1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024:1-20. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Van Deuren V, Plessers S, Lavigne R, Robben J. Application of Deep Sequencing in Phage Display. Methods Mol Biol 2024; 2738:333-345. [PMID: 37966608 DOI: 10.1007/978-1-0716-3549-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This chapter describes the workflow to implement deep sequencing into standard phage display experiments on protein libraries. By harvesting the power of high throughput of these techniques, it allows for comprehensive analysis of the naïve library and library evolution in response to selection by ligand binding. The mutagenized target region of the protein variants encoded by the phage pool is analyzed by Illumina paired-end sequencing. Sequence data are processed to extract selection-enriched amino acid motifs. In addition, a complementary long-read sequencing approach is proposed enabling the monitoring of display vector stability.
Collapse
Affiliation(s)
- Vincent Van Deuren
- Department of Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Sander Plessers
- Department of Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Animal and Human Health Engineering (A2H), Leuven (Arenberg), KU Leuven, Leuven, Belgium
| | - Johan Robben
- Department of Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Pei P, Chen L, Fan R, Zhou XR, Feng S, Liu H, Guo Q, Yin H, Zhang Q, Sun F, Peng L, Wei P, He C, Qiao R, Wang Z, Luo SZ. Computer-Aided Design of Lasso-like Self-Assembling Anticancer Peptides with Multiple Functions for Targeted Self-Delivery and Cancer Treatments. ACS NANO 2022; 16:13783-13799. [PMID: 36099446 DOI: 10.1021/acsnano.2c01014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticancer peptides are promising drug candidates for cancer treatment, but the short circulation time and low delivery efficiency limit their clinical applications. Herein, we designed several lasso-like self-assembling anticancer peptides (LASAPs) integrated with multiple functions by a computer-aided approach. Among these LASAPs, LASAP1 (CRGDKGPDCGKAFRRFLGALFKALSHLL, 1-9 disulfide bond) was determined to be superior to the others because it can self-assemble into homogeneous nanoparticles and exhibits improved stability in serum. Thus, LASAP1 was chosen for proving the design idea. LASAP1 can self-assemble into nanoparticles displaying iRGD on the surface because of its amphiphilic structure and accumulate to the tumor site after injection because of the EPR effect and iRGD targeting to αVβ3 integrin. The nanoparticles could disassemble in the acidic microenvironment of the solid tumor, and cleaved by the overexpressed hK2, which was secreted by prostate tumor cells, to release the effector peptide PTP-7b (FLGALFKALSHLL), which was further activated by the acidic pH. Therefore, LASAP1 could target the orthotopic prostate tumor in the model mice after intraperitoneal injection and specifically inhibit tumor growth, with low systematic toxicity. Combining the multiple targeting functions, LASAP1 represents a promising design of self-delivery of peptide drugs for targeted cancer treatments.
Collapse
Affiliation(s)
- Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruru Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xi-Rui Zhou
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, P.R. China
| | - Shan Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hangrui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Quanqiang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiwei Yin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Peng Wei
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Renzhong Qiao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
5
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer 2022; 22:223-238. [PMID: 35102281 DOI: 10.1038/s41568-021-00436-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
7
|
PLCɛ maintains the functionality of AR signaling in prostate cancer via an autophagy-dependent mechanism. Cell Death Dis 2020; 11:716. [PMID: 32879302 PMCID: PMC7468107 DOI: 10.1038/s41419-020-02917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Androgen receptor (AR) signaling is a major driver of prostate cancer (CaP). Although most therapies targeting AR are initially effective in CaP patients, drug resistance is inevitable, mainly because of the inappropriate re-activation of AR pathway. However, the underlying mechanisms remain largely unknown. Here, we found that phospholipase C epsilon (PLCɛ) was highly expressed in CaP samples, and was closely associated with AR signaling activities. PLCɛ depletion triggered enhanced autophagic activities via AMPK/ULK1 pathway, causing autophagy-mediated AR degradation and inhibition of AR nuclear translocation. This subsequently reduced AR signals in CaP and inhibited AR-driven cell migration/invasion. Furthermore, a positive correlation between PLCɛ and AR signaling activity was also observed in bicalutamide-resistant CaP samples and in AR-antagonist-resistant CaP cell models. PLCɛ depletion resulted in the failure to establish AR-antagonist-resistant CaP cell lines, and hindered the metastatic prowess of already established ones. These findings suggest that PLCɛ-mediated autophagic activity alteration is indispensible for the functionality of AR signaling and for CaP development.
Collapse
|
8
|
Loessner D, Goettig P, Preis S, Felber J, Bronger H, Clements JA, Dorn J, Magdolen V. Kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert Opin Ther Targets 2018; 22:745-763. [PMID: 30114962 DOI: 10.1080/14728222.2018.1512587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Aberrant levels of kallikrein-related peptidases (KLK1-15) have been linked to cancer cell proliferation, invasion and metastasis. In ovarian cancer, the KLK proteolytic network has a crucial role in the tissue and tumor microenvironment. Publically available ovarian cancer genome and expression data from multiple patient cohorts show an upregulation of most KLKs. Areas covered: Here, we review the expression levels of all 15 members of this family in normal and ovarian cancer tissues, categorizing them into highly and moderately or weakly expressed KLKs, and their association with patient prognosis and survival. We summarize their tumor-biological functions determined in cell-based assays and xenograft models, further highlighting their suitability as cancer biomarkers and attractive candidates for drug development. Finally, we discuss some different pharmaceutical approaches, including peptide-based and small molecule inhibitors, cyclic peptides, depsipeptides, engineered natural inhibitors, antibodies, RNA/DNA-based aptamers, prodrugs, miRNA and siRNA. Expert opinion: In light of the results from clinical and tumor-biological studies, together with the available pharmaceutical tools, we suggest KLK4, KLK5, KLK6 and possibly KLK7 as preferred targets for inhibition in ovarian cancer.
Collapse
Affiliation(s)
- Daniela Loessner
- a Barts Cancer Institute , Queen Mary University of London , London , UK.,b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia
| | - Peter Goettig
- c Department of Biosciences , University of Salzburg , Salzburg , Austria
| | - Sarah Preis
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Johanna Felber
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Holger Bronger
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Judith A Clements
- b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia.,e Australian Prostate Cancer Research Centre - Queensland , Queensland University of Technology (QUT), Translational Research Institute , Brisbane , Australia
| | - Julia Dorn
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Viktor Magdolen
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| |
Collapse
|
9
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
10
|
Identification of peptide inhibitors of penicillinase using a phage display library. Anal Biochem 2016; 494:4-9. [DOI: 10.1016/j.ab.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/18/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
|
11
|
Abstract
This review describes studies performed by our group and other laboratories in the field aimed at development of biomarkers not only for cancer but also for other diseases. The markers covered include tumor-associated trypsin inhibitor (TATI), tumor-associated trypsin (TAT), human chorionic gonadotropin (hCG), prostate-specific antigen (PSA) and their various molecular forms, their biology and diagnostic use. The discovery of TATI was the result of a hypothesis-driven project aimed at finding new biomarkers for ovarian cancer among urinary peptides. TATI has since proved to be a useful prognostic marker for several cancers. Recently, it has been named Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) after being rediscovered by several groups as a tumor-associated peptide by gene expression profiling and proteomic techniques and shown to promote tumor development by stimulating the EGF receptor. To explain why a trypsin inhibitor is strongly expressed in some cancers, research focused on the protease that it inhibited led to the finding of tumor-associated trypsin (TAT). Elevated serum concentrations of TAT-2 were found in some cancer types, but fairly high background levels of pancreatic trypsinogen-2 limited the use of TAT-2 for cancer diagnostics. However, trypsinogen-2 and its complex with α1-protease inhibitor proved to be very sensitive and specific markers for pancreatitis. Studies on hCG were initiated by the need to develop more rapid and sensitive pregnancy tests. These studies showed that serum from men and non-pregnant women contains measurable concentrations of hCG derived from the pituitary. Subsequent development of assays for the subunits of hCG showed that the β subunit of hCG (hCGβ) is expressed at low concentrations by most cancers and that it is a strong prognostic marker. These studies led to the formation of a working group for standardization of hCG determinations and the development of new reference reagents for several molecular forms of hCG. The preparation of intact hCG has been adopted as the fifth international standard by WHO. Availability of several well-defined forms of hCG made it possible to characterize the epitopes of nearly 100 monoclonal antibodies. This will facilitate design of immunoassays with pre-defined specificity. Finally, the discovery of different forms of immunoreactive PSA in serum from a prostate cancer patient led to identification of the complex between PSA and α1-antichymotrypsin, and the use of assays for free and total PSA in serum for improved diagnosis of prostate cancer. Epitope mapping of PSA antibodies and establishment of PSA standards has facilitated establishment well-standardized assays for the various forms of PSA.
Collapse
Affiliation(s)
- Ulf-Håkan Stenman
- a Department of Clinical Chemistry , Biomedicum, Helsinki University and Helsinki University Central Hospital (HUCH) , Helsinki , Finland
| |
Collapse
|
12
|
Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions. J Mol Biol 2015; 427:3110-22. [PMID: 26281711 DOI: 10.1016/j.jmb.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/19/2015] [Accepted: 08/07/2015] [Indexed: 11/21/2022]
Abstract
We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy.
Collapse
|
13
|
Distinctive binding modes and inhibitory mechanisms of two peptidic inhibitors of urokinase-type plasminogen activator with isomeric P1 residues. Int J Biochem Cell Biol 2015; 62:88-92. [DOI: 10.1016/j.biocel.2015.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/02/2014] [Accepted: 02/23/2015] [Indexed: 01/29/2023]
|
14
|
Skala W, Utzschneider DT, Magdolen V, Debela M, Guo S, Craik CS, Brandstetter H, Goettig P. Structure-function analyses of human kallikrein-related peptidase 2 establish the 99-loop as master regulator of activity. J Biol Chem 2014; 289:34267-83. [PMID: 25326387 PMCID: PMC4256358 DOI: 10.1074/jbc.m114.598201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the “classical” KLKs 1–3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation.
Collapse
Affiliation(s)
- Wolfgang Skala
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Daniel T Utzschneider
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, D-81675 Munich, Germany
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, D-81675 Munich, Germany
| | - Mekdes Debela
- Max-Planck-Institut for Biochemistry, Proteinase Research Group, D-82152 Martinsried, Germany, and
| | - Shihui Guo
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Hans Brandstetter
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Peter Goettig
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria,
| |
Collapse
|
15
|
Kenniston JA, Faucette RR, Martik D, Comeau SR, Lindberg AP, Kopacz KJ, Conley GP, Chen J, Viswanathan M, Kastrapeli N, Cosic J, Mason S, DiLeo M, Abendroth J, Kuzmic P, Ladner RC, Edwards TE, TenHoor C, Adelman BA, Nixon AE, Sexton DJ. Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J Biol Chem 2014; 289:23596-608. [PMID: 24970892 PMCID: PMC4156074 DOI: 10.1074/jbc.m114.569061] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nm) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.
Collapse
Affiliation(s)
| | | | - Diana Martik
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Kris J Kopacz
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | - Jie Chen
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Janja Cosic
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Shauna Mason
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Mike DiLeo
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Koistinen H, Hekim C, Wu P, Närvänen A, Stenman UH. Evaluation of peptides as protease inhibitors and stimulators. Methods Mol Biol 2014; 1088:147-58. [PMID: 24146402 DOI: 10.1007/978-1-62703-673-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Changes in proteolytic activity are associated with several diseases, including cancer. Proteases are potential drug targets and targeting of proteases is used for treatment of various conditions/diseases, like high blood pressure and HIV. We present here detailed protocols for basic evaluation of the effects of peptides on the activity of proteases, using kallikrein-related peptidases KLK2 and KLK3 (also known as hK2 and PSA), and trypsin as examples. KLK2 and KLK3 are major prostatic proteases, and they are potential targets for prostate cancer treatment. KLK2 has trypsin-like activity and KLK3 chymotrypsin-like activity. By phage display technology, we have developed peptides that specifically stimulate KLK3-activity and other peptides that inhibit KLK2 or trypsin. The effect of the peptides on the proteolytic activity of proteases can be studied using substrates, the cleavage of which generates detectable signal, allowing rapid evaluation of protease activity. The cleavage of protein substrates can be detected by SDS-PAGE, followed by staining of the proteins. We also describe graphical analysis of the IC50-value, the effect of a peptide on Michaelis-Menten constant (K(m)) and the maximal reaction rate (V(max)).
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Biomedicum, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
17
|
Shang Z, Niu Y, Cai Q, Chen J, Tian J, Yeh S, Lai KP, Chang C. Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via function as a modulator to promote the ARA70-enhanced androgen receptor transactivation. Tumour Biol 2013; 35:1881-90. [DOI: 10.1007/s13277-013-1253-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022] Open
|
18
|
Roodbeen R, Paaske B, Jiang L, Jensen JK, Christensen A, Nielsen JT, Huang M, Mulder FAA, Nielsen NC, Andreasen PA, Jensen KJ. Bicyclic Peptide Inhibitor of Urokinase-Type Plasminogen Activator: Mode of Action. Chembiochem 2013; 14:2179-88. [DOI: 10.1002/cbic.201300335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Indexed: 01/24/2023]
|
19
|
Xie X, Guo J, Kong Y, Xie GX, Li L, Lv N, Xiao X, Tang J, Wang X, Liu P, Yang M, Xie Z, Wei W, Spencer DM, Xie X. Targeted expression of Escherichia coli purine nucleoside phosphorylase and Fludara® for prostate cancer therapy. J Gene Med 2013; 13:680-91. [PMID: 22009763 DOI: 10.1002/jgm.1620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Previous studies have shown that Herpes Simplex Virus thymidine kinase (HSV-tk)/ganciclovir (GCV) comprised the most commonly used suicide gene therapy for prostate cancer, with modest results being obtained. However, novel suicide genes, such as Escherichia coli purine nucleoside phosphorylase (PNP), have been utilized to demonstrate more potent tumor killing and an enhanced bystander effect on local, non-expressing cells compared to HSV-tk. METHODS PNP/fludarabine (Fludara®; fludarabine phosphate; Berlex Labs, Richmond, CA, USA) was deliveried by prostate-specific, rat probasin-based promoter, ARR2PB. After infection of various cell lines with ADV.ARR(2) PB-PNP and administration of androgen analog, R1881, expression of PNP mRNA was detected; in vivo, the antitumor effect of the ARR(2) PB-PNP/Fludara system was monitored and analyzed, as well as animal survival. RESULTS After in vitro infection with ADV.ARR(2) PB-PNP (multiplicity of infection = 10), LNCaP cells were more sensitive to a lower concentration Fludara (LD(50) , approximately 0.1 µg/ml) in the presence of R1881. Furthermore, robust bystander effects after R1881/Fludara treatment were observed in LNCaP cells after infection with bicistronic vector ADV.ARR2PB/PNP-IRES-EGFP in contrast to a much weaker effect in cells treated with ADV.CMV-HSV-tk/GCV. In vivo, tumor size in the ADV.ARR2PB-PNP/Fludara treatment group was dramatically smaller than in the control groups, and the mice treated with our system had a significantly prolonged survival, with three of eight mice surviving up to the 160-day termination point, as well as no systemic toxicity. CONCLUSIONS The ARR(2) PB-PNP/Fludara system induced massive tumor cell death and a prolonged life span without systemic cytotoxicity; therefore, it might be a more attractive strategy for suicide gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Xinhua Xie
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Krumpe LR, Mori T. Potential of phage-displayed peptide library technology to identify functional targeting peptides. Expert Opin Drug Discov 2013; 2:525. [PMID: 20150977 DOI: 10.1517/17460441.2.4.525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo.
Collapse
Affiliation(s)
- Lauren Rh Krumpe
- SAIC-Frederick, Inc., Molecular Targets Development Program, NCI-Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
21
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery. Hum Vaccin Immunother 2012; 8:1829-35. [PMID: 22906938 DOI: 10.4161/hv.21704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phage display is a powerful technique in medical and health biotechnology. This technology has led to formation of antibody libraries and has provided techniques for fast and efficient search of these libraries. The phage display technique has been used in studying the protein-protein or protein-ligand interactions, constructing of the antibody and antibody fragments and improving the affinity of proteins to receptors. Recently phage display has been widely used to study immunization process, develop novel vaccines and investigate allergen-antibody interactions. This technology can provide new tools for protection against viral, fungal and bacterial infections. It may become a valuable tool in cancer therapies, abuse and allergies treatment. This review presents the recent advancements in diagnostic and therapeutic applications of phage display. In particular the applicability of this technology to study the immunization process, construction of new vaccines and development of safer and more efficient delivery strategies has been described.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland
| | | | | |
Collapse
|
22
|
Caliendo G, Santagada V, Perissutti E, Severino B, Fiorino F, Frecentese F, Juliano L. Kallikrein protease activated receptor (PAR) axis: an attractive target for drug development. J Med Chem 2012; 55:6669-86. [PMID: 22607152 DOI: 10.1021/jm300407t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Caliendo
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. ADVANCES IN PARASITOLOGY 2012; 79:339-73. [PMID: 22726646 DOI: 10.1016/b978-0-12-398457-9.00005-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2004, we reviewed the status of disease caused by the scabies mite Sarcoptes scabiei at the time and pointed out that very little basic research had ever been done. The reason for this was largely the lack of availability of mites for experimental purposes and, to a degree, a consequent lack of understanding of its importance, resulting in the trivial name 'itch mite'. Scabies is responsible for major morbidity in disadvantaged communities and immunocompromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by bacterial pathogens such as Streptococcus pyogenes and Staphylococcus aureus via skin lesions, resulting in severe downstream disease such as in a high prevalence of rheumatic fever/heart disease in affected communities. We now have further evidence that in disadvantaged populations living in tropical climates, scabies rather than 'Strep throat' is an important source of S. pyogenes causing rheumatic fever and eventually rheumatic heart disease. In addition, our work has resulted in two fundamental research tools that facilitate much of the current biomedical research efforts on scabies, namely a public database containing ~45,000 scabies mite expressed sequence tags and a porcine in vivo model. Here we will discuss novel and unexpected proteins encountered in the database that appear crucial to mite survival with regard to digestion and evasion of host defence. The mode(s) of action of some of these have been at least partially revealed. Further, newly discovered molecules that may well have a similar role, such as a family of inactivated cysteine proteases, are yet to be investigated. Hence, there are now whole families of potential targets for chemical inhibitors of S. scabiei. These efforts put today's scabies research in a unique position to design and test small molecules that may specifically interfere with mite-derived molecules, such as digestive proteases and mite complement inhibitors. The porcine scabies model will be available to trial in vivo treatment with potential inhibitors. New therapies for scabies may be developed from these studies and may contribute to reduce the spread of scabies and the subsequent prevalence of bacterial skin infections and their devastating sequelae in the community.
Collapse
Affiliation(s)
- Katja Fischer
- Queensland Institute of Medical Research, Herston, Austraria
| | | | | | | |
Collapse
|
24
|
The Binding Mechanism of a Peptidic Cyclic Serine Protease Inhibitor. J Mol Biol 2011; 412:235-50. [DOI: 10.1016/j.jmb.2011.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022]
|
25
|
Hosseini M, Jiang L, Sørensen HP, Jensen JK, Christensen A, Fogh S, Yuan C, Andersen LM, Huang M, Andreasen PA, Jensen KJ. Elucidation of the Contribution of Active Site and Exosite Interactions to Affinity and Specificity of Peptidylic Serine Protease Inhibitors Using Non-Natural Arginine Analogs. Mol Pharmacol 2011; 80:585-97. [DOI: 10.1124/mol.111.072280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010; 28:849-58. [PMID: 20659548 DOI: 10.1016/j.biotechadv.2010.07.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/27/2010] [Accepted: 07/08/2010] [Indexed: 12/17/2022]
Abstract
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.
Collapse
Affiliation(s)
- Jyoti Pande
- Department of Medicine, HSC 4N41 McMaster Univ, Hamilton, ON, Canada
| | | | | |
Collapse
|
27
|
Hekim C, Riipi T, Weisell J, Närvänen A, Koistinen R, Stenman UH, Koistinen H. Identification of IGFBP-3 fragments generated by KLK2 and prevention of fragmentation by KLK2-inhibiting peptides. Biol Chem 2010; 391:475-9. [PMID: 20180640 DOI: 10.1515/bc.2010.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kallikrein-related peptidase 2 (KLK2) degrades insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in vitro. IGFBP-3 forms complexes with IGFs, preventing them from binding to their receptors and stimulating cell proliferation and survival. IGF-independent actions have also been described for IGFBP-3. The degradation of IGFBP-3 by KLK2 or other proteases in the prostate may promote the growth of prostate cancer. We studied IGFBP-3 degradation by immunoblotting and two specific immunoassays, one recognizing only native non-fragmented IGFBP-3 and the other one recognizing both intact and proteolytically cleaved IGFBP-3. Peptides were used to inhibit the enzyme activity of KLK2 and cleavage sites in IGFBP-3 were identified by mass spectrometry. KLK2 proteolyzed IGFBP-3 into several small fragments, mostly after Arg residues, in keeping with the trypsin-like activity of KLK2. The fragmentation could be inhibited by KLK2-inhibiting peptides in a dose-dependent fashion. As degradation of IGFBP-3 could lead to a more aggressive cancer phenotype, inhibition of KLK2 activity might be useful for treatment of prostate cancer and other diseases associated with increased KLK2 activity.
Collapse
Affiliation(s)
- Can Hekim
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
29
|
Fischer K, Langendorf CG, Irving JA, Reynolds S, Willis C, Beckham S, Law RHP, Yang S, Bashtannyk-Puhalovich TA, McGowan S, Whisstock JC, Pike RN, Kemp DJ, Buckle AM. Structural mechanisms of inactivation in scabies mite serine protease paralogues. J Mol Biol 2009; 390:635-45. [PMID: 19427318 DOI: 10.1016/j.jmb.2009.04.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 A and 2.0 A resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical "canonical" fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.
Collapse
Affiliation(s)
- Katja Fischer
- Scabies Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koistinen H, Närvänen A, Pakkala M, Hekim C, Mattsson JM, Zhu L, Laakkonen P, Stenman UH. Development of peptides specifically modulating the activity of KLK2 and KLK3. Biol Chem 2008; 389:633-42. [PMID: 18627344 DOI: 10.1515/bc.2008.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prostate produces several proteases, the most abundant ones being kallikrein-related peptidase 3 (KLK3, PSA) and KLK2 (hK2), which are potential targets for tumor imaging and treatment. KLK3 expression is lower in malignant than in normal prostatic epithelium and it is further reduced in poorly differentiated tumors, in which the expression of KLK2 is increased. KLK3 has been shown to inhibit angiogenesis, whereas KLK2 may mediate tumor growth and invasion by participating in proteolytic cascades. Thus, it may be possible to control prostate cancer growth by modulating the proteolytic activity of KLK3 and KLK2. We have developed peptides that very specifically stimulate the activity of KLK3 or inhibit that of KLK2. Using these peptides we have established peptide-based methods for the determination of enzymatically active KLK3. The first-generation peptides are unstable in vivo and are rapidly cleared from the circulation. Currently we are modifying the peptides to make them suitable for in vivo applications. We have been able to considerably improve the stability of KLK2-binding peptides by cyclization. In this review we summarize the possible roles of KLK3 and KLK2 in prostate cancer and then concentrate on the development of peptides that modulate the activity of these proteases.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Koistinen H, Wohlfahrt G, Mattsson JM, Wu P, Lahdenperä J, Stenman UH. Novel small molecule inhibitors for prostate-specific antigen. Prostate 2008; 68:1143-51. [PMID: 18500692 DOI: 10.1002/pros.20773] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate-specific antigen (PSA or KLK3) has been shown to inhibit angiogenesis, but it might also have tumor promoting activities. Thus, it may be possible to modulate prostate cancer growth by stimulating or inhibiting the activity of PSA. To this end we have previously identified peptides that stimulate the activity of PSA. As peptides have several limitations as drug molecules, we screened a chemical library to find drug-like compounds that could be used to modulate the function(s) of PSA. METHODS Almost 50,000 compounds were analyzed for their ability to modulate PSA activity towards a fluorescent PSA-substrate. The ability of the most active compounds to affect the anti-angiogenic activity of PSA was analyzed by human umbilical vein endothelial cell (HUVEC) tube formation assay. RESULTS In the initial screening we identified two compounds that inhibited PSA activity. Based on these, similar compounds were selected and tested for activity to define structure-activity relationships. Several compounds with micromolar IC50-values were found, but they were not entirely specific towards PSA, e.g., they inhibited chymotrypsin, which has similar substrate specificity as PSA. However, it was possibly to improve the selectivity of the compounds towards PSA by small structural changes. These compounds inhibited the anti-angiogenic activity of PSA in the HUVEC model, proving that the proteolytic activity of PSA is essential for inhibition of angiogenesis. CONCLUSIONS We found several PSA inhibitors that could be useful tools for studying the role of PSA in cancer models and in normal physiology as showed in angiogenesis model.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki, Helsinki University Central Hospital, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Gregorakis AK, Stefanakis S, Malovrouvas D, Petraki K, Gourgiotis D, Scorilas A. Total and free PSA kinetics in patients without prostate cancer undergoing radical cystoprostatectomy. Prostate 2008; 68:759-65. [PMID: 18213630 DOI: 10.1002/pros.20733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Radical cystoprostatectomy and radical prostatectomy are the two major operations where prostate is totally and radically removed. Radical cystoprostatectomy is usually performed in patients with invasive bladder cancer. The aim of the study was to examine Total PSA, Free PSA, and Free/Total Ratio elimination kinetics after radical cystoprostatectomy. METHODS Serum PSA, Free PSA, and Free/Total Ratio were determined preoperatively, at the time of cystoprostatectomy specimen removal and then at 3, 6, 12, 24, 48, 72, and 168 hr, from seven patients with muscle invasive bladder cancer, who underwent radical cystoprostatectomy. Free and Total PSA concentrations were measured with non-competitive immunological procedures. The elimination rates and half-lives of Total, Free PSA and Free/Total Ratio were studied using a nonlinear regression analysis. RESULTS Surgical manipulations caused about 1.5-fold increase of PSA, 5-fold increase in Free PSA and 3-fold increase in Free/Total Ratio. PSA and Free PSA followed a biphasic elimination pattern of a rapid exponential (a) phase with a half-life of 4.27 and 2.14 hr and a terminal, nonexponential (b) phase with a half-life of 63 and 173.2 hr, respectively. Free/Total PSA Ratio followed, also, a biphasic kinetic pattern of a rapid exponential decline with a half-life of 3.34 and a terminal non-exponential increase with a doubling time of 43 hr. CONCLUSIONS Comparing PSA kinetics after radical cystoprostatectomy with those of radical prostatectomy, it appears that PSA follows the same elimination pattern in both models. In contrast, Free PSA and Free/Total Ratio elimination kinetics' patterns differ between the two surgical models.
Collapse
|
33
|
Pakkala M, Hekim C, Soininen P, Leinonen J, Koistinen H, Weisell J, Stenman UH, Vepsäläinen J, Närvänen A. Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci 2007; 13:348-53. [PMID: 17436344 DOI: 10.1002/psc.849] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human glandular kallikrein (KLK2) is a highly prostate-specific serine protease, which is mainly excreted into the seminal fluid, but part of which is also secreted into circulation from prostatic tumors. Since the expression level of KLK2 is elevated in aggressive tumors and it has been suggested to mediate the metastasis of prostate cancer, inhibition of the proteolytic activity of KLK2 is of potential therapeutic value. We have previously identified several KLK2-specific linear peptides by phage display technology. Two of its synthetic analogs, A R R P A P A P G (KLK2a) and G A A R F K V W W A A G (KLK2b), show specific inhibition of KLK2 but their sensitivity to proteolysis in vivo may restrict their potential use as therapeutic agents. In order to improve the stability of the linear peptides for in vivo use, we have prepared cyclic analogs and compared their biological activity and their structural stability. A series of cyclic variants with cysteine bridges were synthesized. Cyclization inactivated one peptide (KLK2a) and its derivatives, while the other peptide (KLK2b) and its derivatives remained active. Furthermore, backbone cyclization of KLK2b improved significantly the resistance against proteolysis by trypsin and human plasma. Nuclear magnetic resonance studies showed that cyclization of the KLK2b peptides does not make the structures more rigid. In conclusion, we have shown that backbone cyclization of KLK2 inhibitory peptides can be used to increase stability without losing biological activity. This should render the peptides more useful for in vivo applications, such as tumor imaging and prostate cancer targeting.
Collapse
Affiliation(s)
- Miikka Pakkala
- Department of Chemistry, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, and Department of Clinical Chemistry, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nam RK, Zhang WW, Klotz LH, Trachtenberg J, Jewett MAS, Sweet J, Toi A, Teahan S, Venkateswaran V, Sugar L, Loblaw A, Siminovitch K, Narod SA. Variants of the hK2 protein gene (KLK2) are associated with serum hK2 levels and predict the presence of prostate cancer at biopsy. Clin Cancer Res 2007; 12:6452-8. [PMID: 17085659 DOI: 10.1158/1078-0432.ccr-06-1485] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Increased levels of serum human kallikrein-2 (hK2) and an hK2 gene (KLK2) variant are positively associated for prostate cancer, but the relationships between them remain unclear. We examined five variants of the KLK2 gene to further define its relevance to prostate cancer susceptibility and hK2 levels. EXPERIMENTAL DESIGN We genotyped 645 men with biopsy-proven prostate cancer (cases) and 606 males with biopsies negative for prostate cancer (controls) for five additional single nucleotide polymorphisms (SNP) across the KLK2 gene and also tested for serum hK2 levels. These SNPs were identified from sequencing the KLK2 gene among 20 patients with aggressive prostate cancer. Odds ratios (OR) for prostate cancer detection and haplotype analysis were done. RESULTS Among the SNPs studied, the A allele of the KLK2-SNP1 (G>A, rs2664155) and the T allele of the KLK2-SNP5 (C>T, rs198977) polymorphisms showed positive associations with prostate cancer, adjusted ORs for KLK2-SNP1 AG and AA genotypes being 1.4 [95% confidence interval (95% CI), 1.2-1.8; P=0.002] and for KLK2-SNP5 TT or CT genotypes being 1.3 (95% CI, 1.1-1.6; P=0.05). Haplotype analyses also revealed a significant association between prostate cancer and the haplotype containing both risk alleles (ACCTT), OR being 5.1 (95% CI, 1.6-6.5; P=0.005). Analysis of serum hK2 revealed hK2 levels to be significantly increased in association with KLK2-SNP1 AA and AG risk genotypes compared with the GG genotype (P=0.001) and also in association with the ACCTT risk haplotype compared with the most common non-risk haplotype (P=0.05). CONCLUSIONS These findings suggest a role for the KLK2 gene in prostate cancer susceptibility and imply that this role may be realized at least in part by the induction of increases in hK2 production.
Collapse
Affiliation(s)
- Robert K Nam
- Division of Urology; Department of Pathology, Sunnybrook Health Sciences Centre, University Health Network, Mount Sinai Hospital, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|