1
|
Wenzell NA, Tuch BB, McMinn DL, Lyons MJ, Kirk CJ, Taunton J. Global signal peptide profiling reveals principles of selective Sec61 inhibition. Nat Chem Biol 2024; 20:1154-1163. [PMID: 38519575 DOI: 10.1038/s41589-024-01592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Cotransins target the Sec61 translocon and inhibit the biogenesis of an undefined subset of secretory and membrane proteins. Remarkably, cotransin inhibition depends on the unique signal peptide (SP) of each Sec61 client, which is required for cotranslational translocation into the endoplasmic reticulum. It remains unknown how an SP's amino acid sequence and biophysical properties confer sensitivity to structurally distinct cotransins. Here we describe a fluorescence-based, pooled-cell screening platform to interrogate nearly all human SPs in parallel. We profiled two cotransins with distinct effects on cancer cells and discovered a small subset of SPs, including the oncoprotein human epidermal growth factor receptor 3 (HER3), with increased sensitivity to the more selective cotransin, KZR-9873. By comparing divergent mouse and human orthologs, we unveiled a position-dependent effect of arginine on SP sensitivity. Our multiplexed profiling platform reveals how cotransins can exploit subtle sequence differences to achieve SP discrimination.
Collapse
Affiliation(s)
- Nicole A Wenzell
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian B Tuch
- Kezar Life Sciences, South San Francisco, CA, USA
| | | | - Matthew J Lyons
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity. Toxins (Basel) 2023; 15:486. [PMID: 37624243 PMCID: PMC10467071 DOI: 10.3390/toxins15080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon, using two distinct cryo-electron microscopy (cryo-EM) models as references, and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. In one model of Sec61 inhibited by mycolactone, we find that isomer B interacts more closely with residues thought to play a key role in signal peptide recognition and, thus, are essential for subsequent protein translocation. In the other model, we find that isomer B interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
| | | | - Jessica M. J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.D.M.N.); (G.C.A.d.H.)
| |
Collapse
|
3
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Does localization or association explain isomer-specific toxicity? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541532. [PMID: 37292660 PMCID: PMC10245786 DOI: 10.1101/2023.05.19.541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing many secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. Isomer B also interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
- John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| |
Collapse
|
4
|
Inhibitors of the Sec61 Complex and Novel High Throughput Screening Strategies to Target the Protein Translocation Pathway. Int J Mol Sci 2021; 22:ijms222112007. [PMID: 34769437 PMCID: PMC8585047 DOI: 10.3390/ijms222112007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.
Collapse
|
5
|
Pauwels E, Rutz C, Provinciael B, Stroobants J, Schols D, Hartmann E, Krause E, Stephanowitz H, Schülein R, Vermeire K. A Proteomic Study on the Membrane Protein Fraction of T Cells Confirms High Substrate Selectivity for the ER Translocation Inhibitor Cyclotriazadisulfonamide. Mol Cell Proteomics 2021; 20:100144. [PMID: 34481949 PMCID: PMC8477212 DOI: 10.1016/j.mcpro.2021.100144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
Cyclotriazadisulfonamide (CADA) inhibits the cotranslational translocation of type I integral membrane protein human CD4 (huCD4) across the endoplasmic reticulum in a signal peptide (SP)–dependent way. Previously, sortilin was identified as a secondary substrate for CADA but showed reduced CADA sensitivity as compared with huCD4. Here, we performed a quantitative proteomic study on the crude membrane fraction of human T-cells to analyze how many proteins are sensitive to CADA. To screen for these proteins, we employed stable isotope labeling by amino acids in cell culture technique in combination with quantitative MS on CADA-treated human T-lymphoid SUP-T1 cells expressing high levels of huCD4. In line with our previous reports, our current proteomic analysis (data available via ProteomeXchange with identifier PXD027712) demonstrated that only a very small subset of proteins is depleted by CADA. Our data also confirmed that cellular expression of both huCD4 and sortilin are affected by CADA treatment of SUP-T1 cells. Furthermore, three additional targets for CADA are identified, namely, endoplasmic reticulum lectin 1 (ERLEC1), inactive tyrosine-protein kinase 7 (PTK7), and DnaJ homolog subfamily C member 3 (DNAJC3). Western blot and flow cytometry analysis of ERLEC1, PTK7, and DNAJC3 protein expression validated susceptibility of these substrates to CADA, although with varying degrees of sensitivity. Additional cell-free in vitro translation/translocation data demonstrated that the new substrates for CADA carry cleavable SPs that are targets for the cotranslational translocation inhibition exerted by CADA. Thus, our quantitative proteomic analysis demonstrates that ERLEC1, PTK7, and DNAJC3 are validated additional substrates of CADA; however, huCD4 remains the most sensitive integral membrane protein for the endoplasmic reticulum translocation inhibitor CADA. Furthermore, to our knowledge, CADA is the first compound that specifically interferes with only a very small subset of SPs and does not affect signal anchor sequences. About 3007 proteins quantified in SILAC/MS study on CD4+ T-cells treated with CADA. Three new targets for CADA were identified: ERLEC1, PTK7, and DNAJC3. All CADA substrates carry cleavable signal peptides for translocation into ER. huCD4 remains the most sensitive substrate for the ER translocation inhibitor CADA.
Collapse
Affiliation(s)
- Eva Pauwels
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Claudia Rutz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Becky Provinciael
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Joren Stroobants
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Enno Hartmann
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ralf Schülein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Kurt Vermeire
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|
6
|
Targeting of HER/ErbB family proteins using broad spectrum Sec61 inhibitors coibamide A and apratoxin A. Biochem Pharmacol 2020; 183:114317. [PMID: 33152346 DOI: 10.1016/j.bcp.2020.114317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate-nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide A- or apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Time- and concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.
Collapse
|
7
|
Lumangtad LA, Bell TW. The signal peptide as a new target for drug design. Bioorg Med Chem Lett 2020; 30:127115. [PMID: 32209293 PMCID: PMC7138182 DOI: 10.1016/j.bmcl.2020.127115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023]
Abstract
Many current and potential drug targets are membrane-bound or secreted proteins that are expressed and transported via the Sec61 secretory pathway. They are targeted to translocon channels across the membrane of the endoplasmic reticulum (ER) by signal peptides (SPs), which are temporary structures on the N-termini of their nascent chains. During translation, such proteins enter the lumen and membrane of the ER by a process known as co-translational translocation. Small molecules have been found that interfere with this process, decreasing protein expression by recognizing the unique structures of the SPs of particular proteins. The SP may thus become a validated target for designing drugs for numerous disorders, including certain hereditary diseases.
Collapse
Affiliation(s)
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA.
| |
Collapse
|
8
|
Van Puyenbroeck V, Pauwels E, Provinciael B, Bell TW, Schols D, Kalies KU, Hartmann E, Vermeire K. Preprotein signature for full susceptibility to the co-translational translocation inhibitor cyclotriazadisulfonamide. Traffic 2019; 21:250-264. [PMID: 31675144 DOI: 10.1111/tra.12713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/13/2023]
Abstract
Cyclotriazadisulfonamide (CADA) inhibits the co-translational translocation of human CD4 (huCD4) into the endoplasmic reticulum lumen in a signal peptide (SP)-dependent way. We propose that CADA binds the nascent huCD4 SP in a folded conformation within the translocon resembling a normally transitory state during translocation. Here, we used alanine scanning on the huCD4 SP to identify the signature for full susceptibility to CADA. In accordance with our previous work, we demonstrate that residues in the vicinity of the hydrophobic h-region are critical for sensitivity to CADA. In particular, exchanging Gln-15, Val-17 or Pro-20 in the huCD4 SP for Ala resulted in a resistant phenotype. Together with positively charged residues at the N-terminal portion of the mature protein, these residues mediate full susceptibility to the co-translational translocation inhibitory activity of CADA towards huCD4. In addition, sensitivity to CADA is inversely related to hydrophobicity in the huCD4 SP. In vitro translocation experiments confirmed that the general hydrophobicity of the h-domain and positive charges in the mature protein are key elements that affect both the translocation efficiency of huCD4 and the sensitivity towards CADA. Besides these two general SP parameters that determine the functionality of the signal sequence, unique amino acid pairs (L14/Q15 and L19/P20) in the SP hydrophobic core add specificity to the sensitivity signature for a co-translational translocation inhibitor.
Collapse
Affiliation(s)
- Victor Van Puyenbroeck
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Eva Pauwels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Becky Provinciael
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Dominique Schols
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai-Uwe Kalies
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck, Germany
| | - Enno Hartmann
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck, Germany
| | - Kurt Vermeire
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
9
|
Van Puyenbroeck V, Vermeire K. Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 2018; 75:1541-1558. [PMID: 29305616 PMCID: PMC5897483 DOI: 10.1007/s00018-017-2743-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
Proteins routed to the secretory pathway start their journey by being transported across biological membranes, such as the endoplasmic reticulum. The essential nature of this protein translocation process has led to the evolution of several factors that specifically target the translocon and block translocation. In this review, various translocation pathways are discussed together with known inhibitors of translocation. Properties of signal peptide-specific systems are highlighted for the development of new therapeutic and antimicrobial applications, as compounds can target signal peptides from either host cells or pathogens and thereby selectively prevent translocation of those specific proteins. Broad inhibition of translocation is also an interesting target for the development of new anticancer drugs because cancer cells heavily depend on efficient protein translocation into the endoplasmic reticulum to support their fast growth.
Collapse
Affiliation(s)
- Victor Van Puyenbroeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - Kurt Vermeire
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
McKenna M, Simmonds RE, High S. Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J Cell Sci 2017; 130:1307-1320. [PMID: 28219954 PMCID: PMC5399781 DOI: 10.1242/jcs.198655] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Mycolactone is the exotoxin virulence factor produced by Mycobacterium ulcerans, the pathogen responsible for Buruli ulcer. The skin lesions and immunosuppression that are characteristic of this disease result from the action of mycolactone, which targets the Sec61 complex and inhibits the co-translational translocation of secretory proteins into the endoplasmic reticulum. In this study, we investigate the effect of mycolactone on the Sec61-dependent biogenesis of different classes of transmembrane protein (TMP). Our data suggest that the effect of mycolactone on TMP biogenesis depends on how the nascent chain initially engages the Sec61 complex. For example, the translocation of TMP lumenal domains driven by an N-terminal cleavable signal sequence is efficiently inhibited by mycolactone. In contrast, the effect of mycolactone on protein translocation that is driven solely by a non-cleavable signal anchor/transmembrane domain depends on which flanking region is translocated. For example, while translocation of the region N-terminal to a signal anchor/transmembrane domain is refractive to mycolactone, C-terminal translocation is efficiently inhibited. Our findings highlight the diversity of Sec61-dependent translocation and provide a molecular basis for understanding the effect of mycolactone on the biogenesis of different TMPs. Highlighted Article: The exotoxin mycolactone interferes with the biogenesis of the majority of transmembrane proteins and its actions highlight differences in how distinct classes of these proteins initially engage the Sec61 translocon.
Collapse
Affiliation(s)
- Michael McKenna
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Manchester M13 9PT, UK
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Van Puyenbroeck V, Claeys E, Schols D, Bell TW, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics 2016; 16:157-167. [PMID: 27998951 DOI: 10.1074/mcp.m116.061051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
The small molecule CADA was shown to down-modulate the expression of human CD4 in a signal peptide-dependent way through inhibition of its cotranslational translocation across the ER membrane. Previous studies characterizing general glycoprotein levels and the expression of 14 different cell surface receptors showed selectivity of CADA for human CD4. Here, a PowerBlot Western Array was used as a screen to analyze the proteome of CADA-treated SUP-T1 human CD4+ T lymphocytes. This high-throughput monoclonal antibody panel-based immunoblotting assay of cellular signaling proteins revealed that only a small subset of the 444 detected proteins was differentially expressed after treatment with CADA. Validation of these proteomic data with optimized immunoblot analysis confirmed the CADA-induced change in expression of the cell cycle progression regulator pRb2 and the transcription factor c-Jun. However, the up-regulation of pRb2 or down-modulation of c-Jun by CADA had no impact on cell cycle transition. Also, the reduced protein level of human CD4 did not inhibit T cell receptor signaling. Interestingly, the signal peptide-containing membrane protein sortilin was identified as a new substrate for CADA. Both cellular expression and in vitro cotranslational translocation of sortilin were significantly reduced by CADA, although to a lesser extent as compared with human CD4. Our data demonstrate that a small signal peptide-binding drug is able to down-modulate the expression of human CD4 and sortilin, apparently with low impact on the cellular proteome.
Collapse
Affiliation(s)
- Victor Van Puyenbroeck
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Elisa Claeys
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Dominique Schols
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Thomas W Bell
- §Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Kurt Vermeire
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium;
| |
Collapse
|
12
|
Kalies KU, Römisch K. Inhibitors of Protein Translocation Across the ER Membrane. Traffic 2015; 16:1027-38. [PMID: 26122014 DOI: 10.1111/tra.12308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
Protein translocation into the endoplasmic reticulum (ER) constitutes the first step of protein secretion. ER protein import is essential in all eukaryotic cells and is particularly critical in fast-growing tumour cells. Thus, the process can serve as target both for potential cancer drugs and for bacterial virulence factors. Inhibitors of protein transport across the ER membrane range from broad-spectrum to highly substrate-specific and can interfere with virtually any stage of this multistep process, and even with transport of endocytosed antigens into the cytosol for cross-presentation.
Collapse
Affiliation(s)
- Kai-Uwe Kalies
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
13
|
Klein W, Westendorf C, Schmidt A, Conill-Cortés M, Rutz C, Blohs M, Beyermann M, Protze J, Krause G, Krause E, Schülein R. Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study. PLoS One 2015; 10:e0120886. [PMID: 25806945 PMCID: PMC4373898 DOI: 10.1371/journal.pone.0120886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 12/27/2022] Open
Abstract
The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity.
Collapse
Affiliation(s)
- Wolfgang Klein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Carolin Westendorf
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Antje Schmidt
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Mercè Conill-Cortés
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Claudia Rutz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Marcus Blohs
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Beyermann
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- * E-mail:
| |
Collapse
|
14
|
Ruiz-Saenz A, Sandhu M, Carrasco Y, Maglathlin RL, Taunton J, Moasser MM. Targeting HER3 by interfering with its Sec61-mediated cotranslational insertion into the endoplasmic reticulum. Oncogene 2015; 34:5288-94. [PMID: 25619841 PMCID: PMC4515412 DOI: 10.1038/onc.2014.455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/29/2022]
Abstract
There is increasing evidence implicating HER3 in several types of cancer. But the development of targeted therapies to inactivate HER3 function has been a challenging endeavor. Its kinase domain functions in allostery not catalysis, and the classical ATP-analog class of tyrosine kinase inhibitors fail to inactivate it. Here we describe a novel approach that eliminates HER3 expression. The small-molecule cotransin CT8 binds the Sec61 translocon and prevents the signal peptide of the nascent HER3 protein from initiating its cotranslational translocation, resulting in the degradation of HER3 but not the other HER proteins. CT8 treatment suppresses the induction of HER3 that accompanies lapatinib treatment of HER2-amplified cancers and synergistically enhances the apoptotic effects of lapatinib. The target selectivities of cotransins are highly dependent on their structure and the signal sequence of targeted proteins and can be narrowed through structure-function studies. Targeting Sec61-dependent processing identifies a novel strategy to eliminate HER3 function.
Collapse
Affiliation(s)
- A Ruiz-Saenz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - M Sandhu
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Y Carrasco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - R L Maglathlin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - J Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Junne T, Wong J, Studer C, Aust T, Bauer BW, Beibel M, Bhullar B, Bruccoleri R, Eichenberger J, Estoppey D, Hartmann N, Knapp B, Krastel P, Melin N, Oakeley EJ, Oberer L, Riedl R, Roma G, Schuierer S, Petersen F, Tallarico JA, Rapoport TA, Spiess M, Hoepfner D. Decatransin, a new natural product inhibiting protein translocation at the Sec61/SecYEG translocon. J Cell Sci 2015; 128:1217-29. [PMID: 25616894 DOI: 10.1242/jcs.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Joanne Wong
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Benedikt W Bauer
- Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Beibel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | | | - Jürg Eichenberger
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Nicole Hartmann
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Nicolas Melin
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Edward J Oakeley
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Lukas Oberer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Frank Petersen
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Dominic Hoepfner
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Rutz C, Klein W, Schülein R. N-Terminal Signal Peptides of G Protein-Coupled Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:267-87. [DOI: 10.1016/bs.pmbts.2015.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Vermeire K, Bell TW, Van Puyenbroeck V, Giraut A, Noppen S, Liekens S, Schols D, Hartmann E, Kalies KU, Marsh M. Signal peptide-binding drug as a selective inhibitor of co-translational protein translocation. PLoS Biol 2014; 12:e1002011. [PMID: 25460167 PMCID: PMC4251836 DOI: 10.1371/journal.pbio.1002011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.
Collapse
Affiliation(s)
- Kurt Vermeire
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Thomas W. Bell
- Department of Chemistry, University of Nevada, Reno, Nevada, United States of America
| | - Victor Van Puyenbroeck
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Anne Giraut
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Sam Noppen
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Enno Hartmann
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Kai-Uwe Kalies
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Mark Marsh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Mackinnon AL, Paavilainen VO, Sharma A, Hegde RS, Taunton J. An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate. eLife 2014; 3:e01483. [PMID: 24497544 PMCID: PMC3913039 DOI: 10.7554/elife.01483] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Membrane protein biogenesis requires the coordinated movement of hydrophobic transmembrane domains (TMD) from the cytosolic vestibule of the Sec61 channel into the lipid bilayer. Molecular insight into TMD integration has been hampered by the difficulty of characterizing intermediates during this intrinsically dynamic process. In this study, we show that cotransin, a substrate-selective Sec61 inhibitor, traps nascent TMDs in the cytosolic vestibule, permitting detailed interrogation of an early pre-integration intermediate. Site-specific crosslinking revealed the pre-integrated TMD docked to Sec61 near the cytosolic tip of the lateral gate. Escape from cotransin-arrest depends not only on cotransin concentration, but also on the biophysical properties of the TMD. Genetic selection of cotransin-resistant cancer cells uncovered multiple mutations clustered near the lumenal plug of Sec61α, thus revealing cotransin’s likely site of action. Our results suggest that TMD/lateral gate interactions facilitate TMD transfer into the membrane, a process that is allosterically modulated by cotransin binding to the plug. DOI:http://dx.doi.org/10.7554/eLife.01483.001 Cells are surrounded by a plasma membrane that acts like a barrier around the cell—keeping the cell’s boundaries distinct from surrounding cells and helping to regulate the contents of the cell. This plasma membrane is made up mostly of two layers of fatty molecules, and is also studded with proteins. Some of these membrane proteins act as channels that allow nutrients and other chemicals to enter and leave the cell, while others allow the cell to communicate with other cells and the outside environment. Like all proteins, membrane proteins are chains of amino acids that are linked together by a molecular machine called a ribosome. The ribosomes that make membrane proteins are located on the outside of a membrane-enclosed compartment within the cell called the endoplasmic reticulum. To eventually become embedded within a membrane, a new protein must—at the same time as it is being built—enter a channel within the membrane of the endoplasmic reticulum. The newly synthesized protein chain enters this channel, called Sec61, via an entrance near the ribosome and then threads its way toward the inside of the endoplasmic reticulum. However, there is also a ‘side-gate’ in Sec61 that allows specific segments the new protein to escape the channel and become embedded within the membrane. From here, the membrane protein can be trafficked to other destinations within the cell, including the plasma membrane. However, how the newly forming protein chain passes through the side-gate of Sec61 is not well understood. Now MacKinnon, Paavilainen et al. have used a small molecule called cotransin—which is known to interfere with the passage of proteins through Sec61—to observe the interactions between the Sec61 channel and the new protein. Cotransin appears to trap the new protein chain within the Sec61 channel by essentially ‘locking’ the side-gate. MacKinnon, Paavilainen et al. observed that the trapped protein interacts with the inside of the channel at the end closest to the ribosome—which is the likely location of the side-gate. In contrast, cotransin likely binds at the other end of the channel, to a piece of Sec61 that serves to plug the exit into the endoplasmic reticulum; and this plug is directly connected to the side-gate. By preventing the plug from moving out of the way, cotransin can somehow stop the new protein from passing through the side-gate. However, MacKinnon, Paavilainen et al. did find that some membrane proteins with certain physical and chemical properties could get through the gate, despite the presence of cotransin. The next challenge is to resolve exactly how interactions between cotransin and the Sec61 plug can block the escape of new proteins into the membrane. DOI:http://dx.doi.org/10.7554/eLife.01483.002
Collapse
Affiliation(s)
- Andrew L Mackinnon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | | | | | | | | |
Collapse
|
19
|
Johnson N, Haßdenteufel S, Theis M, Paton AW, Paton JC, Zimmermann R, High S. The signal sequence influences post-translational ER translocation at distinct stages. PLoS One 2013; 8:e75394. [PMID: 24130708 PMCID: PMC3793985 DOI: 10.1371/journal.pone.0075394] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022] Open
Abstract
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.
Collapse
Affiliation(s)
- Nicholas Johnson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sarah Haßdenteufel
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Melanie Theis
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Adrienne W. Paton
- Research Centre for Infectious Disease, University of Adelaide, Adelaide, Australia
| | - James C. Paton
- Research Centre for Infectious Disease, University of Adelaide, Adelaide, Australia
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Maifeld SV, MacKinnon AL, Garrison JL, Sharma A, Kunkel EJ, Hegde RS, Taunton J. Secretory protein profiling reveals TNF-α inactivation by selective and promiscuous Sec61 modulators. ACTA ACUST UNITED AC 2012; 18:1082-8. [PMID: 21944747 DOI: 10.1016/j.chembiol.2011.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 05/29/2011] [Accepted: 06/23/2011] [Indexed: 12/30/2022]
Abstract
Cotransins are cyclic heptadepsipeptides that bind the Sec61 translocon to inhibit cotranslational translocation of a subset of secreted and type I transmembrane proteins. The few known cotransin-sensitive substrates are all targeted to the translocon by a cleavable signal sequence, previously shown to be a critical determinant of cotransin sensitivity. By profiling two cotransin variants against a panel of secreted and transmembrane proteins, we demonstrate that cotransin side-chain differences profoundly affect substrate selectivity. Among the most sensitive substrates we identified is the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Like all type II transmembrane proteins, TNF-α is targeted to the translocon by its membrane-spanning domain, indicating that a cleavable signal sequence is not strictly required for cotransin sensitivity. Our results thus reveal an unanticipated breadth of translocon substrates whose expression is inhibited by Sec61 modulators.
Collapse
Affiliation(s)
- Sarah V Maifeld
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Westendorf C, Schmidt A, Coin I, Furkert J, Ridelis I, Zampatis D, Rutz C, Wiesner B, Rosenthal W, Beyermann M, Schülein R. Inhibition of biosynthesis of human endothelin B receptor by the cyclodepsipeptide cotransin. J Biol Chem 2011; 286:35588-35600. [PMID: 21808059 DOI: 10.1074/jbc.m111.239244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific inhibition of the biosynthesis of target proteins is a relatively novel strategy in pharmacology and is based mainly on antisense approaches (e.g. antisense oligonucleotides or RNA interference). Recently, a novel class of substances was described acting at a later step of protein biosynthesis. The cyclic heptadepsipeptides CAM741 and cotransin were shown to inhibit selectively the biosynthesis of a small subset of secretory proteins by preventing stable insertion of the nascent chains into the Sec61 translocon complex at the endoplasmic reticulum membrane (Besemer, J., Harant, H., Wang, S., Oberhauser, B., Marquardt, K., Foster, C. A., Schreiner, E. P., de Vries, J. E., Dascher-Nadel, C., and Lindley, I. J. (2005) Nature 436, 290-293; Garrison, J. L., Kunkel, E. J., Hegde, R. S., and Taunton, J. (2005) Nature 436, 285-289). These peptides act in a signal sequence-discriminatory manner, which explains their selectivity. Here, we have analyzed the cotransin sensitivity of various G protein-coupled receptors in transfected HEK 293 cells. We show that the biosynthesis of the human endothelin B receptor (ET(B)R) is highly sensitive to cotransin, in contrast to that of the other G protein-coupled receptors analyzed. Using a novel biosynthesis assay based on fusions with the photoconvertible Kaede protein, we show that the IC(50) value of cotransin action on ET(B)R biosynthesis is 5.4 μm and that ET(B)R signaling could be completely blocked by treating cells with 30 μm cotransin. Taken together, our data add an integral membrane protein, namely the ET(B)R, to the small group of cotransin-sensitive proteins.
Collapse
Affiliation(s)
- Carolin Westendorf
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Antje Schmidt
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Irene Coin
- Salk Institute for Biological Studies, La Jolla, California 92037-1099
| | - Jens Furkert
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ingrid Ridelis
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Bereich Molekulare Pharmakologie und Zellbiologie, Charité-Universitätsmedizin Berlin, Thielallee 67-73, 14195 Berlin, Germany
| | - Dimitris Zampatis
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Claudia Rutz
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Burkhard Wiesner
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Walter Rosenthal
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Bereich Molekulare Pharmakologie und Zellbiologie, Charité-Universitätsmedizin Berlin, Thielallee 67-73, 14195 Berlin, Germany
| | - Michael Beyermann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
22
|
Schülein R, Westendorf C, Krause G, Rosenthal W. Functional significance of cleavable signal peptides of G protein-coupled receptors. Eur J Cell Biol 2011; 91:294-9. [PMID: 21543132 DOI: 10.1016/j.ejcb.2011.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 01/22/2023] Open
Abstract
About 5-10% of the G protein-coupled receptors (GPCRs) contain N-terminal signal peptides that are cleaved off by the signal peptidases of the endoplasmic reticulum (ER) during the translocon-mediated receptor insertion into the ER membrane. The reason as to why only a subset of the GPCRs requires these additional signal peptides was addressed in the past decade only by a limited number of studies. Recent progress suggests that signal peptides of GPCRs do not only serve the classical ER targeting and translocon gating functions as described for the signal peptides of secretory proteins. In the case of GPCRs, uncleaved pseudo signal peptides may regulate receptor expression at the plasma membrane and may also influence G protein coupling. Moreover, signal peptides of GPCRs seem to match functionally with sequences of the mature N tails. In this review, we summarize the current knowledge about cleavable signal peptides of GPCRs and address the question whether these sequences may be future drug targets in pharmacology.
Collapse
Affiliation(s)
- Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Quaglio E, Restelli E, Garofoli A, Dossena S, De Luigi A, Tagliavacca L, Imperiale D, Migheli A, Salmona M, Sitia R, Forloni G, Chiesa R. Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction. PLoS One 2011; 6:e19339. [PMID: 21559407 PMCID: PMC3084828 DOI: 10.1371/journal.pone.0019339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/27/2011] [Indexed: 12/20/2022] Open
Abstract
The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate whether mutant PrP induced maladaptive responses, we checked key elements of the unfolded protein response (UPR) in transgenic mice, primary neurons and transfected cells expressing two different mutant PrPs. Because ER stress favors the formation of untranslocated PrP that might aggregate in the cytosol and impair proteasome function, we also measured the activity of the ubiquitin proteasome system (UPS). Molecular, biochemical and immunohistochemical analyses found no increase in the expression of UPR-regulated genes, such as Grp78/Bip, CHOP/GADD153, or ER stress-dependent splicing of the mRNA encoding the X-box-binding protein 1. No alterations in UPS activity were detected in mutant mouse brains and primary neurons using the UbG76V-GFP reporter and a new fluorogenic peptide for monitoring proteasomal proteolytic activity in vivo. Finally, there was no loss of proteasome function in neurons in which endogenous PrP was forced to accumulate in the cytosol by inhibiting cotranslational translocation. These results indicate that neither ER stress, nor perturbation of proteasome activity plays a major pathogenic role in prion diseases.
Collapse
Affiliation(s)
- Elena Quaglio
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Elena Restelli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Anna Garofoli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Sara Dossena
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Ada De Luigi
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Luigina Tagliavacca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Imperiale
- Neurology Unit, Human Prion Diseases Center D.O.M.P., Maria Vittoria Hospital, Torino, Italy
| | - Antonio Migheli
- Neurology Unit, Human Prion Diseases Center D.O.M.P., Maria Vittoria Hospital, Torino, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Chiesa
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
24
|
Restelli E, Fioriti L, Mantovani S, Airaghi S, Forloni G, Chiesa R. Cell type-specific neuroprotective activity of untranslocated prion protein. PLoS One 2010; 5:e13725. [PMID: 21060848 PMCID: PMC2965675 DOI: 10.1371/journal.pone.0013725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP). However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. Principal Findings Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. Significance These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.
Collapse
Affiliation(s)
- Elena Restelli
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Luana Fioriti
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Susanna Mantovani
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Simona Airaghi
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Roberto Chiesa
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
25
|
Abstract
After about one century of peptide chemistry, the main limitation to the accessibility of peptides and proteins via chemosynthesis is the arising of folding and aggregation phenomena. This is true not only for sequences above a critical length but also for several biologically relevant substrates that are relatively short yet form either highly folded structures (e.g. WW domains) or fibrils and aggregates after final deprotection (beta-amyloid peptide). Such so-called difficult sequences may be more easily obtained via their corresponding depsipeptides (O-acyl isopeptides), ester isomers that are often easier to assemble and purify, and are smoothly converted to the parent amides under mild conditions. The depsipeptide method is the most recent technique to improve the outcome of difficult syntheses, applicable to sequences containing residues of serine or threonine. A brief overview is presented about chemical aspects of the method, the steps that have been undertaken for its optimization, and the evaluation of its efficiency. Further applications of analogous principles to other critical topics in peptide synthesis such as condensation of peptide segments and solid-phase synthesis of naturally occurring cyclodepsipeptides are addressed as well.
Collapse
Affiliation(s)
- Irene Coin
- The Salk Institute for Biological Studies, CBPL, La Jolla, CA 92037-1099, USA.
| |
Collapse
|
26
|
Cross BCS, McKibbin C, Callan AC, Roboti P, Piacenti M, Rabu C, Wilson CM, Whitehead R, Flitsch SL, Pool MR, High S, Swanton E. Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J Cell Sci 2009; 122:4393-400. [PMID: 19903691 DOI: 10.1242/jcs.054494] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Production and trafficking of proteins entering the secretory pathway of eukaryotic cells is coordinated at the endoplasmic reticulum (ER) in a process that begins with protein translocation via the membrane-embedded ER translocon. The same complex is also responsible for the co-translational integration of membrane proteins and orchestrates polypeptide modifications that are often essential for protein function. We now show that the previously identified inhibitor of ER-associated degradation (ERAD) eeyarestatin 1 (ES(I)) is a potent inhibitor of protein translocation. We have characterised this inhibition of ER translocation both in vivo and in vitro, and provide evidence that ES(I) targets a component of the Sec61 complex that forms the membrane pore of the ER translocon. Further analyses show that ES(I) acts by preventing the transfer of the nascent polypeptide from the co-translational targeting machinery to the Sec61 complex. These results identify a novel effect of ES(I), and suggest that the drug can modulate canonical protein transport from the cytosol into the mammalian ER both in vitro and in vivo.
Collapse
Affiliation(s)
- Benedict C S Cross
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Post-translational import of protein into the endoplasmic reticulum of a trypanosome: an in vitro system for discovery of anti-trypanosomal chemical entities. Biochem J 2009; 419:507-17. [PMID: 19196237 DOI: 10.1042/bj20081787] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HAT (human African trypanosomiasis), caused by the protozoan parasite Trypanosoma brucei, is an emerging disease for which new drugs are needed. Expression of plasma membrane proteins [e.g. VSG (variant surface glycoprotein)] is crucial for the establishment and maintenance of an infection by T. brucei. Transport of a majority of proteins to the plasma membrane involves their translocation into the ER (endoplasmic reticulum). Thus inhibition of protein import into the ER of T. brucei would be a logical target for discovery of lead compounds against trypanosomes. We have developed a TbRM (T. brucei microsome) system that imports VSG_117 post-translationally. Using this system, MAL3-101, equisetin and CJ-21,058 were discovered to be small molecule inhibitors of VSG_117 translocation into the ER. These agents also killed bloodstream T. brucei in vitro; the concentrations at which 50% of parasites were killed (IC50) were 1.5 microM (MAL3-101), 3.3 microM (equisetin) and 7 microM (CJ-21,058). Thus VSG_117 import into TbRMs is a rapid and novel assay to identify 'new chemical entities' (e.g. MAL3-101, equisetin and CJ-21,058) for anti-trypanosome drug development.
Collapse
|
28
|
Harant H, Wolff B, Schreiner EP, Oberhauser B, Hofer L, Lettner N, Maier S, de Vries JE, Lindley IJ. Inhibition of Vascular Endothelial Growth Factor Cotranslational Translocation by the Cyclopeptolide CAM741. Mol Pharmacol 2007; 71:1657-65. [PMID: 17369307 DOI: 10.1124/mol.107.034249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cyclopeptolide CAM741 inhibits cotranslational translocation of vascular cell adhesion molecule 1 (VCAM1), which is dependent on its signal peptide. We now describe the identification of the signal peptide of vascular endothelial growth factor (VEGF) as the second target of CAM741. The mechanism by which the compound inhibits translocation of VEGF is very similar or identical to that of VCAM1, although the signal peptides share no obvious sequence similarities. By mutagenesis of the VEGF signal peptide, two important regions, located in the N-terminal and hydrophobic segments, were identified as critical for compound sensitivity. CAM741 alters positioning of the VEGF signal peptide at the translocon, and increasing hydrophobicity in the h-region reduces compound sensitivity and causes a different, possibly more efficient, interaction with the translocon. Although CAM741 is effective against translocation of both VEGF and VCAM1, the derivative NFI028 is able to inhibit only VCAM1, suggesting that chemical derivatization can alter not only potency, but also the specificity of the compounds.
Collapse
Affiliation(s)
- Hanna Harant
- Novartis Institutes for BioMedical Research, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|