1
|
Dasariraju S, Gragert L, Wager GL, McCullough K, Brown NK, Kamoun M, Urbanowicz RJ. HLA amino acid Mismatch-Based risk stratification of kidney allograft failure using a novel Machine learning algorithm. J Biomed Inform 2023; 142:104374. [PMID: 37120046 PMCID: PMC10286565 DOI: 10.1016/j.jbi.2023.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/02/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE While associations between HLA antigen-level mismatches (Ag-MM) and kidney allograft failure are well established, HLA amino acid-level mismatches (AA-MM) have been less explored. Ag-MM fails to consider the substantial variability in the number of MMs at polymorphic amino acid (AA) sites within any given Ag-MM category, which may conceal variable impact on allorecognition. In this study we aim to develop a novel Feature Inclusion Bin Evolver for Risk Stratification (FIBERS) and apply it to automatically discover bins of HLA amino acid mismatches that stratify donor-recipient pairs into low versus high graft survival risk groups. METHODS Using data from the Scientific Registry of Transplant Recipients, we applied FIBERS on a multiethnic population of 166,574 kidney transplants between 2000 and 2017. FIBERS was applied (1) across all HLA-A, B, C, DRB1, and DQB1 locus AA-MMs with comparison to 0-ABDR Ag-MM risk stratification, (2) on AA-MMs within each HLA locus individually, and (3) using cross validation to evaluate FIBERS generalizability. The predictive power of graft failure risk stratification was evaluated while adjusting for donor/recipient characteristics and HLA-A, B, C, DRB1, and DQB1 Ag-MMs as covariates. RESULTS FIBERS's best-performing bin (on AA-MMs across all loci) added significant predictive power (hazard ratio = 1.10, Bonferroni adj. p < 0.001) in stratifying graft failure risk (where low-risk is defined as zero AA-MMs and high-risk is one or more AA-MMs) even after adjusting for Ag-MMs and donor/recipient covariates. The best bin also categorized more than twice as many patients to the low-risk category, compared to traditional 0-ABDR Ag mismatching (∼24.4% vs ∼ 9.1%). When HLA loci were binned individually, the bin for DRB1 exhibited the strongest risk stratification; relative to zero AA-MM, one or more MMs in the bin yielded HR = 1.11, p < 0.005 in a fully adjusted Cox model. AA-MMs at HLA-DRB1 peptide contact sites contributed most to incremental risk of graft failure. Additionally, FIBERS points to possible risk associated with HLA-DQB1 AA-MMs at positions that determine specificity of peptide anchor residues and HLA-DQ heterodimer stability. CONCLUSION FIBERS's performance suggests potential for discovery of HLA immunogenetics-based risk stratification of kidney graft failure that outperforms traditional assessment.
Collapse
Affiliation(s)
- Satvik Dasariraju
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Lawrenceville School, Lawrenceville, NJ, United States
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Grace L Wager
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Keith McCullough
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States
| | - Nicholas K Brown
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Malek Kamoun
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan J Urbanowicz
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Tirado-Herranz A, Guasp P, Pastor-Moreno A, Area-Navarro M, Alvarez I. Analysis of the different subpeptidomes presented by the HLA class I molecules of the B7 supertype. Cell Immunol 2023; 387:104707. [PMID: 36933326 DOI: 10.1016/j.cellimm.2023.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
MHC-I molecules of the HLA-B7 supertype preferentially bind peptides with proline at position 2. HLA-B*51:01 and B*51:08 present two predominant subpeptidomes, one with Pro2 and hydrophobic residues at P1, and another with Ala2 and Asp enriched at position 1. Here, we present a meta-analysis of the peptidomes presented by molecules of the B7 supertype to investigate the presence of subpeptidomes across different allotypes. Several allotypes presented subpeptidomes differing in the presence of Pro or another residue at P2. The Ala2 subpeptidomes preferred Asp1 except in HLA-B*54:01, where ligands with Ala2 contained Glu1. Sequence alignment and the analysis of crystal structures allowed us to propose positions 45 and 67 of the MHC heavy chain as relevant for the presence of subpeptidomes. Deciphering the principles behind the presence of subpeptidomes could improve our understanding of antigen presentation in other MHC-I molecules. Running title: HLA-B7 supertype subpeptidomes.
Collapse
Affiliation(s)
- Adrián Tirado-Herranz
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alba Pastor-Moreno
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - María Area-Navarro
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
3
|
Genetic Bias, Diversity Indices, Physiochemical Properties and CDR3 Motifs Divide Auto-Reactive from Allo-Reactive T-Cell Repertoires. Int J Mol Sci 2021; 22:ijms22041625. [PMID: 33562731 PMCID: PMC7915266 DOI: 10.3390/ijms22041625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022] Open
Abstract
The distinct properties of allo-reactive T-cell repertoires are not well understood. To investigate whether auto-reactive and allo-reactive T-cell repertoires encoded distinct properties, we used dextramer enumeration, enrichment, single-cell T-cell receptor (TCR) sequencing and multiparameter analysis. We found auto-reactive and allo-reactive T-cells differed in mean ex vivo frequency which was antigen dependent. Allo-reactive T-cells showed clear differences in TCR architecture, with enriched usage of specific T-cell receptor variable (TRBJ) genes and broader use of T-cell receptor variable joining (TRBJ) genes. Auto-reactive T-cell repertoires exhibited complementary determining regions three (CDR3) lengths using a Gaussian distribution whereas allo-reactive T-cell repertoires exhibited distorted patterns in CDR3 length. CDR3 loops from allo-reactive T-cells showed distinct physical-chemical properties, tending to encode loops that were more acidic in charge. Allo-reactive T-cell repertoires differed in diversity metrics, tending to show increased overall diversity and increased homogeneity between repertoires. Motif analysis of CDR3 loops showed allo-reactive T-cell repertoires differed in motif preference which included broader motif use. Collectively, these data conclude that allo-reactive T-cell repertoires are indeed different to auto-reactive repertoires and provide tangible metrics for further investigations and validation. Given that the antigens studied here are overexpressed on multiple cancers and that allo-reactive TCRs often show increased ligand affinity, this new TCR bank also has translational potential for adoptive cell therapy, soluble TCR-based therapy and rational TCR design.
Collapse
|
4
|
Coles CH, McMurran C, Lloyd A, Hock M, Hibbert L, Raman MCC, Hayes C, Lupardus P, Cole DK, Harper S. T cell receptor interactions with human leukocyte antigen govern indirect peptide selectivity for the cancer testis antigen MAGE-A4. J Biol Chem 2020; 295:11486-11494. [PMID: 32532817 PMCID: PMC7450119 DOI: 10.1074/jbc.ra120.014016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
T cell-mediated immunity is governed primarily by T cell receptor (TCR) recognition of peptide-human leukocyte antigen (pHLA) complexes and is essential for immunosurveillance and disease control. This interaction is generally stabilized by interactions between the HLA surface and TCR germline-encoded complementarity-determining region (CDR) loops 1 and 2, whereas peptide selectivity is guided by direct interactions with the TCR CDR3 loops. Here, we solved the structure of a newly identified TCR in complex with a clinically relevant peptide derived from the cancer testis antigen melanoma antigen-A4 (MAGE-A4). The TCR bound pHLA in a position shifted toward the peptide's N terminus. This enabled the TCR to achieve peptide selectivity via an indirect mechanism, whereby the TCR sensed the first residue of the peptide through HLA residue Trp-167, which acted as a tunable gateway. Amino acid substitutions at peptide position 1 predicted to alter the HLA Trp-167 side-chain conformation abrogated TCR binding, indicating that this indirect binding mechanism is essential for peptide recognition. These findings extend our understanding of the molecular rules that underpin antigen recognition by TCRs and have important implications for the development of TCR-based therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David K Cole
- Immunocore Ltd., Abingdon, United Kingdom .,Cardiff University School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
5
|
Hopkins JR, Crean RM, Catici DAM, Sewell AK, Arcus VL, Van der Kamp MW, Cole DK, Pudney CR. Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS J 2020; 287:3777-3793. [PMID: 32134551 PMCID: PMC8651013 DOI: 10.1111/febs.15278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
Most biomolecular interactions are typically thought to increase the (local) rigidity of a complex, for example, in drug‐target binding. However, detailed analysis of specific biomolecular complexes can reveal a more subtle interplay between binding and rigidity. Here, we focussed on the human leucocyte antigen (HLA), which plays a crucial role in the adaptive immune system by presenting peptides for recognition by the αβ T‐cell receptor (TCR). The role that the peptide plays in tuning HLA flexibility during TCR recognition is potentially crucial in determining the functional outcome of an immune response, with obvious relevance to the growing list of immunotherapies that target the T‐cell compartment. We have applied high‐pressure/temperature perturbation experiments, combined with molecular dynamics simulations, to explore the drivers that affect molecular flexibility for a series of different peptide–HLA complexes. We find that different peptide sequences affect peptide–HLA flexibility in different ways, with the peptide cargo tuning a network of correlated motions throughout the pHLA complex, including in areas remote from the peptide‐binding interface, in a manner that could influence T‐cell antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Rory M Crean
- Department of Biology and Biochemistry, University of Bath, UK.,Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Vickery L Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Christopher R Pudney
- Department of Biology and Biochemistry, University of Bath, UK.,Centre for Therapeutic Innovation, University of Bath, UK
| |
Collapse
|
6
|
D'Orsogna LJ, Almeida CAM, van Miert P, Zoet YM, Anholts JDH, Chopra A, Watson M, Witt C, John M, Claas FHJ. Drug-induced alloreactivity: A new paradigm for allorecognition. Am J Transplant 2019; 19:2606-2613. [PMID: 31125485 DOI: 10.1111/ajt.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023]
Abstract
Abacavir administration is associated with drug-induced hypersensitivity reactions in HIV+ individuals expressing the HLA-B*57:01 allele. However, the immunological effects of abacavir administration in an HLA-B57 mismatched transplantation setting have not been studied. We hypothesized that abacavir exposure could induce de novo HLA-B57-specific allorecognition. HIV-specific CD8 T cell clones were generated from HIV+ individuals, using single cell sorting based on HIV peptide/HLA tetramer staining. The T cell clones were assayed for alloreactivity against a panel of single HLA-expressing cell lines, in the presence or absence of abacavir. Cytokine assay, CD137 upregulation, and cytotoxicity were used as readout. Abacavir exposure can induce de novo HLA-B57 allorecognition by HIV-specific T cells. A HIV Gag RK9/HLA-A3-specific T cell did exhibit interferon-γ production, CD137 upregulation, and cytolytic effector function against allogeneic HLA-B57, but only in the presence of abacavir. Allorecognition was specific to the virus specificity, HLA restriction, and T cell receptor TRBV use of the T cell. We provide proof-of-principle evidence that administration of a drug could induce specific allorecognition of mismatched HLA molecules in the transplant setting. We suggest that HIV-seropositive recipients of an HLA-B57 mismatched graft should not receive abacavir until further studies are completed.
Collapse
Affiliation(s)
- Lloyd J D'Orsogna
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Coral-Ann M Almeida
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Paula van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yvonne M Zoet
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacqueline D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abha Chopra
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Campbell Witt
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia
| | - Mina John
- Department of Clinical Immunology and Pathwest, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
7
|
Zhang P, Tey SK. Adoptive T Cell Therapy Following Haploidentical Hematopoietic Stem Cell Transplantation. Front Immunol 2019; 10:1854. [PMID: 31447852 PMCID: PMC6691120 DOI: 10.3389/fimmu.2019.01854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Delayed immune reconstitution and the consequently high rates of leukemia relapse and infectious complications are the main limitations of haploidentical hematopoietic stem cell transplantation. Donor T cell addback can accelerate immune reconstitution but the therapeutic window between graft-vs.-host disease and protective immunity is very narrow in the haploidentical transplant setting. Hence, strategies to improve the safety and efficacy of adoptive T cell transfer are particularly relevant in this setting. Adoptive T cell transfer strategies in haploidentical transplantation include the use of antigen-specific T cells, allodepletion and alloanergy induction, immune modulation by the co-infusion of regulatory cell populations, and the use of safety switch gene-modified T cells. Whilst common principles apply, there are features that are unique to haploidentical transplantation, where HLA-mismatching directly impacts on immune reconstitution, and shared vs. non-shared HLA-allele can be an important consideration in antigen-specific T cell therapy. This review will also present an update on safety switch gene-modified T cells, which can be conditionally deleted in the event of severe graft- vs.-host disease or other adverse events. Herpes Virus Simplex Thymidine Kinase (HSVtk) and inducible caspase-9 (iCasp9) are safety switches that have undergone multicenter studies in haploidentical transplantation with encouraging results. These gene-modified cells, which are trackable long-term, have also provided important insights on the fate of adoptively transferred T cells. In this review, we will discuss the biology of post-transplant T cell immune reconstitution and the impact of HLA-mismatching, and the different cellular therapy strategies that can help accelerate T cell immune reconstitution after haploidentical transplantation.
Collapse
Affiliation(s)
- Ping Zhang
- Clinical Translational Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Siok-Keen Tey
- Clinical Translational Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
van den Heuvel H, van der Meer-Prins EM, van Miert PP, Zhang X, Anholts JD, Claas FH. Infection with a virus generates a polyclonal immune response with broad alloreactive potential. Hum Immunol 2019; 80:97-102. [DOI: 10.1016/j.humimm.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 11/27/2022]
|
9
|
Broad CD8 + T cell cross-recognition of distinct influenza A strains in humans. Nat Commun 2018; 9:5427. [PMID: 30575715 PMCID: PMC6303473 DOI: 10.1038/s41467-018-07815-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022] Open
Abstract
Newly-emerged and vaccine-mismatched influenza A viruses (IAVs) result in a rapid global spread of the virus due to minimal antibody-mediated immunity. In that case, established CD8+ T-cells can reduce disease severity. However, as mutations occur sporadically within immunogenic IAV-derived T-cell peptides, understanding of T-cell receptor (TCRαβ) cross-reactivity towards IAV variants is needed for a vaccine design. Here, we investigate TCRαβ cross-strain recognition across IAV variants within two immunodominant human IAV-specific CD8+ T-cell epitopes, HLA-B*37:01-restricted NP338-346 (B37-NP338) and HLA-A*01:01-restricted NP44-52 (A1-NP44). We find high abundance of cross-reactive TCRαβ clonotypes recognizing distinct IAV variants. Structures of the wild-type and variant peptides revealed preserved conformation of the bound peptides. Structures of a cross-reactive TCR-HLA-B37-NP338 complex suggest that the conserved conformation of the variants underpins TCR cross-reactivity. Overall, cross-reactive CD8+ T-cell responses, underpinned by conserved epitope structure, facilitates recognition of distinct IAV variants, thus CD8+ T-cell-targeted vaccines could provide protection across different IAV strains. Mutations within immunological epitope containing regions of influenza A virus can impair the established immune response between influenza strains and could impact rational vaccine design. Here Grant et al. examine the presence, structural impact and cross reactivity of two human immunodominant influenza epitope variants.
Collapse
|
10
|
DeWolf S, Grinshpun B, Savage T, Lau SP, Obradovic A, Shonts B, Yang S, Morris H, Zuber J, Winchester R, Sykes M, Shen Y. Quantifying size and diversity of the human T cell alloresponse. JCI Insight 2018; 3:121256. [PMID: 30089728 PMCID: PMC6129121 DOI: 10.1172/jci.insight.121256] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023] Open
Abstract
Alloreactive T lymphocytes are the primary mediators of immune responses in transplantation, both in the graft-versus-host and host-versus-graft directions. While essentially all clones comprising the human T cell repertoire have been selected on self-peptide presented by self-human leukocyte antigens (self-HLAs), much remains to be understood about the nature of clones capable of responding to allo-HLA molecules. Quantitative tools to study these cells are critical to understand fundamental features of this important response; however, the large size and diversity of the alloreactive T cell repertoire in humans presents a great technical challenge. We have developed a high-throughput T cell receptor (TCR) sequencing approach to characterize the human alloresponse. We present a statistical method to model T cell clonal frequency distribution and quantify repertoire diversity. Using these approaches, we measured the diversity and frequency of distinct alloreactive CD4+ and CD8+ T cell populations in HLA-mismatched responder-stimulator pairs. Our findings indicate that the alloimmune repertoire is highly specific for a given pair of individuals, that most alloreactive clones circulate at low frequencies, and that a high proportion of TCRs is likely able to recognize alloantigens.
Collapse
Affiliation(s)
- Susan DeWolf
- Center for Translational Immunology, Department of Medicine
| | | | - Thomas Savage
- Center for Translational Immunology, Department of Medicine
| | - Sai Ping Lau
- Center for Translational Immunology, Department of Medicine
| | | | | | - Suxiao Yang
- Center for Translational Immunology, Department of Medicine
| | - Heather Morris
- Center for Translational Immunology, Department of Medicine
| | - Julien Zuber
- Center for Translational Immunology, Department of Medicine
| | | | - Megan Sykes
- Center for Translational Immunology, Department of Medicine
| | - Yufeng Shen
- Department of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
11
|
Bozeman AM, Laurie SJ, Haridas D, Wagener ME, Ford ML. Transplantation preferentially induces a KLRG-1 lo CD127 hi differentiation program in antigen-specific CD8 + T cells. Transpl Immunol 2018; 50:34-42. [PMID: 29885905 DOI: 10.1016/j.trim.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/27/2022]
Abstract
Models of infection have shaped our understanding of programmed memory T cell differentiation, yet whether these models apply to memory programming in the context of transplantation has yet to be defined. Previous work has identified differences in the response of antigen-specific CD8+ T cells to cognate antigen based on the environment in which the antigen is presented. Thus, we hypothesized that programming of antigen specific CD8+ T cells responding to graft and pathogen may be dissimilar. Here we find that antigen-specific CD8+ T cells primed by a skin graft contract faster than those primed by gammaherpesvirus (gHV), yet are able to expand more rapidly upon rechallenge. Moreover, graft-primed antigen-specific CD8+ T cells exhibited higher frequencies of cells secreting IL-2 and demonstrate lower expression of KLRG-1, which are qualities suggestive of increased recall potential. Additionally, the expression of CD127 at a memory time point suggests graft-elicited CD8+ antigen specific T cells are maintained in a less terminally-differentiated state compared to gHV-elicited CD8+ antigen specific T cells, despite fewer cells being present at that time point. Taken together, our findings suggest that the surface marker expression and functional profiles of T cells depends on the priming conditions and may be used to predict immunologic risk following transplantation after traditional allosensitization or heterologous immune priming.
Collapse
Affiliation(s)
- Alana M Bozeman
- Emory Transplant Center, Atlanta 30322, Georgia; Division of Pediatric Nephrology, Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta 30322, Georgia
| | | | | | | | - Mandy L Ford
- Emory Transplant Center, Atlanta 30322, Georgia.
| |
Collapse
|
12
|
Abstract
Background The association of HLA mismatching with kidney allograft survival has been well established. We examined whether amino acid (AA) mismatches (MMs) at the antigen recognition site of HLA molecules represent independent and incremental risk factors for kidney graft failure (GF) beyond those MMs assessed at the antigenic (2-digit) specificity. Methods Data on 240 024 kidney transplants performed between 1987 and 2009 were obtained from the Scientific Registry of Transplant Recipients. We imputed HLA-A, -B, and -DRB1 alleles and corresponding AA polymorphisms from antigenic specificity through the application of statistical and population genetics inferences. GF risk was evaluated using Cox proportional-hazards regression models adjusted for covariates including patient and donor risk factors and HLA antigen MMs. Results We show that estimated AA MMs at particular positions in the peptide-binding pockets of HLA-DRB1 molecule account for a significant incremental risk that was independent of the well-known association of HLA antigen MMs with graft survival. A statistically significant linear relationship between the estimated number of AA MMs and risk of GF was observed for HLA-DRB1 in deceased donor and living donor transplants. This relationship was strongest during the first 12 months after transplantation (hazard ratio, 1.30 per 15 DRB1 AA MM; P < 0.0001). Conclusions This study shows that independent of the well-known association of HLA antigen (2-digit specificity) MMs with kidney graft survival, estimated AA MMs at peptide-binding sites of the HLA-DRB1 molecule account for an important incremental risk of GF. In a population of 240 024 kidney transplant recipients using the data of the Scientific Registry of Transplant recipients, the authors demonstrate that, independently of HLA antigen mismatches, estimated amino-acid mismatches at peptide-binding sites of the HLA-DRB1 molecule, accounts for an increased graft failure risk. Supplemental digital content is available in the text.
Collapse
|
13
|
van den Heuvel H, Heutinck KM, van der Meer-Prins EMW, Yong SL, van Miert PPMC, Anholts JDH, Franke-van Dijk MEI, Zhang XQ, Roelen DL, Ten Berge RJM, Claas FHJ. Allo-HLA Cross-Reactivities of Cytomegalovirus-, Influenza-, and Varicella Zoster Virus-Specific Memory T Cells Are Shared by Different Healthy Individuals. Am J Transplant 2017; 17:2033-2044. [PMID: 28332333 DOI: 10.1111/ajt.14279] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 01/25/2023]
Abstract
Virus-specific T cells can recognize allogeneic HLA (allo-HLA) through TCR cross-reactivity. The allospecificity often differs by individual (private cross-reactivity) but also can be shared by multiple individuals (public cross-reactivity); however, only a few examples of the latter have been described. Because these could facilitate alloreactivity prediction in transplantation, we aimed to identify novel public cross-reactivities of human virus-specific CD8+ T cells directed against allo-HLA by assessing their reactivity in mixed-lymphocyte reactions. Further characterization was done by studying TCR usage with primer-based DNA sequencing, cytokine production with ELISAs, and cytotoxicity with 51 chromium-release assays. We identified three novel public allo-HLA cross-reactivities of human virus-specific CD8+ T cells. CMV B35/IPS CD8+ T cells cross-reacted with HLA-B51 and/or HLA-B58/B57 (23% of tetramer-positive individuals), FLU A2/GIL (influenza IMP[58-66] HLA-A*02:01/GILGFVFTL) CD8+ T cells with HLA-B38 (90% of tetramer-positive individuals), and VZV A2/ALW (varicella zoster virus IE62[593-601] HLA-A*02:01/ALWALPHAA) CD8+ T cells with HLA-B55 (two unrelated individuals). Cross-reactivity was tested against different cell types including endothelial and epithelial cells. All cross-reactive T cells expressed a memory phenotype, emphasizing the importance for transplantation. We conclude that public allo-HLA cross-reactivity of virus-specific memory T cells is not uncommon and may create novel opportunities for alloreactivity prediction and risk estimation in transplantation.
Collapse
Affiliation(s)
- H van den Heuvel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - K M Heutinck
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - E M W van der Meer-Prins
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - S L Yong
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - P P M C van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - J D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - M E I Franke-van Dijk
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - X Q Zhang
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - R J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics 2017; 69:631-641. [PMID: 28718002 PMCID: PMC5537314 DOI: 10.1007/s00251-017-0989-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Transplant recipients can be sensitized against allo-HLA antigens by previous transplantation, blood transfusion, or pregnancy. While there is growing awareness that multiple components of the immune system can act as effectors of the alloresponse, the role of infectious pathogen exposure in triggering sensitization and allograft rejection has remained a matter of much debate. Here, we describe that exposure to pathogens may enhance the immune response to allogeneic HLA antigens via different pathways. The potential role of allo-HLA cross-reactivity of virus-specific memory T cells, activation of innate immunity leading to a more efficient induction of the adaptive alloimmune response by antigen-presenting cells, and bystander activation of existing memory B cell activation will be discussed in this review.
Collapse
|
15
|
Abstract
Alloimmune T cells are central mediators of rejection and graft-versus-host disease in both solid organ and hematopoietic stem cell transplantation. Unique among immune responses in terms of its strength and diversity, the T cell alloresponse reflects extensive genetic polymorphisms between allogeneic donors and recipients, most prominently within the major histocompatibility complex (MHC), which encodes human leukocyte antigens (HLAs) in humans. The repertoire of alloreactive T cell clones is distinct for every donor-recipient pair and includes potentially thousands of unique HLA/peptide specificities. The extraordinary magnitude of the primary alloresponse and diversity of the T cell population mediating it have presented technical challenges to its study in humans. High-throughput T cell receptor sequencing approaches have opened up new possibilities for tackling many fundamental questions about this important immunologic phenomenon.
Collapse
|
16
|
Almeida CA, van Miert P, O'Driscoll K, Zoet YM, Chopra A, Watson M, de Santis D, Witt C, John M, Claas FHJ, D'Orsogna LJ. Stimulation of HIV-specific T cell clonotypes using allogeneic HLA. Cell Immunol 2017; 316:32-40. [PMID: 28372798 DOI: 10.1016/j.cellimm.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/25/2017] [Indexed: 01/26/2023]
Abstract
We hypothesized that HIV-specific CD8 T cell clonotypes can be stimulated by allogeneic HLA molecules. Multiple HIV-specific CD8 T cell clones were derived from 12 individuals with chronic HIV infection, specific for 13 different HIV Gag antigens and restricted to 7 different HLA molecules. The generated T cell clones were assayed for alloreactivity against a panel of single HLA class I expressing cell lines (SALs). HIV-specific T cells recognising at least one allogeneic HLA molecule could be identified from 7 of 12 patients tested. Allorecognition was associated with IFNγ cytokine production, CD137 upregulation and cytotoxicity, suggesting high avidity allo-stimulation. Allo-HLA recognition by HIV-specific T cells was specific to the HIV target peptide/HLA restriction and TCR TRBV usage of the T cells. HIV-specific T cells do crossreact against allogeneic HLA molecules in an epitope and TRBV specific manner. Therefore allo-HLA stimulation could be exploited to induce or augment HIV-specific T cell responses.
Collapse
Affiliation(s)
- Coral-Ann Almeida
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Australia; Pathwest Laboratory Medicine, Perth, Australia; Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Paula van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kane O'Driscoll
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Yvonne M Zoet
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Dianne de Santis
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Australia; Pathwest Laboratory Medicine, Perth, Australia
| | - Campbell Witt
- Pathwest Laboratory Medicine, Perth, Australia; Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Mina John
- Pathwest Laboratory Medicine, Perth, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia; Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Australia; Pathwest Laboratory Medicine, Perth, Australia; Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia.
| |
Collapse
|
17
|
Abstract
Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived ‘passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHC-peptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway.
Collapse
Affiliation(s)
- Dominic A Boardman
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust & King's College London, Guy's Hospital, London, SE1 9RT UK
| | - Jacinta Jacob
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK
| | - Lesley A Smyth
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; School of Health, Sport and Bioscience, Stratford Campus, University of East London, London, E15 4LZ UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust & King's College London, Guy's Hospital, London, SE1 9RT UK
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust & King's College London, Guy's Hospital, London, SE1 9RT UK
| |
Collapse
|
18
|
Mensali N, Ying F, Sheng VOY, Yang W, Walseng E, Kumari S, Fallang LE, Kolstad A, Uckert W, Malmberg KJ, Wälchli S, Olweus J. Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncoimmunology 2016; 5:e1138199. [PMID: 27467957 DOI: 10.1080/2162402x.2016.1138199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeted to CD19 are effective in treatment of B-lymphoid malignancies. However, CARs recognize all CD19 positive (pos) cells, and durable responses are linked to profound depletion of normal B cells. Here, we designed a strategy to specifically target patient B cells by utilizing the fact that T-cell receptors (TCRs), in contrast to CARs, are restricted by HLA. Two TCRs recognizing a peptide from CD20 (SLFLGILSV) in the context of foreign HLA-A*02:01 (CD20p/HLA-A2) were expressed as 2A-bicistronic constructs. T cells re-directed with the A23 and A94 TCR constructs efficiently recognized malignant HLA-A2(pos) B cells endogenously expressing CD20, including patient-derived follicular lymphoma and chronic lymphocytic leukemia (CLL) cells. In contrast, a wide range of HLA-A2(pos)CD20(neg) cells representing different tissue origins, and HLA-A2(neg)CD20(pos) cells, were not recognized. Cytotoxic T cells re-directed with CD20p/HLA-A2-specific TCRs or CD19 CARs responded with similar potencies to cells endogenously expressing comparable levels of CD20 and CD19. The CD20p/HLA-A2-specific TCRs recognized CD20p bound to HLA-A2 with high functional avidity. The results show that T cells expressing CD20p/HLA-A2-specific TCRs efficiently and specifically target B cells. When used in context of an HLA-haploidentical allogeneic stem cell transplantation where the donor is HLA-A2(neg) and the patient HLA-A2(pos), these T cells would selectively kill patient-derived B cells and allow reconstitution of the B-cell compartment with HLA-A2(neg) donor cells. These results should pave the way for clinical testing of T cells genetically engineered to target malignant B cells without permanent depletion of normal B cells.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fan Ying
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Oei Yi Sheng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Even Walseng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Shraddha Kumari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars-Egil Fallang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Arne Kolstad
- K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine and Institute of Biology, Humboldt University , Berlin, Germany
| | - Karl Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Cell Therapy, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Rezvani K, Champlin RE. Epstein-Barr Virus and B Cells in the Pathogenesis of Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol 2016; 34:2201-2. [DOI: 10.1200/jco.2016.66.6099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
20
|
Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Curr Opin Organ Transplant 2016; 21:29-39. [PMID: 26575852 DOI: 10.1097/mot.0000000000000264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Despite a growing awareness regarding the potential of cross-reactive virus-specific memory T cells to mediate alloimmunity, there has been limited clinical evaluation on allograft immunopathology. This review will explore published models of human T-cell cross-reactivity and discuss criteria required to drive this mechanism as a contributing cause of allograft dysfunction in transplantation. RECENT FINDINGS Published models of human allogeneic (allo)-human leukocyte antigen (HLA) cross-reactivity have enabled dissection of the cross-reactive T cell receptor/peptide/major histocompatibility complex (TCR/peptide/MHC) interaction. In many of the models, the cross-reactive T cells express a unique TCR, although the relevance of a public cross-reactive TCR repertoire has yet to be determined. Equally, allopeptide identity, a vital component driving cross-recognition, remains unknown in the majority of models thereby prompting further characterization utilizing novel technologies. Although clinical studies examining the presence and impact of specific cross-reactive virus-specific T cells have been minimally explored, the existing data suggest that there may be a marginal set of requirements that need to be satisfied before the potentially damaging effects of allo-HLA cross-reactivity can be realized. SUMMARY Our understanding of allo-HLA cross-reactivity continues to evolve as improved technology and novel strategies allow us to better question the contribution of allo-HLA cross-reactivity in clinically relevant allograft dysfunction.
Collapse
|
21
|
Cole DK, Bulek AM, Dolton G, Schauenberg AJ, Szomolay B, Rittase W, Trimby A, Jothikumar P, Fuller A, Skowera A, Rossjohn J, Zhu C, Miles JJ, Peakman M, Wooldridge L, Rizkallah PJ, Sewell AK. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest 2016; 126:2191-204. [PMID: 27183389 PMCID: PMC4887163 DOI: 10.1172/jci85679] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease.
Collapse
Affiliation(s)
- David K. Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Anna M. Bulek
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrea J. Schauenberg
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - William Rittase
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrew Trimby
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Prithiviraj Jothikumar
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna Fuller
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Jamie Rossjohn
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Miles
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Peakman
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
22
|
Detection of Virus-Specific CD8+ T Cells With Cross-Reactivity Against Alloantigens: Potency and Flaws of Present Experimental Methods. Transplant Direct 2015; 1:e40. [PMID: 27500209 PMCID: PMC4946452 DOI: 10.1097/txd.0000000000000550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
Supplemental digital content is available in the text. Virus-specific T cells have the intrinsic capacity to cross-react against allogeneic HLA antigens, a phenomenon known as heterologous immunity. In transplantation, these cells may contribute to the alloimmune response and negatively impact graft outcome. This study describes the various techniques that can be used to detect heterologous immune responses of virus-specific CD8+ T cells against allogeneic HLA antigens. The strengths and weaknesses of the different approaches are discussed and illustrated by experimental data.
Collapse
|
23
|
Yanaka S, Ueno T, Shi Y, Qi J, Gao GF, Tsumoto K, Sugase K. Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex. J Biol Chem 2014; 289:24680-90. [PMID: 25028510 DOI: 10.1074/jbc.m114.566174] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In immune-mediated control of pathogens, human leukocyte antigen (HLA) class I presents various antigenic peptides to CD8(+) T-cells. Long-lived peptide presentation is important for efficient antigen-specific T-cell activation. Presentation time depends on the peptide sequence and the stability of the peptide-HLA complex (pHLA). However, the determinant of peptide-dependent pHLA stability remains elusive. Here, to reveal the pHLA stabilization mechanism, we examined the crystal structures of an HLA class I allomorph in complex with HIV-derived peptides and evaluated site-specific conformational fluctuations using NMR. Although the crystal structures of various pHLAs were almost identical independent of the peptides, fluctuation analyses identified a peptide-dependent minor state that would be more tightly packed toward the peptide. The minor population correlated well with the thermostability and cell surface presentation of pHLA, indicating that this newly identified minor state is important for stabilizing the pHLA and facilitating T-cell recognition.
Collapse
Affiliation(s)
- Saeko Yanaka
- From the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8562, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yi Shi
- Research Network of Immunity and Health, Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Research Network of Immunity and Health, Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Research Network of Immunity and Health, Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kouhei Tsumoto
- From the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8562, Japan, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 108-8693, Japan, Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo 108-8693, Japan, and
| | - Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503, Japan
| |
Collapse
|
24
|
Cole DK, Miles KM, Madura F, Holland CJ, Schauenburg AJA, Godkin AJ, Bulek AM, Fuller A, Akpovwa HJE, Pymm PG, Liddy N, Sami M, Li Y, Rizkallah PJ, Jakobsen BK, Sewell AK. T-cell receptor (TCR)-peptide specificity overrides affinity-enhancing TCR-major histocompatibility complex interactions. J Biol Chem 2014; 289:628-38. [PMID: 24196962 PMCID: PMC3887192 DOI: 10.1074/jbc.m113.522110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/22/2013] [Indexed: 11/17/2022] Open
Abstract
αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short "foreign" peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding, Competitive
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- HLA Antigens/chemistry
- HLA Antigens/genetics
- HLA Antigens/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- Humans
- Kinetics
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Peptides/chemistry
- Peptides/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
- David K. Cole
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Kim M. Miles
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Florian Madura
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | | | | | - Andrew J. Godkin
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Anna M. Bulek
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Anna Fuller
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | | | - Phillip G. Pymm
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
- the Medical Research Council Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford 0X3 9DS, and
| | - Nathaniel Liddy
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | - Malkit Sami
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | - Yi Li
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | | | - Bent K. Jakobsen
- Immunocore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom
| | - Andrew K. Sewell
- From Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| |
Collapse
|
25
|
D'Orsogna LJ, Nguyen THO, Claas FHJ, Witt C, Mifsud NA. Endogenous-peptide-dependent alloreactivity: new scientific insights and clinical implications. ACTA ACUST UNITED AC 2014; 81:399-407. [PMID: 23646948 DOI: 10.1111/tan.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
T-cell alloreactivity is generated via immune responsiveness directed against allogeneic (allo) human leucocyte antigen (HLA) molecules. Whilst the alloresponse is of extraordinary potency and frequency, it has often been assumed to be less peptide-specific than conventional T-cell reactivity. Recently, several human studies have shown that both alloreactive CD8(+) and CD4(+) T cells exhibit exquisite allo-HLA and endogenous peptide specificity that has also underpinned tissue-specific allorecognition. In this review, we summarize former and recent scientific evidence in support of endogenous peptide (self-peptide)-dependence of T-cell alloreactivity. The clinical implications of these findings will be discussed in the context of both solid organ transplantation and haematopoietic stem cell transplantation (HSCT). Insights into the understanding of the molecular basis of T-cell allorecognition will probably translate into improved allograft survival outcomes, lower frequencies of graft vs host disease and could potentially be exploited for selective graft vs leukaemia effect to improve clinical outcomes following HSCT.
Collapse
Affiliation(s)
- L J D'Orsogna
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
26
|
Fuji S, Kapp M, Einsele H. Alloreactivity of virus-specific T cells: possible implication of graft-versus-host disease and graft-versus-leukemia effects. Front Immunol 2013; 4:330. [PMID: 24133497 PMCID: PMC3796284 DOI: 10.3389/fimmu.2013.00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/02/2022] Open
Abstract
Immune reconstitution of functional virus-specific T cells after allogeneic hematopoietic stem cell transplantation (HSCT) has been intensively investigated. However, the possible role of crossreactivity of these virus-specific T cells against allogeneic targets is still unclear. Theoretically, as in the field of organ transplantation, virus-specific T cells possess crossreactivity potential after allogeneic HSCT. Such crossreactivity is assumed to play a role in graft-versus-host disease and graft-versus-leukemia effects. In this article, we aim to give a comprehensive overview of current understanding about crossreactivity of virus-specific T cells.
Collapse
Affiliation(s)
- Shigeo Fuji
- Department of Internal Medicine II, Division of Hematology, University Hospital of Würzburg , Würzburg , Germany ; Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital , Tokyo , Japan
| | | | | |
Collapse
|
27
|
Abstract
αβ-TCRs expressed at the CD8(+) T-cell surface interact with short peptide fragments (p) bound to MHC class I molecules (pMHCI). The TCR/pMHCI interaction is pivotal in all aspects of CD8(+) T-cell immunity. However, the rules that govern the outcome of TCR/pMHCI engagement are not entirely understood, and this is a major barrier to understanding the requirements for both effective immunity and vaccination. In the present study, we discovered an unexpected feature of the TCR/pMHCI interaction by showing that any given TCR exhibits an explicit preference for a single MHCI-peptide length. Agonists of nonpreferred length were extremely rare, suboptimal, and often entirely distinct in sequence. Structural analysis indicated that alterations in peptide length have a major impact on antigenic complexity, to which individual TCRs are unable to adapt. This novel finding demonstrates that the outcome of TCR/pMHCI engagement is determined by peptide length in addition to the sequence identity of the MHCI-bound peptide. Accordingly, the effective recognition of pMHCI Ag, which is a prerequisite for successful CD8(+) T-cell immunity and protective vaccination, can only be achieved by length-matched Ag-specific CD8(+) T-cell clonotypes.
Collapse
|
28
|
Gras S, Burrows SR, Turner SJ, Sewell AK, McCluskey J, Rossjohn J. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol Rev 2012; 250:61-81. [DOI: 10.1111/j.1600-065x.2012.01159.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology; School of Biomedical Sciences; Monash University; Clayton; Australia
| | - Scott R. Burrows
- Queensland Institute of Medical Research and Australian Centre for Vaccine Development; Brisbane; Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | - Andrew K. Sewell
- Institute of Infection and Immunity; Cardiff University School of Medicine; Cardiff; UK
| | - James McCluskey
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Here, we review the pathways of allorecognition and their potential relevance to the balance between regulatory and effector responses following transplantation. RECENT FINDINGS Transplantation between nonidentical members of the same species elicits an immune response that manifests as graft rejection or persistence. Presentation of foreign antigen to recipient T cells can occur via three nonmutually exclusive routes, the direct, indirect and semi-direct pathways. Allospecific T cells can have effector or regulatory functions, and the relative proportions of the two populations activated following alloantigen presentation are two of the factors that determine the clinical outcome. Regulatory T cells have been the subject of significant research, and there is now greater understanding of their recruitment and function in the context of allorecognition. SUMMARY A greater understanding of the mechanisms underlying allorecognition may be fundamental to appreciating how these different populations are recruited and could in turn inform novel strategies for immunomodulation.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Here, we review the pathways of allorecognition and their potential relevance to the balance between regulatory and effector responses following transplantation. RECENT FINDINGS Transplantation between nonidentical members of the same species elicits an immune response that manifests as graft rejection or persistence. Presentation of foreign antigen to recipient T cells can occur via three nonmutually exclusive routes, the direct, indirect and semi-direct pathways. Allospecific T cells can have effector or regulatory functions, and the relative proportions of the two populations activated following alloantigen presentation are two of the factors that determine the clinical outcome. Regulatory T cells have been the subject of significant research, and there is now greater understanding of their recruitment and function in the context of allorecognition. SUMMARY A greater understanding of the mechanisms underlying allorecognition may be fundamental to appreciating how these different populations are recruited and could in turn inform novel strategies for immunomodulation.
Collapse
|
31
|
Brennan RM, Petersen J, Neller MA, Miles JJ, Burrows JM, Smith C, McCluskey J, Khanna R, Rossjohn J, Burrows SR. The Impact of a Large and Frequent Deletion in the Human TCR β Locus on Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2012; 188:2742-8. [DOI: 10.4049/jimmunol.1102675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Jöris MM, van Rood JJ, Roelen DL, Oudshoorn M, Claas FHJ. A Proposed Algorithm Predictive for Cytotoxic T Cell Alloreactivity. THE JOURNAL OF IMMUNOLOGY 2012; 188:1868-73. [DOI: 10.4049/jimmunol.1102086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
D'Orsogna LJ, Roelen DL, Doxiadis IIN, Claas FHJ. TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition. Immunogenetics 2011; 64:77-85. [PMID: 22146829 PMCID: PMC3253994 DOI: 10.1007/s00251-011-0590-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022]
Abstract
Alloreactive T cells are core mediators of graft rejection and are a potent barrier to transplantation tolerance. It was previously unclear how T cells educated in the recipient thymus could recognize allogeneic HLA molecules. Recently it was shown that both naïve and memory CD4+ and CD8+ T cells are frequently cross-reactive against allogeneic HLA molecules and that this allorecognition exhibits exquisite peptide and HLA specificity and is dependent on both public and private specificities of the T cell receptor. In this review we highlight new insights gained into the immunogenetics of allorecognition, with particular emphasis on how viral infection and vaccination may specifically activate allo-HLA reactive T cells. We also briefly discuss the potential for virus-specific T cell infusions to produce GvHD. The progress made in understanding the molecular basis of allograft rejection will hopefully be translated into improved allograft function and/or survival, and eventually tolerance induction.
Collapse
Affiliation(s)
- L J D'Orsogna
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, PO Box 9600, 2300RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
34
|
Gras S, Wilmann PG, Chen Z, Halim H, Liu YC, Kjer-Nielsen L, Purcell AW, Burrows SR, McCluskey J, Rossjohn J. A structural basis for varied αβ TCR usage against an immunodominant EBV antigen restricted to a HLA-B8 molecule. THE JOURNAL OF IMMUNOLOGY 2011; 188:311-21. [PMID: 22140258 DOI: 10.4049/jimmunol.1102686] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
EBV is a ubiquitous and persistent human pathogen, kept in check by the cytotoxic T cell response. In this study, we investigated how three TCRs, which differ in their T cell immunodominance hierarchies and gene usage, interact with the same EBV determinant (FLRGRAYGL), bound to the same Ag-presenting molecule, HLA-B8. We found that the three TCRs exhibit differing fine specificities for the viral Ag. Further, via structural and biophysical approaches, we demonstrated that the viral Ag provides the greatest energetic contribution to the TCR-peptide-HLA interaction, while focusing on a few adjacent HLA-based interactions to further tune fine-specificity requirements. Thus, the TCR engages the peptide-HLA with the viral Ag as the main glue, such that neighboring TCR-MHC interactions are recruited as a supportive adhesive. Collectively, we provide a portrait of how the host's adaptive immune response differentially engages a common viral Ag.
Collapse
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ, Tan MP, Dolton G, Clement M, Llewellyn-Lacey S, Price DA, Peakman M, Sewell AK. A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem 2011; 287:1168-77. [PMID: 22102287 PMCID: PMC3256900 DOI: 10.1074/jbc.m111.289488] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T cell receptor (TCR) orchestrates immune responses by binding to foreign peptides presented at the cell surface in the context of major histocompatibility complex (MHC) molecules. Effective immunity requires that all possible foreign peptide-MHC molecules are recognized or risks leaving holes in immune coverage that pathogens could quickly evolve to exploit. It is unclear how a limited pool of <10(8) human TCRs can successfully provide immunity to the vast array of possible different peptides that could be produced from 20 proteogenic amino acids and presented by self-MHC molecules (>10(15) distinct peptide-MHCs). One possibility is that T cell immunity incorporates an extremely high level of receptor degeneracy, enabling each TCR to recognize multiple peptides. However, the extent of such TCR degeneracy has never been fully quantified. Here, we perform a comprehensive experimental and mathematical analysis to reveal that a single patient-derived autoimmune CD8(+) T cell clone of pathogenic relevance in human type I diabetes recognizes >one million distinct decamer peptides in the context of a single MHC class I molecule. A large number of peptides that acted as substantially better agonists than the wild-type "index" preproinsulin-derived peptide (ALWGPDPAAA) were identified. The RQFGPDFPTI peptide (sampled from >10(8) peptides) was >100-fold more potent than the index peptide despite differing from this sequence at 7 of 10 positions. Quantification of this previously unappreciated high level of CD8(+) T cell cross-reactivity represents an important step toward understanding the system requirements for adaptive immunity and highlights the enormous potential of TCR degeneracy to be the causative factor in autoimmune disease.
Collapse
Affiliation(s)
- Linda Wooldridge
- Institute of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wolfson MY, Nam K, Chakraborty AK. The effect of mutations on the alloreactive T cell receptor/peptide-MHC interface structure: a molecular dynamics study. J Phys Chem B 2011; 115:8317-27. [PMID: 21651302 PMCID: PMC3131071 DOI: 10.1021/jp202471d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells orchestrate adaptive, pathogen-specific immune responses. T cells have a surface receptor (called TCR) whose ligands are complexes (pMHCs) of peptides (derived from pathogens or host proteins) and major histocompatibility complex proteins (MHCs). MHC proteins vary between hosts. During organ transplants, host TCRs interact with peptides present in complex with genetically different MHCs. This usually causes a vigorous immune response: alloreactivity. Studies of alloreactive protein interactions have yielded results that present a puzzle. Some crystallographic studies concluded that the alloreactive TCR/MHC interface is essentially unaffected by changing the TCR peptide-binding region, suggesting that the peptide does not influence the interface. Another biochemical study concluded from mutation data that different peptides can alter the binding interface with the same TCR. To explore the origin of this puzzle, we used molecular dynamics simulations to study the dependence of the TCR/pMHC interface on changes in both the peptide and the TCR. Our simulations show that the footprint of the TCR on the pMHC is insensitive to mutations of the TCR peptide-binding loops, but peptide mutations can make multiple local changes to TCR/pMHC contacts. Therefore, our results demonstrate that the structural and mutation data do not conflict and reveal how subtle, but important, characteristics of the alloreactive TCR/pMHC interface are influenced by the TCR and the peptide.
Collapse
Affiliation(s)
| | - Kwangho Nam
- To whom correspondence should be addressed: ; , Phone: +1 617 495 8997; +1 617 253 3890. Fax: +1 617 495 8755; +1 617 253 2272
| | - Arup K. Chakraborty
- To whom correspondence should be addressed: ; , Phone: +1 617 495 8997; +1 617 253 3890. Fax: +1 617 495 8755; +1 617 253 2272
| |
Collapse
|
37
|
Tissue specificity of cross-reactive allogeneic responses by EBV EBNA3A-specific memory T cells. Transplantation 2011; 91:494-500. [PMID: 21242884 DOI: 10.1097/tp.0b013e318207944c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The crossreactivity of Epstein-Barr virus (EBV Epstein-Barr virus nuclear antigen 3A [EBNA3A])-specific CD8 T cells against allogeneic human leukocyte antigen (HLA)-B*44:02 has been shown to be dependent on presentation of self-peptide EEYLQAFTY by the target antigen. In this study, we report that allogeneic HLA-B*44:02 proximal tubular epithelial cells (PTECs) and human umbilical vein endothelial cells (HUVECs) are poor targets for EBV EBNA3A-specific T cells. METHODS The EEY peptide was exogenously loaded onto HLA-B*44:02 and HLA-B*44:03-expressing PTECs and HUVECs. EEY-peptide-loaded, and unloaded, PTECs and HUVECs were then incubated with serial dilutions of our EBNA3A T-cell clone, in a cytotoxicity assay. RESULTS Although HLA-B*44:02-expressing PTECs were specifically lysed in proportion to the effector/target ratio by the EBNA3A T-cell clone, without peptide loading, lysis was greatly increased by exogenous EEY peptide loading (15% vs. 75%; P<0.0001). HLA-B*44:02-expressing HUVECs were only lysed when loaded with exogenous EEY peptide (0% vs. 64%; P<0.0001). Lack of HLA expression and lack of ABCD3 gene expression were excluded as a cause for these results. PTECs and HUVECs were specifically targeted by another alloreactive T-cell clone without exogenous peptide loading, suggesting that the lack of recognition of HLA-B*44:02 epithelial and endothelial cells by the EBV EBNA3A T-cell clone was due to lack of EEYLQAFTY peptide presentation. CONCLUSIONS Tissue-specific (peptide dependent) alloreactivity may have important implications for transplantation monitoring and rejection.
Collapse
|
38
|
The structural bases of direct T‐cell allorecognition: implications for T‐cell‐mediated transplant rejection. Immunol Cell Biol 2011; 89:388-95. [DOI: 10.1038/icb.2010.150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Skelton TS, Kloc M, Ghobrial RM. Molecular and cellular pathways involved in the therapeutic functions of MHC molecules; a novel approach for mitigation of chronic rejection. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/oji.2011.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
D'Orsogna LJA, Roelen DL, Doxiadis IIN, Claas FHJ. Alloreactivity from human viral specific memory T-cells. Transpl Immunol 2010; 23:149-55. [PMID: 20600900 DOI: 10.1016/j.trim.2010.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
The mechanisms by which alloreactive memory T-cells are generated in non-sensitized individuals have begun to be elucidated. It is generally accepted that a very high level of crossreactivity is an essential feature of the T-cell receptor. Indeed it has recently been shown that alloreactivity from viral specific memory T-cells is far more common than predicted, 45% of viral specific T-cell clones were found to be allo-HLA crossreactive. In this overview the evidence for crossreactive alloresponses from human viral specific memory T-cells is discussed with special emphasis on the unexpected high frequency of these crossreactive responses, the peptide and tissue specificity of the responses, and the mechanistic insights gleaned from the elucidation of the crystal structure of an allo-HLA crossreactive viral specific TCR. The possible implications for clinical solid organ and bone marrow transplantation and tolerance induction will be discussed.
Collapse
Affiliation(s)
- L J A D'Orsogna
- Dept of Immunohematology and Blood Transfusion, Leiden University Medical Centre, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Burrows SR, Chen Z, Archbold JK, Tynan FE, Beddoe T, Kjer-Nielsen L, Miles JJ, Khanna R, Moss DJ, Liu YC, Gras S, Kostenko L, Brennan RM, Clements CS, Brooks AG, Purcell AW, McCluskey J, Rossjohn J. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc Natl Acad Sci U S A 2010; 107:10608-13. [PMID: 20483993 PMCID: PMC2890827 DOI: 10.1073/pnas.1004926107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
alphabeta T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.
Collapse
MESH Headings
- Adaptive Immunity
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Databases, Genetic
- Humans
- Lymphocyte Activation
- Major Histocompatibility Complex
- Models, Molecular
- Mutation
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Scott R. Burrows
- Cellular Immunology Laboratory, Queensland Institute of Medical Research and Australian Centre for Vaccine Development, Brisbane 4029, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julia K. Archbold
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Fleur E. Tynan
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Travis Beddoe
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - John J. Miles
- Cellular Immunology Laboratory, Queensland Institute of Medical Research and Australian Centre for Vaccine Development, Brisbane 4029, Australia
| | - Rajiv Khanna
- Cellular Immunology Laboratory, Queensland Institute of Medical Research and Australian Centre for Vaccine Development, Brisbane 4029, Australia
| | - Denis J. Moss
- Cellular Immunology Laboratory, Queensland Institute of Medical Research and Australian Centre for Vaccine Development, Brisbane 4029, Australia
| | - Yu Chih Liu
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Stephanie Gras
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebekah M. Brennan
- Cellular Immunology Laboratory, Queensland Institute of Medical Research and Australian Centre for Vaccine Development, Brisbane 4029, Australia
| | - Craig S. Clements
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| |
Collapse
|
42
|
Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS, Bharadwaj M, Kjer-Nielsen L, Saunders PM, Wilce MCJ, Crawford F, Stadinsky B, Jackson D, Brooks AG, Purcell AW, Kappler JW, Burrows SR, Rossjohn J, McCluskey J. T cell allorecognition via molecular mimicry. Immunity 2010; 31:897-908. [PMID: 20064448 DOI: 10.1016/j.immuni.2009.09.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B( *)0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B( *)4402 and HLA-B( *)4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B( *)0801, HLA-B( *)4402, and HLA-B( *)4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B( *)4403, and the single residue polymorphism between HLA-B( *)4402 and HLA-B( *)4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.
Collapse
Affiliation(s)
- Whitney A Macdonald
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ringdén O, Karlsson H, Olsson R, Omazic B, Uhlin M. The allogeneic graft-versus-cancer effect. Br J Haematol 2009; 147:614-33. [PMID: 19735262 DOI: 10.1111/j.1365-2141.2009.07886.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allogeneic haematological stem cell transplantation (HSCT) has developed into immunotherapy. Donor CD4+, CD8+ and natural killer (NK) cells have been reported to mediate graft-versus-leukaemia (GVL) effects, using Fas-dependent killing and perforin degranulation to eradicate malignant cells. Cytokines, such as interleukin-2, interferon-gamma and tumour necrosis factor-alpha potentiate the GVL effect. Post-transplant adoptive therapy of cytotoxic T-cells (CTL) against leukaemia-specific antigens, minor histocompatibility antigens, or T-cell receptor genes may constitute successful approaches to induce anti-tumour effects. Clinically, a significant GVL effect is induced by chronic rather than acute graft-versus-host disease (GVHD). An anti-tumour effect has also been reported for myeloma, lymphoma and solid tumours. Reduced intensity conditioning enables HSCT in older and disabled patients and relies on the graft-versus-tumour effect. Donor lymphocyte infusions promote the GVL effect and can be given as escalating doses with response monitored by minimal residual disease. A high CD34+ cell dose of peripheral blood stem cells increases GVL. There is a balance between effective immunosuppression, low incidence of GVHD and relapse. For instance, T-cell depletion of the graft increases the risk of relapse. This paper reviews the current knowledge in graft-versus-cancer effects. Future directions, such as immunotherapy using leukaemia-specific CTLs, allo-depleted T-cells and suicide gene manipulated T-cells, are presented.
Collapse
Affiliation(s)
- Olle Ringdén
- Centre for Allogeneic Stem Cell Transplantation and Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
44
|
D'Orsogna LJ, Amir AL, Zoet YM, van der Meer-Prins PMW, van der Slik AR, Kester MGD, Heemskerk MHM, Doxiadis IIN, Roelen DL, Claas FHJ. New tools to monitor the impact of viral infection on the alloreactive T-cell repertoire. ACTA ACUST UNITED AC 2009; 74:290-7. [PMID: 19624615 DOI: 10.1111/j.1399-0039.2009.01311.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accumulating evidence suggests that alloreactive memory T-cells may be generated as a result of viral infection. So far, a suitable tool to define the individual human leukocyte antigen (HLA) cross-reactivity of virus-specific memory T-cells is not available. We therefore aimed to develop a novel system for the detection of cross-reactive alloresponses using single HLA antigen expressing cell lines (SALs) as stimulator. Herein, we generated Epstein-Barr Virus (EBV) EBNA3A specific CD8 memory T-cell clones (HLA-B*0801/FLRGRAYGL peptide restricted) and assayed for alloreactivity against a panel of SALs using interferon-gamma Elispot as readout. Generation of the T-cell clones was performed by single cell sorting based on staining with viral peptide/major histocompatibility complex-specific tetramer. Monoclonality of the T-cell clones was confirmed by T-cell receptor (TCR) polymerase chain reaction analysis. First, we confirmed the previously described alloreactivity of the EBV EBNA3A-specific T-cell clones against SAL-expressing HLA-B*4402. Further screening against the entire panel of SALs also showed additional cross-reactivity against SAL-expressing HLA-B*5501. Functionality of the cross-reactive T-cell clones was confirmed by chromium release assay using phytohemagglutinin blasts as targets. SALs are an effective tool to detect cross-reactivity of viral-specific CD8 memory T-cell clones against individual class I HLA molecules. This technique may have important implications for donor selection and monitoring of transplant recipients.
Collapse
Affiliation(s)
- L J D'Orsogna
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
HLA-A amino acid polymorphism and delayed kidney allograft function. Proc Natl Acad Sci U S A 2008; 105:18883-8. [PMID: 19033208 DOI: 10.1073/pnas.0810308105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Delayed allograft function (DGF) is a common adverse event in postrenal transplantation. The etiology of DGF is thought to include both nonimmunologic (donor age, cold ischemia time, and recipient race) and immunologic factors. We examined the association of DGF with amino acid mismatches at 66 variable sites of the HLA-A molecule in a prospective cohort study of 697 renal transplant recipients of deceased donors. Using a multivariate logistic regression model adjusted for nonimmunologic risk factors, we show that combinations of a few amino acid mismatches at crucial sites of HLA-A molecules were associated with DGF. In Caucasian recipients, a mismatch at position 62, 95, or 163, all known to be functionally important within the antigen recognition site, was associated with an increased risk for DGF. Furthermore, a decreased risk for DGF was associated with a mismatch at HLA-A family-specific sites (149, 184, 193, or 246), indicating that evolutionary features of HLA-A polymorphism separating HLA-A families and lineages among donor-recipient pairs may correlate with the magnitude of alloreactivity influencing the development of DGF. These findings suggest that amino acid polymorphisms at functionally important positions at the antigen recognition site of the HLA-A molecule have a significant influence on DGF.
Collapse
|
46
|
Stapler D, Lee ED, Selvaraj SA, Evans AG, Kean LS, Speck SH, Larsen CP, Gangappa S. Expansion of effector memory TCR Vbeta4+ CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance. THE JOURNAL OF IMMUNOLOGY 2008; 180:3190-200. [PMID: 18292543 DOI: 10.4049/jimmunol.180.5.3190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapies that control largely T cell-dependent allograft rejection in humans also possess the undesirable effect of impairing T cell function, leaving transplant recipients susceptible to opportunistic viruses. Prime among these opportunists are the ubiquitous herpesviruses. To date, studies are lacking that address the effect of viruses that establish a true latent state on allograft tolerance or the effect of tolerance protocols on the immune control of latent viruses. By using a mixed chimerism-based tolerance-induction protocol, we found that mice undergoing latent infection with gammaHV68, a murine gamma-herpesvirus closely related to human gamma-herpesviruses such as EBV and Kaposi's sarcoma-associated herpesvirus, significantly resist tolerance to allografts. Limiting the degree of virus reactivation or innate immune response did not reconstitute chimerism in latently infected mice. However, gammaHV68-infected mice showed increased frequency of CD8+ T cell alloreactivity and, interestingly, expansion of virus-induced, alloreactive, "effector/effector memory" TCR Vbeta4+CD8+ T cells driven by the gammaHV68-M1 gene was associated with resistance to tolerance induction in studies using gammaHV68-M1 mutant virus. These results define the viral gene and immune cell types involved in latent infection-mediated resistance to allograft tolerance and underscore the influence of latent herpesviruses on allograft survival.
Collapse
Affiliation(s)
- Dale Stapler
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mercier-Letondal P, Montcuquet N, Sauce D, Certoux JM, Jeanningros S, Ferrand C, Bonyhadi M, Tiberghien P, Robinet E. Alloreactivity of ex vivo-expanded T cells is correlated with expansion and CD4/CD8 ratio. Cytotherapy 2008; 10:275-88. [PMID: 18418773 DOI: 10.1080/14653240801927032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background We have demonstrated previously that retroviral-mediated transfer of a suicide gene into bone marrow (BM) donor T cells allows an efficient control of graft-versus-host disease (GvHD) after allogeneic BM transplantation. However, the 12 days of ex vivo culture required for the production of gene-modified cells (GMC), including soluble CD3 monoclonal antibody (MAb)-mediated activation and expansion with interleukin (IL)-2, induced a decrease of GMC alloreactivity and a reversal of their CD4/CD8 ratio. Improving the culture protocol in order to maintain the highest alloreactivity is of critical importance in obtaining an optimal graft-versus-leukemia (GvL) effect. Methods Peripheral blood mononuclear cells were activated with soluble CD3 MAb or CD3 and CD28 MAb co-immobilized on beads and expanded for 12 days in the presence of IL-2, IL-7 or IL-15 before analysis of alloreactivity and phenotype. Results Replacing the CD3 MAb by CD3/CD28 beads led to similar in vitro alloreactivity but improved the expansion and in vivo alloreactivity of GMC. Replacing the IL-2 with IL-7, but not IL-15, or decreasing IL-2 or IL-7 concentrations, improved the in vitro alloreactivity of expanded cells but was associated with lower expansion. Indeed, the alloreactivity of expanded cells was negatively correlated with cell expansion and positively correlated with CD4/CD8 ratio and CD8 expression level. Discussion Quantitative (i.e. low CD4/CD8 ratio) and qualitative (e.g. low CD8 expression) defects may account for the decreased alloreactivity of GMC. Using CD3/CD28 beads and/or IL-7 is more beneficial than CD3 MAb and IL-2 for preventing perturbations of the alloreactivity and phenotype of GMC.
Collapse
|
48
|
Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J. T-cell allorecognition: a case of mistaken identity or déjà vu? Trends Immunol 2008; 29:220-6. [PMID: 18378495 DOI: 10.1016/j.it.2008.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 02/08/2023]
Abstract
T cells bearing alphabeta T-cell receptors (TCRs) are selected by a subset of peptide-laden major histocompatibility (pMHC) molecules in the thymus and in the periphery and therefore are restricted to recognising host or 'self' MHC molecules. Nevertheless, T cells are inherently cross-reactive and often react with 'foreign' allogeneic MHC molecules (direct T-cell alloreactivity), manifested clinically as organ transplant rejection. Although the basis of T-cell alloreactivity has remained a puzzle to immunologists for decades, studies on alloreactive TCRs have begun to shed light on the basic mechanisms underpinning this 'mistaken identity'. Here we review recent advances in the field, focusing on structural and cellular studies, showing that alloreactivity may sometimes result from cross-reactivity without molecular mimicry and at other times may result directly from TCR interactions with allogeneic pMHC surfaces that mimic the cognate ligand.
Collapse
Affiliation(s)
- Julia K Archbold
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
49
|
Schuster IG, Busch DH, Eppinger E, Kremmer E, Milosevic S, Hennard C, Kuttler C, Ellwart JW, Frankenberger B, Nössner E, Salat C, Bogner C, Borkhardt A, Kolb HJ, Krackhardt AM. Allorestricted T cells with specificity for the FMNL1-derived peptide PP2 have potent antitumor activity against hematologic and other malignancies. Blood 2007; 110:2931-9. [PMID: 17626842 DOI: 10.1182/blood-2006-11-058750] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AbstractCell-based immunotherapy in settings of allogeneic stem cell transplantation or donor leukocyte infusion has curative potential, especially in hematologic malignancies. However, this approach is severely restricted due to graft-versus-host disease (GvHD). This limitation may be overcome if target antigens are molecularly defined and effector cells are specifically selected. We chose formin-related protein in leukocytes 1 (FMNL1) as a target antigen after intensive investigation of its expression profile at the mRNA and protein levels. Here, we confirm restricted expression in peripheral blood mononuclear cells (PBMCs) from healthy donors but also observe overexpression in different leukemias and aberrant expression in transformed cell lines derived from solid tumors. We isolated allorestricted T-cell clones expressing a single defined TCR recognizing a particular HLA-A2–presented peptide derived from FMNL1. This T-cell clone showed potent antitumor activity against lymphoma and renal cell carcinoma cell lines, Epstein-Barr virus (EBV)–transformed B cells, and primary tumor samples derived from patients with chronic lymphocytic leukemia (CLL), whereas nontransformed cells with the exception of activated B cells were only marginally recognized. Allorestricted TCRs with specificity for naturally presented FMNL1-derived epitopes may represent promising reagents for the development of adoptive therapies in lymphoma and other malignant diseases.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Blotting, Western
- Bone Marrow/metabolism
- Cell Line, Tumor
- Clone Cells
- Cytoskeletal Proteins/immunology
- Cytoskeletal Proteins/metabolism
- Cytotoxicity, Immunologic
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Formins
- HLA-A Antigens
- Hematologic Neoplasms/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Leukocytes, Mononuclear/metabolism
- Peptides/immunology
- Receptors, Antigen, T-Cell/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Ingrid G Schuster
- Institute of Molecular Immunology, Forschungszeutrum für Umwelt und Gesundheit (GSF)-National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL, Kranz DM, Garcia KC. How a single T cell receptor recognizes both self and foreign MHC. Cell 2007; 129:135-46. [PMID: 17418792 DOI: 10.1016/j.cell.2007.01.048] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/01/2007] [Accepted: 01/19/2007] [Indexed: 11/27/2022]
Abstract
alphabeta T cell receptors (TCRs) can crossreact with both self- and foreign- major histocompatibility complex (MHC) proteins in an enigmatic phenomenon termed alloreactivity. Here we present the 2.35 A structure of the 2C TCR complexed with its foreign ligand H-2L(d)-QL9. Surprisingly, we find that this TCR utilizes a different strategy to engage the foreign pMHC in comparison to the manner in which it recognizes a self ligand H-2K(b)-dEV8. 2C engages both shared and polymorphic residues on L(d) and K(b), as well as the unrelated QL9 and dEV8 peptide antigens, in unique pair-wise contacts, resulting in greater structural complementarity with the L(d)-QL9 complex. In the structure of an engineered, high-affinity 2C TCR variant bound to H-2L(d)-QL9, the "wild-type" TCR-MHC binding orientation persists despite modified TCR-CDR3alpha interactions with peptide. Thus, a single TCR recognizes two globally similar, but distinct ligands by divergent mechanisms, indicating that receptor-ligand crossreactivity can occur in the absence of molecular mimicry.
Collapse
MESH Headings
- Amino Acid Sequence
- Autoantigens/chemistry
- Autoantigens/immunology
- Autoantigens/metabolism
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Isoantigens/chemistry
- Isoantigens/immunology
- Isoantigens/metabolism
- Ketoglutarate Dehydrogenase Complex/chemistry
- Ketoglutarate Dehydrogenase Complex/immunology
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Leremy A Colf
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|