1
|
Mori K, Golding BT, Toraya T. The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde. J Biochem 2024; 176:245-254. [PMID: 38987935 DOI: 10.1093/jb/mvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical centre compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.
Collapse
Affiliation(s)
- Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Bernard T Golding
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Toraya T, Tobimatsu T, Mori K, Yamanishi M, Shibata N. Coenzyme B 12-dependent eliminases: Diol and glycerol dehydratases and ethanolamine ammonia-lyase. Methods Enzymol 2022; 668:181-242. [PMID: 35589194 DOI: 10.1016/bs.mie.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosylcobalamin (AdoCbl) or coenzyme B12-dependent enzymes catalyze intramolecular group-transfer reactions and ribonucleotide reduction in a wide variety of organisms from bacteria to animals. They use a super-reactive primary-carbon radical formed by the homolysis of the coenzyme's Co-C bond for catalysis and thus belong to the larger class of "radical enzymes." For understanding the general mechanisms of radical enzymes, it is of great importance to establish the general mechanism of AdoCbl-dependent catalysis using enzymes that catalyze the simplest reactions-such as diol dehydratase, glycerol dehydratase and ethanolamine ammonia-lyase. These enzymes are often called "eliminases." We have studied AdoCbl and eliminases for more than a half century. Progress has always been driven by the development of new experimental methodologies. In this chapter, we describe our investigations on these enzymes, including their metabolic roles, gene cloning, preparation, characterization, activity assays, and mechanistic studies, that have been conducted using a wide range of biochemical and structural methodologies we have developed.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan.
| | - Takamasa Tobimatsu
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Mamoru Yamanishi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Naoki Shibata
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, Japan
| |
Collapse
|
3
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
4
|
Kovačević B, Barić D, Babić D, Bilić L, Hanževački M, Sandala GM, Radom L, Smith DM. Computational Tale of Two Enzymes: Glycerol Dehydration With or Without B12. J Am Chem Soc 2018; 140:8487-8496. [DOI: 10.1021/jacs.8b03109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Borislav Kovačević
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Danijela Barić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Darko Babić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Luka Bilić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marko Hanževački
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gregory M. Sandala
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8, Canada
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - David M. Smith
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Maddock DJ, Gerth ML, Patrick WM. An Engineered Glycerol Dehydratase With Improved Activity for the Conversion ofmeso-2,3-butanediol to Butanone. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | - Monica L. Gerth
- Department of Biochemistry; University of Otago; Dunedin 9054 New Zealand
| | - Wayne M. Patrick
- Department of Biochemistry; University of Otago; Dunedin 9054 New Zealand
| |
Collapse
|
6
|
Doitomi K, Kamachi T, Toraya T, Yoshizawa K. Computational Mutation Study of the Roles of Catalytic Residues in Coenzyme B12-Dependent Diol Dehydratase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Mori K, Oiwa T, Kawaguchi S, Kondo K, Takahashi Y, Toraya T. Catalytic Roles of Substrate-Binding Residues in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. Biochemistry 2014; 53:2661-71. [DOI: 10.1021/bi500223k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Mori
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Toshihiro Oiwa
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Kawaguchi
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kyosuke Kondo
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Takahashi
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tetsuo Toraya
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Cobalamin-dependent dehydratases and a deaminase: Radical catalysis and reactivating chaperones. Arch Biochem Biophys 2014; 544:40-57. [DOI: 10.1016/j.abb.2013.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 01/12/2023]
|
9
|
Doitomi K, Kamachi T, Yoshizawa K. [Computational mutation analysis of enzymatic reaction]. YAKUGAKU ZASSHI 2012; 132:1297-305. [PMID: 23123722 DOI: 10.1248/yakushi.12-00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Density functional theory (DFT) calculations are established as a useful research tool to investigate the structures and reactivity of biological systems; however, their high computational costs still restrict their applicability to systems of several tens up to a few hundred atoms. Recently, a combined quantum mechanical/molecular mechanical (QM/MM) approach has become an important method to study enzymatic reactions. In the past several years, we have investigated B12-dependent diol dehydratase using QM/MM calculations. The enzyme catalyzes chemically difficult reactions by utilizing the high reactivity of free radicals. In this paper, we explain our QM/MM calculations for the structure and reactivity of diol dehydratase and report key findings with respect to the catalytic roles of the active-site amino acid residues, computational mutational analysis of the active-site amino acid residues, assignment of the central metal ion, and function of the central metal ion. Our QM/MM calculations can correctly describe the structures and activation barriers of intermediate and transition states in the protein environment. Moreover, predicted relative activities of mutants are consistent with experimentally observed reactivity. These results will encourage the application of QM/MM research to the mechanistic study of enzymatic reactions, functional analysis of active-site residues, and rational design of enzymes with new catalytic functions.
Collapse
Affiliation(s)
- Kazuki Doitomi
- Institute for Materials Chemistry and Engneering, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
10
|
Feliks M, Ullmann GM. Glycerol Dehydratation by the B12-Independent Enzyme May Not Involve the Migration of a Hydroxyl Group: A Computational Study. J Phys Chem B 2012; 116:7076-87. [DOI: 10.1021/jp301165b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikolaj Feliks
- Computational Biochemistry Group, University of Bayreuth, Universitätsstr. 30, BGI, 95447
Bayreuth, Germany
| | - G. Matthias Ullmann
- Computational Biochemistry Group, University of Bayreuth, Universitätsstr. 30, BGI, 95447
Bayreuth, Germany
| |
Collapse
|
11
|
Yamanishi M, Kinoshita K, Fukuoka M, Saito T, Tanokuchi A, Ikeda Y, Obayashi H, Mori K, Shibata N, Tobimatsu T, Toraya T. Redesign of coenzyme B12 dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols. FEBS J 2012; 279:793-804. [DOI: 10.1111/j.1742-4658.2012.08470.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Celińska E. Klebsiella sppas a 1, 3-propanediol producer – the metabolic engineering approach. Crit Rev Biotechnol 2011; 32:274-88. [DOI: 10.3109/07388551.2011.616859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Roose JL, Yocum CF, Popelkova H. Function of PsbO, the Photosystem II Manganese-Stabilizing Protein: Probing the Role of Aspartic Acid 157. Biochemistry 2010; 49:6042-51. [DOI: 10.1021/bi100303f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Johnna L. Roose
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Charles F. Yocum
- Department of Molecular, Cellular, and Developmental Biology
- Department of Chemistry
| | - Hana Popelkova
- Department of Molecular, Cellular, and Developmental Biology
| |
Collapse
|
14
|
Kinoshita K, Kawata M, Ogura KI, Yamasaki A, Watanabe T, Komoto N, Hieda N, Yamanishi M, Tobimatsu T, Toraya T. Histidine-α143 Assists 1,2-Hydroxyl Group Migration and Protects Radical Intermediates in Coenzyme B12-Dependent Diol Dehydratase. Biochemistry 2008; 47:3162-73. [DOI: 10.1021/bi7018095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koichiro Kinoshita
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Masahiro Kawata
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Ken-ichi Ogura
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Ai Yamasaki
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Takeshi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Noriaki Komoto
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Naoki Hieda
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Mamoru Yamanishi
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| |
Collapse
|
15
|
Kamachi T, Toraya T, Yoshizawa K. Computational Mutation Analysis of Hydrogen Abstraction and Radical Rearrangement Steps in the Catalysis of Coenzyme B12-Dependent Diol Dehydratase. Chemistry 2007; 13:7864-73. [PMID: 17614304 DOI: 10.1002/chem.200601466] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A mutation analysis of the catalytic functions of active-site residues of coenzyme B(12)-dependent diol dehydratase in the conversion of 1,2-propanediol to 1,1-propanediol has been carried out by using QM/MM computations. Mutants His143Ala, Glu170Gln, Glu170Ala, and Glu170Ala/Glu221Ala were considered to estimate the impact of the mutations of His143 and Glu170. In the His143Ala mutant the activation energy for OH migration increased to 16.4 from 11.5 kcal mol(-1) in the wild-type enzyme. The highest activation energy, 19.6 kcal mol(-1), was measured for hydrogen back-abstraction in this reaction. The transition state for OH migration is not sufficiently stabilized by the hydrogen-bonding interaction formed between the spectator OH group and Gln170 in the Glu170Gln mutant, which demonstrates that a strong proton acceptor is required to promote OH migration. In the Glu170Ala mutant, a new strong hydrogen bond is formed between the spectator OH group and Glu221. A computed activation energy of 13.6 kcal mol(-1) for OH migration in the Glu170Ala mutant is only 2.1 kcal mol(-1) higher than the corresponding barrier in the wild-type enzyme. Despite the low activation barrier, the Glu170Ala mutant is inactive because the subsequent hydrogen back-abstraction is energetically demanding in this mutant. OH migration is not feasible in the Glu170Ala/Glu221Ala mutant because the activation barrier for OH migration is greatly increased by the loss of COO(-) groups near the spectator OH group. This result indicates that the effect of partial deprotonation of the spectator OH group is the most important factor in reducing the activation barrier for OH migration in the conversion of 1,2-propanediol to 1,1-propanediol catalyzed by diol dehydratase.
Collapse
Affiliation(s)
- Takashi Kamachi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
16
|
Schwartz PA, Lobrutto R, Reed GH, Frey PA. Probing interactions from solvent-exchangeable protons and monovalent cations with the 1,2-propanediol-1-yl radical intermediate in the reaction of dioldehydrase. Protein Sci 2007; 16:1157-64. [PMID: 17525464 PMCID: PMC2206673 DOI: 10.1110/ps.072768007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The reaction of adenosylcobalamin-dependent dioldehydrase with 1,2-propanediol gives rise to a radical intermediate observable by EPR spectroscopy. This reaction requires a monovalent cation such as potassium ion. The radical signal arises from the formation of a radical pair comprised of the Co(II) of cob(II)alamin and a substrate-related radical generated upon hydrogen abstraction by the 5'-deoxyadenosyl radical. The high-field asymmetric doublet arising from the organic radical has allowed investigation of its composition and environment through the use of EPR spectroscopic techniques. To characterize the protonation state of the oxygen substituents in the radical intermediate, X-band EPR spectroscopy was performed in the presence of D(2)O and compared to the spectrum in H(2)O. Results indicate that the unpaired electron of the steady-state radical couples to a proton on the C(1) hydroxyl group. Other spectroscopic experiments were performed, using either potassium or thallous ion as the activating monovalent cation, in an attempt to exploit the magnetic nature of the (205,203)Tl nucleus to identify any intimate interaction of the radical intermediate with the activating cation. The radical intermediate in complex with dioldehydrase, cob(II)alamin and one of the activating monovalent cations was observed using EPR, ENDOR, and ESEEM spectroscopy. The spectroscopic evidence did not implicate a direct coordination of the activating cation and the substrate derived radical intermediate.
Collapse
Affiliation(s)
- Phillip A Schwartz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | | | |
Collapse
|
17
|
Mansoorabadi SO, Magnusson OT, Poyner RR, Frey PA, Reed GH. Analysis of the Cob(II)alamin-5'-deoxy-3',4'-anhydroadenosyl radical triplet spin system in the active site of diol dehydrase. Biochemistry 2007; 45:14362-70. [PMID: 17128975 PMCID: PMC2527747 DOI: 10.1021/bi061586q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A triplet spin system (S=1) is detected by low-temperature electron paramagnetic resonance (EPR) spectroscopy in samples of diol dehydrase and the functional adenosylcobalamin (AdoCbl) analogue 5'-deoxy-3',4'-anhydroadenosylcobalamin (anAdoCbl). Different spectra are observed in the presence and absence of the substrate (R,S)-1,2-propanediol. In both cases, the spectra include a prominent half-field transition (DeltaM(S) = 2) that is a hallmark of strongly coupled triplet spin systems. The appearance of 59Co hyperfine splitting in the EPR signals and the positions (g values) of the signals in the spectra show that half of the triplet spin is contributed by the low-spin Co2+ of cob(II)alamin. Line width effects from isotopic labeling (13C and 2H) in the 5'-deoxy-3',4'-anhydroribosyl ring demonstrate that the other half of the spin triplet is from an allylic 5'-deoxy-3',4'-anhydroadenosyl (anhydroadenosyl) radical. The zero-field splitting (ZFS) tensors describing the magnetic dipole-dipole interactions of the component spins of the triplets have rhombic symmetry because of electron spin delocalization within the organic radical component and the proximity of the radical to the low-spin Co2+. The dipole-dipole interaction was modeled as a summation of point-dipole interactions involving the spin-bearing orbitals of the anhydroadenosyl radical and cob(II)alamin. Geometries which are consistent with the ZFS tensors in the presence and absence of the substrate position the 5'-carbon of the anhydroadenosyl radical 3.5 and 4.1 A from Co2+, respectively. Homolytic cleavage of the cobalt-carbon bond of the analogue in the absence of the substrate indicates that, in diol dehydrase, binding of the coenzyme to the protein weakens the bond prior to binding of the substrate.
Collapse
Affiliation(s)
| | | | | | | | - George H. Reed
- Address Correspondence to: George H. Reed, University of Wisconsin, 1710 University Avenue, Madison, WI 53726-4087, Telephone: (608) 262-0509, FAX: (608) 265-2904,
| |
Collapse
|
18
|
Sakai T, Yamasaki A, Toyofuku S, Nishiki T, Yunoki M, Komoto N, Tobimatsu T, Toraya T. Construction and Characterization of Hybrid Dehydratases between Adenosylcobalamin-Dependent Diol and Glycerol Dehydratases. J Nutr Sci Vitaminol (Tokyo) 2007; 53:102-8. [PMID: 17615996 DOI: 10.3177/jnsv.53.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adenosylcobalamin-dependent diol dehydratase and glycerol dehydratase are isofunctional enzymes that catalyze the dehydration of 1,2-diols to the corresponding aldehydes. Although they bear different metabolic roles, both enzymes consist of three different subunits and possess a common (alphabetagamma)2 structure. To elucidate the roles of each subunit, we constructed expression plasmids for the hybrid dehydratases between diol dehydratase of Klebsiella oxytoca and glycerol dehydratase of Klebsiella pneumoniae in all the combinations of subunits by gene engineering techniques. All of the hybrid enzymes were produced in Escherichia coli at high levels, but only two hybrid enzymes consisting of the alpha subunit from glycerol dehydratase and the beta subunits from diol dehydratase showed high activity. The substrate specificity, the susceptibility to inactivation by glycerol, and the monovalent cation specificity of the wild type and hybrid enzymes were primarily determined by the origin of their alpha subunits.
Collapse
Affiliation(s)
- Takahiro Sakai
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|