1
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Keon KA, Benlekbir S, Kirsch SH, Müller R, Rubinstein JL. Cryo-EM of the Yeast V O Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chem Biol 2022; 17:619-628. [PMID: 35148071 DOI: 10.1021/acschembio.1c00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuolar-type adenosine triphosphatases (V-ATPases) are proton pumps found in almost all eukaryotic cells. These enzymes consist of a soluble catalytic V1 region that hydrolyzes ATP and a membrane-embedded VO region responsible for proton translocation. V-ATPase activity leads to acidification of endosomes, phagosomes, lysosomes, secretory vesicles, and the trans-Golgi network, with extracellular acidification occurring in some specialized cells. Small-molecule inhibitors of V-ATPase have played a crucial role in elucidating numerous aspects of cell biology by blocking acidification of intracellular compartments, while therapeutic use of V-ATPase inhibitors has been proposed for the treatment of cancer, osteoporosis, and some infections. Here, we determine structures of the isolated VO complex from Saccharomyces cerevisiae bound to two well-known macrolide inhibitors: bafilomycin A1 and archazolid A. The structures reveal different binding sites for the inhibitors on the surface of the proton-carrying c ring, with only a small amount of overlap between the two sites. Binding of both inhibitors is mediated primarily through van der Waals interactions in shallow pockets and suggests that the inhibitors block rotation of the ring. Together, these structures indicate the existence of a large chemical space available for V-ATPase inhibitors that block acidification by binding the c ring.
Collapse
Affiliation(s)
- Kristine A. Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
- Department of Medical Biophysics, The University of Toronto, Toronto, Canada M5G1L7
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
| | - Susanne H. Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University Campus, 66123 Saarbrücken, Germany
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada M5G0A4
- Department of Medical Biophysics, The University of Toronto, Toronto, Canada M5G1L7
- Department of Biochemistry, The University of Toronto, Toronto, Canada M5S1A8
| |
Collapse
|
3
|
Wang X, Tan X, Liu Q, Li Y, Li X, Dong Z, Dong H, Xia Q, Zhao P. Fiber Formation and Mechanical Properties of Bombyx mori Silk Are Regulated by Vacuolar-Type ATPase. ACS Biomater Sci Eng 2021; 7:5532-5540. [PMID: 34753284 DOI: 10.1021/acsbiomaterials.1c01230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of silk fiber formation in silkworms, Bombyx mori, is of particular scientific interest because it is closely related to the mechanical properties of silk fibers. However, there are still substantial knowledge gaps in understanding the details of this mechanism. Studies have found a pH gradient in the silk gland of silkworms. A vacuolar-type ATPase (V-ATPase) is thought to be involved in establishing this pH gradient. Although it is reported that the pH gradient plays a role in silk fibrillogenesis, the direct relationship between V-ATPase and silk mechanical properties is unclear. Thus, this study aims to clarify this relationship. We found that V-ATPase is highly and stably expressed in the anterior silk gland (ASG) and maintains the pH gradient and the fine structure of ASG. Inhibition of V-ATPase activity increased the β-sheet content and crystallinity of silk fibers. Tensile testing showed that the mechanical properties of silk fibers improved after inhibiting V-ATPase activity. All the data suggest that V-ATPase is a key factor in regulating silk fibrillogenesis and is related to the final mechanical properties of the silk fibers. V-ATPase is a potential target for silk mechanical property improvement.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiaoyin Tan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xinning Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Haonan Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
5
|
Krah A, Marzinek JK, Bond PJ. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1004-1010. [DOI: 10.1016/j.bbamem.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
|
6
|
Wang AC, Pham HT, Lipps JM, Brittain SM, Harrington E, Wang Y, King FJ, Russ C, Pan X, Hoepfner D, Tallarico J, Feng Y, Jain RK, Schirle M, Thomas JR. Previously Uncharacterized Vacuolar-type ATPase Binding Site Discovered from Structurally Similar Compounds with Distinct Mechanisms of Action. ACS Chem Biol 2019; 14:20-26. [PMID: 30461263 DOI: 10.1021/acschembio.8b00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding. Competitive photoaffinity labeling experiments demonstrated that the ATP6V0A2 subunit of the v-ATPase complex binds directly to HTP-013, and further mutagenesis library screening identified resistance-conferring mutations in ATP6V0A2. The positions of these mutations suggest the molecule binds a novel pocket within the domain of the v-ATPase complex responsible for proton translocation. While other mechanisms of v-ATPase regulation have been described, such as dissociation of the complex or inhibition by natural products including bafilomycin A1 and concanamycin, this work provides detailed insight into a distinct binding pocket within the v-ATPase complex.
Collapse
Affiliation(s)
- Andrew C. Wang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Helen T. Pham
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jennifer M. Lipps
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Scott M. Brittain
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Edmund Harrington
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuan Wang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fred J. King
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Carsten Russ
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xuewen Pan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - John Tallarico
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yan Feng
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rishi K. Jain
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jason R. Thomas
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
The Trans Golgi Region is a Labile Intracellular Ca 2+ Store Sensitive to Emetine. Sci Rep 2018; 8:17143. [PMID: 30464185 PMCID: PMC6249204 DOI: 10.1038/s41598-018-35280-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023] Open
Abstract
The Golgi apparatus (GA) is a bona fide Ca2+ store; however, there is a lack of GA-specific Ca2+ mobilizing agents. Here, we report that emetine specifically releases Ca2+ from GA in HeLa and HL-1 atrial myocytes. Additionally, it has become evident that the trans-Golgi is a labile Ca2+ store that requires a continuous source of Ca2+ from either the external milieu or from the ER, to enable it to produce a detectable transient increase in cytosolic Ca2+. Our data indicates that the emetine-sensitive Ca2+ mobilizing mechanism is different from the two classical Ca2+ release mechanisms, i.e. IP3 and ryanodine receptors. This newly discovered ability of emetine to release Ca2+ from the GA may explain why chronic consumption of ipecac syrup has muscle side effects.
Collapse
|
8
|
Tan XY, Wang X, Liu QS, Xie XQ, Li Y, Li BQ, Li ZQ, Xia QY, Zhao P. Inhibition of silkworm vacuolar-type ATPase activity by its inhibitor Bafilomycin A1 induces caspase-dependent apoptosis in an embryonic cell line of silkworm. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21507. [PMID: 30246413 DOI: 10.1002/arch.21507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vacuolar-type ATPase (V-ATPase) is a type of hydrogen ion transporter located in the vesicular membrane-like system, which mediates active transport and intracellular acidification in various compartments. In mammals, V-ATPase has been reported to play a key role in cell proliferation and apoptosis. The studies of V-ATPase in silkworm mainly focus on the acidification regulation of midgut and silk gland and immune resistance. However, there are few reports about the function of silkworm V-ATPase on cell proliferation, autophagy, and apoptosis. Thus, the function of V-ATPase in a cell line of Bombyx mori (BmE) was investigated by treating the cell line with bafilomycin A1, a specific inhibitor of V-ATPase. Cell counting kit 8 (CCK8) and flow cytometry analysis showed that bafilomycin A1 treatment decreased the cell proliferation activity, affected the cell cycle progression and induced cell apoptosis. LysoTracker Red staining showed that the target of bafilomycin A1 is lysosome. The expression of all autophagy-related genes ( BmATG5, BmATG6, and BmATG8) decreased, indicating that cell autophagy was inhibited. The analysis of the apoptosis pathway demonstrated that inhibiting the activity of V-ATPase of BmE cells could promote mitochondria to release cytochrome C, inhibit the expression of BmIAP, and activate the caspase cascade to induce apoptosis. All these findings systematically illustrate the effects of V-ATPase on the proliferation, autophagy, and apoptosis in BmE cells, and provide new ideas and a theoretical basis for further study on the function of V-ATPase in BmE.
Collapse
Affiliation(s)
- Xiao-Yin Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qing-Song Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Qian Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bing-Qian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhi-Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
11
|
Iida M, Yamada K, Nango Y, Yamaguchi Y, Ogita A, Fujita KI, Tanaka T. Vacuolar H+-ATPase subunit Vma1p functions as the molecular ligand in the vacuole-targeting fungicidal activity of polymyxin B. Microbiology (Reading) 2017; 163:531-540. [DOI: 10.1099/mic.0.000450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Maki Iida
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Keiichi Yamada
- Department of Chemistry and Chemical Biology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yoshiya Nango
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshihiro Yamaguchi
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akira Ogita
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken-ichi Fujita
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
12
|
Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance. Proc Natl Acad Sci U S A 2016; 113:3245-50. [PMID: 26951669 DOI: 10.1073/pnas.1521990113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.
Collapse
|
13
|
Smith GA, Howell GJ, Phillips C, Muench SP, Ponnambalam S, Harrison MA. Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes. J Biol Chem 2016; 291:8500-15. [PMID: 26912656 PMCID: PMC4861423 DOI: 10.1074/jbc.m116.723395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 01/02/2023] Open
Abstract
Plasma membrane vacuolar H+-ATPase (V-ATPase) activity of tumor cells is a major factor in control of cytoplasmic and extracellular pH and metastatic potential, but the isoforms involved and the factors governing plasma membrane recruitment remain uncertain. Here, we examined expression, distribution, and activity of V-ATPase isoforms in invasive prostate adenocarcinoma (PC-3) cells. Isoforms 1 and 3 were the most highly expressed forms of membrane subunit a, with a1 and a3 the dominant plasma membrane isoforms. Correlation between plasma membrane V-ATPase activity and invasiveness was limited, but RNAi knockdown of either a isoform did slow cell proliferation and inhibit invasion in vitro. Isoform a1 was recruited to the cell surface from the early endosome-recycling complex pathway, its knockdown arresting transferrin receptor recycling. Isoform a3 was associated with the late endosomal/lysosomal compartment. Both a isoforms associated with accessory protein Ac45, knockdown of which stalled transit of a1 and transferrin-transferrin receptor, decreased proton efflux, and reduced cell growth and invasiveness; this latter effect was at least partly due to decreased delivery of the membrane-bound matrix metalloproteinase MMP-14 to the plasma membrane. These data indicate that in prostatic carcinoma cells, a1 and a3 isoform populations predominate in different compartments where they maintain different luminal pH. Ac45 plays a central role in navigating the V-ATPase to the plasma membrane, and hence it is an important factor in expression of the invasive phenotype.
Collapse
Affiliation(s)
- Gina A Smith
- From the Endothelial Cell Biology Unit, School of Molecular and Cellular Biology and
| | - Gareth J Howell
- From the Endothelial Cell Biology Unit, School of Molecular and Cellular Biology and
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
14
|
Kobayashi K, Fukuda T, Usui T, Kurihara Y, Kanamoto A, Tomoda H. Bafilomycin L, a new inhibitor of cholesteryl ester synthesis in mammalian cells, produced by marine-derived Streptomyces sp. OPMA00072. J Antibiot (Tokyo) 2014; 68:126-32. [DOI: 10.1038/ja.2014.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 11/09/2022]
|
15
|
Muench SP, Rawson S, Eyraud V, Delmas AF, Da Silva P, Phillips C, Trinick J, Harrison MA, Gressent F, Huss M. PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem 2014; 289:16399-408. [PMID: 24795045 PMCID: PMC4047407 DOI: 10.1074/jbc.m113.541250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Indexed: 12/03/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.
Collapse
Affiliation(s)
- Stephen P Muench
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom,
| | - Shaun Rawson
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - Vanessa Eyraud
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Agnès F Delmas
- the Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 4301, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Pedro Da Silva
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Clair Phillips
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - John Trinick
- the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom, and
| | - Michael A Harrison
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - Frédéric Gressent
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie Universität Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
16
|
Mangieri LR, Mader BJ, Thomas CE, Taylor CA, Luker AM, Tse TE, Huisingh C, Shacka JJ. ATP6V0C knockdown in neuroblastoma cells alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. PLoS One 2014; 9:e93257. [PMID: 24695574 PMCID: PMC3973706 DOI: 10.1371/journal.pone.0093257] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/22/2014] [Indexed: 02/06/2023] Open
Abstract
ATP6V0C is the bafilomycin A1-binding subunit of vacuolar ATPase, an enzyme complex that critically regulates vesicular acidification. We and others have shown previously that bafilomycin A1 regulates cell viability, autophagic flux and metabolism of proteins that accumulate in neurodegenerative disease. To determine the importance of ATP6V0C for autophagy-lysosome pathway function, SH-SY5Y human neuroblastoma cells differentiated to a neuronal phenotype were nucleofected with non-target or ATP6V0C siRNA and following recovery were treated with either vehicle or bafilomycin A1 (0.3-100 nM) for 48 h. ATP6V0C knockdown was validated by quantitative RT-PCR and by a significant decrease in Lysostracker Red staining. ATP6V0C knockdown significantly increased basal levels of microtubule-associated protein light chain 3-II (LC3-II), α-synuclein high molecular weight species and APP C-terminal fragments, and inhibited autophagic flux. Enhanced LC3 and LAMP-1 co-localization following knockdown suggests that autophagic flux was inhibited in part due to lysosomal degradation and not by a block in vesicular fusion. Knockdown of ATP6V0C also sensitized cells to the accumulation of autophagy substrates and a reduction in neurite length following treatment with 1 nM bafilomycin A1, a concentration that did not produce such alterations in non-target control cells. Reduced neurite length and the percentage of propidium iodide-positive dead cells were also significantly greater following treatment with 3 nM bafilomycin A1. Together these results indicate a role for ATP6V0C in maintaining constitutive and stress-induced ALP function, in particular the metabolism of substrates that accumulate in age-related neurodegenerative disease and may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Leandra R. Mangieri
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Burton J. Mader
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States of America
| | - Cailin E. Thomas
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Charles A. Taylor
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Austin M. Luker
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tonia E. Tse
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carrie Huisingh
- Department Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John J. Shacka
- Department Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
17
|
Petchampai N, Sunyakumthorn P, Guillotte ML, Thepparit C, Kearney MT, Mulenga A, Azad AF, Macaluso KR. Molecular and functional characterization of vacuolar-ATPase from the American dog tick Dermacentor variabilis. INSECT MOLECULAR BIOLOGY 2014; 23:42-51. [PMID: 24164319 PMCID: PMC4237192 DOI: 10.1111/imb.12059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vacuolar (V)-ATPase is a proton-translocating enzyme that acidifies cellular compartments for various functions such as receptor-mediated endocytosis, intracellular trafficking and protein degradation. Previous studies in Dermacentor variabilis chronically infected with Rickettsia montanensis have identified V-ATPase as one of the tick-derived molecules transcribed in response to rickettsial infection. To examine the role of the tick V-ATPase in tick-Rickettsia interactions, a full-length 2887-bp cDNA (2532-bp open reading frame) clone corresponding to the transcript of the V0 domain subunit a of D. variabilis V-ATPase (DvVATPaseV0a) gene encoding an 843 amino acid protein with an estimated molecular weight of ~96 kDa was isolated from D. variabilis. Amino acid sequence analysis of DvVATPaseV0a showed the highest similarity to VATPaseV0a from Ixodes scapularis. A potential N-glycosylation site and eight putative transmembrane segments were identified in the sequence. Western blot analysis of tick tissues probed with polyclonal antibody raised against recombinant DvVATPaseV0a revealed the expression of V-ATPase in the tick ovary. Transcriptional profiles of DvVATPaseV0a demonstrated a greater mRNA expression in the tick ovary, compared with the midgut and salivary glands; however, the mRNA level in each of these tick tissues remained unchanged after infection with R. montanensis for 1 h. V-ATPase inhibition bioassays resulted in a significant decrease in the ability of R. montanensis to invade tick cells in vitro, suggesting a role of V-ATPase in rickettsial infection of tick cells. Characterization of tick-derived molecules involved in rickettsial infection is essential for a thorough understanding of rickettsial transmission within tick populations and the ecology of tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- N Petchampai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State UniversityBaton Rouge, LA, USA
| | - P Sunyakumthorn
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State UniversityBaton Rouge, LA, USA
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkok, Thailand
| | - M L Guillotte
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State UniversityBaton Rouge, LA, USA
| | - C Thepparit
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State UniversityBaton Rouge, LA, USA
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol UniversityNakorn Pathom, Thailand
| | - M T Kearney
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State UniversityBaton Rouge, LA, USA
| | - A Mulenga
- Department of Entomology, 2475 Texas A & M UniversityCollege Station, TX, USA
| | - A F Azad
- Department of Microbiology and Immunology, School of Medicine, University of MarylandBaltimore, MD, USA
| | - K R Macaluso
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State UniversityBaton Rouge, LA, USA
| |
Collapse
|
18
|
Kartner N, Yao Y, Bhargava A, Manolson MF. Topology, glycosylation and conformational changes in the membrane domain of the vacuolar H+-ATPaseasubunit. J Cell Biochem 2013; 114:1474-87. [DOI: 10.1002/jcb.24489] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 12/21/2012] [Indexed: 11/08/2022]
|
19
|
von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H, Wanner G, Efferth T, Trauner D, Vollmar AM. Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition. J Biol Chem 2012; 288:1385-96. [PMID: 23168408 DOI: 10.1074/jbc.m112.412007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, has come into focus as an attractive target in cancer invasion. However, little is known about the role of V-ATPase in cell death, and especially the underlying mechanisms remain mostly unknown. We used the myxobacterial macrolide archazolid B, a potent inhibitor of the V-ATPase, as an experimental drug as well as a chemical tool to decipher V-ATPase-related cell death signaling. We found that archazolid induced apoptosis in highly invasive tumor cells at nanomolar concentrations which was executed by the mitochondrial pathway. Prior to apoptosis induction archazolid led to the activation of a cellular stress response including activation of the hypoxia-inducible factor-1α (HIF1α) and autophagy. Autophagy, which was demonstrated by degradation of p62 or fusion of autophagosomes with lysosomes, was induced at low concentrations of archazolid that not yet increase pH in lysosomes. HIF1α was induced due to energy stress shown by a decline of the ATP level and followed by a shutdown of energy-consuming processes. As silencing HIF1α increases apoptosis, the cellular stress response was suggested to be a survival mechanism. We conclude that archazolid leads to energy stress which activates adaptive mechanisms like autophagy mediated by HIF1α and finally leads to apoptosis. We propose V-ATPase as a promising drugable target in cancer therapy caught up at the interplay of apoptosis, autophagy, and cellular/metabolic stress.
Collapse
Affiliation(s)
- Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Beutler M, Milucka J, Hinck S, Schreiber F, Brock J, Mußmann M, Schulz-Vogt HN, de Beer D. Vacuolar respiration of nitrate coupled to energy conservation in filamentousBeggiatoaceae. Environ Microbiol 2012; 14:2911-9. [DOI: 10.1111/j.1462-2920.2012.02851.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 07/04/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jana Milucka
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Susanne Hinck
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | | | - Jörg Brock
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Heide N. Schulz-Vogt
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| |
Collapse
|
21
|
Osteresch C, Bender T, Grond S, von Zezschwitz P, Kunze B, Jansen R, Huss M, Wieczorek H. The binding site of the V-ATPase inhibitor apicularen is in the vicinity of those for bafilomycin and archazolid. J Biol Chem 2012; 287:31866-76. [PMID: 22815478 DOI: 10.1074/jbc.m112.372169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The investigation of V-ATPases as potential therapeutic drug targets and hence of their specific inhibitors is a promising approach in osteoporosis and cancer treatment because the occurrence of these diseases is interrelated to the function of the V-ATPase. Apicularen belongs to the novel inhibitor family of the benzolactone enamides, which are highly potent but feature the unique characteristic of not inhibiting V-ATPases from fungal sources. In this study we specify, for the first time, the binding site of apicularen within the membrane spanning V(O) complex. By photoaffinity labeling using derivatives of apicularen and of the plecomacrolides bafilomycin and concanamycin, each coupled to (14)C-labeled 4-(3-trifluoromethyldiazirin-3-yl)benzoic acid, we verified that apicularen binds at the interface of the V(O) subunits a and c. The binding site is in the vicinity to those of the plecomacrolides and of the archazolids, a third family of V-ATPase inhibitors. Expression of subunit c homologues from Homo sapiens and Manduca sexta, both species sensitive to benzolactone enamides, in a Saccharomyces cerevisiae strain lacking the corresponding intrinsic gene did not transfer this sensitivity to yeast. Therefore, the binding site of benzolactone enamides cannot be formed exclusively by subunit c. Apparently, subunit a substantially contributes to the binding of the benzolactone enamides.
Collapse
Affiliation(s)
- Christin Osteresch
- Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, 49069 Osnabrück, German
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu Y, Parmar A, Roux E, Balbis A, Dumas V, Chevalier S, Posner BI. Epidermal growth factor-induced vacuolar (H+)-atpase assembly: a role in signaling via mTORC1 activation. J Biol Chem 2012; 287:26409-22. [PMID: 22689575 DOI: 10.1074/jbc.m112.352229] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.
Collapse
Affiliation(s)
- Yanqing Xu
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Knight AJ, Behm CA. Minireview: the role of the vacuolar ATPase in nematodes. Exp Parasitol 2011; 132:47-55. [PMID: 21959022 DOI: 10.1016/j.exppara.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022]
Abstract
The vacuolar ATPase enzyme complex (V-ATPase) pumps protons across membranes, energised by hydrolysis of ATP. It is involved in many physiological processes and has been implicated in many different diseases. While the broader functions of V-ATPases have been reviewed extensively, the role of this complex in nematodes specifically has not. Here, the essential role of the V-ATPase in nematode nutrition, osmoregulation, synthesis of the cuticle, neurobiology and reproduction is discussed. Based on the requirement of V-ATPase activity, or components of the V-ATPase, for these processes, the potential of the V-ATPase as a drug target for nematode parasites, which cause a significant burden to human health and agriculture, is also discussed. The V-ATPase has all the characteristics of a suitable drug target against nematodes, however the challenge will be to develop a high-throughput assay with which to test potential inhibitors.
Collapse
Affiliation(s)
- Alison J Knight
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra ACT 0200, Australia
| | | |
Collapse
|
25
|
Firmino KCS, Faleiros RO, Masui DC, McNamara JC, Furriel RPM. Short- and long-term, salinity-induced modulation of V-ATPase activity in the posterior gills of the true freshwater crab, Dilocarcinus pagei (Brachyura, Trichodactylidae). Comp Biochem Physiol B Biochem Mol Biol 2011; 160:24-31. [DOI: 10.1016/j.cbpb.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
|
26
|
Toei M, Toei S, Forgac M. Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J Biol Chem 2011; 286:35176-86. [PMID: 21832060 DOI: 10.1074/jbc.m111.273409] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a of the vacuolar H(+)-ATPases plays an important role in proton transport. This membrane-integral 100-kDa subunit is thought to form or contribute to proton-conducting hemichannels that allow protons to gain access to and leave buried carboxyl groups on the proteolipid subunits (c, c', and c″) during proton translocation. We previously demonstrated that subunit a contains a large N-terminal cytoplasmic domain followed by a C-terminal domain containing eight transmembrane (TM) helices. TM7 contains a buried arginine residue (Arg-735) that is essential for proton transport and is located on a helical face that interacts with the proteolipid ring. To further define the topology of the C-terminal domain, the accessibility of 30 unique cysteine residues to the membrane-permeant reagent N-ethylmaleimide and the membrane-impermeant reagent polyethyleneglycol maleimide was determined. The results further define the borders of transmembrane segments in subunit a. To identify additional buried polar and charged residues important in proton transport, 25 sites were individually mutated to hydrophobic amino acids, and the effect on proton transport was determined. These and previous results identify a set of residues important for proton transport located on the cytoplasmic half of TM7 and TM8 and the lumenal half of TM3, TM4, and TM7. Based upon these data, we propose a tentative model in which the cytoplasmic hemichannel is located at the interface of TM7 and TM8 of subunit a and the proteolipid ring, whereas the lumenal hemichannel is located within subunit a at the interface of TM3, TM4, and TM7.
Collapse
Affiliation(s)
- Masashi Toei
- Graduate Program in Cell and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
27
|
Kononchik JP, Vancini R, Brown DT. Alphavirus adsorption to mosquito cells as viewed by freeze fracture immunolabeling. Virology 2011; 415:132-40. [DOI: 10.1016/j.virol.2011.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/11/2011] [Accepted: 04/22/2011] [Indexed: 12/12/2022]
|
28
|
Huss M, Vitavska O, Albertmelcher A, Bockelmann S, Nardmann C, Tabke K, Tiburcy F, Wieczorek H. Vacuolar H(+)-ATPases: intra- and intermolecular interactions. Eur J Cell Biol 2011; 90:688-95. [PMID: 21640428 DOI: 10.1016/j.ejcb.2011.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
V-ATPases in eukaryotes are heteromultimeric, H(+)-transporting proteins. They are localized in a multitude of different membranes and energize many different transport processes. Unique features of V-ATPases are, on the one hand, their ability to regulate enzymatic and ion transporting activity by the reversible dissociation of the catalytic V(1) complex from the membrane bound proton translocating V(0) complex and, on the other hand, their high sensitivity to specific macrolides such as bafilomycin and concanamycin from streptomycetes or archazolid and apicularen from myxomycetes. Both features require distinct intramolecular as well as intermolecular interactions. Here we will summarize our own results together with newer developments in both of these research areas.
Collapse
Affiliation(s)
- Markus Huss
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Animal Physiology, Barbarastrasse 11, 49076 Osnabrück, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci U S A 2011; 108:8048-53. [PMID: 21512130 DOI: 10.1073/pnas.1018371108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.
Collapse
|
30
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
31
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
32
|
Bafilomycin K, a new antifungal macrolide from Streptomyces flavotricini Y12-26. J Antibiot (Tokyo) 2011; 64:391-3. [PMID: 21386849 DOI: 10.1038/ja.2011.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Hunt SR, Hernandez R, Brown DT. Role of the vacuolar-ATPase in Sindbis virus infection. J Virol 2011; 85:1257-66. [PMID: 21084471 PMCID: PMC3020509 DOI: 10.1128/jvi.01864-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/03/2010] [Indexed: 11/20/2022] Open
Abstract
Bafilomycin A(1) is a specific inhibitor of the vacuolar-ATPase (V-ATPase), which is responsible for pH homeostasis of the cell and for the acidification of endosomes. Bafilomycin A(1) has been commonly used as a method of inhibition of infection by viruses known or suspected to follow the path of receptor-mediated endocytosis and low-pH-mediated membrane fusion. The exact method of entry for Sindbis virus, the prototype alphavirus, remains undetermined. To further investigate the role of the V-ATPase in Sindbis virus infection, the effects of bafilomycin A(1) on the infection of BHK and insect cells by Sindbis virus were studied. Bafilomycin A(1) was found to block the expression of a virus-encoded reporter gene in both infection and transfection of BHK cells. The inhibitory effects of bafilomycin A(1) were found to be reversible. The results suggest that in BHK cells in the presence of bafilomycin A(1), virus RNA enters the cell and is translated, but replication and proper folding of the product proteins requires the function of the V-ATPase. Bafilomycin A(1) had no significant effect on the outcome of infection in insect cells.
Collapse
Affiliation(s)
- Sabrina R. Hunt
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Dennis T. Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
34
|
Bockelmann S, Menche D, Rudolph S, Bender T, Grond S, von Zezschwitz P, Muench SP, Wieczorek H, Huss M. Archazolid A binds to the equatorial region of the c-ring of the vacuolar H+-ATPase. J Biol Chem 2010; 285:38304-14. [PMID: 20884613 DOI: 10.1074/jbc.m110.137539] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macrolactone archazolid is a novel, highly specific V-ATPase inhibitor with an IC(50) value in the low nanomolar range. The binding site of archazolid is presumed to overlap with the binding site of the established plecomacrolide V-ATPase inhibitors bafilomycin and concanamycin in subunit c of the membrane-integral V(O) complex. Using a semi-synthetic derivative of archazolid for photoaffinity labeling of the V(1)V(O) holoenzyme we confirmed binding of archazolid to the V(O) subunit c. For the plecomacrolide binding site a model has been published based on mutagenesis studies of the c subunit of Neurospora crassa, revealing 11 amino acids that are part of the binding pocket at the interface of two adjacent c subunits (Bowman, B. J., McCall, M. E., Baertsch, R., and Bowman, E. J. (2006) J. Biol. Chem. 281, 31885-31893). To investigate the contribution of these amino acids to the binding of archazolid, we established in Saccharomyces cerevisiae mutations that in N. crassa had changed the IC(50) value for bafilomycin 10-fold or more and showed that out of the amino acids forming the plecomacrolide binding pocket only one amino acid (tyrosine 142) contributes to the binding of archazolid. Using a fluorescent derivative of N,N'-dicyclohexylcarbodiimide, we found that the binding site for archazolid comprises the essential glutamate within helix 4 of subunit c. In conclusion the archazolid binding site resides within the equatorial region of the V(O) rotor subunit c. This hypothesis was supported by an additional subset of mutations within helix 4 that revealed that leucine 144 plays a role in archazolid binding.
Collapse
Affiliation(s)
- Svenja Bockelmann
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, Barbarastrasse 11, 49069 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sobota JA, Bäck N, Eipper BA, Mains RE. Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 2009; 122:3542-53. [PMID: 19737820 DOI: 10.1242/jcs.034298] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) establishes pH gradients along secretory and endocytic pathways. Progressive acidification is essential for proteolytic processing of prohormones and aggregation of soluble content proteins. The V-ATPase V(0) subunit is thought to have a separate role in budding and fusion events. Prolonged treatment of professional secretory cells with selective V-ATPase inhibitors (bafilomycin A1, concanamycin A) was used to investigate its role in secretory-granule biogenesis. As expected, these inhibitors eliminated regulated secretion and blocked prohormone processing. Drug treatment caused the formation of large, mixed organelles, with components of immature granules and lysosomes and some markers of autophagy. Markers of the trans-Golgi network and earlier secretory pathway were unaffected. Ammonium chloride and methylamine treatment blocked acidification to a similar extent as the V-ATPase inhibitors without producing mixed organelles. Newly synthesized granule content proteins appeared in mixed organelles, whereas mature secretory granules were spared. Following concanamycin treatment, selected membrane proteins enter tubulovesicular structures budding into the interior of mixed organelles. shRNA-mediated knockdown of the proteolipid subunit of V(0) also caused vesiculation of immature granules. Thus, V-ATPase has a role in protein sorting in immature granules that is distinct from its role in acidification.
Collapse
Affiliation(s)
- Jacqueline A Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
36
|
Wieczorek H, Beyenbach KW, Huss M, Vitavska O. Vacuolar-type proton pumps in insect epithelia. ACTA ACUST UNITED AC 2009; 212:1611-9. [PMID: 19448071 DOI: 10.1242/jeb.030007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Active transepithelial cation transport in insects was initially discovered in Malpighian tubules, and was subsequently also found in other epithelia such as salivary glands, labial glands, midgut and sensory sensilla. Today it appears to be established that the cation pump is a two-component system of a H(+)-transporting V-ATPase and a cation/nH(+) antiporter. After tracing the discovery of the V-ATPase as the energizer of K(+)/nH(+) antiport in the larval midgut of the tobacco hornworm Manduca sexta we show that research on the tobacco hornworm V-ATPase delivered important findings that emerged to be of general significance for our knowledge of V-ATPases, which are ubiquitous and highly conserved proton pumps. We then discuss the V-ATPase in Malpighian tubules of the fruitfly Drosophila melanogaster where the potential of post-genomic biology has been impressively illustrated. Finally we review an integrated physiological approach in Malpighian tubules of the yellow fever mosquito Aedes aegypti which shows that the V-ATPase delivers the energy for both transcellular and paracellular ion transport.
Collapse
Affiliation(s)
- Helmut Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
37
|
Abstract
V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic endomembranes and plasma membranes, they energize many different transport processes. Currently, a handful of specific inhibitors of the V-ATPase are known, which represent valuable tools for the characterization of transport processes on the level of tissues, single cells or even purified proteins. The understanding of how these inhibitors function may provide a basis to develop new drugs for the benefit of patients suffering from diseases such as osteoporosis or cancer. For this purpose, it appears absolutely essential to determine the exact inhibitor binding site in a target protein on the one side and to uncover the crucial structural elements of an inhibitor on the other side. However, even for some of the most popular and long known V-ATPase inhibitors, such as bafilomycin or concanamycin, the authentic structures of their binding sites are elusive. The aim of this review is to summarize the recent advances for the old players in the inhibition game, the plecomacrolides bafilomycin and concanamycin, and to introduce some of the new players, the macrolacton archazolid, the benzolactone enamides salicylihalamide, lobatamide, apicularen, oximidine and cruentaren, and the indolyls.
Collapse
Affiliation(s)
- Markus Huss
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | |
Collapse
|
38
|
Takeda M, Suno-Ikeda C, Shimabukuro K, Yoshida M, Yokoyama K. Mechanism of inhibition of the V-type molecular motor by tributyltin chloride. Biophys J 2009; 96:1210-7. [PMID: 19186155 DOI: 10.1016/j.bpj.2008.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022] Open
Abstract
Tributyltin chloride (TBT-Cl) is an endocrine disruptor found in many animal species, and it is also known to be an inhibitor for the V-ATPases that are emerging as potential targets in the treatment of diseases such as osteoporosis and cancer. We demonstrated by using biochemical and single-molecular imaging techniques that TBT-Cl arrests an elementary step for rotary catalysis of the V(1) motor domain. In the presence of TBT-Cl, the consecutive rotation of V(1) paused for a long duration ( approximately 0.5 s), even at saturated ATP concentrations, and the pausing positions were localized at 120 degrees intervals. Analysis of both the pausing time and moving time revealed that TBT-Cl has little effect on the binding affinity for ATP, but, rather, it arrests the catalytic event(s). This is the first report to demonstrate that an inhibitor arrests an elementary step for rotary catalysis of a V-type ATP-driven rotary motor.
Collapse
Affiliation(s)
- Mizuho Takeda
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
39
|
Vartanian M, Desclés J, Quinet M, Douady S, Lopez PJ. Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2009; 182:429-442. [PMID: 19210721 DOI: 10.1111/j.1469-8137.2009.02769.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding the morphogenesis of mineralized structures found in shells, bones, teeth, spicules and plant cell walls is difficult because of the complexities underlying biomineralization, and the requirement of accurate models for pattern formation. Here, we investigated the spatial and temporal development of siliceous structures found in a model diatom species, Phaeodactylum tricornutum, for which the entire genome has been sequenced and transformation is routine. Analyses of pattern formation revealed that the process of silicification starts from a 'pi-like' structure that controls the spatial organization of a sternum upon which regular instabilities are initiated and developed. Detailed analyses also demonstrate that morphogenesis of silica is nonuniform. We also tested the sensitivity of pattern formation to perturbation of proton pumps, and found that selective inhibitors of H(+)-V-ATPases affect silica biomineralization both quantitatively and qualitatively. Morphometric analyses of valves purified from isogenic populations of cells show that the morphometric noise of several traits is under exquisite regulation, explaining why the overall valve pattern is reproducibly maintained. Altogether our analyses demonstrate that silica morphogenesis is a robust but nonuniform process, and allow us to propose a model for the dynamic growth of materials within a spatially controlled geometry.
Collapse
Affiliation(s)
- Mathieu Vartanian
- Biomineralization and Morphogenesis Group, CNRS UMR 8186, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | - Julien Desclés
- Biomineralization and Morphogenesis Group, CNRS UMR 8186, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | - Michelle Quinet
- Biomineralization and Morphogenesis Group, CNRS UMR 8186, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | - Stéphane Douady
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Pascal J Lopez
- Biomineralization and Morphogenesis Group, CNRS UMR 8186, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| |
Collapse
|
40
|
V H+-ATPase along the yeast secretory pathway: energization of the ER and Golgi membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:303-13. [PMID: 19059377 DOI: 10.1016/j.bbamem.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 02/06/2023]
Abstract
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50=38.4 nM) than Golgi and vacuole pumps (I50=0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.
Collapse
|
41
|
Robinson DG, Jiang L, Schumacher K. The endosomal system of plants: charting new and familiar territories. PLANT PHYSIOLOGY 2008; 147:1482-92. [PMID: 18678740 PMCID: PMC2492610 DOI: 10.1104/pp.108.120105] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- David G Robinson
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Chardwiriyapreecha S, Shimazu M, Morita T, Sekito T, Akiyama K, Takegawa K, Kakinuma Y. Identification of thefnx1+andfnx2+genes for vacuolar amino acid transporters inSchizosaccharomyces pombe. FEBS Lett 2008; 582:2225-30. [DOI: 10.1016/j.febslet.2008.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/12/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
43
|
Cipriano DJ, Wang Y, Bond S, Hinton A, Jefferies KC, Qi J, Forgac M. Structure and regulation of the vacuolar ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:599-604. [PMID: 18423392 DOI: 10.1016/j.bbabio.2008.03.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 12/31/2022]
Abstract
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c'', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c''), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.
Collapse
Affiliation(s)
- Daniel J Cipriano
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kóta Z, Páli T, Dixon N, Kee TP, Harrison MA, Findlay JBC, Finbow ME, Marsh D. Incorporation of Transmembrane Peptides from the Vacuolar H+-ATPase in Phospholipid Membranes: Spin-Label Electron Paramagnetic Resonance and Polarized Infrared Spectroscopy. Biochemistry 2008; 47:3937-49. [DOI: 10.1021/bi7025112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoltán Kóta
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Terry P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| |
Collapse
|
45
|
Huynh KK, Grinstein S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 2007; 71:452-62. [PMID: 17804666 PMCID: PMC2168644 DOI: 10.1128/mmbr.00003-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To survive within the host, pathogens such as Mycobacterium tuberculosis and Helicobacter pylori need to evade the immune response and find a protected niche where they are not exposed to microbicidal effectors. The pH of the microenvironment surrounding the pathogen plays a critical role in dictating the organism's fate. Specifically, the acidic pH of the endocytic organelles and phagosomes not only can affect bacterial growth directly but also promotes a variety of host microbicidal responses. The development of mechanisms to avoid or resist the acidic environment generated by host cells is therefore crucial to the survival of many pathogens. Here we review the processes that underlie the generation of organellar acidification and discuss strategies employed by pathogens to circumvent it, using M. tuberculosis and H. pylori as examples.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Cell Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
46
|
Duarte AMS, de Jong ER, Wechselberger R, van Mierlo CPM, Hemminga MA. Segment TM7 from the cytoplasmic hemi-channel from VO-H+-V-ATPase includes a flexible region that has a potential role in proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2263-70. [PMID: 17573038 DOI: 10.1016/j.bbamem.2007.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/23/2007] [Accepted: 05/11/2007] [Indexed: 11/25/2022]
Abstract
A 900-MHz NMR study is reported of peptide sMTM7 that mimics the cytoplasmic proton hemi-channel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The peptide encompasses the amino acid residues known to actively participate in proton translocation. In addition, peptide sMTM7 contains the amino acid residues that upon mutation cause V-ATPase to become resistant against the inhibitor bafilomycin. 2D TOCSY and NOESY (1)H-(1)H NMR spectra are obtained of sMTM7 dissolved in d(6)-DMSO and are used to calculate the three-dimensional structure of the peptide. The NMR-based structures and corresponding dynamical features of peptide sMTM7 show that sMTM7 is composed of two alpha-helical regions. These regions are separated by a flexible hinge of two residues. The hinge acts as a ball-and-joint socket and both helical segments move independently with respect to one another. This movement in TM7 is suggested to cause the opening and closing of the cytoplasmic proton hemi-channel and enables proton translocation.
Collapse
Affiliation(s)
- Afonso M S Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Yao G, Feng H, Cai Y, Qi W, Kong K. Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 2007; 357:821-7. [PMID: 17462591 DOI: 10.1016/j.bbrc.2007.04.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/07/2007] [Indexed: 02/05/2023]
Abstract
V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V(1) domain responsible for ATP hydrolysis and integral V(0) domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.
Collapse
Affiliation(s)
- GuanFeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041, China
| | | | | | | | | |
Collapse
|
48
|
Duarte AMS, Wolfs CJAM, van Nuland NAJ, Harrison MA, Findlay JBC, van Mierlo CPM, Hemminga MA. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:218-27. [PMID: 16962559 DOI: 10.1016/j.bbamem.2006.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/12/2006] [Accepted: 07/28/2006] [Indexed: 11/17/2022]
Abstract
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.
Collapse
Affiliation(s)
- Afonso M S Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Vos WL, Vermeer LS, Hemminga MA. Conformation of a peptide encompassing the proton translocation channel of vacuolar H(+)-ATPase. Biophys J 2007; 92:138-46. [PMID: 17040980 PMCID: PMC1697854 DOI: 10.1529/biophysj.106.089854] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022] Open
Abstract
The structural properties of a crucial transmembrane helix for proton translocation in vacuolar ATPase are studied using double site-directed spin-labeling combined with electron spin resonance (ESR) (or electron paramagnetic resonance) and circular dichroism spectroscopy in sodium dodecyl sulfate micelles. For this purpose, we use a synthetic peptide derived from transmembrane helix 7 of subunit a from the yeast Saccharomyces cerevisiae vacuolar proton-translocating ATPase that contains two natural cysteine residues suitable for spin-labeling. The interspin distance is calculated using a second-moment analysis of the methanethiosulfonate spin-label ESR spectra at 150 K. Molecular dynamics simulation is used to study the effect of the side-chain dynamics and backbone dynamics on the interspin distance. Based on the combined results from ESR, circular dichroism, and molecular dynamics simulation we conclude that the peptide forms a dynamic alpha-helix. We discuss this finding in the light of current models for proton translocation. A novel role for a buried charged residue (H729) is proposed.
Collapse
Affiliation(s)
- Werner L Vos
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | |
Collapse
|
50
|
Schumacher K. Endomembrane proton pumps: connecting membrane and vesicle transport. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:595-600. [PMID: 17008121 DOI: 10.1016/j.pbi.2006.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
pH-homeostasis in the endomembrane system requires the activity of proton-pumps. In animals, the progressive acidification of compartments along the endocytic and secretory pathways is critical for protein sorting and vesicle trafficking, and is achieved by the activity of the vacuolar H(+)-ATPase (V-ATPase). Plants have an additional endomembrane pump, the vacuolar H(+)-pyrophosphatase (V-PPase), and previous research was largely focused on the respective functions of the two pumps in secondary active transport across the tonoplast. Recent approaches, including reverse genetics, have not only provided evidence that both enzymes play unique and essential roles but have also highlighted the important functions of the two proton pumps in endocytic and secretory trafficking.
Collapse
Affiliation(s)
- Karin Schumacher
- ZMBP-Plant Physiology, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| |
Collapse
|