosphor-p65 show an inverse correlation with PARP10 expression in human HCC tissues. These findings are the first to uncover a PLK1/PARP10/NF-κB signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with NF-κB antagonists, as potential effective therapeutics for PARP10-expressing HCC.
Collapse
Affiliation(s)
- Lantian Tian
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
- Department of Hepatobiliary Surgery, First Clinical Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ke Yao
- The Department of Gynaecology and Obstetrics of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Kun Liu
- The General Surgery Department, The 971st Hospital of the PLA Navy, Qingdao, Shandong, China
| | - Bing Han
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hanguang Dong
- The Department of General Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Wei Zhao
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Weibo Jiang
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Fabo Qiu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Linlin Qu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Zehua Wu
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Bin Zhou
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Qingdao University, Qingdao, Shandong, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lifeng Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaofeng Guo
- The Department of hepatopancreatobiliary surgery of the Affiliated Hospital, Zhongshan University, Guangzhou, Guangdong, China
| | - Tianlu Shi
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shichun Lu
- Department of Hepatobiliary Surgery, First Clinical Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Wu CF, Xiao M, Wang YL, Threadgill MD, Li M, Tang Y, Lin X, Yang L, Li QS, Li X. PARP10 Influences the Proliferation of Colorectal Carcinoma Cells, a Preliminary Study. Mol Biol 2020. [DOI: 10.1134/s0026893320020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Schleicher EM, Galvan AM, Imamura-Kawasawa Y, Moldovan GL, Nicolae CM. PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress. Nucleic Acids Res 2019; 46:8908-8916. [PMID: 30032250 PMCID: PMC6158756 DOI: 10.1093/nar/gky658] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
During carcinogenesis, cells are exposed to increased replication stress due to replication fork arrest at sites of DNA lesions and difficult to replicate genomic regions. Efficient fork restart and DNA repair are important for cancer cell proliferation. We previously showed that the ADP-ribosyltransferase PARP10 interacts with the replication protein proliferating cell nuclear antigen and promotes lesion bypass by recruiting specialized, non-replicative DNA polymerases. Here, we show that PARP10 is overexpressed in a large proportion of human tumors. To understand the role of PARP10 in cellular transformation, we inactivated PARP10 in HeLa cancer cells by CRISPR/Cas9-mediated gene knockout, and overexpressed it in non-transformed RPE-1 cells. We found that PARP10 promotes cellular proliferation, and its overexpression alleviates cellular sensitivity to replication stress and fosters the restart of stalled replication forks. Importantly, mouse xenograft studies showed that loss of PARP10 reduces the tumorigenesis activity of HeLa cells, while its overexpression results in tumor formation by non-transformed RPE-1 cells. Our findings indicate that PARP10 promotes cellular transformation, potentially by alleviating replication stress and suggest that targeting PARP10 may represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Adri M Galvan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yuka Imamura-Kawasawa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Chen X, Huan X, Liu Q, Wang Y, He Q, Tan C, Chen Y, Ding J, Xu Y, Miao Z, Yang C. Design and synthesis of 2-(4,5,6,7-tetrahydrothienopyridin-2-yl)-benzoimidazole carboxamides as novel orally efficacious Poly(ADP-ribose)polymerase (PARP) inhibitors. Eur J Med Chem 2018; 145:389-403. [DOI: 10.1016/j.ejmech.2018.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
|
15
|
A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Future Med Chem 2016; 9:37-60. [PMID: 27995810 DOI: 10.4155/fmc-2016-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The finding of promising drugs represents a huge challenge in cancer therapeutics, therefore it is important to seek out novel approaches and elucidate essential cellular processes in order to identify potential drug targets. Studies on DNA repair pathway suggested that an enzyme, PARP, which plays a significant role in DNA repair responses, could be targeted in cancer therapy. Hence, the efficacy of PARP inhibitors in cancer therapy has been investigated and has progressed from the laboratory to clinics, with olaparib having already been approved by the US FDA for ovarian cancer treatment. Here, we have discussed the development of PARP inhibitors, strategies to improve their selectivity and efficacy, including innovative combinational and synthetic lethality approaches to identify effective PARP inhibitors in cancer treatment.
Collapse
|
16
|
Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells 2015; 4:569-95. [PMID: 26426055 PMCID: PMC4695847 DOI: 10.3390/cells4040569] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases.
Collapse
|
17
|
Hottiger MO. Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics. Annu Rev Biochem 2015; 84:227-63. [PMID: 25747399 DOI: 10.1146/annurev-biochem-060614-034506] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein ADP-ribosylation is an ancient posttranslational modification with high biochemical complexity. It alters the function of modified proteins or provides a scaffold for the recruitment of other proteins and thus regulates several cellular processes. ADP-ribosylation is governed by ADP-ribosyltransferases and a subclass of sirtuins (writers), is sensed by proteins that contain binding modules (readers) that recognize specific parts of the ADP-ribosyl posttranslational modification, and is removed by ADP-ribosylhydrolases (erasers). The large amount of experimental data generated and technical progress made in the last decade have significantly advanced our knowledge of the function of ADP-ribosylation at the molecular level. This review summarizes the current knowledge of nuclear ADP-ribosylation reactions and their role in chromatin plasticity, cell differentiation, and epigenetics and discusses current progress and future perspectives.
Collapse
Affiliation(s)
- Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
18
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Nicolae CM, Aho ER, Vlahos AHS, Choe KN, De S, Karras GI, Moldovan GL. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance. J Biol Chem 2014; 289:13627-37. [PMID: 24695737 DOI: 10.1074/jbc.m114.556340] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All cells rely on genomic stability mechanisms to protect against DNA alterations. PCNA is a master regulator of DNA replication and S-phase-coupled repair. PCNA post-translational modifications by ubiquitination and SUMOylation dictate how cells stabilize and re-start replication forks stalled at sites of damaged DNA. PCNA mono-ubiquitination recruits low fidelity DNA polymerases to promote error-prone replication across DNA lesions. Here, we identify the mono-ADP-ribosyltransferase PARP10/ARTD10 as a novel PCNA binding partner. PARP10 knockdown results in genomic instability and DNA damage hypersensitivity. Importantly, we show that PARP10 binding to PCNA is required for translesion DNA synthesis. Our work identifies a novel PCNA-linked mechanism for genome protection, centered on post-translational modification by mono-ADP-ribosylation.
Collapse
Affiliation(s)
- Claudia M Nicolae
- From the Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | | | | | | | | | | | | |
Collapse
|
20
|
Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 2014; 4:2240. [PMID: 23917125 PMCID: PMC3756671 DOI: 10.1038/ncomms3240] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/03/2013] [Indexed: 12/12/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
21
|
Function and Regulation of the Mono-ADP-Ribosyltransferase ARTD10. Curr Top Microbiol Immunol 2014; 384:167-88. [DOI: 10.1007/82_2014_379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Feijs KLH, Verheugd P, Lüscher B. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J 2013; 280:3519-29. [PMID: 23639026 DOI: 10.1111/febs.12315] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/12/2022]
Abstract
Poly-ADP-ribosylation functions in diverse signaling pathways, such as Wnt signaling and DNA damage repair, where its role is relatively well characterized. Contrarily, mono-ADP-ribosylation by for example ARTD10/PARP10 is much less understood. Recent developments hint at the involvement of mono-ADP-ribosylation in transcriptional regulation, the unfolded protein response, DNA repair, insulin secretion and immunity. Additionally, macrodomain-containing hydrolases, MacroD1, MacroD2 and C6orf130/TARG1, have been identified that make mono-ADP-ribosylation reversible. Complicating further progress is the lack of tools such as mono-ADP-ribose-specific antibodies. The currently known functions of mono-ADP-ribosylation are summarized here, as well as the available tools such as mass spectrometry to study this modification in vitro and in cells.
Collapse
Affiliation(s)
- Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
23
|
Venkannagari H, Fallarero A, Feijs KLH, Lüscher B, Lehtiö L. Activity-based assay for human mono-ADP-ribosyltransferases ARTD7/PARP15 and ARTD10/PARP10 aimed at screening and profiling inhibitors. Eur J Pharm Sci 2013; 49:148-56. [PMID: 23485441 DOI: 10.1016/j.ejps.2013.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) or diphtheria toxin like ADP-ribosyl transferases (ARTDs) are enzymes that catalyze the covalent modification of proteins by attachment of ADP-ribose units to the target amino acid residues or to the growing chain of ADP-ribose. A subclass of the ARTD superfamily consists of mono-ADP-ribosyl transferases that are thought to modify themselves and other substrate proteins by covalently adding only a single ADP-ribose moiety to the target. Many of the ARTD enzymes are either established or potential drug targets and a functional activity assay for them will be a valuable tool to identify selective inhibitors for each enzyme. Existing assays are not directly applicable for screening of inhibitors due to the different nature of the reaction and different target molecules. We modified and applied a fluorescence-based assay previously described for PARP1/ARTD1 and tankyrase/ARTD5 for screening of PARP10/ARTD10 and PARP15/ARTD7 inhibitors. The assay measures the amount of NAD(+) present after chemically converting it to a fluorescent analog. We demonstrate that by using an excess of a recombinant acceptor protein the performance of the activity-based assay is excellent for screening of compound libraries. The assay is homogenous and cost effective, making it possible to test relatively large compound libraries. This method can be used to screen inhibitors of mono-ARTDs and profile inhibitors of the enzyme class. The assay was optimized for ARTD10 and ARTD7, but it can be directly applied to other mono-ARTDs of the ARTD superfamily. Profiling of known ARTD inhibitors against ARTD10 and ARTD7 in a validatory screening identified the best inhibitors with submicromolar potencies. Only few of the tested ARTD inhibitors were potent, implicating that there is a need to screen new compound scaffolds. This is needed to create small molecules that could serve as biological probes and potential starting points for drug discovery projects against mono-ARTDs.
Collapse
|
24
|
Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Lüscher B. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Cell Commun Signal 2013; 11:5. [PMID: 23332125 PMCID: PMC3627616 DOI: 10.1186/1478-811x-11-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 12/24/2022] Open
Abstract
Background Although ADP-ribosylation has been described five decades ago, only recently a distinction has been made between eukaryotic intracellular poly- and mono-ADP-ribosylating enzymes. Poly-ADP-ribosylation by ARTD1 (formerly PARP1) is best known for its role in DNA damage repair. Other polymer forming enzymes are ARTD2 (formerly PARP2), ARTD3 (formerly PARP3) and ARTD5/6 (formerly Tankyrase 1/2), the latter being involved in Wnt signaling and regulation of 3BP2. Thus several different functions of poly-ADP-ribosylation have been well described whereas intracellular mono-ADP-ribosylation is currently largely undefined. It is for example not known which proteins function as substrate for the different mono-ARTDs. This is partially due to lack of suitable reagents to study mono-ADP-ribosylation, which limits the current understanding of this post-translational modification. Results We have optimized a novel screening method employing protein microarrays, ProtoArrays®, applied here for the identification of substrates of ARTD10 (formerly PARP10) and ARTD8 (formerly PARP14). The results of this substrate screen were validated using in vitro ADP-ribosylation assays with recombinant proteins. Further analysis of the novel ARTD10 substrate GSK3β revealed mono-ADP-ribosylation as a regulatory mechanism of kinase activity by non-competitive inhibition in vitro. Additionally, manipulation of the ARTD10 levels in cells accordingly influenced GSK3β activity. Together these data provide the first evidence for a role of endogenous mono-ADP-ribosylation in intracellular signaling. Conclusions Our findings indicate that substrates of ADP-ribosyltransferases can be identified using protein microarrays. The discovered substrates of ARTD10 and ARTD8 provide the first sets of proteins that are modified by mono-ADP-ribosyltransferases in vitro. By studying one of the ARTD10 substrates more closely, the kinase GSK3β, we identified mono-ADP-ribosylation as a negative regulator of kinase activity.
Collapse
Affiliation(s)
- Karla Lh Feijs
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 2012; 11:923-36. [PMID: 23197039 DOI: 10.1038/nrd3868] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) protein superfamily has wide-ranging roles in cellular processes such as DNA repair and WNT signalling. Efforts to pharmacologically target PARP enzymes have largely focused on PARP1 and the closely related PARP2, but recent work highlighting the role of another family member, tankyrase 1 (TANK1; also known as PARP5A and ARTD5), in the control of WNT signalling has fuelled interest in the development of additional inhibitors to target this enzyme class. Tankyrase function is also implicated in other processes such as the regulation of telomere length, lung fibrogenesis and myelination, suggesting that tankyrase inhibitors could have broad clinical utility. Here, we discuss the biology of tankyrases and the discovery of tankyrase-specific inhibitors. We also consider the challenges that lie ahead for the clinical development of PARP family inhibitors in general.
Collapse
Affiliation(s)
- Jenna L Riffell
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
26
|
Tuncel H, Tanaka S, Oka S, Nakai S, Fukutomi R, Okamoto M, Ota T, Kaneko H, Tatsuka M, Shimamoto F. PARP6, a mono(ADP-ribosyl) transferase and a negative regulator of cell proliferation, is involved in colorectal cancer development. Int J Oncol 2012; 41:2079-86. [PMID: 23042038 DOI: 10.3892/ijo.2012.1652] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/28/2012] [Indexed: 11/05/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is an enzyme that mediates post-translational modification of proteins. Seventeen known members of the PARP superfamily can be grouped into three classes based on catalytic activity: (i) classical poly(ADP-ribose) polymerases, (ii) mono(ADP‑ribosyl) transferases and (iii) catalytically inactive members. PARP6 belongs to the mono(ADP-ribosyl) transferase class, and here we have found that PARP6 is a negative regulator of cell proliferation. Forced expression of PARP6 in HeLa cells induced growth suppression, but a PARP6 mutant with a C-terminal deletion lacking the catalytic domain had no effect. The PARP6-expressing cells accumulated in the S-phase, and the magnitude of S-phase accumulation was observed to be greater in cells expressing a PARP6 mutant with an N-terminal deletion, lacking a putative regulatory domain. Immunohistochemical analysis revealed that PARP6 positivity was found at higher frequencies in colorectal cancer tissues with well-differentiated histology compared to those with poorly differentiated histology. Furthermore, PARP6 positivity negatively correlated with the Ki-67 proliferation index. Kaplan-Meier analysis showed that PARP6-positive colorectal cancer had a good prognosis. Based on these results, we propose that PARP6 acts as a tumor suppressor through its role in cell cycle control.
Collapse
Affiliation(s)
- Handan Tuncel
- Department of Biophysics, Istanbul University, Istanbul 34303, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Grant GD, Gamsby J, Martyanov V, Brooks L, George LK, Mahoney JM, Loros JJ, Dunlap JC, Whitfield ML. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Mol Biol Cell 2012; 23:3079-93. [PMID: 22740631 PMCID: PMC3418304 DOI: 10.1091/mbc.e11-02-0170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A periodic luciferase reporter system from cell cycle–regulated promoters in synchronous U2OS cells measures periodic, cell cycle–regulated gene expression in live cells. This assay is used to identify Forkhead transcription factors that control periodic gene expression, and it identifies FOXK1 as an activator of key cell cycle genes. We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PLoS One 2012; 7:e37352. [PMID: 22701565 PMCID: PMC3372510 DOI: 10.1371/journal.pone.0037352] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
Background Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes that catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. The latter include members of three different families of proteins: the well characterized arginine-specific ecto-enzymes ARTCs, two sirtuins and, more recently, novel members of the poly(ADP-ribose) polymerase (PARP/ARTD) family that have been suggested to act as cellular mono-ADP-ribosyltransferases. Here, we report on the characterisation of human ARTD15, the only known ARTD family member with a putative C-terminal transmembrane domain. Methodology/Principal Findings Immunofluorescence and electron microscopy were performed to characterise the sub-cellular localisation of ARTD15, which was found to be associated with membranes of the nuclear envelope and endoplasmic reticulum. The orientation of ARTD15 was determined using protease protection assay, and is shown to be a tail-anchored protein with a cytosolic catalytic domain. Importantly, by combining immunoprecipitation with mass spectrometry and using cell lysates from cells over-expressing FLAG-ARTD15, we have identified karyopherin-ß1, a component of the nuclear trafficking machinery, as a molecular partner of ARTD15. Finally, we demonstrate that ARTD15 is a mono-ADP-ribosyltransferase able to induce the ADP-ribosylation of karyopherin-ß1, thus defining the first substrate for this enzyme. Conclusions/Significance Our data reveal that ARTD15 is a novel ADP-ribosyltransferase enzyme with a new intracellular location. Finally, the identification of karyopherin-ß1 as a target of ARTD15-mediated ADP-ribosylation, hints at a novel regulatory mechanism of karyopherin-ß1 functions.
Collapse
Affiliation(s)
- Simone Di Paola
- Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | - Maria Di Girolamo
- Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
- * E-mail:
| |
Collapse
|
29
|
Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG, Pol E, Frostell Å, Ekblad T, Öncü D, Kull B, Robertson GM, Pellicciari R, Schüler H, Weigelt J. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 2012; 30:283-8. [PMID: 22343925 DOI: 10.1038/nbt.2121] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/13/2012] [Indexed: 02/08/2023]
Abstract
Inhibitors of poly-ADP-ribose polymerase (PARP) family proteins are currently in clinical trials as cancer therapeutics, yet the specificity of many of these compounds is unknown. Here we evaluated a series of 185 small-molecule inhibitors, including research reagents and compounds being tested clinically, for the ability to bind to the catalytic domains of 13 of the 17 human PARP family members including the tankyrases, TNKS1 and TNKS2. Many of the best-known inhibitors, including TIQ-A, 6(5H)-phenanthridinone, olaparib, ABT-888 and rucaparib, bound to several PARP family members, suggesting that these molecules lack specificity and have promiscuous inhibitory activity. We also determined X-ray crystal structures for five TNKS2 ligand complexes and four PARP14 ligand complexes. In addition to showing that the majority of PARP inhibitors bind multiple targets, these results provide insight into the design of new inhibitors.
Collapse
Affiliation(s)
- Elisabet Wahlberg
- Structural Genomics Consortium, Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lamb RS, Citarelli M, Teotia S. Functions of the poly(ADP-ribose) polymerase superfamily in plants. Cell Mol Life Sci 2012; 69:175-89. [PMID: 21861184 PMCID: PMC11114847 DOI: 10.1007/s00018-011-0793-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD(+) to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.
Collapse
Affiliation(s)
- Rebecca S Lamb
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | | | | |
Collapse
|
31
|
Yu M, Zhang C, Yang Y, Yang Z, Zhao L, Xu L, Wang R, Zhou X, Huang P. The interaction between the PARP10 protein and the NS1 protein of H5N1 AIV and its effect on virus replication. Virol J 2011; 8:546. [PMID: 22176891 PMCID: PMC3287249 DOI: 10.1186/1743-422x-8-546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022] Open
Abstract
Background During the process that AIV infect hosts, the NS1 protein can act on hosts, change corresponding signal pathways, promote the translation of virus proteins and result in virus replication. Results In our study, we found that PARP domain and Glu-rich region of PARP10 interacted with NS1, and the presence of NS1 could induce PARP10 migrate from cytoplasm to nucleus. NS1 high expression could reduce the endogenous PARP10 expression. Cell cycle analysis showed that with inhibited PARP10 expression, NS1 could induce cell arrest in G2-M stage, and the percentage of cells in G2-M stage rise from the previous 10%-45%, consistent with the cell proliferation result. Plague forming unit measurement showed that inhibited PARP10 expression could help virus replication. Conclusions In a word, our results showed that NS1 acts on host cells and PARP10 plays a regulating role in virus replication.
Collapse
Affiliation(s)
- Mengbin Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hottiger MO. ADP-ribosylation of histones by ARTD1: an additional module of the histone code? FEBS Lett 2011; 585:1595-9. [PMID: 21420964 DOI: 10.1016/j.febslet.2011.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/17/2022]
Abstract
ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code.
Collapse
Affiliation(s)
- Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Detecting protein-protein interactions in vesicular stomatitis virus using a cytoplasmic yeast two hybrid system. J Virol Methods 2011; 173:203-12. [PMID: 21320532 DOI: 10.1016/j.jviromet.2011.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/03/2011] [Accepted: 02/07/2011] [Indexed: 12/18/2022]
Abstract
Protein-protein interactions play an important role in many virus-encoded functions and in virus-host interactions. While a "classical" yeast two-hybrid system (Y2H) is one of the most common techniques to detect such interactions, it has a number of limitations, including a requirement for the proteins of interest to be relocated to the nucleus. Modified Y2H, such as the Sos recruitment system (SRS), which detect interactions occurring in the cytoplasm rather than the nucleus, allow proteins from viruses replicating in the cytoplasm to be tested in a more natural context. In this study, a SRS was used to detect interactions involving proteins from vesicular stomatitis virus (VSV), a prototypic non-segmented negative strand RNA (NNS) virus. All five full-length VSV proteins, as well as several truncated proteins, were screened against each other. Using the SRS, most interactions demonstrated previously involving VSV phosphoprotein, nucleocapsid (N) and large polymerase proteins were confirmed independently, while difficulties were encountered using the membrane associated matrix and glycoproteins. A human cDNA library was also screened against VSV N protein and one cellular protein, SFRS18, was identified which interacted with N in this context. The system presented can be redesigned easily for studies in other less tractable NNS viruses.
Collapse
|
34
|
Citarelli M, Teotia S, Lamb RS. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 2010; 10:308. [PMID: 20942953 PMCID: PMC2964712 DOI: 10.1186/1471-2148-10-308] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/13/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The poly(ADP-ribose) polymerase (PARP) superfamily was originally identified as enzymes that catalyze the attachment of ADP-ribose subunits to target proteins using NAD+ as a substrate. The family is characterized by the catalytic site, termed the PARP signature. While these proteins can be found in a range of eukaryotes, they have been best studied in mammals. In these organisms, PARPs have key functions in DNA repair, genome integrity and epigenetic regulation. More recently it has been found that proteins within the PARP superfamily have altered catalytic sites, and have mono(ADP-ribose) transferase (mART) activity or are enzymatically inactive. These findings suggest that the PARP signature has a broader range of functions that initially predicted. In this study, we investigate the evolutionary history of PARP genes across the eukaryotes. RESULTS We identified in silico 236 PARP proteins from 77 species across five of the six eukaryotic supergroups. We performed extensive phylogenetic analyses of the identified PARPs. They are found in all eukaryotic supergroups for which sequence is available, but some individual lineages within supergroups have independently lost these genes. The PARP superfamily can be subdivided into six clades. Two of these clades were likely found in the last common eukaryotic ancestor. In addition, we have identified PARPs in organisms in which they have not previously been described. CONCLUSIONS Three main conclusions can be drawn from our study. First, the broad distribution and pattern of representation of PARP genes indicates that the ancestor of all extant eukaryotes encoded proteins of this type. Second, the ancestral PARP proteins had different functions and activities. One of these proteins was similar to human PARP1 and likely functioned in DNA damage response. The second of the ancestral PARPs had already evolved differences in its catalytic domain that suggest that these proteins may not have possessed poly(ADP-ribosyl)ation activity. Third, the diversity of the PARP superfamily is larger than previously documented, suggesting as more eukaryotic genomes become available, this gene family will grow in both number and type.
Collapse
Affiliation(s)
- Matteo Citarelli
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
| | - Sachin Teotia
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
- Molcular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210 USA
| | - Rebecca S Lamb
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
- Molcular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
35
|
Teotia S, Lamb RS. The paralogous genes RADICAL-INDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. PLANT PHYSIOLOGY 2009; 151:180-98. [PMID: 19625634 PMCID: PMC2736012 DOI: 10.1104/pp.109.142786] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/12/2009] [Indexed: 05/17/2023]
Abstract
RADICAL-INDUCED CELL DEATH1 (RCD1) and SIMILAR TO RCD ONE1 (SRO1) are the only two proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome containing both a putative poly(ADP-ribose) polymerase catalytic domain and a WWE protein-protein interaction domain, although similar proteins have been found in other eukaryotes. Poly(ADP-ribose) polymerases mediate the attachment of ADP-ribose units from donor NAD(+) molecules to target proteins and have been implicated in a number of processes, including DNA repair, apoptosis, transcription, and chromatin remodeling. We have isolated mutants in both RCD1 and SRO1, rcd1-3 and sro1-1, respectively. rcd1-3 plants display phenotypic defects as reported for previously isolated alleles, most notably reduced stature. In addition, rcd1-3 mutants display a number of additional developmental defects in root architecture and maintenance of reproductive development. While single mutant sro1-1 plants are relatively normal, loss of a single dose of SRO1 in the rcd1-3 background increases the severity of several developmental defects, implying that these genes do share some functions. However, rcd1-3 and sro1-1 mutants behave differently in several developmental events and abiotic stress responses, suggesting that they also have distinct functions. Remarkably, rcd1-3; sro1-1 double mutants display severe defects in embryogenesis and postembryonic development. This study shows that RCD1 and SRO1 are at least partially redundant and that they are essential genes for plant development.
Collapse
Affiliation(s)
- Sachin Teotia
- Molecular, Cellular, and Developmental Biology Program and Plant Cellular and Molecular Biology Department, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
36
|
Kang JH, Ryu HS, Kim HT, Lee SJ, Choi UK, Park YB, Huh TL, Choi MS, Kang TC, Choi SY, Kwon OS. Proteomic analysis of human macrophages exposed to hypochlorite-oxidized low-density lipoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:446-58. [PMID: 19103313 DOI: 10.1016/j.bbapap.2008.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/14/2008] [Accepted: 11/14/2008] [Indexed: 02/02/2023]
Abstract
The invasion of monocytes through the endothelial wall of arteries and their transformation from macrophage into form cells has been implicated as a critical initiating event in atherogenesis. Human THP-1 monocytic cells can be induced to differentiate into macrophages by phorbol myristate acetate (PMA) treatment, and can be converted into foam cells by exposure to oxidized low-density lipoprotein (oxLDL). To identify proteins potentially involved in atherosclerotic processes, we performed a proteomic analysis of THP-1 macrophages exposed to oxLDL generated by treatment with native LDL with hypochlorous acid/hypochlorite (HOCl/OCl(-)). We detected more than a thousand proteins, of which 104 differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and the NCBI database. The largest differences in expression were observed for bifunctional purine biosynthesis protein, vacuolar protein sorting 33A, breast carcinoma amplified sequence, adenine phosphoribosyltransferase, and tropomyosin alpha 3 chain. Interestingly, many apoptotic proteins such as lamin B1, poly (ADP-ribose) polymerase, Bcl-2 related protein A1 and vimentin were identified by MALDI-TOF analysis. Identities were confirmed by matching the sequence of several tryptic peptides using MALDI-TOF/TOF MS, Western blot analyses and immunofluorescent microscopy. The data described here will contribute to establishing a functional profile of the human macrophage proteome. Furthermore, the proteins identified in this study are attractive candidates for further biomarkers involved in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jeong Han Kang
- Department of Life Sciences and Biotechnology, School of Life Sciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Lüscher B. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 2008; 32:57-69. [PMID: 18851833 DOI: 10.1016/j.molcel.2008.08.009] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/23/2008] [Accepted: 08/01/2008] [Indexed: 01/17/2023]
Abstract
ADP-ribosylation controls many processes, including transcription, DNA repair, and bacterial toxicity. ADP-ribosyltransferases and poly-ADP-ribose polymerases (PARPs) catalyze mono- and poly-ADP-ribosylation, respectively, and depend on a highly conserved glutamate residue in the active center for catalysis. However, there is an apparent absence of this glutamate for the recently described PARP6-PARP16, raising questions about how these enzymes function. We find that PARP10, in contrast to PARP1, lacks the catalytic glutamate and has transferase rather than polymerase activity. Despite this fundamental difference, PARP10 also modifies acidic residues. Consequently, we propose an alternative catalytic mechanism for PARP10 compared to PARP1 in which the acidic target residue of the substrate functionally substitutes for the catalytic glutamate by using substrate-assisted catalysis to transfer ADP-ribose. This mechanism explains why the novel PARPs are unable to function as polymerases. This discovery will help to illuminate the different biological functions of mono- versus poly-ADP-ribosylation in cells.
Collapse
Affiliation(s)
- Henning Kleine
- Institut für Biochemie und Molekularbiologie, Klinikum, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006; 7:517-28. [PMID: 16829982 DOI: 10.1038/nrm1963] [Citation(s) in RCA: 1475] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD(+), is a unique post-translational modification. It regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated. These functions include transcriptional regulation, telomere cohesion and mitotic spindle formation during cell division, intracellular trafficking and energy metabolism.
Collapse
Affiliation(s)
- Valérie Schreiber
- Département Intégrité du Génome de l'UMR 7175, Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard S. Brant, BP 10413, F-67412 Illkirch Cedex, France.
| | | | | | | |
Collapse
|