1
|
Abeyrathna N, Abeyrathna S, Morgan MT, Fahrni CJ, Meloni G. Transmembrane Cu(I) P-type ATPase pumps are electrogenic uniporters. Dalton Trans 2021; 49:16082-16094. [PMID: 32469032 DOI: 10.1039/d0dt01380c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cu(i) P-type ATPases are transmembrane primary active ion pumps that catalyze the extrusion of copper ions across cellular membranes. Their activity is critical in controlling copper levels in all kingdoms of life. Biochemical and structural characterization established the structural framework by which Cu-pumps perform their function. However, the details of the overall mechanism of transport (uniporter vs. cotransporter) and electrogenicity still remain elusive. In this work, we developed a platform to reconstitute the model Cu(i)-pump from E. coli (EcCopA) in artificial lipid bilayer small unilamellar vesicles (SUVs) to quantitatively characterize the metal substrate, putative counter-ions and charge translocation. By encapsulating in the liposome lumen fluorescence detector probes (CTAP-3, pyranine and oxonol VI) responsive to diverse stimuli (Cu(i), pH and membrane potential), we correlated substrate, secondary-ion translocation and charge movement events in EcCopA proteoliposomes. This platform centered on multiple fluorescence reporters allowed study of the mechanism and translocation kinetic parameters in real-time for wild-type EcCopA and inactive mutants. The maximal initial Cu(i) transport rate of 165 nmol Cu(i) mg-1 min-1 and KM, Cu(I) = 0.15 ± 0.07 μM was determined with this analysis. We reveal that Cu(i) pumps are primary-active uniporters and electrogenic. The Cu(i) translocation cycle does not require proton counter-transport resulting in electrogenic generation of transmembrane potential upon translocation of one Cu(i) per ATP hydrolysis cycle. Thus, mechanistic differences between Cu(i) pumps and other better characterized P-type ATPases are discussed. The platform opens the venue to study translocation events and mechanisms of transport in other transition metal P-type ATPase pumps.
Collapse
Affiliation(s)
- Nisansala Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | | | | | | |
Collapse
|
2
|
The Structure of Metal Binding Domain 1 of the Copper Transporter ATP7B Reveals Mechanism of a Singular Wilson Disease Mutation. Sci Rep 2018; 8:581. [PMID: 29330485 PMCID: PMC5766562 DOI: 10.1038/s41598-017-18951-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
Copper-transporter ATP7B maintains copper homeostasis in the human cells and delivers copper to the biosynthetic pathways for incorporation into the newly synthesized copper-containing proteins. ATP7B is a target of several hundred mutations that lead to Wilson disease, a chronic copper toxicosis. ATP7B contains a chain of six cytosolic metal-binding domains (MBDs), the first four of which (MBD1-4) are believed to be regulatory, and the last two (MBD5-6) are required for enzyme activity. We report the NMR structure of MBD1, the last unsolved metal-binding domain of ATP7B. The structure reveals the disruptive mechanism of G85V mutation, one of the very few disease causing missense mutations in the MBD1-4 region of ATP7B.
Collapse
|
3
|
Yu CH, Yang N, Bothe J, Tonelli M, Nokhrin S, Dolgova NV, Braiterman L, Lutsenko S, Dmitriev OY. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J Biol Chem 2017; 292:18169-18177. [PMID: 28900031 DOI: 10.1074/jbc.m117.811752] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/01/2017] [Indexed: 01/28/2023] Open
Abstract
The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo-Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions.
Collapse
Affiliation(s)
- Corey H Yu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nan Yang
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Jameson Bothe
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Sergiy Nokhrin
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Natalia V Dolgova
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Lelita Braiterman
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Svetlana Lutsenko
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Oleg Y Dmitriev
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| |
Collapse
|
4
|
Yu CH, Dolgova NV, Dmitriev OY. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A. IUBMB Life 2017; 69:226-235. [DOI: 10.1002/iub.1611] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Corey H. Yu
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Natalia V. Dolgova
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Oleg Y. Dmitriev
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
5
|
Kambe T, Takeda TA, Nishito Y. Activation of zinc-requiring ectoenzymes by ZnT transporters during the secretory process: Biochemical and molecular aspects. Arch Biochem Biophys 2016; 611:37-42. [PMID: 27046342 DOI: 10.1016/j.abb.2016.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
In humans, about 1000 enzymes are estimated to bind zinc. In most of these enzymes, zinc is present at the active site; thus, these enzymes are functional as "zinc-requiring enzymes". Of these zinc-requiring enzymes, zinc-requiring ectoenzymes (defined as secretory, membrane-bound, and organelle-resident enzymes) have received much attention because of their important physiological functions, involvement in a number of diseases, and potential applications as therapeutic targets for diseases. Zinc-requiring ectoenzymes may become active by coordinating zinc at their active site during the secretory process, which requires elaborate control of zinc mobilization from the extracellular milieu to the cytosol and then lumen in the early secretory pathway. Therefore, zinc transporters should properly maintain the process at systemic, cellular, and subcellular levels by mobilizing zinc across biological membranes. However, few studies have examined the mechanisms underlying this process. In this review, current knowledge of the activation process of zinc-requiring ectoenzymes by ZnT zinc transporters in the early secretory pathway is briefly reviewed at the molecular level, with a focus on tissue-nonspecific alkaline phosphatase. Moreover, we also discuss whether zinc-chaperone proteins function during the activation of these enzymes.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Shoshan MS, Dekel N, Goch W, Shalev DE, Danieli T, Lebendiker M, Bal W, Tshuva EY. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. J Inorg Biochem 2016; 159:29-36. [PMID: 26901629 DOI: 10.1016/j.jinorgbio.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023]
Abstract
The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.
Collapse
Affiliation(s)
- Michal S Shoshan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Noa Dekel
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tsafi Danieli
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.
| |
Collapse
|
7
|
Recognition of Errors in the Refinement and Validation of Three-Dimensional Structures of AC1 Proteins of Begomovirus Strains by Using ProSA-Web. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/752656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structural model of begomovirus AC1 protein is useful for understanding biological function at molecular level and docking study. For this study we have used the ProSA program (Protein Structure Analysis) tool to establish the structure prediction and modeling of protein. This tool was used for refinement and validation of experimental protein structures. Potential problems of protein structures based on energy plots are easily seen by ProSA and are displayed in a three-dimensional manner. In the present study we have selected different AC1 proteins of begomovirus strains (YP_003288785, YP_002004579, and YP_003288773) for structural analysis and display of energy plots that highlight potential problems spotted in protein structures. The 3D models of Rep proteins with recognized errors can be effectively used for in silico docking study for development of potential ligand molecules against begomovirus infection.
Collapse
|
8
|
Pitts AL, Hall MB. Investigating the Electronic Structure of the Atox1 Copper(I) Transfer Mechanism with Density Functional Theory. Inorg Chem 2013; 52:10387-93. [DOI: 10.1021/ic401106z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amanda L. Pitts
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
9
|
Arumugam K, Crouzy S. Dynamics and Stability of the Metal Binding Domains of the Menkes ATPase and Their Interaction with Metallochaperone HAH1. Biochemistry 2012; 51:8885-906. [DOI: 10.1021/bi300669e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karthik Arumugam
- Commissariat
à l’Energie Atomique/CNRS/Université Joseph Fourier,
CEA, iRTSV, LCBM, 38054 Grenoble, France
| | - Serge Crouzy
- Laboratoire de Chimie et Biologie des Métaux,
CEA, iRTSV, LCBM, Commissariat à l’Energie Atomique/CNRS/Université
Joseph Fourier, UMR 5249, 17 rue des martyrs, 38054 Grenoble Cedex
09, France
| |
Collapse
|
10
|
Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana. Mol Biol Rep 2012; 40:1155-65. [PMID: 23065288 DOI: 10.1007/s11033-012-2157-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Eleusine coracana (finger millet) is a stress-hardy but under-utilized cereal crop that possesses an efficient antioxidant defense system. The plant is capable of enduring long durations of water deficit stress. Experiments were conducted to clone a potent stress responsive isoform of ascorbate peroxidase and validate its role under drought stress. Reverse transcriptase PCR was used to obtain the partial cDNA of apx1 gene, from a meticulously screened drought tolerant genotype of E. coracana (PR202). Using RACE strategy, the full length apx1 cDNA was cloned and sequenced. The cDNA length of the E. coracana apx1 (Ec-apx1) gene is 1,047 bp with a 750 bp ORF, encoding a 250 amino acid protein having a molecular weight of 28.5 kDa. The identity of the amino acid sequence, deduced from the cDNA, with the APX family homologs was about 74-97 %. The full-length apx1 ORF was sub-cloned in a prokaryotic expression vector pET23b. The recombinant fusion protein, Ec-apx1, had high expression level in BL21 strain of E. coli and exhibited APX enzyme activity. The structure-function relationship of the protein was deduced by modelling a three-dimensional structure of Ec-apx1, on the basis of comparative homology using SWISS-MODEL. Real time PCR analysis of Ec-apx1 expression at mRNA level showed that the transcript increased under drought stress, with maximum levels attained 5-days after imposition of stress. Our results suggest that Ec-apx1 has a distinct pattern of expression and plays a pivotal role in drought stress tolerance. Therefore, the cloned isoform of ascorbate peroxidase can be used for developing stress tolerant genotypes of important crops, through transgenic approach.
Collapse
|
11
|
Gupta A, Lutsenko S. Evolution of copper transporting ATPases in eukaryotic organisms. Curr Genomics 2012; 13:124-33. [PMID: 23024604 PMCID: PMC3308323 DOI: 10.2174/138920212799860661] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/22/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022] Open
Abstract
Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
Allen GS, Wu CC, Cardozo T, Stokes DL. The architecture of CopA from Archeaoglobus fulgidus studied by cryo-electron microscopy and computational docking. Structure 2011; 19:1219-32. [PMID: 21820315 DOI: 10.1016/j.str.2011.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 10/17/2022]
Abstract
CopA uses ATP to pump Cu(+) across cell membranes. X-ray crystallography has defined atomic structures of several related P-type ATPases. We have determined a structure of CopA at 10 Å resolution by cryo-electron microscopy of a new crystal form and used computational molecular docking to study the interactions between the N-terminal metal-binding domain (NMBD) and other elements of the molecule. We found that the shorter-chain lipids used to produce these crystals are associated with movements of the cytoplasmic domains, with a novel dimer interface and with disordering of the NMBD, thus offering evidence for the transience of its interaction with the other cytoplasmic domains. Docking identified a binding site that matched the location of the NMBD in our previous structure by cryo-electron microscopy, allowing a more detailed view of its binding configuration and further support for its role in autoinhibition.
Collapse
Affiliation(s)
- Gregory S Allen
- Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
13
|
Jain S, Saluja B, Gupta A, Marla SS, Goel R. Validation of Arsenic Resistance in Bacillus cereus Strain AG27 by Comparative Protein Modeling of arsC Gene Product. Protein J 2011; 30:91-101. [DOI: 10.1007/s10930-011-9305-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding. Biometals 2011; 24:477-87. [DOI: 10.1007/s10534-011-9410-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
|
15
|
Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 2010; 67:2563-89. [PMID: 20333435 PMCID: PMC11115773 DOI: 10.1007/s00018-010-0330-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 01/01/2023]
Abstract
Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Ivano Bertini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Cantini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
16
|
Affinity gradients drive copper to cellular destinations. Nature 2010; 465:645-8. [DOI: 10.1038/nature09018] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/17/2010] [Indexed: 11/09/2022]
|
17
|
Banci L, Bertini I, McGreevy KS, Rosato A. Molecular recognition in copper trafficking. Nat Prod Rep 2010; 27:695-710. [DOI: 10.1039/b906678k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
LeShane ES, Shinde U, Walker JM, Barry AN, Blackburn NJ, Ralle M, Lutsenko S. Interactions between copper-binding sites determine the redox status and conformation of the regulatory N-terminal domain of ATP7B. J Biol Chem 2009; 285:6327-36. [PMID: 20032459 DOI: 10.1074/jbc.m109.074633] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper-transporting ATPase ATP7B is essential for human copper homeostasis and normal liver function. ATP7B has six N-terminal metal-binding domains (MBDs) that sense cytosolic copper levels and regulate ATP7B. The mechanism of copper sensing and signal integration from multiple MBDs is poorly understood. We show that MBDs communicate and that this communication determines the oxidation state and conformation of the entire N-terminal domain of ATP7B (N-ATP7B). Mutations of copper-coordinating Cys to Ala in any MBD (2, 3, 4, or 6) change the N-ATP7B conformation and have distinct functional consequences. Mutating MBD2 or MBD3 causes Cys oxidation in other MBDs and loss of copper binding. In contrast, mutation of MBD4 and MBD6 does not alter the redox status and function of other sites. Our results suggest that MBD2 and MBD3 work together to regulate access to other metal-binding sites, whereas MBD4 and MBD6 receive copper independently, downstream of MBD2 and MBD3. Unlike Ala substitutions, the Cys-to-Ser mutation in MBD2 preserves the conformation and reduced state of N-ATP7B, suggesting that hydrogen bonds contribute to interdomain communications. Tight coupling between MBDs suggests a mechanism by which small changes in individual sites (induced by copper binding or mutation) result in stabilization of distinct conformations of the entire N-ATP7B and altered exposure of sites for interactions with regulatory proteins.
Collapse
Affiliation(s)
- Erik S LeShane
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Khan M, Kumar A, Goel R. Comparative Protein Modeling, Prediction of Conserved Residue and Active Sites in Cold Resistant Protein Isolated from CRPF1, A Cold Tolerant Mutant of Pseudomonas fluorescens. Curr Microbiol 2009; 60:428-34. [DOI: 10.1007/s00284-009-9560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022]
|
20
|
Affiliation(s)
- Amie K. Boal
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
21
|
Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J. Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 2009; 41:2403-12. [PMID: 19576997 DOI: 10.1016/j.biocel.2009.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
The Menkes copper-translocating P-type ATPase (ATP7A) is a critical copper transport protein functioning in systemic copper absorption and supply of copper to cuproenzymes in the secretory pathway. Mutations in ATP7A can lead to the usually lethal Menkes disease. ATP7A function is regulated by copper-responsive trafficking between the trans-Golgi Network and the plasma membrane. We have previously reported basal and copper-responsive kinase phosphorylation of ATP7A but the specific phosphorylation sites had not been identified. As copper stimulates both trafficking and phosphorylation of ATP7A we aimed to identify all the specific phosphosites and to determine whether trafficking and phosphorylation are linked. We identified twenty in vivo phosphorylation sites in the human ATP7A and eight in hamster, all clustered within the N- and C-terminal cytosolic domains. Eight sites were copper-responsive and hence candidates for regulating copper-responsive trafficking or catalytic activity. Mutagenesis of the copper-responsive phosphorylation site Serine-1469 resulted in mislocalization of ATP7A in the presence of added copper in both polarized (Madin Darby canine kidney) and non-polarized (Chinese Hamster Ovary) cells, strongly suggesting that phosphorylation of specific serine residues is required for copper-responsive ATP7A trafficking to the plasma membrane. A constitutively phosphorylated site, Serine-1432, when mutated to alanine also resulted in mislocalization in the presence of added copper in polarized Madin Darby kidney cells. These studies demonstrate that phosphorylation of specific serine residues in ATP7A regulates its sub-cellular localization and hence function and will facilitate identification of the kinases and signaling pathways involved in regulating this pivotal copper transporter.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Genetics Department, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P. Conformational Dynamics of Metal-Binding Domains in Wilson Disease Protein: Molecular Insights into Selective Copper Transfer. Biochemistry 2009; 48:5849-63. [DOI: 10.1021/bi900235g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Alejandro Crespo
- Department of Bioengineering, Rice University, Houston, 77005 Texas
| | - Pernilla Wittung-Stafshede
- Department of Biochemistry and Cell Biology, Rice University, Houston, 77251 Texas
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
23
|
Banci L, Bertini I, Cantini F, Massagni C, Migliardi M, Rosato A. An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1. J Biol Chem 2009; 284:9354-60. [PMID: 19181666 PMCID: PMC2666587 DOI: 10.1074/jbc.m805981200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/30/2009] [Indexed: 12/17/2022] Open
Abstract
ATP7B is a human P(1B)-type ATPase that has a crucial role in maintaining copper(I) homeostasis. Mutations in the corresponding gene are the cause of Wilson disease. Among its various distinguishing features is a long ( approximately 630 amino acids) N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We expressed the entire tail as a single construct in Escherichia coli and investigated its interaction with its copper chaperone (i.e. HAH1) by solution NMR spectroscopy. We observed that all six of the metal-binding domains were metallated by Cu(I)-HAH1, with the first, the second, and the fourth domains forming an adduct with it. This behavior is different from that of the highly similar human ATPase ATP7A, in which only two domains form such an adduct. The distinct behaviors of the different domains were analyzed in terms of the energetics of Cu(I) transfer, hinting at a specific role of the interaction with copper(I)-HAH1 in the overall functional process.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Banci L, Bertini I, Ciofi-Baffoni S. Copper trafficking in biology: an NMR approach. HFSP JOURNAL 2009; 3:165-75. [PMID: 19949444 DOI: 10.2976/1.3078306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 11/19/2022]
Abstract
Copper ions are essential for living organisms because they are involved in several fundamental biological processes. Biomolecules interacting with copper ions have to be characterized as such, when bound to the metal ion, and when they interact with other biomolecules or substrates. The characterization is both structural and dynamic. In this context, NMR is a preferred tool of investigation because it allows shedding light on what happens in solution. Here, the NMR contribution to the copper trafficking is described, providing precious information on biochemical pathways, which are essential to understand the mechanisms of life at the molecular level.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, and Magnetic Resonance Center CERM, University of Florence, Scientific Campus, 50019, Sesto Fiorentino, Florence, Italy
| | | | | |
Collapse
|
25
|
Ma J, Xia D. The use of blue native PAGE in the evaluation of membrane protein aggregation states for crystallization. J Appl Crystallogr 2008; 41:1150-1160. [PMID: 19529836 DOI: 10.1107/s0021889808033797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/16/2008] [Indexed: 02/08/2023] Open
Abstract
Crystallization has long been one of the bottlenecks in obtaining structural information at atomic resolution for membrane proteins. This is largely due to difficulties in obtaining high-quality protein samples. One frequently used indicator of protein quality for successful crystallization is the monodispersity of proteins in solution, which is conventionally obtained by size exclusion chromatography (SEC) or by dynamic light scattering (DLS). Although useful in evaluating the quality of soluble proteins, these methods are not always applicable to membrane proteins either because of the interference from detergent micelles or because of the requirement for large sample quantities. Here, the use of blue native polyacrylamide gel electrophoresis (BN-PAGE) to assess aggregation states of membrane protein samples is reported. A strong correlation is demonstrated between the monodispersity measured by BN-PAGE and the propensity for crystallization of a number of soluble and membrane protein complexes. Moreover, it is shown that there is a direct correspondence between the oligomeric states of proteins as measured by BN-PAGE and those obtained from their crystalline forms. When applied to a membrane protein with unknown structure, BN-PAGE was found to be useful and efficient for selecting well behaved proteins from various constructs and in screening detergents. Comparisons of BN-PAGE with DLS and SEC are provided.
Collapse
Affiliation(s)
- Jichun Ma
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2122C, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Banci L, Bertini I, Cantini F, Rosenzweig AC, Yatsunyk LA. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1. Biochemistry 2008; 47:7423-9. [PMID: 18558714 DOI: 10.1021/bi8004736] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Wilson disease protein or ATP7B is a P 1B-type ATPase involved in human copper homeostasis. The extended N-terminus of ATP7B protrudes into the cytosol and contains six Cu(I) binding domains. This report presents the NMR structure of the polypeptide consisting of soluble Cu(I) binding domains 3 and 4. The two domains exhibit ferredoxin-like folds, are linked by a flexible loop, and act independently of one another. Domains 3 and 4 tend to aggregate in a concentration-dependent manner involving nonspecific intermolecular interactions. Both domains can be loaded with Cu(I) when provided as an acetonitrile complex or by the chaperone HAH1. HAH1 forms a 70% complex with domain 4 that is in fast exchange with the free protein in solution. The ability of HAH1 to form a complex only with some domains of ATP7B is an interesting property of this class of proteins and may have a signaling role in the function of the ATPases.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
27
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 569] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
28
|
de Bie P, Muller P, Wijmenga C, Klomp LWJ. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 2007; 44:673-88. [PMID: 17717039 PMCID: PMC2752173 DOI: 10.1136/jmg.2007.052746] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper-induced trafficking, post-translational modifications and protein-protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders.
Collapse
Affiliation(s)
- P de Bie
- Laboratory of Metabolic and Endocrine Diseases, Room KC.02.069.1, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
29
|
Lutsenko S, LeShane ES, Shinde U. Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 2007; 463:134-48. [PMID: 17562324 PMCID: PMC2025638 DOI: 10.1016/j.abb.2007.04.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/10/2007] [Accepted: 04/13/2007] [Indexed: 12/11/2022]
Abstract
Copper is essential for cell metabolism as a cofactor of key metabolic enzymes. The biosynthetic incorporation of copper into secreted and plasma membrane-bound proteins requires activity of the copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B. The Cu-ATPases also export excess copper from the cell and thus critically contribute to the homeostatic control of copper. The trafficking of Cu-ATPases from the trans-Golgi network to endocytic vesicles in response to various signals allows for the balance between the biosynthetic and copper exporting functions of these transporters. Although significant progress has been made towards understanding the biochemical characteristics of human Cu-ATPase, the mechanisms that control their function and intracellular localization remain poorly understood. In this review, we summarize current information on structural features and functional properties of ATP7A and ATP7B. We also describe sequence motifs unique for each Cu-ATPase and speculate about their role in regulating ATP7A and ATP7B activity and trafficking.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
30
|
La Fontaine S, Mercer JFB. Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys 2007; 463:149-67. [PMID: 17531189 DOI: 10.1016/j.abb.2007.04.021] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 01/05/2023]
Abstract
Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, 221 Burwood Highway, Burwood, Vic. 3125, Australia.
| | | |
Collapse
|
31
|
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM) and Department of Chemistry – University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, Fax: +39‐055‐457‐4271
| | - Antonio Rosato
- Magnetic Resonance Center (CERM) and Department of Chemistry – University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, Fax: +39‐055‐457‐4271
| |
Collapse
|
32
|
Banci L, Bertini I, Cantini F, Della-Malva N, Migliardi M, Rosato A. The different intermolecular interactions of the soluble copper-binding domains of the menkes protein, ATP7A. J Biol Chem 2007; 282:23140-6. [PMID: 17545667 DOI: 10.1074/jbc.m700695200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP7A is a P-type ATPase involved in copper(I) homeostasis in humans. It possesses a long N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We investigated the entire N-terminal tail (MNK1-6) in solution by NMR spectroscopy and addressed its interaction with copper(I) and with copper(I)-HAH1, the physiological partner of ATP7A. At copper(I)-HAH1:MNK1-6 ratios of up to 3:1, thus encompassing the range of protein ratios in vivo, both the first and fourth domain of the tail formed a metal-mediated adduct with HAH1 whereas the sixth domain was simultaneously able to partly remove copper(I) from HAH1. These processes are not dependent on one another. In particular, formation of the adducts is not necessary for copper(I) transfer from HAH1 to the sixth domain. The present data, together with available in vivo studies, suggest that the localization of ATP7A between the trans-Golgi network and the plasma membrane may be regulated by the accumulation of the adducts with HAH1, whereas the main role of domains 5 and 6 is to assist copper(I) translocation.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, Via L. Sacconi 6, and Department of Chemistry, Via della Lastruccia 3, University of Florence, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007; 35:W407-10. [PMID: 17517781 PMCID: PMC1933241 DOI: 10.1093/nar/gkm290] [Citation(s) in RCA: 3851] [Impact Index Per Article: 226.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A major problem in structural biology is the recognition of errors in experimental and theoretical models of protein structures. The ProSA program (Protein Structure Analysis) is an established tool which has a large user base and is frequently employed in the refinement and validation of experimental protein structures and in structure prediction and modeling. The analysis of protein structures is generally a difficult and cumbersome exercise. The new service presented here is a straightforward and easy to use extension of the classic ProSA program which exploits the advantages of interactive web-based applications for the display of scores and energy plots that highlight potential problems spotted in protein structures. In particular, the quality scores of a protein are displayed in the context of all known protein structures and problematic parts of a structure are shown and highlighted in a 3D molecule viewer. The service specifically addresses the needs encountered in the validation of protein structures obtained from X-ray analysis, NMR spectroscopy and theoretical calculations. ProSA-web is accessible at https://prosa.services.came.sbg.ac.at
Collapse
Affiliation(s)
| | - Manfred J. Sippl
- *To whom correspondence should be addressed. +43-662-8044-5796 +43-662-8044-176
| |
Collapse
|
34
|
Bento I, Peixoto C, Zaitsev VN, Lindley PF. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2007; 63:240-8. [PMID: 17242517 PMCID: PMC2483498 DOI: 10.1107/s090744490604947x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/18/2006] [Indexed: 11/10/2022]
Abstract
The three-dimensional molecular structure of human serum ceruloplasmin has been reinvestigated using X-ray synchrotron data collected at 100 K from a crystal frozen to liquid-nitrogen temperature. The resulting model, with an increase in resolution from 3.1 to 2.8 A, gives an overall improvement of the molecular structure, in particular the side chains. In addition, it enables the clear definition of previously unidentified Ca2+-binding and Na+-binding sites. The Ca2+ cation is located in domain 1 in a configuration very similar to that found in the activated bovine factor Va. The Na+ sites appear to play a structural role in providing rigidity to the three protuberances on the top surface of the molecule. These features probably help to steer substrates towards the mononuclear copper sites prior to their oxidation and to restrict the size of the approaching substrate. The trinuclear copper centre appears to differ from the room-temperature structure in that a dioxygen moiety is bound in a similar way to that found in the endospore coat protein CotA from Bacillus subtilis.
Collapse
Affiliation(s)
- Isabel Bento
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Cristina Peixoto
- Laboratory of Animal Cell Technology, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Vjacheslav N. Zaitsev
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
| | - Peter F. Lindley
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England
| |
Collapse
|