1
|
Matsui K, Emoto M, Fukuda N, Nomiyama R, Yamada K, Tanizawa Y. SNARE-binding protein synaptosomal-associated protein of 29 kDa (SNAP29) regulates the intracellular sequestration of glucose transporter 4 (GLUT4) vesicles in adipocytes. J Diabetes Investig 2022; 14:19-27. [PMID: 36181414 PMCID: PMC9807150 DOI: 10.1111/jdi.13912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION Insulin stimulates translocation of glucose transporter 4 (GLUT4) from the perinuclear location to the plasma membrane. In the unstimulated state, intracellular vesicles containing GLUT4 are sequestered into specialized storage vesicles that have come to be known as the insulin-responsive compartment (IRC). The IRC is a functional compartment in the perinuclear region that is a target of the insulin signaling cascade, although its precise nature is unclear. Here, we report a novel molecular mechanism facilitating formation of the IRC. MATERIALS AND METHODS We determined synaptosomal-associated protein of 29 kDa (SNAP29) by mass spectrometry to be an EH domain-containing protein 1 (EHD1)-binding protein. Then, its expression was confirmed by western blotting. Subcellular localization of SNAP29 was determined by immunofluorescent microscopy. Interactions between SNAP29 and syntaxins were determined by immunoprecipitation. We measured glucose uptake and GLUT4 translocation in 3T3-L1 adipocyte expressing SNAP29 or silencing SNAP29. RESULTS We found SNAP29 to be localized in the perinuclear region and to show partial co-localization with GLUT4 under basal conditions. We also found that SNAP29 binds to syntaxin6, a Qc-SNARE, in adipocytes. In SNAP29-expressing cells, vesicles containing GLUT4 were observed to aggregate around the perinuclear region. In contrast, when SNAP29 was silenced, perinuclear GLUT4 vesicles were dispersed throughout the cytosol. Insulin-stimulated glucose uptake was inhibited in both SNAP29-expressing and SNAP29-silenced cells. CONCLUSIONS These data suggest that SNAP29 sequesters and anchors GLUT4-containing vesicles in the perinuclear region, and might have a role in the biogenesis of the perinuclear IRC.
Collapse
Affiliation(s)
- Kumiko Matsui
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Masahiro Emoto
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan,Emoto ClinicUbeJapan
| | - Naofumi Fukuda
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryuta Nomiyama
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Kyoko Yamada
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
2
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
3
|
Rey D, Fernandes TA, Sulis PM, Gonçalves R, Sepúlveda R M, Silva Frederico MJ, Aragon M, Ospina LF, Costa GM, Silva FRMB. Cellular target of isoquercetin from Passiflora ligularis Juss for glucose uptake in rat soleus muscle. Chem Biol Interact 2020; 330:109198. [PMID: 32692981 DOI: 10.1016/j.cbi.2020.109198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022]
Abstract
Quercetin 3-O-beta-d-glucopyranoside (isoquercetin) is one of the most frequent metabolites of the Passiflora ligularis Juss. The purpose of this study was to investigate the effect of the aqueous extract and ethanol fraction from P. ligularis Juss leaves on glycaemia and the mechanism of action of isoquercetin on glucose uptake. In the glucose tolerance test, the aqueous extract and ethanol fraction from P. ligularis Juss (125 mg/kg to 500 mg/kg o. g.) reduced glycaemia and increased the hepatic and muscular glycogen content. Phytochemical analysis evidenced the dominant presence of isoquercetin in the extract and fraction from leaves of P. ligularis Juss. Isoquercetin mediates the stimulatory effect on glucose uptake independent of insulin receptor activation but, involve PI3K, MAPK, MEK/ERK pathways and de novo protein synthesis to GLUT-4 translocation. Overall findings revealed that isoquercetin and aqueous extract and ethanol fraction of P. ligularis Juss leaves might be a promising functional food or medicine for the treatment or prevention of diabetes.
Collapse
Affiliation(s)
- Diana Rey
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Thaís Alves Fernandes
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Paola Miranda Sulis
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Renata Gonçalves
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Michelle Sepúlveda R
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Marisa Jádna Silva Frederico
- Universidade Federal do Ceará, Departamento de Farmacologia e Fisiologia, Faculdade de Medicina, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Marcela Aragon
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Luís Fernando Ospina
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Geison M Costa
- Pontificia Universidad Javeriana, Departamento de Química, Facultad de Ciencias, Carrera 7 43-82, Edificio Carlos Ortiz (52), Oficina 617, 110231, Bogotá, DC, Colombia
| | - Fátima Regina Mena Barreto Silva
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells. Cells 2020; 9:cells9041057. [PMID: 32340337 PMCID: PMC7226349 DOI: 10.3390/cells9041057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
We previously showed that in polarized Madin-Darby canine kidney (MDCK) cells, aquaporin-2 (AQP2) is continuously targeted to the basolateral plasma membrane from which it is rapidly retrieved by clathrin-mediated endocytosis. It then undertakes microtubule-dependent transcytosis toward the apical plasma membrane. In this study, we found that treatment with chlorpromazine (CPZ, an inhibitor of clathrin-mediated endocytosis) results in AQP2 accumulation in the basolateral, but not the apical plasma membrane of epithelial cells. In MDCK cells, both AQP2 and clathrin were concentrated in the basolateral plasma membrane after CPZ treatment (100 µM for 15 min), and endocytosis was reduced. Then, using rhodamine phalloidin staining, we found that basolateral, but not apical, F-actin was selectively reduced by CPZ treatment. After incubation of rat kidney slices in situ with CPZ (200 µM for 15 min), basolateral AQP2 and clathrin were increased in principal cells, which simultaneously showed a significant decrease of basolateral compared to apical F-actin staining. These results indicate that clathrin-dependent transcytosis of AQP2 is an essential part of its trafficking pathway in renal epithelial cells and that this process can be inhibited by selectively depolymerizing the basolateral actin pool using CPZ.
Collapse
|
5
|
Capmany A, Yoshimura A, Kerdous R, Caorsi V, Lescure A, Nery ED, Coudrier E, Goud B, Schauer K. MYO1C stabilizes actin and facilitates arrival of transport carriers at the Golgi apparatus. J Cell Sci 2019; 132:jcs.225029. [DOI: 10.1242/jcs.225029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
We aim to identify the myosin motor proteins that control trafficking at the Golgi apparatus. In addition to the known Golgi-associated myosins MYO6, MYO18A and MYH9 (myosin IIA), we identify MYO1C as a novel player at the Golgi. We demonstrate that depletion of MYO1C induces Golgi apparatus fragmentation and decompaction. MYO1C accumulates at dynamic structures around the Golgi apparatus that colocalize with Golgi-associated actin dots. MYO1C depletion leads to loss of cellular F-actin, and Golgi apparatus decompaction is also observed after the inhibition or loss of the Arp2/3 complex. We show that the functional consequences of MYO1C depletion is a delay in the arrival of incoming transport carriers, both from the anterograde and retrograde routes. We propose that MYO1C stabilizes actin at the Golgi apparatus facilitating the arrival of incoming transport carriers at the Golgi.
Collapse
Affiliation(s)
- Anahi Capmany
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Azumi Yoshimura
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Rachid Kerdous
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | | | - Aurianne Lescure
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Department of Translational Research, BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Department of Translational Research, BioPhenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| | - Kristine Schauer
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport group, 75248 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche144, 75005 Paris, France
| |
Collapse
|
6
|
Frederico MJS, Castro AJG, Pinto VAM, Ramos CDF, Monteiro FBF, Mascarello A, Nunes RJ, Silva FRMB. Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue. J Cell Biochem 2018; 119:4408-4419. [PMID: 29130561 DOI: 10.1002/jcb.26506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to investigate the mechanism of action of a sulfonamide derivative on glucose uptake in adipose tissue, as well as to characterize the effects of this compound on intestinal disaccharidases and advanced glycation end-products (AGEs) formation. Camphoryl-benzene sulfonamide (CS) was able to stimulate glucose uptake in isolated adipocytes, adipose tissue, and in soleus muscle. The stimulatory effect of the compound (10 μM) on glucose uptake on adipose tissue was blocked by diazoxide, wortmannin, U73122, colchicine, and N-ethylmaleimide. On the other hand, the effects of CS were not blocked by glibenclamide, an inhibitor of the K+ -ATP channel, or even by the inhibitor of protein p38 MAPK, SB 203580. In vivo, this compound reduced intestinal disaccharidase activity, while, in vitro, CS reduced the formation of AGEs at 7, 14, and 28 days of incubation. The stimulatory effect of CS on glucose uptake requires the activation of the K+ -ATP channel, translocation, and fusion of GLUT4 vesicles to the plasma membrane on adipocytes for glucose homeostasis. In addition, the inhibition of disaccharidase activity contributes to the glucose homeostasis in a short-term as well as the remarkable reduction in AGE formation indicates that the CS may prevent of complications of late diabetes.
Collapse
Affiliation(s)
- Marisa J S Frederico
- Departamento de Bioquímica-Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Allisson J G Castro
- Departamento de Bioquímica-Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Veronica A M Pinto
- Departamento de Anatomia, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane D F Ramos
- Departamento de Anatomia, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabíola B F Monteiro
- Departamento de Análises Clínicas-Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Brazil
| | - Alessandra Mascarello
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Campus Universitário, Bairro Trindade, Florianópolis, Santa Catarina, Brazil
| | - Ricardo J Nunes
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Campus Universitário, Bairro Trindade, Florianópolis, Santa Catarina, Brazil
| | - Fátima R M B Silva
- Departamento de Bioquímica-Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
7
|
Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T, Johnson AMF, Sears D, Shen Z, Cui B, Kong L, Hou S, Liang X, Iovino S, Watkins SM, Ying W, Osborn O, Wollam J, Brenner M, Olefsky JM. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 2017; 167:973-984.e12. [PMID: 27814523 DOI: 10.1016/j.cell.2016.10.025] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/08/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
In obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice. In vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and 3T3-L1 adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Importantly, we found that Gal3 can bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidate a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach to treat insulin resistance.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Min Lu
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Diabetes Early Discovery, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Gautum Bandyopadhyay
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dayoung Oh
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Takeshi Imamura
- Pharmacology, Department of Medicine, Shiga University of Medical Science, 1 Tsukinowa, Seta, Otsu-city, Shiga 520-2192, Japan
| | - Andrew M F Johnson
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dorothy Sears
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiao Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Salvatore Iovino
- Diabetes Early Discovery, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Wei Ying
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joshua Wollam
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Martin Brenner
- Diabetes Early Discovery, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Örndal C, Marcickiewicz J, Nilsson S, Hörnquist M, Olsson B, Ejeskär K, Behboudi A. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS One 2016; 11:e0164063. [PMID: 27716847 PMCID: PMC5055341 DOI: 10.1371/journal.pone.0164063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/18/2016] [Indexed: 12/12/2022] Open
Abstract
Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition.
Collapse
Affiliation(s)
- Kittichate Visuttijai
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Jennifer Pettersson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Yashar Mehrbani Azar
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
| | - Iman van den Bout
- Department of physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Charlotte Örndal
- Department of Pathology, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Janusz Marcickiewicz
- Department of Obstetrics and Gynecology, Halland Hospital Varberg, SE- 432 37, Varberg, Sweden
| | - Staffan Nilsson
- Institute of Mathematical Statistics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Michael Hörnquist
- Department of Science and Technology, University of Linköping, ITN, SE-601 74, Norrköping, Sweden
| | - Björn Olsson
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
| | - Katarina Ejeskär
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
| | - Afrouz Behboudi
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
- * E-mail:
| |
Collapse
|
9
|
Abstract
Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications.
Collapse
Affiliation(s)
- Betsy B McIntosh
- Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - E Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| |
Collapse
|
10
|
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 2015; 16:8. [PMID: 25651499 PMCID: PMC4301800 DOI: 10.1186/s13059-014-0569-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0569-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
12
|
Oh MJ, Yi SJ, Kim HS, Kim JH, Jeong YH, van Agthoven T, Jhun BH. Functional roles of BCAR3 in the signaling pathways of insulin leading to DNA synthesis, membrane ruffling and GLUT4 translocation. Biochem Biophys Res Commun 2013; 441:911-6. [PMID: 24216110 DOI: 10.1016/j.bbrc.2013.10.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/28/2022]
Abstract
Breast cancer anti-estrogen resistance 3 (BCAR3) is an SH2-containing signal transducer and is implicated in tumorigenesis of breast cancer cells. In this study, we found that BCAR3 mediates the induction of ERK activation and DNA synthesis by insulin, but not by IGF-1. Specifically, the SH2 domain of BCAR3 is involved in insulin-stimulated DNA synthesis. Differential tyrosine-phosphorylated patterns of the BCAR3 immune complex were detected in insulin and IGF-1 signaling, suggesting that BCAR3 is a distinct target molecule of insulin and IGF-1 signaling. Moreover, microinjection of BCAR3 inhibitory materials inhibited membrane ruffling induced by insulin, while this did not affect insulin-mediated GLUT4 translocation. Taken together, these results demonstrated that BCAR3 plays an important role in the signaling pathways of insulin leading to cell cycle progression and cytoskeleton reorganization, but not GLUT4 translocation.
Collapse
Affiliation(s)
- Myung-Ju Oh
- Clinical Trials Management Division, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety, Cheongwon, Chungbuk 363-700, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes. PLoS One 2013. [PMID: 23951179 DOI: 10.1371//journal.pone.0071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects on lipolysis. These studies suggest that TSA, through down-regulating PPARγ, attenuates TZD-mediated suppression of TNFα-induced ERK phosphorylation and lipolysis in adipocytes.
Collapse
|
14
|
Lu JC, Chang YT, Wang CT, Lin YC, Lin CK, Wu ZS. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes. PLoS One 2013; 8:e71517. [PMID: 23951179 PMCID: PMC3739734 DOI: 10.1371/journal.pone.0071517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects on lipolysis. These studies suggest that TSA, through down-regulating PPARγ, attenuates TZD-mediated suppression of TNFα-induced ERK phosphorylation and lipolysis in adipocytes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
15
|
Cazarolli LH, Pereira DF, Kappel VD, Folador P, Figueiredo MDSRB, Pizzolatti MG, Silva FRMB. Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. Eur J Pharmacol 2013; 712:1-7. [DOI: 10.1016/j.ejphar.2013.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/27/2022]
|
16
|
Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Zamoner A, Reginatto FH, Silva FRMB. Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J Pharm Pharmacol 2013; 65:1179-86. [DOI: 10.1111/jphp.12066] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/06/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Objectives
The aim of this study was to investigate the in-vitro effect of rutin on glucose uptake in an insulin target (soleus muscle) and the mechanism of action involved.
Methods
Isolated soleus muscles from rats were treated with rutin (500 μm) with or without the following inhibitors; hydroxy-2-naphthalenylmethylphosphonic acid trisacetoxymethyl ester (HNMPA(AM)3), an insulin receptor tyrosine kinase activity inhibitor, wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C, colchicine, a microtubule-depolymerizing agent, PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK), and cycloheximide, an inhibitor of protein synthesis on fresh Krebs Ringer-bicarbonate plus [U-14C]-2-deoxy-d-glucose (0.1 μCi/ml). Samples of tissue medium were used for the radioactivity measurements.
Key findings
Rutin increased the glucose uptake in rat soleus muscle. In addition, the effect of rutin on glucose uptake was completely inhibited by pretreatment with HNMPA(AM)3, wortmannin, RO318220, colchicine, PD98059, and cycloheximide. These results suggested that rutin stimulated glucose uptake in the rat soleus muscle via the PI3K, atypical protein kinase C and mitogen-activated protein kinase (MAPK) pathways. Also, rutin may have influenced glucose transporter translocation and may have directly activated the synthesis of the transporter GLUT-4.
Conclusion
The similarities of rutin action on glucose uptake compared with the signalling pathways of insulin constitute strong evidence for the insulin-mimetic role of rutin in glucose homeostasis.
Collapse
Affiliation(s)
- Virginia Demarchi Kappel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luisa Helena Cazarolli
- Campus Universitário Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Laranjeiras do Sul, Brazil
| | - Danielle Fontana Pereira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bárbara Graziela Postal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Flávio Henrique Reginatto
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
17
|
Renes J, Mariman E. Application of proteomics technology in adipocyte biology. MOLECULAR BIOSYSTEMS 2013; 9:1076-91. [PMID: 23629546 DOI: 10.1039/c3mb25596d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity and its associated complications have reached epidemic proportions in Western-type societies. Concomitantly, the obesity incidence in developing countries is increasing. One hallmark of obesity is the differentiation of pre-adipocytes into mature triglyceride-loaded adipocytes present in subcutaneous and visceral adipose tissue depots. This may ultimately lead to dysfunctional adipose tissue together with detrimental changes in the profiles of (pre-)adipocyte-secreted proteins, known as adipokines. Obesity-induced alterations in adipokine profiles contribute to the development of obesity-associated disorders. Consequently, the interest in the molecular events responsible for adipose tissue modifications during weight gain and weight loss as well as in the aetiology of obesity-associated disorders is growing. Molecular mechanisms involved in pre-adipocyte differentiation and alterations in adipokine profiles have been examined at the gene and protein level by high-throughput technologies. Independent proteomics studies have contributed significantly to further insight into adipocyte biology, particularly with respect to adipokine profiling. In this review novel findings obtained with adipo-proteomics studies are highlighted and the relevance of proteomics technologies to further understand molecular aspects of adipocyte biology is discussed.
Collapse
Affiliation(s)
- Johan Renes
- Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
18
|
Langlais P, Dillon JL, Mengos A, Baluch DP, Ardebili R, Miranda DN, Xie X, Heckmann BL, Liu J, Mandarino LJ. Identification of a role for CLASP2 in insulin action. J Biol Chem 2012; 287:39245-53. [PMID: 22992739 DOI: 10.1074/jbc.m112.394148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates the mobilization of glucose transporter 4 (GLUT4) storage vesicles to the plasma membrane, resulting in an influx of glucose into target tissues such as muscle and fat. We present evidence that CLIP-associating protein 2 (CLASP2), a protein previously unassociated with insulin action, is responsive to insulin stimulation. Using mass spectrometry-based protein identification combined with phosphoantibody immunoprecipitation in L6 myotubes, we detected a 4.8-fold increase of CLASP2 in the anti-phosphoserine immunoprecipitates upon insulin stimulation. Western blotting of CLASP2 immunoprecipitates with the phosphoantibody confirmed the finding that CLASP2 undergoes insulin-stimulated phosphorylation, and a number of novel phosphorylation sites were identified. Confocal imaging of L6 myotubes revealed that CLASP2 colocalizes with GLUT4 at the plasma membrane within areas of insulin-mediated cortical actin remodeling. CLASP2 is responsible for directing the distal end of microtubules to the cell cortex, and it has been shown that GLUT4 travels along microtubule tracks. In support of the concept that CLASP2 plays a role in the trafficking of GLUT4 at the cell periphery, CLASP2 knockdown by siRNA in L6 myotubes interfered with insulin-stimulated GLUT4 localization to the plasma membrane. Furthermore, siRNA mediated knockdown of CLASP2 in 3T3-L1 adipocytes inhibited insulin-stimulated glucose transport. We therefore propose a new model for CLASP2 in insulin action, where CLASP2 directs the delivery of GLUT4 to cell cortex landing zones important for insulin action.
Collapse
Affiliation(s)
- Paul Langlais
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules. PLoS One 2012; 7:e43662. [PMID: 22916292 PMCID: PMC3423385 DOI: 10.1371/journal.pone.0043662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/23/2012] [Indexed: 12/25/2022] Open
Abstract
In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.
Collapse
|
20
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
21
|
The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Res 2012; 22:1246-57. [PMID: 22473005 PMCID: PMC3411167 DOI: 10.1038/cr.2012.52] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.
Collapse
|
22
|
Nazari H, Khaleghian A, Takahashi A, Harada N, Webster NJG, Nakano M, Kishi K, Ebina Y, Nakaya Y. Cortactin, an actin binding protein, regulates GLUT4 translocation via actin filament remodeling. BIOCHEMISTRY (MOSCOW) 2012; 76:1262-9. [PMID: 22117553 DOI: 10.1134/s0006297911110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.
Collapse
Affiliation(s)
- H Nazari
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci 2011; 68:2525-38. [PMID: 21547502 PMCID: PMC3134709 DOI: 10.1007/s00018-011-0690-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/01/2011] [Accepted: 04/12/2011] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.
Collapse
|
24
|
Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011; 50:3048-61. [PMID: 21405107 DOI: 10.1021/bi2000356] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.
Collapse
Affiliation(s)
- Kevin Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M4G 1X8, Canada
| | | | | |
Collapse
|
25
|
Hirata Y, Hosaka T, Iwata T, Le CT, Jambaldorj B, Teshigawara K, Harada N, Sakaue H, Sakai T, Yoshimoto K, Nakaya Y. Vimentin binds IRAP and is involved in GLUT4 vesicle trafficking. Biochem Biophys Res Commun 2011; 405:96-101. [DOI: 10.1016/j.bbrc.2010.12.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/31/2010] [Indexed: 01/16/2023]
|
26
|
Toyoda T, An D, Witczak CA, Koh HJ, Hirshman MF, Fujii N, Goodyear LJ. Myo1c regulates glucose uptake in mouse skeletal muscle. J Biol Chem 2010; 286:4133-40. [PMID: 21127070 DOI: 10.1074/jbc.m110.174938] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contraction and insulin promote glucose uptake in skeletal muscle through GLUT4 translocation to cell surface membranes. Although the signaling mechanisms leading to GLUT4 translocation have been extensively studied in muscle, the cellular transport machinery is poorly understood. Myo1c is an actin-based motor protein implicated in GLUT4 translocation in adipocytes; however, the expression profile and role of Myo1c in skeletal muscle have not been investigated. Myo1c protein abundance was higher in more oxidative skeletal muscles and heart. Voluntary wheel exercise (4 weeks, 8.2 ± 0.8 km/day), which increased the oxidative profile of the triceps muscle, significantly increased Myo1c protein levels by ∼2-fold versus sedentary controls. In contrast, high fat feeding (9 weeks, 60% fat) significantly reduced Myo1c by 17% in tibialis anterior muscle. To study Myo1c regulation of glucose uptake, we expressed wild-type Myo1c or Myo1c mutated at the ATPase catalytic site (K111A-Myo1c) in mouse tibialis anterior muscles in vivo and assessed glucose uptake in vivo in the basal state, in response to 15 min of in situ contraction, and 15 min following maximal insulin injection (16.6 units/kg of body weight). Expression of wild-type Myo1c or K111A-Myo1c had no effect on basal glucose uptake. However, expression of wild-type Myo1c significantly increased contraction- and insulin-stimulated glucose uptake, whereas expression of K111A-Myo1c decreased both contraction-stimulated and insulin-stimulated glucose uptake. Neither wild-type nor K111A-Myo1c expression altered GLUT4 expression, and neither affected contraction- or insulin-stimulated signaling proteins. Myo1c is a novel mediator of both insulin-stimulated and contraction-stimulated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Taro Toyoda
- Section on Integrative Physiology and Metabolism, the Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Imamura T. [Evaluation of insulin-induced GLUT4 vesicle transport and insulin resistance]. Nihon Yakurigaku Zasshi 2010; 136:225-228. [PMID: 20948159 DOI: 10.1254/fpj.136.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
28
|
Cazarolli LH, Folador P, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB. Mechanism of action of the stimulatory effect of apigenin-6-C-(2''-O-alpha-l-rhamnopyranosyl)-beta-L-fucopyranoside on 14C-glucose uptake. Chem Biol Interact 2008; 179:407-12. [PMID: 19070612 DOI: 10.1016/j.cbi.2008.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in hypoglycemic agents from natural products, particularly those derived from plants. Flavonoids are naturally occurring phenolic compounds with a broad range of biological activities and the beneficial effects of flavonoids have been studied in relation to diabetes mellitus, either through their capacity to avoid glucose absorption or to improve glucose tolerance. The purpose of this study was to investigate the mechanism of action of the stimulatory effect of apigenin-6-C-(2''-O-alpha-L-rhamnopyranosyl)-beta-L-fucopyranoside (1), isolated from Averrhoa carambola L. (Oxalidaceae) leaves, on (14)C-glucose uptake. This compound (1) was found to have an acute effect on blood glucose lowering in diabetic rats and stimulated glucose-induced insulin secretion after oral treatment in hyperglycemic rats. A significant stimulatory effect of compound 1 on (14)C-glucose uptake was observed at 50 and 100 microM. The effect of compound 1 on glucose uptake was completely nullified by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C (PKC), PD98059, a specific inhibitor of mitogen-activated protein kinase (MEK), cycloheximide, an inhibitor of protein synthesis, and colchicine, a microtubule-depolymerizing agent. Compound 1 (100 microM) and insulin (10 nM) did not show any synergistic effect on glucose uptake. These results suggest that the flavonoid may have a dual target of action, as an insulin-secretagogue and also as an insulin-mimetic agent.
Collapse
Affiliation(s)
- Luisa Helena Cazarolli
- Departamento de Bioquímica, Centro de Ciências Biológicas, UFSC, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970 Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Yip MF, Ramm G, Larance M, Hoehn KL, Wagner MC, Guilhaus M, James DE. CaMKII-mediated phosphorylation of the myosin motor Myo1c is required for insulin-stimulated GLUT4 translocation in adipocytes. Cell Metab 2008; 8:384-98. [PMID: 19046570 DOI: 10.1016/j.cmet.2008.09.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/02/2008] [Accepted: 09/19/2008] [Indexed: 11/26/2022]
Abstract
The unconventional myosin Myo1c has been implicated in insulin-regulated GLUT4 translocation to the plasma membrane in adipocytes. We show that Myo1c undergoes insulin-dependent phosphorylation at S701. Phosphorylation was accompanied by enhanced 14-3-3 binding and reduced calmodulin binding. Recombinant CaMKII phosphorylated Myo1c in vitro and siRNA knockdown of CaMKIIdelta abolished insulin-dependent Myo1c phosphorylation in vivo. CaMKII activity was increased upon insulin treatment and the CaMKII inhibitors CN21 and KN-62 or the Ca(2+) chelator BAPTA-AM blocked insulin-dependent Myo1c phosphorylation and insulin-stimulated glucose transport in adipocytes. Myo1c ATPase activity was increased after CaMKII phosphorylation in vitro and after insulin stimulation of CHO/IR/IRS-1 cells. Expression of wild-type Myo1c, but not S701A or ATPase dead mutant K111A, rescued the inhibition of GLUT4 translocation by siRNA-mediated Myo1c knockdown. These data suggest that insulin regulates Myo1c function via CaMKII-dependent phosphorylation, and these events play a role in insulin-regulated GLUT4 trafficking in adipocytes likely involving Myo1c motor activity.
Collapse
Affiliation(s)
- Ming Fai Yip
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Bisht B, Dey CS. Focal Adhesion Kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol 2008; 9:48. [PMID: 18771597 PMCID: PMC2551595 DOI: 10.1186/1471-2121-9-48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 09/04/2008] [Indexed: 01/04/2023] Open
Abstract
Background Focal Adhesion Kinase (FAK) is recently reported to regulate insulin resistance by regulating glucose uptake in C2C12 skeletal muscle cells. However, the underlying mechanism for FAK-mediated glucose transporter-4 translocation (Glut-4), responsible for glucose uptake, remains unknown. Recently actin remodeling was reported to be essential for Glut-4 translocation. Therefore, we investigated whether FAK contributes to insulin-induced actin remodeling and harbor Glut-4 for glucose transport and whether downregulation of FAK affects the remodeling and causes insulin resistance. Results To address the issue we employed two approaches: gain of function by overexpressing FAK and loss of function by siRNA-mediated silencing of FAK. We observed that overexpression of FAK induces actin remodeling in skeletal muscle cells in presence of insulin. Concomitant to this Glut-4 molecules were also observed to be present in the vicinity of remodeled actin, as indicated by the colocalization studies. FAK-mediated actin remodeling resulted into subsequent glucose uptake via PI3K-dependent pathway. On the other hand FAK silencing reduced actin remodeling affecting Glut-4 translocation resulting into insulin resistance. Conclusion The data confirms that FAK regulates glucose uptake through actin reorganization in skeletal muscle. FAK overexpression supports actin remodeling and subsequent glucose uptake in a PI3K dependent manner. Inhibition of FAK prevents insulin-stimulated remodeling of actin filaments resulting into decreased Glut-4 translocation and glucose uptake generating insulin resistance. To our knowledge this is the first study relating FAK, actin remodeling, Glut-4 translocation and glucose uptake and their interrelationship in generating insulin resistance.
Collapse
Affiliation(s)
- Bharti Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India.
| | | |
Collapse
|
31
|
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Exp Cell Res 2008; 314:3264-74. [PMID: 18773891 DOI: 10.1016/j.yexcr.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 01/15/2023]
Abstract
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.
Collapse
|
32
|
Jiang X, Kenerson H, Aicher L, Miyaoka R, Eary J, Bissler J, Yeung RS. The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1748-56. [PMID: 18511518 DOI: 10.2353/ajpath.2008.070958] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cancers often display an avidity for glucose, a feature that is exploited in clinical staging and response monitoring by using (18)F-fluoro-deoxyglucose (FDG) positron emission tomography. Determinants of FDG accumulation include tumor blood flow, glucose transport, and glycolytic rate, but the underlying molecular mechanisms are incompletely understood. The phosphoinositide-3 kinase/Akt/mammalian target of rapamycin complex (mTORC) 1 pathway has been implicated in this process via the hypoxia-inducible factor alpha-dependent expression of vascular endothelial growth factor and glycolytic enzymes. Thus, we predicted that tumors with elevated mTORC1 activity would be accompanied by high FDG uptake. We tested this hypothesis in eight renal angiomyolipomas in which the loss of tuberous sclerosis complex (TSC) 1/2 function gave rise to constitutive mTORC1 activation. Surprisingly, these tumors displayed low FDG uptake on positron emission tomography. Exploring the underlying mechanisms in vitro revealed that Tsc2 regulates the membrane localization of the glucose transporter proteins (Glut)1, Glut2, and Glut4, and, therefore, glucose uptake. Down-regulation of cytoplasmic linker protein 170, an mTOR effector, rescued Glut4 trafficking in Tsc2(-/-) cells, whereas up-regulation of Akt activity in these cells was insufficient to redistribute Glut4 to the plasma membrane. The effect of mTORC1 on glucose uptake was confirmed using a liver-specific Tsc1- deletion mouse model in which FDG uptake was reduced in the livers of mutant mice compared with wild-type controls. Together, these data show that mTORC1 activity is insufficient for increased glycolysis in tumors and that constitutive mTOR activity negatively regulates glucose transporter trafficking.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Surgery, Box 356410, University of Washington, 1959 NE Pacific, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|
34
|
Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR. Activation of RalA Is Required for Insulin-Stimulated Glut4 Trafficking to the Plasma Membrane via the Exocyst and the Motor Protein Myo1c. Dev Cell 2007; 13:391-404. [PMID: 17765682 DOI: 10.1016/j.devcel.2007.07.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/06/2007] [Accepted: 07/18/2007] [Indexed: 12/25/2022]
Abstract
Insulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes. Insulin stimulates the activity of RalA in a PI 3-kinase-dependent manner. Disruption of RalA function by dominant-negative mutants or siRNA-mediated knockdown attenuates insulin-stimulated glucose transport. RalA also interacts with Myo1c, a molecular motor implicated in Glut4 trafficking. This interaction is modulated by Calmodulin, which functions as the light chain for Myo1c during insulin-stimulated glucose uptake. Thus, RalA serves two functions in insulin action: as a cargo receptor for the Myo1c motor, and as a signal for the unification of the exocyst to target Glut4 vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Vuong T, Martineau LC, Ramassamy C, Matar C, Haddad PS. Fermented Canadian lowbush blueberry juice stimulates glucose uptake and AMP-activated protein kinase in insulin-sensitive cultured muscle cells and adipocytesThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products. Can J Physiol Pharmacol 2007; 85:956-65. [DOI: 10.1139/y07-090] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracts of the Canadian lowbush blueberry ( Vaccinium angustifolium Ait.) have recently been demonstrated to possess significant antidiabetic potential, in accordance with the traditional use of this plant as an antidiabetic natural health product. Fermentation of blueberry juice with the Serratia vaccinii bacterium is known to modify the phenolic content and increase antioxidant activity. The present study evaluated the effects of fermented blueberry juice on glucose uptake, adipogenesis, and the signaling pathways that regulate glucose transport in muscle cells and adipocytes. A 6-hour treatment with fermented juice potentiated glucose uptake by 48% in C2C12 myotubes and by 142% in 3T3-L1 adipocytes, in the presence or absence of insulin, whereas nonfermented juice had no effect on transport. Fermented juice dramatically inhibited triglyceride content during adipogenesis of 3T3-L1 cells. Chlorogenic acid and gallic acid, both major phenolic components of fermented juice, had no effect on glucose uptake. Western blot analysis of the insulin-independent AMP-activated protein kinase revealed increased phosphorylation resulting from a 6-hour treatment. This activation or the increase in glucose uptake could not be explained by increased cytosolic calcium. Fermentation with S. vaccinii is concluded to confer antidiabetic activities to blueberry juice. Although the active principles and their mechanisms of action remain to be identified, transformed blueberry juice may nevertheless represent a novel complementary therapy and a source of novel therapeutic agents against diabetes mellitus.
Collapse
Affiliation(s)
- Tri Vuong
- Department of Pharmacology, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Institut des nutraceutiques et des aliments fonctionnels, Université Laval, Québec, QC G1K 7P4, Canada
- Institut Armand-Frappier, Institut National de Recherche Scientifique, Pointe Claire, QC H9R 1G6, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Louis C. Martineau
- Department of Pharmacology, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Institut des nutraceutiques et des aliments fonctionnels, Université Laval, Québec, QC G1K 7P4, Canada
- Institut Armand-Frappier, Institut National de Recherche Scientifique, Pointe Claire, QC H9R 1G6, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Charles Ramassamy
- Department of Pharmacology, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Institut des nutraceutiques et des aliments fonctionnels, Université Laval, Québec, QC G1K 7P4, Canada
- Institut Armand-Frappier, Institut National de Recherche Scientifique, Pointe Claire, QC H9R 1G6, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Chantal Matar
- Department of Pharmacology, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Institut des nutraceutiques et des aliments fonctionnels, Université Laval, Québec, QC G1K 7P4, Canada
- Institut Armand-Frappier, Institut National de Recherche Scientifique, Pointe Claire, QC H9R 1G6, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Pierre S. Haddad
- Department of Pharmacology, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada
- Institut des nutraceutiques et des aliments fonctionnels, Université Laval, Québec, QC G1K 7P4, Canada
- Institut Armand-Frappier, Institut National de Recherche Scientifique, Pointe Claire, QC H9R 1G6, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
36
|
Liu XJ, Yang C, Gupta N, Zuo J, Chang YS, Fang FD. Protein kinase C-zeta regulation of GLUT4 translocation through actin remodeling in CHO cells. J Mol Med (Berl) 2007; 85:851-61. [PMID: 17619838 DOI: 10.1007/s00109-007-0232-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/25/2007] [Accepted: 05/31/2007] [Indexed: 01/08/2023]
Abstract
Actin remodeling plays a crucial role in insulin-induced translocation of glucose transporter 4 (GLUT4) from the cytoplasm to the plasma membrane and subsequent glucose transport. Protein kinase C (PKC) zeta has been implicated in this translocation process, although the exact mechanism remains unknown. In this study, we investigated the effect of PKCzeta on actin cytoskeleton and translocation of GLUT4 in CHO-K1 cells expressing myc-tagged GLUT4. Insulin stimulated the phosphorylation of PKCzeta at Thr410 with no apparent effect on its protein expression. Moreover, insulin promoted colocalization of PKCzeta and actin that could be abolished by Latrunculin B. The overexpression of PKCzeta mimicked the insulin-induced change in actin cytoskeleton and translocation of GLUT4. These effects were also completely abrogated by Latrunculin B treatment. Using cell-permeable pseudosubstrate (PS) inhibitor of PKCzeta, the response to insulin could be alleviated. Our results strongly suggest that PKCzeta mediates the stimulatory effect of insulin on GLUT4 translocation through its interaction with actin cytoskeleton.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
37
|
Xu YK, Xu KD, Li JY, Feng LQ, Lang D, Zheng XX. Bi-directional transport of GLUT4 vesicles near the plasma membrane of primary rat adipocytes. Biochem Biophys Res Commun 2007; 359:121-8. [PMID: 17532293 DOI: 10.1016/j.bbrc.2007.05.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/05/2023]
Abstract
Insulin stimulates glucose uptake into adipocytes by mobilizing intracellular membrane vesicles containing GLUT4 proteins to the plasma membrane. Here we applied time-lapse total internal reflection fluorescence microscopy to study moving parameters and characters of exogenously expressed GLUT4 vesicles in basal, insulin and nocodazole treated primary rat adipocytes. Our results showed that microtubules were essential for long-range transport of GLUT4 vesicles but not obligatory for GLUT4 distribution in rat adipocytes. Insulin reduced the mobility of the vesicles, made them tethered/docked to the PM and finally had constitutive exocytosis. Moreover, long-range bi-directional movements of GLUT4 vesicles were visualized for the first time by TIRFM. It is likely that there are interactions between insulin signaling and microtubules, to regulating GLUT4 translocation in rat adipocytes.
Collapse
Affiliation(s)
- Ying-Ke Xu
- Key Laboratory for Biomedical Engineering of Ministry of China, Department of Biomedical Engineering, Zhejiang University, Zhejiang 310027, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM. Myosin 5a is an insulin-stimulated Akt2 (protein kinase Bbeta) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 2007; 27:5172-83. [PMID: 17515613 PMCID: PMC1951956 DOI: 10.1128/mcb.02298-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase activation of Akt signaling is critical to insulin-stimulated glucose transport and GLUT4 translocation. However, the downstream signaling events following Akt activation which mediate glucose transport stimulation remain relatively unknown. Here we identify an Akt consensus phosphorylation motif in the actin-based motor protein myosin 5a and show that insulin stimulation leads to phosphorylation of myosin 5a at serine 1650. This Akt-mediated phosphorylation event enhances the ability of myosin 5a to interact with the actin cytoskeleton. Small interfering RNA-induced inhibition of myosin 5a and expression of dominant-negative myosin 5a attenuate insulin-stimulated glucose transport and GLUT4 translocation. Furthermore, knockdown of Akt2 or expression of dominant-negative Akt (DN-Akt) abolished insulin-stimulated phosphorylation of myosin 5a, inhibited myosin 5a binding to actin, and blocked insulin-stimulated glucose transport. Taken together, these data indicate that myosin 5a is a newly identified direct substrate of Akt2 and, upon insulin stimulation, phosphorylated myosin 5a facilitates anterograde movement of GLUT4 vesicles along actin to the cell surface.
Collapse
Affiliation(s)
- Takeshi Yoshizaki
- Department of Medicine (0673), University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0673, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bai L, Wang Y, Fan J, Chen Y, Ji W, Qu A, Xu P, James DE, Xu T. Dissecting multiple steps of GLUT4 trafficking and identifying the sites of insulin action. Cell Metab 2007; 5:47-57. [PMID: 17189206 DOI: 10.1016/j.cmet.2006.11.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/17/2006] [Accepted: 11/17/2006] [Indexed: 01/24/2023]
Abstract
Insulin-stimulated GLUT4 translocation is central to glucose homeostasis. Functional assays to distinguish individual steps in the GLUT4 translocation process are lacking, thus limiting progress toward elucidation of the underlying molecular mechanism. Here we have developed a robust method, which relies on dynamic tracking of single GLUT4 storage vesicles (GSVs) in real time, for dissecting and systematically analyzing the docking, priming, and fusion steps of GSVs with the cell surface in vivo. Using this method, we have shown that the preparation of GSVs for fusion competence after docking at the surface is a key step regulated by insulin, whereas the docking step is regulated by PI3K and its downstream effector, the Rab GAP AS160. These data show that Akt-dependent phosphorylation of AS160 is not the major regulated step in GLUT4 trafficking, implicating alternative Akt substrates or alternative signaling pathways downstream of GSV docking at the cell surface as the major regulatory node.
Collapse
Affiliation(s)
- Li Bai
- Joint Laboratory of Institute of Biophysics and Huazhong University of Science and Technology, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eyster CA, Duggins QS, Gorbsky GJ, Olson AL. Microtubule network is required for insulin signaling through activation of Akt/protein kinase B: evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility. J Biol Chem 2006; 281:39719-27. [PMID: 17068336 DOI: 10.1074/jbc.m607101200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule network has been shown to be required for insulin-dependent GLUT4 redistribution; however, the precise molecular function has not been elucidated. In this article, we used fluorescence recovery after photobleaching (FRAP) to evaluate the role of microtubules in intracellular GLUT4 vesicle mobility. A comparison of the rate of fluorescence recovery (t((1/2))), and the maximum fluorescence recovered (F(max)) was made between basal and insulin-treated cells with or without nocodazole treatment to disrupt microtubules. We found that intracellular mobility of fluorescently tagged GLUT4 (HA-GLUT4-GFP) was high in basal cells. Mobility was not increased by insulin treatment. Basal mobility was dependent upon an intact microtubule network. Using a constitutively active Akt to signal GLUT4 redistribution, we found that microtubule-based GLUT4 vesicle mobility was not obligatory for GLUT4 plasma membrane insertion. Our findings suggest that microtubules organize the insulin-signaling complex and provide a surface for basal mobility of GLUT4 vesicles. Our data do not support an obligatory requirement for long range microtubule-based movement of GLUT4 vesicles for insulin-mediated GLUT4 redistribution to the cell surface. Taken together, these findings suggest a model in which insulin signaling targets membrane docking and/or fusion rather than GLUT4 trafficking to the cell surface.
Collapse
Affiliation(s)
- Craig A Eyster
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
41
|
He A, Liu X, Liu L, Chang Y, Fang F. How many signals impinge on GLUT4 activation by insulin? Cell Signal 2006; 19:1-7. [PMID: 16919913 DOI: 10.1016/j.cellsig.2006.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 05/23/2006] [Indexed: 01/26/2023]
Abstract
GLUT4 is the main glucose transporter activated by insulin in skeletal muscle cells and adipocytes. GLUT4 storage vesicles (GSVs) traffic in endocytic and exocytic compartments. In the basal state, GLUT4 compartments are preferentially sequestered in perinuclear deposits wherein stimuli including insulin and non-insulin factors can increase GLUT4 vesicle formation, its exocytosis, and fusion to plasma membrane. In addition to well-established effectors of insulin signaling pathway, such as PKCzeta and Akt, the cytoskeletal network is implicated in GLUT4 translocation. This review will discuss the mechanisms and activation of GLUT4 trafficking and incorporating to PM from three aspects: known molecules of the insulin signaling pathway; Rho and Rab family proteins and cytoskeletal molecules.
Collapse
Affiliation(s)
- Aibin He
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | |
Collapse
|