1
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
2
|
Bircher JE, Corcoran EE, Lam TT, Trnka MJ, Koleske AJ. Autoinhibition of the GEF activity of cytoskeletal regulatory protein Trio is disrupted in neurodevelopmental disorder-related genetic variants. J Biol Chem 2022; 298:102361. [PMID: 35963430 PMCID: PMC9467883 DOI: 10.1016/j.jbc.2022.102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
TRIO encodes a cytoskeletal regulatory protein with three catalytic domains-two guanine exchange factor (GEF) domains, GEF1 and GEF2, and a kinase domain-as well as several accessory domains that have not been extensively studied. Function-damaging variants in the TRIO gene are known to be enriched in individuals with neurodevelopmental disorders (NDDs). Disease variants in the GEF1 domain or the nine adjacent spectrin repeats (SRs) are enriched in NDDs, suggesting that dysregulated GEF1 activity is linked to these disorders. We provide evidence here that the Trio SRs interact intramolecularly with the GEF1 domain to inhibit its enzymatic activity. We demonstrate that SRs 6-9 decrease GEF1 catalytic activity both in vitro and in cells and show that NDD-associated variants in the SR8 and GEF1 domains relieve this autoinhibitory constraint. Our results from chemical cross-linking and bio-layer interferometry indicate that the SRs primarily contact the pleckstrin homology region of the GEF1 domain, reducing GEF1 binding to the small GTPase Rac1. Together, our findings reveal a key regulatory mechanism that is commonly disrupted in multiple NDDs and may offer a new target for therapeutic intervention for TRIO-associated NDDs.
Collapse
Affiliation(s)
- Josie E. Bircher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ellen E. Corcoran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA,Keck MS & Proteomics Resource, Yale University, New Haven, Connecticut, USA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, USA
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA,Department of Neuroscience, Yale University, New Haven, Connecticut, USA,For correspondence: Anthony J. Koleske
| |
Collapse
|
3
|
Bandekar SJ, Chen CL, Ravala SK, Cash JN, Avramova LV, Zhalnina MV, Gutkind JS, Li S, Tesmer JJG. Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. J Biol Chem 2022; 298:102209. [PMID: 35779635 PMCID: PMC9372627 DOI: 10.1016/j.jbc.2022.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/20/2023] Open
Abstract
Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Chun-Liang Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Sandeep K Ravala
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer N Cash
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, USA
| | - Larisa V Avramova
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mariya V Zhalnina
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, San Diego, California, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
4
|
Grubisha MJ, DeGiosio RA, Wills ZP, Sweet RA. Trio and Kalirin as unique enactors of Rho/Rac spatiotemporal precision. Cell Signal 2022; 98:110416. [PMID: 35872089 DOI: 10.1016/j.cellsig.2022.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022]
Abstract
Rac1 and RhoA are among the most widely studied small GTPases. The classic dogma surrounding their biology has largely focused on their activity as an "on/off switch" of sorts. However, the advent of more sophisticated techniques, such as genetically-encoded FRET-based sensors, has afforded the ability to delineate the spatiotemporal regulation of Rac1 and RhoA. As a result, there has been a shift from this simplistic global view to one incorporating the precision of spatiotemporal modularity. This review summarizes emerging data surrounding the roles of Rac1 and RhoA as cytoskeletal regulators and examines how these new data have led to a revision of the traditional dogma which placed Rac1 and RhoA in antagonistic pathways. This more recent evidence suggests that rather than absolute activity levels, it is the tight spatiotemporal regulation of Rac1 and RhoA across multiple roles, from oppositional to complementary, that is necessary to execute coordinated cytoskeletal processes affecting cell structure, function, and migration. We focus on how Kalirin and Trio, as dual GEFs that target Rac1 and RhoA, are uniquely designed to provide the spatiotemporally-precise shifts in Rac/Rho balance which mediate changes in neuronal structure and function, particularly by way of cytoskeletal rearrangements. Finally, we review how alterations in Trio and/or Kalirin function are associated with cellular abnormalities and neuropsychiatric disease.
Collapse
Affiliation(s)
- M J Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z P Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Benjamin R, Giacoletto CJ, FitzHugh ZT, Eames D, Buczek L, Wu X, Newsome J, Han MV, Pearson T, Wei Z, Banerjee A, Brown L, Valente LJ, Shen S, Deng HW, Schiller MR. GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform. Genomics 2022; 114:110439. [PMID: 35905834 PMCID: PMC9420302 DOI: 10.1016/j.ygeno.2022.110439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the "GigaAssay", a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Christopher J Giacoletto
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Zachary T FitzHugh
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Jacklyn Newsome
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Mira V Han
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Tony Pearson
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, GITC 4214C, University Heights, Newark, NJ 07102, USA
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Lancer Brown
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Liz J Valente
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Shirley Shen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Hong-Wen Deng
- Center for Biomedical Informatics & Genomics Tulane University, 1440 Canal Street, Suite 1621, New Orleans, LA 70112, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA.
| |
Collapse
|
6
|
Nakano S, Nishikawa M, Kobayashi T, Harlin EW, Ito T, Sato K, Sugiyama T, Yamakawa H, Nagase T, Ueda H. The Rho guanine nucleotide exchange factor PLEKHG1 is activated by interaction with and phosphorylation by Src family kinase member FYN. J Biol Chem 2022; 298:101579. [PMID: 35031323 PMCID: PMC8819033 DOI: 10.1016/j.jbc.2022.101579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1.
Collapse
Affiliation(s)
- Shun Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Masashi Nishikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | | | - Eka Wahyuni Harlin
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Takuya Ito
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Sugiyama
- Faculty of Pharmacy, Gifu University of Medical Science, Kani, Gifu, Japan
| | | | | | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.
| |
Collapse
|
7
|
Abstract
The cognitive dysfunction experienced by patients with schizophrenia represents a major unmet clinical need. We believe that enhancing synaptic function and plasticity by targeting kalirin may provide a novel means to remediate these symptoms. Karilin (a protein encoded by the KALRN gene) has multiple functional domains, including two Dbl homology (DH) guanine exchange factor (GEF) domains, which act to enhance the activity of the Rho family guanosine triphosphate (GTP)-ases. Here, we provide an overview of kalirin's roles in brain function and its therapeutic potential in schizophrenia. We outline how it mediates diverse effects via a suite of distinct isoforms that couple to members of the Rho GTPase family to regulate synapse formation and stabilisation, and how genomic and post-mortem data implicate it in schizophrenia. We then review the current state of knowledge about the influence of kalirin on brain function at a systems level, based largely on evidence from transgenic mouse models, which support its proposed role in regulating dendritic spine function and plasticity. We demonstrate that, whilst the GTPases are classically considered to be 'undruggable', targeting kalirin and other Rho GEFs provides a means to indirectly modulate their activity. Finally, we integrate across the information presented to assess the therapeutic potential of kalirin for schizophrenia and highlight the key outstanding questions required to advance it in this capacity; namely, the need for more information about the diversity and function of its isoforms, how these change across neurodevelopment, and how they affect brain function in vivo.
Collapse
|
8
|
RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains. Neurosci Bull 2021; 38:249-262. [PMID: 34914033 PMCID: PMC8975900 DOI: 10.1007/s12264-021-00804-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/28/2021] [Indexed: 01/20/2023] Open
Abstract
The radial migration of cortical pyramidal neurons (PNs) during corticogenesis is necessary for establishing a multilayered cerebral cortex. Neuronal migration defects are considered a critical etiology of neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia, epilepsy, and intellectual disability (ID). TRIO is a high-risk candidate gene for ASDs and ID. However, its role in embryonic radial migration and the etiology of ASDs and ID are not fully understood. In this study, we found that the in vivo conditional knockout or in utero knockout of Trio in excitatory precursors in the neocortex caused aberrant polarity and halted the migration of late-born PNs. Further investigation of the underlying mechanism revealed that the interaction of the Trio N-terminal SH3 domain with Myosin X mediated the adherence of migrating neurons to radial glial fibers through regulating the membrane location of neuronal cadherin (N-cadherin). Also, independent or synergistic overexpression of RAC1 and RHOA showed different phenotypic recoveries of the abnormal neuronal migration by affecting the morphological transition and/or the glial fiber-dependent locomotion. Taken together, our findings clarify a novel mechanism of Trio in regulating N-cadherin cell surface expression via the interaction of Myosin X with its N-terminal SH3 domain. These results suggest the vital roles of the guanine nucleotide exchange factor 1 (GEF1) and GEF2 domains in regulating radial migration by activating their Rho GTPase effectors in both distinct and cooperative manners, which might be associated with the abnormal phenotypes in neurodevelopmental disorders.
Collapse
|
9
|
CDK14 Promotes Axon Regeneration by Regulating the Noncanonical Wnt Signaling Pathway in a Kinase-Independent Manner. J Neurosci 2021; 41:8309-8320. [PMID: 34429379 PMCID: PMC8496196 DOI: 10.1523/jneurosci.0711-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
The postinjury regenerative capacity of neurons is known to be mediated by a complex interaction of intrinsic regenerative pathways and external cues. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the nonmuscle myosin light chain-4 (MLC-4) phosphorylation signaling pathway. In this study, we have identified svh-16/cdk-14, a mammalian CDK14 homolog, as a positive regulator of axon regeneration in motor neurons. We then isolated the CDK-14-binding protein MIG-5/Disheveled (Dsh) and found that EGL-20/Wnt and the MIG-1/Frizzled receptor (Fz) are required for efficient axon regeneration. Further, we demonstrate that CDK-14 activates EPHX-1, the C. elegans homolog of the mammalian ephexin Rho-type GTPase guanine nucleotide exchange factor (GEF), in a kinase-independent manner. EPHX-1 functions as a GEF for the CDC-42 GTPase, inhibiting myosin phosphatase, which maintains MLC-4 phosphorylation. These results suggest that CDK14 activates the RhoGEF–CDC42–MLC phosphorylation axis in a noncanonical Wnt signaling pathway that promotes axon regeneration. SIGNIFICANCE STATEMENT Noncanonical Wnt signaling is mediated by Frizzled receptor (Fz), Disheveled (Dsh), Rho-type GTPase, and nonmuscle myosin light chain (MLC) phosphorylation. This study identified svh-16/cdk-14, which encodes a mammalian CDK14 homolog, as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that CDK-14 binds to MIG-5/Dsh, and that EGL-20/Wnt, MIG-1/Fz, and EPHX-1/RhoGEF are required for axon regeneration. The phosphorylation-mimetic MLC-4 suppressed axon regeneration defects in mig-1, cdk-14, and ephx-1 mutants. CDK-14 mediates kinase-independent activation of EPHX-1, which functions as a guanine nucleotide exchange factor for CDC-42 GTPase. Activated CDC-42 inactivates myosin phosphatase and thereby maintains MLC phosphorylation. Thus, the noncanonical Wnt signaling pathway controls axon regeneration via the CDK-14–EPHX-1–CDC-42–MLC phosphorylation axis.
Collapse
|
10
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
11
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Fu Y, He P, Zhou Y, Huang S, Liang L, Liu S. Exploring the systematic effect of
N
‐substituted PxxP motifs on peptoid affinity to ARHGEF5/TIM SH3 domain and its relationship with ARHGEF5/TIM activation. Proteins 2019; 87:979-991. [PMID: 31197859 DOI: 10.1002/prot.25760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Fu
- Department of Endocrine and Breast SurgeryThe First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Ping He
- Department of Cardiac SurgerySouthwest Hospital, Third Army Medical University Chongqing China
| | - Yu Zhou
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Shengyuan Huang
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Lin Liang
- Department of Cardiothoracic SurgeryDianjiang People's Hospital of Chongqing Chongqing China
| | - Shengchun Liu
- Department of Endocrine and Breast SurgeryThe First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
13
|
Eitzen G, Smithers CC, Murray AG, Overduin M. Structure and function of the Fgd family of divergent FYVE domain proteins. Biochem Cell Biol 2019; 97:257-264. [DOI: 10.1139/bcb-2018-0185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cameron C. Smithers
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Allan G. Murray
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
14
|
Sugino K, Clark E, Schulmann A, Shima Y, Wang L, Hunt DL, Hooks BM, Tränkner D, Chandrashekar J, Picard S, Lemire AL, Spruston N, Hantman AW, Nelson SB. Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. eLife 2019; 8:38619. [PMID: 30977723 PMCID: PMC6499542 DOI: 10.7554/elife.38619] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/11/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases, we provide an extensive resource for further investigation of mouse neuronal cell types.
Collapse
Affiliation(s)
- Ken Sugino
- Janelia Research CampusAshburnUnited States
| | | | | | | | - Lihua Wang
- Janelia Research CampusAshburnUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim K, Lee J, Moon H, Lee SA, Kim D, Yang S, Lee DH, Lee G, Park D. The Intermolecular Interaction of Ephexin4 Leads to Autoinhibition by Impeding Binding of RhoG. Cells 2018; 7:cells7110211. [PMID: 30445756 PMCID: PMC6262623 DOI: 10.3390/cells7110211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Ephexin4 is a guanine nucleotide-exchange factor (GEF) for RhoG and is involved in various RhoG-related cellular processes such as phagocytosis of apoptotic cells and migration of cancer cells. Ephexin4 forms an oligomer via an intermolecular interaction, and its GEF activity is increased in the presence of Elmo, an Ephexin4-interacting protein. However, it is uncertain if and how Ephexin4 is autoinhibited. Here, using an Ephexin4 mutant that abrogated the intermolecular interaction, we report that this interaction impeded binding of RhoG to Ephexin4 and thus inhibited RhoG activation. Mutation of the glutamate residue at position 295, which is a highly conserved residue located in the region of Ephexin4 required for the intermolecular interaction, to alanine (Ephexin4E295A) disrupted the intermolecular interaction and increased binding of RhoG, resulting in augmented RhoG activation. In addition, phagocytosis of apoptotic cells and formation of membrane ruffles were increased more by expression of Ephexin4E295A than by expression of wild-type Ephexin4. Taken together, our data suggest that Ephexin4 is autoinhibited through its intermolecular interaction, which impedes binding of RhoG.
Collapse
Affiliation(s)
- Kwanhyeong Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea.
| | - Juyeon Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea.
| | - Hyunji Moon
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea.
| | - Sang-Ah Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Deokhwan Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea.
| | - Susumin Yang
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Dae-Hee Lee
- Department of Oncology, College of Medicine, Korea University, Seoul 08308, Korea.
| | - Gwangrog Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Daeho Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
16
|
An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun 2017; 8:601. [PMID: 28928363 PMCID: PMC5605661 DOI: 10.1038/s41467-017-00472-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2017] [Indexed: 12/24/2022] Open
Abstract
The Rho guanine nucleotide exchange factor (RhoGEF) Trio promotes actin polymerization by directly activating the small GTPase Rac1. Recent studies suggest that autism spectrum disorder (ASD)-related behavioral phenotypes in animal models of ASD can be produced by dysregulation of Rac1’s control of actin polymerization at glutamatergic synapses. Here, in humans, we discover a large cluster of ASD-related de novo mutations in Trio’s Rac1 activating domain, GEF1. Our study reveals that these mutations produce either hypofunctional or hyperfunctional forms of Trio in rodent neurons in vitro. In accordance with pathological increases or decreases in glutamatergic neurotransmission observed in animal models of ASD, we find that these mutations result in either reduced synaptic AMPA receptor expression or enhanced glutamatergic synaptogenesis. Together, our findings implicate both excessive and reduced Trio activity and the resulting synaptic dysfunction in ASD-related pathogenesis, and point to the Trio-Rac1 pathway at glutamatergic synapses as a possible key point of convergence of many ASD-related genes. Trio is a RhoGEF protein that promotes actin polymerization and is implicated in the regulation of glutamatergic synapses in autism spectrum disorder (ASD). Here the authors identify a large cluster of de novo mutations in the GEF1 domain of Trio in whole-exome sequencing data from individuals with ASD, and confirm that some of these mutations lead to glutamatergic dysregulation in vitro.
Collapse
|
17
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Structure-based design of competitive ligands to target Spon2 in gastric cancer: An integration of molecular modeling and in vitro assay. Bioorg Chem 2017; 74:115-121. [PMID: 28772159 DOI: 10.1016/j.bioorg.2017.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022]
Abstract
Spon2 is a proto-oncogene matrix protein that plays an essential role in the tumorigenesis and metastasis of gastric cancer. The protein has recently been found to function as a guanine nucleotide exchange factor through the activation of RhoGTPase. Here, computational modeling and bioinformatics analysis were employed to investigate the molecular mechanism and biological implication underlying Spon2 autoinhibition. It is revealed that the binding of PxxP motif to SH domain can stabilize the intramolecular interaction between the N-terminal helix and DH domain of Spon2, thus shifting the protein into an autoinhibitory state. Here, we proposed releasing Spon2 autoinhibition by targeting SH domain with competitive peptide ligands. To verify this notion, the PxxP sequence was adopted as the start to derive an array of efficient SH binders by using a structure-based rational design strategy, which were then substantiated with fluorescence spectroscopy analysis and guanine nucleotide exchange test. Consequently, the obtained peptide ligands were determined to have a moderate or high affinity for SH domain; they can also enhance Spon2 exchange activity by 1.2-6.1 folds, exhibiting a significant correlation with their SH-binding affinity (Pearson's coefficient=0.92). In addition, neutral substitution of conserved residues in a high-affinity peptide ligand can largely reduce its Spon2-activating potency, confirming that the designed peptide activates Spon2 by competitively disrupting SH-PxxP interaction.
Collapse
|
19
|
Kim K, Lee J, Lee SA, Moon H, Park B, Kim D, Joo YE, Park D. Intermolecular steric inhibition of Ephexin4 is relieved by Elmo1. Sci Rep 2017; 7:4404. [PMID: 28667327 PMCID: PMC5493634 DOI: 10.1038/s41598-017-04810-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022] Open
Abstract
Ephexin4, a guanine nucleotide-exchange factor for RhoG, promotes engulfment of apoptotic cells and cancer cell migration in a RhoG-dependent manner, which is synergistically augmented by Elmo1, an Ephexin4-interacting protein. However, the underlying molecular mechanism remains elusive. Here, we report a mechanism by which Elmo1 cooperates with Ephexin4 to activate RhoG. We found that Ephexin4 activity was increased by elimination of its SH3 domain which intermolecularly interacts with the N20 region of Ephexin4. This interaction prevented RhoG from binding to Ephexin4 and thus inhibited RhoG activation. Moreover, we also found that Elmo1 associated with the SH3 domain as well as the N20 region and competed with the SH3 domain for binding to the N20 region, interrupting the interaction of the SH3 domain with the N20 region and thereby promoting RhoG binding to Ephexin4. In addition, the activity of Ephexin4 lacking the SH3 domain was comparable to that of Ephexin4 with Elmo1. Taken together, the data suggest that Elmo1 relieves the steric hindrance of Ephexin4 generated by the intermolecular interaction of the SH3 domain and makes Ephexin4 more accessible to RhoG.
Collapse
Affiliation(s)
- Kwanhyeong Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Juyeon Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Sang-Ah Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Boyeon Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Daeho Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea. .,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
20
|
Manring HR, Carter OA, Ackermann MA. Obscure functions: the location-function relationship of obscurins. Biophys Rev 2017; 9:245-258. [PMID: 28510116 DOI: 10.1007/s12551-017-0254-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022] Open
Abstract
The obscurin family of polypeptides is essential for normal striated muscle function and contributes to the pathogenesis of fatal diseases, including cardiomyopathies and cancers. The single mammalian obscurin gene, OBSCN, gives rise to giant (∼800 kDa) and smaller (∼40-500 kDa) proteins that are composed of tandem adhesion and signaling motifs. Mammalian obscurin proteins are expressed in a variety of cell types, including striated muscles, and localize to distinct subcellular compartments where they contribute to diverse cellular processes. Obscurin homologs in Caenorhabditis elegans and Drosophila possess a similar domain architecture and are also expressed in striated muscles. The long sought after question, "what does obscurin do?" is complex and cannot be addressed without taking into consideration the subcellular distribution of these proteins and local isoform concentration. Herein, we present an overview of the functions of obscurins and begin to define the intricate relationship between their subcellular distributions and functions in striated muscles.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Olivia A Carter
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). PLoS One 2015; 10:e0139095. [PMID: 26407304 PMCID: PMC4583397 DOI: 10.1371/journal.pone.0139095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Franziska Flick
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
22
|
The auto-inhibitory state of Rho guanine nucleotide exchange factor ARHGEF5/TIM can be relieved by targeting its SH3 domain with rationally designed peptide aptamers. Biochimie 2015; 111:10-8. [DOI: 10.1016/j.biochi.2015.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
|
23
|
Targeting rho guanine nucleotide exchange factor ARHGEF5/TIM with auto-inhibitory peptides in human breast cancer. Amino Acids 2015; 47:1239-46. [DOI: 10.1007/s00726-015-1950-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
|
24
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
25
|
Barreira M, Fabbiano S, Couceiro JR, Torreira E, Martínez-Torrecuadrada JL, Montoya G, Llorca O, Bustelo XR. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins. Sci Signal 2014; 7:ra35. [PMID: 24736456 DOI: 10.1126/scisignal.2004993] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vav proteins are phosphorylation-dependent guanine nucleotide exchange factors (GEFs) that catalyze the activation of members of the Rho family of guanosine triphosphatases (GTPases). The current regulatory model holds that the nonphosphorylated, catalytically inactive state of these GEFs is maintained by intramolecular interactions among the amino-terminal domains and the central catalytic core, which block the binding of Vav proteins to GTPases. We showed that this autoinhibition is mechanistically more complex, also involving the bivalent association of the carboxyl-terminal Src homology 3 (SH3) region of Vav with its catalytic and pleckstrin homology (PH) domains. Such interactions occurred through proline-rich region-independent mechanisms. Full release from this double-locked state required synergistic weakening effects from multiple phosphorylated tyrosine residues, thus providing an optimized system to generate gradients of Vav GEF activity depending on upstream signaling inputs. This mechanism is shared by mammalian and Drosophila melanogaster Vav proteins, suggesting that it may be a common regulatory feature for this protein family.
Collapse
Affiliation(s)
- María Barreira
- 1Centro de Investigación del Cáncer, Campus Unamuno, E37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Vishwanatha KS, Wang YP, Keutmann HT, Mains RE, Eipper BA. Structural organization of the nine spectrin repeats of Kalirin. Biochemistry 2012; 51:5663-73. [PMID: 22738176 DOI: 10.1021/bi300583s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequence analysis suggests that KALRN, a Rho GDP/GTP exchange factor genetically linked to schizophrenia, could contain as many as nine tandem spectrin repeats (SRs). We expressed and purified fragments of Kalirin containing from one to five putative SRs to determine whether they formed nested structures that could endow Kalirin with the flexible rodlike properties characteristic of spectrin and dystrophin. Far-UV circular dichroism studies indicated that Kalirin contains nine SRs. On the basis of thermal denaturation, sensitivity to chemical denaturants, and the solubility of pairs of repeats, the nine SRs of Kalirin form nested structures. Modeling studies confirmed this conclusion and identified an exposed loop in SR5; consistent with the modeling, this loop was extremely labile to proteolytic cleavage. Analysis of a direpeat fragment (SR4:5) encompassing the region of Kalirin known to interact with NOS2, DISC-1, PAM, and Arf6 identified this as the least stable region. Analytical ultracentrifugation indicated that SR1:3, SR4:6, and SR7:9 were monomers and adopted an extended conformation. Gel filtration suggested that ΔKal7, a natural isoform that includes SR5:9, was monomeric and was not more extended than SR5:9. Similarly, the nine SRs of Kal7, which was also monomeric, were not more extended than SR5:9. The rigidity and flexibility of the nine SRs of Kal7, which separate its essential N-terminal Sec14p domain from its catalytic domain, play an essential role in its contribution to the formation and function of dendritic spines.
Collapse
Affiliation(s)
- K S Vishwanatha
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
27
|
The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol Cell Biol 2012; 32:2467-78. [PMID: 22508986 DOI: 10.1128/mcb.06633-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.
Collapse
|
28
|
Johnson JM, Jin M, Lew DJ. Symmetry breaking and the establishment of cell polarity in budding yeast. Curr Opin Genet Dev 2011; 21:740-6. [PMID: 21955794 PMCID: PMC3224179 DOI: 10.1016/j.gde.2011.09.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/04/2011] [Indexed: 11/23/2022]
Abstract
Cell polarity is typically oriented by external cues such as cell-cell contacts, chemoattractants, or morphogen gradients. In the absence of such cues, however, many cells can spontaneously polarize in a random direction, suggesting the existence of an internal polarity-generating mechanism whose direction can be spatially biased by external cues. Spontaneous 'symmetry-breaking' polarization is likely to involve an autocatalytic process set off by small random fluctuations. Here we review recent work on the nature of the autocatalytic process in budding yeast and on the question of why polarized cells only develop a single 'front'.
Collapse
Affiliation(s)
| | - Meng Jin
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
29
|
Kiraly DD, Stone KL, Colangelo CM, Abbott T, Wang Y, Mains RE, Eipper BA. Identification of kalirin-7 as a potential post-synaptic density signaling hub. J Proteome Res 2011; 10:2828-41. [PMID: 21488700 DOI: 10.1021/pr200088w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Kalirin-7 (Kal7), a multifunctional Rho GDP/GTP exchange factor (GEF) for Rac1 and RhoG, is embedded in the postsynaptic density at excitatory synapses, where it participates in the formation and maintenance of dendritic spines. Kal7 has been implicated in long-term potentiation, fear memories, and addiction-like behaviors. Using liquid chromatography and tandem mass spectroscopy, we identified sites phosphorylated by six PSD-localized kinases implicated in synaptic plasticity and behavior, sites phosphorylated when myc-Kal7 was expressed in non-neuronal cells and sites phosphorylated in mouse brain Kal7. A site in the Sec14p domain phosphorylated by calcium/calmodulin dependent protein kinase II, protein kinase A and protein kinase C, was phosphorylated in mouse brain but not in non-neuronal cells. Phosphorylation in the spectrin-like repeat region was more extensive in mouse brain than in non-neuronal cells, with a total of 20 sites identified. Sites in the pleckstrin homology domain and in the linker region connecting the GEF domain to the PDZ binding motif were heavily phosphorylated in both non-neuronal cells and in mouse brain and affected GEF activity. We postulate that the kinase convergence and divergence observed in Kal7 identify it as a key player in integration of the multiple inputs that regulate synaptic structure and function.
Collapse
Affiliation(s)
- Drew D Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Crystal structure of a rigid four-spectrin-repeat fragment of the human desmoplakin plakin domain. J Mol Biol 2011; 409:800-12. [PMID: 21536047 DOI: 10.1016/j.jmb.2011.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 12/17/2022]
Abstract
The plakin protein family serves to connect cell-cell and cell-matrix adhesion molecules to the intermediate filament cytoskeleton. Desmoplakin (DP) is an integral part of desmosomes, where it links desmosomal cadherins to the intermediate filaments. The 1056-amino-acid N-terminal region of DP contains a plakin domain common to members of the plakin family. Plakin domains contain multiple copies of spectrin repeats (SRs). We determined the crystal structure of a fragment of DP, residues 175-630, consisting of four SRs and an inserted SH3 domain. The four repeats form an elongated, rigid structure. The SH3 domain is present in a loop between two helices of an SR and interacts extensively with the preceding SR in a manner that appears to limit inter-repeat flexibility. The intimate intramolecular association of the SH3 domain with the preceding SR is also observed in plectin, another plakin protein, but not in α-spectrin, suggesting that the SH3 domain of plakins contributes to the stability and rigidity of this subfamily of SR-containing proteins.
Collapse
|
31
|
Kiraly DD, Eipper-Mains JE, Mains RE, Eipper BA. Synaptic plasticity, a symphony in GEF. ACS Chem Neurosci 2010; 1:348-365. [PMID: 20543890 DOI: 10.1021/cn100012x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density, and thus positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity.
Collapse
Affiliation(s)
- Drew D. Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Jodi E. Eipper-Mains
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A. Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
32
|
Lee JS, Lee YM, Kim JY, Park HW, Grinstein S, Orlowski J, Kim E, Kim KH, Lee MG. BetaPix up-regulates Na+/H+ exchanger 3 through a Shank2-mediated protein-protein interaction. J Biol Chem 2010; 285:8104-13. [PMID: 20080968 DOI: 10.1074/jbc.m109.055079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/H(+) exchanger 3 (NHE3) plays an important role in neutral Na(+) transport in mammalian epithelial cells. The Rho family of small GTPases and the PDZ (PSD-95/discs large/ZO-1) domain-based adaptor Shank2 are known to regulate the membrane expression and activity of NHE3. In this study we examined the role of betaPix, a guanine nucleotide exchange factor for the Rho GTPase and a strong binding partner to Shank2, in NHE3 regulation using integrated molecular and physiological approaches. Immunoprecipitation and pulldown assays revealed that NHE3, Shank2, and betaPix form a macromolecular complex when expressed heterologously in mammalian cells as well as endogenously in rat colon, kidney, and pancreas. In addition, these proteins co-segregated at the apical surface of rat colonic epithelial cells, as detected by immunofluorescence staining. When expressed in PS120/NHE3 cells, betaPix increased membrane expression and basal activity of NHE3. Interestingly, the effects of betaPix on NHE3 were abolished by cotransfection with dominant-negative Shank2 mutants and by treatment with Clostridium difficile toxin B, a Rho GTPase inhibitor, indicating that Shank2 and Rho GTPases are involved in betaPix-mediated NHE3 regulation. Knockdown of endogenous betaPix by RNA interference decreased Shank2-induced increase of NHE3 membrane expression in HEK 293T cells. These results indicate that betaPix up-regulates NHE3 membrane expression and activity by Shank2-mediated protein-protein interaction and by activating Rho GTPases in the apical regions of epithelial cells.
Collapse
Affiliation(s)
- Jung-Soo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vyas J, Nowling RJ, Maciejewski MW, Rajasekaran S, Gryk MR, Schiller MR. A proposed syntax for Minimotif Semantics, version 1. BMC Genomics 2009; 10:360. [PMID: 19656396 PMCID: PMC2733157 DOI: 10.1186/1471-2164-10-360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 08/05/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of related data elements. With these two purposes in mind, the authors provide a proposed syntax for minimotif semantics primarily useful for functional annotation. RESULTS Herein, we present a structured syntax of minimotifs and their functional annotation. A syntax-based model of minimotif function with established minimotif sequence definitions was implemented using a relational database management system (RDBMS). To assess the usefulness of our standardized semantics, a series of database queries and stored procedures were used to classify SH3 domain binding minimotifs into 10 groups spanning 700 unique binding sequences. CONCLUSION Our derived minimotif syntax is currently being used to normalize minimotif covalent chemistry and functional definitions within the MnM database. Analysis of SH3 binding minimotif data spanning many different studies within our database reveals unique attributes and frequencies which can be used to classify different types of binding minimotifs. Implementation of the syntax in the relational database enables the application of many different analysis protocols of minimotif data and is an important tool that will help to better understand specificity of minimotif-driven molecular interactions with proteins.
Collapse
Affiliation(s)
- Jay Vyas
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305 USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Signal relay by guidance receptors at the axonal growth cone is a process essential for the assembly of a functional nervous system. We investigated the in vivo function of Src family kinases (SFKs) as growth cone guidance signaling intermediates in the context of spinal lateral motor column (LMC) motor axon projection toward the ventral or dorsal limb mesenchyme. Using in situ mRNA detection we determined that Src and Fyn are expressed in LMC motor neurons of chick and mouse embryos at the time of limb trajectory selection. Inhibition of SFK activity by C-terminal Src kinase (Csk) overexpression in chick LMC axons using in ovo electroporation resulted in LMC axons selecting the inappropriate dorsoventral trajectory within the limb mesenchyme, with medial LMC axon projecting into the dorsal and ventral limb nerve with apparently random incidence. We also detected LMC axon trajectory choice errors in Src mutant mice demonstrating a nonredundant role for Src in motor axon guidance in agreement with gain and loss of Src function in chick LMC neurons which led to the redirection of LMC axons. Finally, Csk-mediated SFK inhibition attenuated the retargeting of LMC axons caused by EphA or EphB over-expression, implying the participation of SFKs in Eph-mediated LMC motor axon guidance. In summary, our findings demonstrate that SFKs are essential for motor axon guidance and suggest that they play an important role in relaying ephrin:Eph signals that mediate the selection of motor axon trajectory in the limb.
Collapse
|
35
|
Philominathan STL, Koide T, Hamada K, Yasui H, Seifert S, Matsushita O, Sakon J. Unidirectional binding of clostridial collagenase to triple helical substrates. J Biol Chem 2009; 284:10868-76. [PMID: 19208618 DOI: 10.1074/jbc.m807684200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histotoxic clostridia produce collagenases responsible for extensive tissue destruction in gas gangrene. The C-terminal collagen-binding domain (CBD) of these enzymes is the minimal segment required to bind to collagen fibril. Collagen binding efficiency of CBD is more pronounced in the presence of Ca(2+). We have shown that CBD can be functional to anchor growth factors in local tissue. A (1)H-(15)N HSQC NMR titration study with three different tropocollagen analogues ((POG)(10))(3), ((GPOG)(7)PRG)(3), and (GPRG(POG)(7)C-carbamidomethyl)(3), mapped a saddle-like binding cleft on CBD. NMR titrations with three nitroxide spin-labeled analogues of collagenous peptide, (PROXYL-G(POG)(7)PRG)(3), (PROXYL-G(POG)(7))(3), and (GPRG(POG)(7)C-PROXYL)(3) (where PROXYL represents 2,2,5,5-tetramethyl-l-pyrrolidinyloxy), unambiguously demonstrated unidirectional binding of CBD to the tropocollagen analogues. Small angle x-ray scattering data revealed that CBD binds closer to a terminus for each of the five different tropocollagen analogues, which in conjunction with NMR titration studies, implies a binding mode where CBD binds to the C terminus of the triple helix.
Collapse
|
36
|
Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ. Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 2008; 18:1719-26. [PMID: 19013066 PMCID: PMC2803100 DOI: 10.1016/j.cub.2008.09.060] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/05/2008] [Accepted: 09/18/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND In 1952, Alan Turing suggested that spatial patterns could arise from homogeneous starting conditions by feedback amplification of stochastic fluctuations. One example of such self-organization, called symmetry breaking, involves spontaneous cell polarization in the absence of spatial cues. The conserved GTPase Cdc42p is essential for both guided and spontaneous polarization, and in budding yeast cells Cdc42p concentrates at a single site (the presumptive bud site) at the cortex. Cdc42p concentrates at a random cortical site during symmetry breaking in a manner that requires the scaffold protein Bem1p. The mechanism whereby Bem1p promotes this polarization was unknown. RESULTS Here we show that Bem1p promotes symmetry breaking by assembling a complex in which both a Cdc42p-directed guanine nucleotide exchange factor (GEF) and a Cdc42p effector p21-activated kinase (PAK) associate with Bem1p. Analysis of Bem1p mutants indicates that both GEF and PAK must bind to the same molecule of Bem1p, and a protein fusion linking the yeast GEF and PAK bypasses the need for Bem1p. Although mammalian cells lack a Bem1p ortholog, they contain more complex multidomain GEFs that in some cases can directly interact with PAKs, and we show that yeast containing an artificial GEF with similar architecture can break symmetry even without Bem1p. CONCLUSIONS Yeast symmetry-breaking polarization involves a GEF-PAK complex that binds GTP-Cdc42p via the PAK and promotes local Cdc42p GTP-loading via the GEF. By generating fresh GTP-Cdc42p near pre-existing GTP-Cdc42p, the complex amplifies clusters of GTP-Cdc42p at the cortex. Our findings provide mechanistic insight into an evolutionarily conserved pattern-forming positive-feedback pathway.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Koji Saito
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jayme M. Johnson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Audrey S. Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevin R. Zyla
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
37
|
Xin X, Wang Y, Ma XM, Rompolas P, Keutmann HT, Mains RE, Eipper BA. Regulation of Kalirin by Cdk5. J Cell Sci 2008; 121:2601-11. [PMID: 18628310 DOI: 10.1242/jcs.016089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kalirin, one of the few Rho guanine nucleotide exchange factors (GEFs) that contains spectrin-like repeats, plays a critical role in axon extension and maintenance of dendritic spines. PC12 cells were used to determine whether Cdk5, a critical participant in both processes, regulates the action of Kalirin. Expression of Kalirin-7 in nondifferentiated PC12 cells caused GEF-activity-dependent extension of broad cytoplasmic protrusions; coexpression of dominant-negative Cdk5 largely eliminated this response. The spectrin-like repeat region of Kalirin plays an essential role in this response, which is not mimicked by the GEF domain alone. Thr1590, which follows the first GEF domain of Kalirin, is the only Cdk5 phosphorylation site in Kalirin-7. Although mutant Kalirin-7 with Ala1590 retains GEF activity, it is unable to cause extension of protrusions. Kalirin-7 with an Asp1590 mutation has slightly increased GEF activity and dominant-negative Cdk5 fails to block its ability to cause extension of protrusions. Phosphorylation of Thr1590 causes a slight increase in GEF activity and Kalirin-7 solubility. Dendritic spines formed by cortical neurons in response to the expression of Kalirin-7 with Ala1590 differ in shape from those formed in response to wild-type Kalirin-7 or Kalirin-7 containing Asp1590. The presence of Thr1590 in each major Kalirin isoform would allow Cdk5 to regulate Kalirin function throughout development.
Collapse
Affiliation(s)
- Xiaonan Xin
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Harrington AW, Li QM, Tep C, Park JB, He Z, Yoon SO. The role of Kalirin9 in p75/nogo receptor-mediated RhoA activation in cerebellar granule neurons. J Biol Chem 2008; 283:24690-7. [PMID: 18625710 DOI: 10.1074/jbc.m802188200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
p75 and the Nogo receptor form a signaling unit for myelin inhibitory molecules, with p75 being responsible for RhoA activation. Because p75 lacks the GDP/GTP exchange factor domain, it has remained unclear how p75 activates RhoA. Here, we report that Kalirin9, a dual RhoGEF, binds p75 directly and regulates p75-Nogo receptor-dependent RhoA activation and neurite inhibition in response to myelin-associated glycoprotein. The region of p75 that Kalirin9 binds includes its mastoparan-like fifth helix, which was shown to recruit RhoGDI-RhoA. As predicted from the presence of a shared binding site, we found that Kalirin9 competes with RhoGDI for p75 binding in a dose-dependent manner in vitro. In line with these data, myelin-associated glycoprotein addition to cerebellar granule neurons resulted in a reduction in the association of Kalirin9 with p75, and a simultaneous increase in the binding of RhoGDI to p75. These results reveal a mechanism by which the fifth helix of p75 regulates RhoA activation.
Collapse
Affiliation(s)
- Anthony W Harrington
- Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Yohe ME, Rossman K, Sondek J. Role of the C-terminal SH3 domain and N-terminal tyrosine phosphorylation in regulation of Tim and related Dbl-family proteins. Biochemistry 2008; 47:6827-39. [PMID: 18537266 DOI: 10.1021/bi702543p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho-family GTPases and typically possess tandem Dbl (DH) and pleckstrin homology (PH) domains that act in concert to catalyze exchange. Although the exchange potential of many Dbl-family proteins is constitutively activated by truncation, the precise mechanisms of regulation for many Dbl-family proteins are unknown. Tim and Vav are distantly related Dbl-family proteins that are similarly regulated; their Dbl homology (DH) domains interact with N-terminal helices to exclude and prevent activation of Rho GTPases. Phosphorylation, substitution, or deletion of the blocking helices relieves this autoinhibition. Here we show that two other Dbl-family proteins, Ngef and Wgef, which like Tim contain a C-terminal SH3 domain, are also activated by tyrosine phosphorylation of a blocking helix. Consequently, basal autoinhibition of DH domains by direct steric exclusion using short N-terminal helices likely represents a conserved mechanism of regulation for the large family of Dbl-related proteins. N-Terminal truncation or phosphorylation of many other Dbl-family GEFs leads to their activation; similar autoinhibition mechanisms could explain some of these events. In addition, we show that the C-terminal SH3 domain binding to a polyproline region N-terminal to the DH domain of the Tim subgroup of Dbl-family proteins provides a unique mechanism of regulated autoinhibition of exchange activity that is functionally linked to the interactions between the autoinhibitory helix and the DH domain.
Collapse
Affiliation(s)
- Marielle E Yohe
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | |
Collapse
|
40
|
Murayama K, Shirouzu M, Kawasaki Y, Kato-Murayama M, Hanawa-Suetsugu K, Sakamoto A, Katsura Y, Suenaga A, Toyama M, Terada T, Taiji M, Akiyama T, Yokoyama S. Crystal structure of the rac activator, Asef, reveals its autoinhibitory mechanism. J Biol Chem 2006; 282:4238-4242. [PMID: 17190834 DOI: 10.1074/jbc.c600234200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Tohoku University Biomedical Engineering Research Organization, Sendai 980-8575; RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Mikako Shirouzu
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Yoshihiro Kawasaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0033, and the
| | | | | | - Ayako Sakamoto
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Yasuhiro Katsura
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Atsushi Suenaga
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Mitsutoshi Toyama
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Takaho Terada
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Makoto Taiji
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045
| | - Tetsu Akiyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0033, and the
| | - Shigeyuki Yokoyama
- RIKEN Genomic Sciences Center, Yokohama Institute, Yokohama 230-0045; Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033 Japan.
| |
Collapse
|
41
|
Hamann MJ, Lubking CM, Luchini DN, Billadeau DD. Asef2 functions as a Cdc42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element. Mol Cell Biol 2006; 27:1380-93. [PMID: 17145773 PMCID: PMC1800726 DOI: 10.1128/mcb.01608-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Asef (herein called Asef1) was identified as a Rac1-specific exchange factor stimulated by adenomatous polyposis coli (APC), contributing to colorectal cancer cell metastasis. We investigated Asef2, an Asef1 homologue having a similar N-terminal APC binding region (ABR) and Src-homology 3 (SH3) domain. Contrary to previous reports, we found that Asef1 and Asef2 exchange activity is Cdc42 specific. Moreover, the ABR of Asef2 did not function independently but acted in tandem with the SH3 domain to bind APC. The ABRSH3 also bound the C-terminal tail of Asef2, allowing it to function as an autoinhibitory module within the protein. Deletion of the C-terminal tail did not constitutively activate Asef2 as predicted; rather, a conserved C-terminal segment was required for augmented Cdc42 GDP/GTP exchange. Thus, Asef2 activation involves APC releasing the ABRSH3 from the C-terminal tail, resulting in Cdc42 exchange. These results highlight a novel exchange factor regulatory mechanism and establish Asef1 and Asef2 as Cdc42 exchange factors, providing a more appropriate context for understanding the contribution of APC in establishing cell polarity and migration.
Collapse
Affiliation(s)
- Michael J Hamann
- Division of Oncology Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|