1
|
Lim YH, Park YJ, Lee J, Kim JH. Transcriptional corepressor activity of CtBP1 is regulated by ISG15 modification. Anim Cells Syst (Seoul) 2024; 28:66-74. [PMID: 38405356 PMCID: PMC10885760 DOI: 10.1080/19768354.2024.2321354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
C-terminal binding protein 1 (CtBP1) is a critical transcriptional corepressor of many tumor suppressor genes and plays diverse roles in the progression of cancers. The transcriptional repression function of CtBP1 is mediated by recruiting histone-modifying enzymes, such as histone deacetylases and histone methyltransferases, to target genes by binding with DNA-interacting factors. Several post-translational modifications of CtBP1 have been identified, including ubiquitination, phosphorylation, and SUMOylation. This paper reports that CtBP1 is conjugated by ISG15. Endogenous CtBP1 was modified by ISG15 after interferon-α treatment in HeLa cells. The ISGylation process of CtBP1 was regulated by deISGylation enzyme USP18 and ISG15 E3 ligase EFP. Interestingly, CtBP1 ISGylation affected the binding affinity between CtBP1 and some components of CtBP1-associated transcriptional complexes. HDAC1 and LSD1 bound more efficiently to ISG15-conjugated CtBP1 than non-conjugated CtBP1. On the other hand, binding between CtBP1 and HDAC4 was unaffected by ISG15 modification. Furthermore, ISG15 modification enhanced the transcriptional repression activity of CtBP1 on several target genes related to EMT and apoptosis. These findings suggest that the ISG15 modification of CtBP1 modulates the function and activity of CtBP1 and that CtBP1 ISGylation may provide a new insight for CtBP1-mediated cancers.
Collapse
Affiliation(s)
- Yun Hwan Lim
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Yoon Jin Park
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Jieun Lee
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Jung Hwa Kim
- Department of Biological Sciences, Inha University, Incheon, Korea
| |
Collapse
|
2
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
3
|
Raicu AM, Kadiyala D, Niblock M, Jain A, Yang Y, Bird KM, Bertholf K, Seenivasan A, Siddiq M, Arnosti DN. The Cynosure of CtBP: Evolution of a Bilaterian Transcriptional Corepressor. Mol Biol Evol 2023; 40:msad003. [PMID: 36625090 PMCID: PMC9907507 DOI: 10.1093/molbev/msad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Evolution of sequence-specific transcription factors clearly drives lineage-specific innovations, but less is known about how changes in the central transcriptional machinery may contribute to evolutionary transformations. In particular, transcriptional regulators are rich in intrinsically disordered regions that appear to be magnets for evolutionary innovation. The C-terminal Binding Protein (CtBP) is a transcriptional corepressor derived from an ancestral lineage of alpha hydroxyacid dehydrogenases; it is found in mammals and invertebrates, and features a core NAD-binding domain as well as an unstructured C-terminus (CTD) of unknown function. CtBP can act on promoters and enhancers to repress transcription through chromatin-linked mechanisms. Our comparative phylogenetic study shows that CtBP is a bilaterian innovation whose CTD of about 100 residues is present in almost all orthologs. CtBP CTDs contain conserved blocks of residues and retain a predicted disordered property, despite having variations in the primary sequence. Interestingly, the structure of the C-terminus has undergone radical transformation independently in certain lineages including flatworms and nematodes. Also contributing to CTD diversity is the production of myriad alternative RNA splicing products, including the production of "short" tailless forms of CtBP in Drosophila. Additional diversity stems from multiple gene duplications in vertebrates, where up to five CtBP orthologs have been observed. Vertebrate lineages show fewer major modifications in the unstructured CTD, possibly because gene regulatory constraints of the vertebrate body plan place specific constraints on this domain. Our study highlights the rich regulatory potential of this previously unstudied domain of a central transcriptional regulator.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Dhruva Kadiyala
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Madeline Niblock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | | | - Yahui Yang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kalynn M Bird
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kayla Bertholf
- Biochemistry and Molecular Biology Program, College of Wooster
| | - Akshay Seenivasan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Mohammad Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - David N Arnosti
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
He Y, He Z, Lin J, Chen C, Chen Y, Liu S. CtBP1/2 differentially regulate genomic stability and DNA repair pathway in high-grade serous ovarian cancer cell. Oncogenesis 2021; 10:49. [PMID: 34253710 PMCID: PMC8275597 DOI: 10.1038/s41389-021-00344-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The C-terminal binding proteins (CtBPs), CtBP1 and CtBP2, are transcriptional co-repressor that interacts with multiple transcriptional factors to modulate the stability of chromatin. CtBP proteins were identified with overexpression in the high-grade serous ovarian carcinoma (HGSOC). However, little is known about CtBP proteins’ regulatory roles in genomic stability and DNA repair in HGSOC. In this study, we combined whole-transcriptome analysis with multiple research methods to investigate the role of CtBP1/2 in genomic stability. Several key functional pathways were significantly enriched through whole transcription profile analysis of CtBP1/2 knockdown SKOV3 cells, including DNA damage repair, apoptosis, and cell cycle. CtBP1/2 knockdown induced cancer cell apoptosis, increased genetic instability, and enhanced the sensitivity to DNA damage agents, such as γ-irradiation and chemotherapy drug (Carboplatin and etoposide). The results of DNA fiber assay revealed that CtBP1/2 contribute differentially to the integrity of DNA replication track and stability of DNA replication recovery. CtBP1 protects the integrity of stalled forks under metabolic stress condition during prolonged periods of replication, whereas CtBP2 acts a dominant role in stability of DNA replication recovery. Furthermore, CtBP1/2 knockdown shifted the DSBs repair pathway from homologous recombination (HR) to non-homologous end joining (NHEJ) and activated DNA-PK in SKOV3 cells. Interesting, blast through TCGA tumor cases, patients with CtBP2 genetic alternation had a significantly longer overall survival time than unaltered patients. Together, these results revealed that CtBP1/2 play a different regulatory role in genomic stability and DSBs repair pathway bias in serous ovarian cancer cells. It is possible to generate novel potential targeted therapy strategy and translational application for serous ovarian carcinoma patients with a predictable better clinical outcome.
Collapse
Affiliation(s)
- YingYing He
- School of Chemical Science & Technology Yunnan University Kunming, Yunnan, 650091, China
| | - Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Yunnan, 650201, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Yunnan, 650201, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Yunnan, 650201, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Yunnan, 650201, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Yunnan, 650201, PR China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
6
|
Endoplasmic reticulum stress regulates the intestinal stem cell state through CtBP2. Sci Rep 2021; 11:9892. [PMID: 33972635 PMCID: PMC8111031 DOI: 10.1038/s41598-021-89326-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC. We hypothesize that ER stress dependent stem cell differentiation may rely on the depletion of additional transcriptional regulators with a short protein half-life that are rapidly depleted due to a PERK-dependent translational pause. Using a novel screening method, we identify novel transcription factors that regulate the intestinal stem cell fate upon ER stress. ER stress was induced in LS174T cells with thapsigargin or subtilase cytotoxin (SubAB) and immediate alterations in nuclear transcription factor activity were assessed by the CatTFRE assay in which transcription factors present in nuclear lysate are bound to plasmid DNA, co-extracted and quantified using mass-spectrometry. The role of altered activity of transcription factor CtBP2 was further examined by modification of its expression levels using CAG-rtTA3-CtBP2 overexpression in small intestinal organoids, shCtBP2 knockdown in LS174T cells, and familial adenomatous polyposis patient-derived organoids. CtBP2 overexpression organoids were challenged by ER stress and ionizing irradiation. We identified a unique set of transcription factors with altered activation upon ER stress. Gene ontology analysis showed that transcription factors with diminished binding were involved in cellular differentiation processes. ER stress decreased CtBP2 protein expression in mouse small intestine. ER stress induced loss of CtBP2 expression which was rescued by inhibition of PERK signaling. CtBP2 was overexpressed in mouse and human colorectal adenomas. Inducible CtBP2 overexpression in organoids conferred higher clonogenic potential, resilience to irradiation-induced damage and a partial rescue of ER stress-induced loss of stemness. Using an unbiased proteomics approach, we identified a unique set of transcription factors for which DNA-binding activity is lost directly upon ER stress. We continued investigating the function of co-regulator CtBP2, and show that CtBP2 mediates ER stress-induced loss of stemness which supports the intestinal stem cell state in homeostatic stem cells and colorectal cancer cells.
Collapse
|
7
|
Zhu Y, Wu D, Wang M, Li W. C-Terminus of E1A Binding Protein 1 Stimulates Malignant Phenotype in Human Hepatocellular Carcinoma. Med Sci Monit 2019; 25:8660-8670. [PMID: 31860631 PMCID: PMC6876066 DOI: 10.12659/msm.920114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<strong>BACKGROUND</strong> The C-terminus of E1A binding proteins (CTBPs) has recently been shown to stimulate tumorigenesis in several human tissues by participating in cell signal transduction. However, to date, the expression profile of CTBP isoforms in hepatocellular carcinoma (HCC) and the impact of CTBPs on HCC cell phenotype have not been fully explored. <strong>MATERIAL AND METHODS</strong> The expression level of CTBP1 was investigated in various HCC cell lines and HCC tissues by RT-qPCR, Western blotting, and immunohistochemistry assays. The phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 was utilized to treat hepatic astrocyte cells, and the impact of CTBP1 on proliferation and metastasis of hepatic astrocytes and HCC cells was accessed by CCK-8, clone-forming, Transwell chamber, and cell scratch assays. <strong>RESULTS</strong> Increased expression of CTBP1 was observed in HCC tissues and was a predictor of poor prognosis in HCC patients. CTBP1 modified proliferation and migratory activity of HCC cells via the PI3K/protein kinase B (Akt) signaling pathway in hepatic astrocytes. Moreover, genetic loss of CTBP1 significantly reduced the metastatic activity of HCC cells <i>in vitro</i>. <strong>CONCLUSIONS</strong> Our data suggest that the loss of CTBP1 suppresses cell proliferative and invasive activity of HCC cells via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Di Wu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jiliin, China (mainland)
| | - Min Wang
- Department of Pathology, Jilin Provincial Cancer Hospital, Changchun, Jiliin, China (mainland)
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
8
|
Wang C, Wang M, Xing B, Chi Z, Wang H, Lie C, Dong H. C-terminal of E1A binding protein 1 enhances the migration of gastric epithelial cells and has a clinicopathologic significance in human gastric carcinoma. Onco Targets Ther 2019; 12:5189-5200. [PMID: 31308691 PMCID: PMC6616302 DOI: 10.2147/ott.s203479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Recent studies have claimed that the C-terminal of E1A binding proteins (CtBPs) influence tumorigenesis through participating in cell signal transduction in various human tumors. However, the detailed expression profiles of CtBP isoforms in human gastric cancer (GC) and the molecular mechanisms of CtBP involvement in tumor cell phenotypes warrant further investigation. Materials and methods The expression of CtBPs in GC cell lines and a human gastric epithelial cell line were explored via RT-qPCR and Western blotting assays. Moreover, the expression profiles of CtBPs in GC and histologically noncancerous tissues were explored by immunohistochemistry. To explore the effects of CtBP1 on the metastatic phenotype in GC, gastric epithelial cells were transfected with a eukaryotic expression plasmid to overexpress CTBP1, and the endogenous CtBP1 or JAK1 in GC cells was silenced through an RNA interference (RNAi) method. These transfections were validated via Western blotting, and the activation state of the JAK1/Stat3 signaling pathway was also explored via Western blotting. Furthermore, the malignant phenotype of GC cells was evaluated via a Cell Counting Kit-8 (CCK8) assay, colony formation assay, transwell assay, and wound-healing experiment. Results Our data revealed that the expression of CtBP1, but not CTBP2, was upregulated in 102 GC tissue samples compared with 98 noncancerous tissue samples, and the elevated expression level of CtBP1 was notably associated with distant metastasis. CTBP1 modulated cell migration and invasion through the JAK1/Stat3 signaling pathway in gastric epithelial cells. In addition, genetic silence of CtBP1 expression in GC cells notably constrained cell proliferation, invasion and migration abilities through inhibiting the activation of the JAK1/Stat3 pathway in GC cells. Conclusion Our data reveal that the knockout of CtBP1 notably constrains distant metastasis in GC through the JAK1/Stat3 pathway, suggesting that targeting CtBP1 is a practical anti-tumor approach to restrain tumor progression in GC.
Collapse
Affiliation(s)
- Can Wang
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Min Wang
- Department of Pathology, Jilin Provincial Cancer Hospital, Changchun 130012, People's Republic of China
| | - Bocheng Xing
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Zhaocheng Chi
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Hongyu Wang
- Internal Medicine of Abdominal Tumors, Jilin Provincial Cancer Hospital, Changchun 130012, People's Republic of China
| | - Chunxiao Lie
- Second Department of Gastrointestinal Surgery, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, People's Republic of China
| | - Han Dong
- Department of Geriatric Medicine, First Hospital of Jilin University, Changchun, Jilin 130012, People's Republic of China
| |
Collapse
|
9
|
Wang P, Yu B, Wang C, Zhou S. C-terminal of E1A binding protein 2 promotes the malignancy of osteosarcoma cells via JAK1/Stat3 signaling. J Cell Commun Signal 2019; 14:67-76. [PMID: 31214864 DOI: 10.1007/s12079-019-00523-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated that the C-terminal of E1A binding proteins (CtBPs) influences tumorigenesis by participating in cell signal transduction in various human malignancies. However, the detailed expression patterns of CtBP isoforms in human osteosarcoma (OS) and the molecular mechanisms of CtBP involvement in tumor cell phenotypes requires further investigation. In the present study, the expression patterns of CtBP2 in OS cells and tissues were explored by immunohistochemistry. Fetal osteoblast cells were transfected with a eukaryotic expression plasmid to overexpress CtBP2, and the endogenous CtBP2 in OS cells was silenced via a short hairpin RNA. These transfections were validated and the phosphorylation levels of the JAK1/Stat3 signaling pathway were explored via western blotting. Furthermore, the malignant phenotype of OS cells was evaluated via a Cell Counting Kit-8 assay, cell colony formation assay, cell migration assay and scratch wound healing assay. The results revealed that the expression of CtBP2, but not CtBP1, was upregulated in OS tissue samples and the elevated expression level of CtBP2 was notably associated with distant metastasis. CtBP2 was demonstrated to modulate cell migration and invasion via JAK1/Stat3 signaling pathway in fetal osteoblast cells. In addition, genetic silencing of CtBP2 expression in OS cells notably reduced cell migration abilities and the phosphorylation of the JAK1/Stat3 pathway. In summary, the present studies revealed that the loss of CtBP2 constrained distant metastasis through the JAK1/Stat3 pathway in OS, suggesting that targeting CtBP2 may be a practical anti-tumor approach to prevent OS tumor progression.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Orthopedics, Central Hospital of Zibo, Affiliated with Shandong University, Zibo, Shandong Province, China
| | - Benfeng Yu
- Department of Orthopedics, First Hospital of Suihua, Suihua, 152000, Heilongjiang Province, China
| | - Chengyan Wang
- Department of Ultrasound, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130021, Jilin, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
10
|
Blevins MA, Zhang C, Zhang L, Li H, Li X, Norris DA, Huang M, Zhao R. CPP-E1A fusion peptides inhibit CtBP-mediated transcriptional repression. Mol Oncol 2018; 12:1358-1373. [PMID: 29879296 PMCID: PMC6068344 DOI: 10.1002/1878-0261.12330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
Abstract
The carboxyl‐terminal binding proteins (CtBP) are transcriptional corepressors that regulate the expression of multiple epithelial‐specific and pro‐apoptotic genes. Overexpression of CtBP occurs in many human cancers where they promote the epithelial‐to‐mesenchymal transition, stem cell‐like features, and cell survival, while knockdown of CtBP in tumor cells results in p53‐independent apoptosis. CtBPs are recruited to their target genes by binding to a conserved PXDLS peptide motif present in multiple DNA‐binding transcription factors. Disrupting the interaction between CtBP and its transcription factor partners may be a means of altering CtBP‐mediated transcriptional repression and a potential approach for cancer therapies. However, small molecules targeting protein–protein interactions have traditionally been difficult to identify. In this study, we took advantage of the fact that CtBP binds to a conserved peptide motif to explore the feasibility of using peptides containing the PXDLS motif fused to cell‐penetrating peptides (CPP) to inhibit CtBP function. We demonstrate that these peptides disrupt the ability of CtBP to interact with its protein partner, E1A, in an AlphaScreen assay. Moreover, these peptides can enter both lung carcinoma and melanoma cells, disrupt the interaction between CtBP and a transcription factor partner, and inhibit CtBP‐mediated transcriptional repression. Finally, the constitutive expression of one such peptide, Pep1‐E1A‐WT, in a melanoma cell line reverses CtBP‐mediated oncogenic phenotypes including proliferation, migration, and sphere formation and limits tumor growth in vivo. Together, our results suggest that CPP‐fused PXDLS‐containing peptides can potentially be developed into a research tool or therapeutic agent targeting CtBP‐mediated transcriptional events in various biological pathways.
Collapse
Affiliation(s)
- Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Hong Li
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - David A Norris
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Mingxia Huang
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Feng Y, Zhou L, Sun X, Li Q. Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget 2017; 8:20452-20461. [PMID: 28107201 PMCID: PMC5386776 DOI: 10.18632/oncotarget.14723] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
The HIPK2 (serine/threonine homeodomain-interacting protein kinase 2) is a "caretaker" gene, its inactivation increases tumorigenicity while its activation inhibits tumor growth. This report reviews the anti-tumorigenic mechanisms of HIPK2, which include promotion of apoptosis, inhibition of angiogenesis in hypoxia, prevention of tumor invasion/metastasis and attenuation of multidrug resistance in cancer. Additionally, we summarize conditions or factors that may increase HIPK2 activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Liu P, Shi L, Cang X, Huang J, Wu X, Yan J, Chen L, Cui S, Ye X. CtBP2 ameliorates palmitate-induced insulin resistance in HepG2 cells through ROS mediated JNK pathway. Gen Comp Endocrinol 2017; 247:66-73. [PMID: 28111233 DOI: 10.1016/j.ygcen.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
Abstract
Oxidative stress plays a significant role in the development of hepatic insulin resistance, but the underlying molecular mechanisms remain poorly understood. In this study, we discovered that C-terminal-binding protein 2 (CtBP2) level was decreased in insulin resistance. Taking into account the relationship between CtBP family protein (ANGUSTIFOLIA) and reactive oxygen species (ROS) accumulation, we conjectured CtBP2 was involved in insulin resistance through ROS induced stress. In order to verify this hypothesis, we over-expressed CtBP2 in palmitate (PA) treated HepG2 cells. Here, we found that over-expression of CtBP2 ameliorated insulin sensitivity by increasing phosphorylation of glycogen synthase kinase 3β (GSK3β) and protein kinase B (AKT). These data suggest that CtBP2 plays a critical role in the development of insulin resistance. Moreover, CtBP2 reversed the effects of PA on ROS level, lipid accumulation, hepatic glucose uptake and gluconeogenesis. We also found that over-expression of CtBP2 could suppress PA induced c-jun NH2 terminal kinase (JNK) activation. Furthermore, JNK inhibitor SP600125 was shown to promote the effect of CtBP2 on insulin signaling. Thus, we demonstrated that CtBP2 ameliorated PA-induced insulin resistance via ROS-dependent JNK pathway.
Collapse
Affiliation(s)
- Pingli Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Li Shi
- Department of Endocrinology, the Second People's Hospital of Changzhou City, 29 Xinglong Lane, Changzhou 213000, Jiangsu Province, People's Republic of China
| | - Xiaomin Cang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jieru Huang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xue Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jin Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Ling Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Shiwei Cui
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Xinhua Ye
- Department of Endocrinology, the Second People's Hospital of Changzhou City, 29 Xinglong Lane, Changzhou 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
13
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
14
|
Qiu F, Yang L, Lu X, Chen J, Wu D, Wei Y, Nong Q, Zhang L, Fang W, Chen X, Ling X, Yang B, Zhang X, Zhou Y, Lu J. The MKK7 p.Glu116Lys Rare Variant Serves as a Predictor for Lung Cancer Risk and Prognosis in Chinese. PLoS Genet 2016; 12:e1005955. [PMID: 27028764 PMCID: PMC4814107 DOI: 10.1371/journal.pgen.1005955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/03/2016] [Indexed: 11/19/2022] Open
Abstract
Accumulated evidence indicates that rare variants exert a vital role on predisposition and progression of human diseases, which provides neoteric insights into disease etiology. In the current study, based on three independently retrospective studies of 5,016 lung cancer patients and 5,181 controls, we analyzed the associations between five rare polymorphisms (i.e., p.Glu116Lys, p.Asn118Ser, p.Arg138Cys, p.Ala195Thr and p.Leu259Phe) in MKK7 and lung cancer risk and prognosis. To decipher the precise mechanisms of MKK7 rare variants on lung cancer, a series of biological experiments was further performed. We found that the MKK7 p.Glu116Lys rare polymorphism was significantly associated with lung cancer risk, progression and prognosis. Compared with Glu/Glu common genotype, the 116Lys rare variants (Lys/Glu/+ Lys/Lys) presented an adverse effect on lung cancer susceptibility (odds ratio [OR] = 3.29, 95% confidence interval [CI] = 2.70-4.01). These rare variants strengthened patients' clinical progression that patients with 116Lys variants had a significantly higher metastasis rate and advanced N, M stages at diagnosis. In addition, the patients with 116Lys variants also contributed to worse cancer prognosis than those carriers with Glu/Glu genotype (hazard ratio [HR] = 1.53, 95% CI = 1.32-1.78). Functional experiments further verified that the MKK7 p.116Lys variants altered the expression of several cancer-related genes and thus affected lung cancer cells proliferation, tumor growth and metastasis in vivo and in vitro. Taken together, our findings proposed that the MKK7 p.Glu116Lys rare polymorphism incurred a pernicious impact on lung cancer risk and prognosis through modulating expressions of a serial of cancer-related genes.
Collapse
Affiliation(s)
- Fuman Qiu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, People's Republic of China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxiao Lu
- School of Arts and Sciences, Colby-Sawyer College, New London, New Hampshire, United States of America
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yongfang Wei
- Center of Laboratory Animal, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qingqing Nong
- Department of Environmental Health, Guangxi Medical University, Nanning, People's Republic of China
| | - Lisha Zhang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenxiang Fang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoliang Chen
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxuan Ling
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
15
|
Hilbert BJ, Morris BL, Ellis KC, Paulsen JL, Schiffer CA, Grossman SR, Royer WE. Structure-guided design of a high affinity inhibitor to human CtBP. ACS Chem Biol 2015; 10:1118-27. [PMID: 25636004 DOI: 10.1021/cb500820b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oncogenic transcriptional coregulators C-terminal Binding Protein (CtBP) 1 and 2 possess regulatory d-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains that provide an attractive target for small molecule intervention. Findings that the CtBP substrate 4-methylthio 2-oxobutyric acid (MTOB) can interfere with CtBP oncogenic activity in cell culture and in mice confirm that such inhibitors could have therapeutic benefit. Recent crystal structures of CtBP 1 and 2 revealed that MTOB binds in an active site containing a dominant tryptophan and a hydrophilic cavity, neither of which are present in other D2-HDH family members. Here, we demonstrate the effectiveness of exploiting these active site features for the design of high affinity inhibitors. Crystal structures of two such compounds, phenylpyruvate (PPy) and 2-hydroxyimino-3-phenylpropanoic acid (HIPP), show binding with favorable ring stacking against the CtBP active site tryptophan and alternate modes of stabilizing the carboxylic acid moiety. Moreover, ITC experiments show that HIPP binds to CtBP with an affinity greater than 1000-fold over that of MTOB, and enzymatic assays confirm that HIPP substantially inhibits CtBP catalysis. These results, thus, provide an important step, and additional insights, for the development of highly selective antineoplastic CtBP inhibitors.
Collapse
Affiliation(s)
- Brendan J. Hilbert
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Benjamin L. Morris
- Division
of Hematology, Oncology, and Palliative Care, Department of Human
and Molecular Genetics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Keith C. Ellis
- Department
of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Janet L. Paulsen
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Steven R. Grossman
- Division
of Hematology, Oncology, and Palliative Care, Department of Human
and Molecular Genetics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William E. Royer
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
16
|
Hilbert BJ, Grossman SR, Schiffer CA, Royer WE. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design. FEBS Lett 2014; 588:1743-8. [PMID: 24657618 DOI: 10.1016/j.febslet.2014.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory d-isomer specific 2-hydroxyacid dehydrogenase (d2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD(+) revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD(+) phosphate. Neither feature is present in other d2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors.
Collapse
Affiliation(s)
- Brendan J Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Steven R Grossman
- Division of Hematology, Oncology, and Palliative Care and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - William E Royer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Components of the CtBP1/BARS-dependent fission machinery. Histochem Cell Biol 2013; 140:407-21. [PMID: 23996193 DOI: 10.1007/s00418-013-1138-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 01/12/2023]
Abstract
The brefeldin A ADP-ribosylated substrate, a member of the C-terminal-binding protein family that is referred to as CtBP1/BARS, is a dual-function protein that acts as a transcriptional co-repressor in the nucleus and as an inducer of membrane fission in the cytoplasm. In this review, we first discuss the mechanisms that enable CtBP1/BARS to shift between the nuclear transcriptional co-repressor and the cytosolic fission-inducing activities. Then, we focus on the role of CtBP1/BARS in membrane fission. CtBP1/BARS controls several fission events including macropinocytosis, fluid-phase endocytosis, COPI-coated vesicle formation, basolaterally directed post-Golgi carrier formation, and Golgi partitioning in mitosis. We report on recent advances in our understanding of the CtBP1/BARS membrane fission machineries that operate at the trans-side and at the cis-side of the Golgi complex. Specifically, we discuss how these machineries are assembled and regulated, and how they operate in the formation of the basolaterally directed post-Golgi carriers.
Collapse
|
18
|
Stankiewicz TR, Schroeder EK, Kelsey NA, Bouchard RJ, Linseman DA. C-terminal binding proteins are essential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis. Mol Cell Neurosci 2013; 56:322-332. [PMID: 23859824 DOI: 10.1016/j.mcn.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post-transcriptional level, and via a mechanism that is dependent upon miRNA processing. We conclude that CtBPs are essential pro-survival proteins in neurons and their downregulation contributes significantly to neuronal apoptosis via the de-repression of pro-apoptotic genes.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Emily K Schroeder
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Natalie A Kelsey
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Ron J Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA.,Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
19
|
PLEIAD/SIMC1/C5orf25, a novel autolysis regulator for a skeletal-muscle-specific calpain, CAPN3, scaffolds a CAPN3 substrate, CTBP1. J Mol Biol 2013; 425:2955-72. [PMID: 23707407 DOI: 10.1016/j.jmb.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/28/2013] [Accepted: 05/15/2013] [Indexed: 11/20/2022]
Abstract
CAPN3/p94/calpain-3 is a skeletal-muscle-specific member of the calpain protease family. Multiple muscle cell functions have been reported for CAPN3, and mutations in this protease cause limb-girdle muscular dystrophy type 2A. Little is known about the molecular mechanisms that allow CAPN3 to be so multifunctional. One hypothesis is that the very rapid and exhaustive autolytic activity of CAPN3 needs to be suppressed by dynamic molecular interactions for specific periods of time. The previously identified interaction between CAPN3 and connectin/titin, a giant molecule in muscle sarcomeres, supports this assumption; however, the regulatory mechanisms of non-sarcomere-associated CAPN3 are unknown. Here, we report that a novel CAPN3-binding protein, PLEIAD [Platform element for inhibition of autolytic degradation; originally called SIMC1/C5orf25 (SUMO-interacting motif containing protein 1/chromosome 5open reading frame 25)], suppresses the protease activity of CAPN3. Database analyses showed that PLEIAD homologs, like CAPN3 homologs, are evolutionarily conserved in vertebrates. Furthermore, we found that PLEIAD also interacts with CTBP1 (C-terminal binding protein 1), a transcriptional co-regulator, and CTBP1 is proteolyzed in COS7 cells expressing CAPN3. The identified cleavage sites in CTBP1 suggested that it undergoes functional modification upon its proteolysis by CAPN3, as well as by conventional calpains. These results indicate that PLEIAD can shift its major function from CAPN3 suppression to CAPN3-substrate recruitment, depending on the cellular context. Taken together, our data suggest that PLEIAD is a novel regulatory scaffold for CAPN3, as reflected in its name.
Collapse
|
20
|
C-Terminal Binding Protein: A Molecular Link between Metabolic Imbalance and Epigenetic Regulation in Breast Cancer. Int J Cell Biol 2013; 2013:647975. [PMID: 23762064 PMCID: PMC3671672 DOI: 10.1155/2013/647975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has given rise to significant global concerns as numerous population-based studies demonstrate an incontrovertible association between obesity and breast cancer. Mechanisms proposed to account for this linkage include exaggerated levels of carbohydrate substrates, elevated levels of circulating mitogenic hormones, and inflammatory cytokines that impinge on epithelial programming in many tissues. Moreover, recently many scientists have rediscovered the observation, first described by Otto Warburg nearly a century ago, that most cancer cells undergo a dramatic metabolic shift in energy utilization and expenditure that fuels and supports the cellular expansion associated with malignant proliferation. This shift in substrate oxidation comes at the cost of sharp changes in the levels of the high energy intermediate, nicotinamide adenine dinucleotide (NADH). In this review, we discuss a novel example of how shifts in the concentration and flux of substrates metabolized and generated during carbohydrate metabolism represent components of a signaling network that can influence epigenetic regulatory events in the nucleus. We refer to this regulatory process as "metabolic transduction" and describe how the C-terminal binding protein (CtBP) family of NADH-dependent nuclear regulators represents a primary example of how cellular metabolic status can influence epigenetic control of cellular function and fate.
Collapse
|
21
|
Kim JH, Choi SY, Kang BH, Lee SM, Park HS, Kang GY, Bang JY, Cho EJ, Youn HD. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity. Biochem Biophys Res Commun 2013; 431:8-13. [DOI: 10.1016/j.bbrc.2012.12.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
|
22
|
Hofmann TG, Glas C, Bitomsky N. HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis. Bioessays 2012; 35:55-64. [PMID: 23169233 DOI: 10.1002/bies.201200060] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In response to DNA-damage, cells have to decide between different cell fate programmes. Activation of the tumour suppressor HIPK2 specifies the DNA damage response (DDR) and tips the cell fate balance towards an apoptotic response. HIPK2 is activated by the checkpoint kinase ATM, and triggers apoptosis through regulatory phosphorylation of a set of cellular key molecules including the tumour suppressor p53 and the anti-apoptotic corepressor CtBP. Recent work has identified HIPK2 as a regulator of the ultimate step in cytokinesis: the abscission of the mother and daughter cells. Since proper cytokinesis is essential for genome stability and maintenance of correct ploidy, this finding sheds new light on the tumour suppressor function of HIPK2. Here we highlight the molecular mechanisms coordinating HIPK2 function and discuss its emerging role as a tumour suppressor.
Collapse
Affiliation(s)
- Thomas G Hofmann
- German Cancer Research Center (dkfz), DKFZ-ZMBH Alliance, Cellular Senescence Group, Heidelberg, Germany.
| | | | | |
Collapse
|
23
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
24
|
Zou F, Xu J, Fu H, Cao J, Mao H, Gong M, Cui G, Zhang Y, Shi W, Chen J. Different functions of HIPK2 and CtBP2 in traumatic brain injury. J Mol Neurosci 2012; 49:395-408. [PMID: 23076816 DOI: 10.1007/s12031-012-9906-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to neuronal dysfunction and over-reactive astrocytes. In our study, homeodomain interacting protein kinase 2 (HIPK2) can interact with C-terminal binding protein 2 (CtBP2) in rat brain, which is a component of Wnt-regulated transcription. Up to now, the functions of HIPK2 and CtBP2 in CNS are still with limited acquaintance. In our study, we found that the interaction between HIPK2 and CtBP2 was involved in central nervous system (CNS) injury and repair. We performed an acute TBI model in adult rats. Western blot and immunohistochemistry analysis revealed that both HIPK2 and CtBP2 significantly increased in the peritrauma brain cortex in comparison to contralateral cerebral cortex. And immunofluorescence double-labeling revealed that HIPK2 was mainly co-expressed with NeuN but less GFAP. Meanwhile, we also examined that the expression profiles of active-caspase-3 was correlated with the expression of HIPK2 and the expression profiles of the proliferating cell nuclear antigen (PCNA) was correlated with the expression of CtBP2. HIPK2 participated in apoptosis of neurons, but CtBP2 was associated with the activation and proliferation of astrocytes. Immunoprecipitation further showed that they enhanced the interaction with each other in the pathophysiology process. In conclusion, this was the first description that HIPK2 interacted with CtBP2 in traumatic brains. Our data suggest that HIPK2 and CtBP2 might play important roles in CNS pathophysiology after TBI, and might provide a basis for the further study on their roles in regulating the prognosis after TBI.
Collapse
Affiliation(s)
- Feihui Zou
- Department of Neurology, Surgical Comprehensive Laboratory Affiliated Hospital of Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province, 226001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tissue microarray cytometry reveals positive impact of homeodomain interacting protein kinase 2 in colon cancer survival irrespective of p53 function. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1986-98. [PMID: 21514416 DOI: 10.1016/j.ajpath.2011.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 12/23/2010] [Accepted: 01/25/2011] [Indexed: 12/21/2022]
Abstract
The human p53 gene is a tumor suppressor mutated in half of colon cancers. Although p53 function appears important for proliferation arrest and apoptosis induced by cancer therapeutics, the prognostic significance of p53 mutations remains elusive. This suggests that p53 function is modulated at a posttranslational level and that dysfunctions affecting its modulators can have a prognostic impact. Among p53 modulators, homeodomain interacting protein kinase (HIPK) 2 emerges as a candidate "switch" governing p53 transition from a cytostatic to a proapoptotic function. Thus, we investigated the possible prognostic role of HIPK2 on a retrospective series of 80 colon cancer cases by setting up a multiplexed cytometric approach capable of exploring correlative protein expression at the single tumor cell level on TMA. Crossing the data with quantitative PCR and p53 gene sequencing and p53 functional assays, we observed the following: despite a strong impact on p21 transcription, the presence of disabling p53 mutations has no prognostic value, and the increased expression of the HIPK2 protein in tumor cells compared with paired normal tissue cells has a strong impact on survival. Unexpectedly, HIPK2 effect does not appear to be mediated by p53 function because it is also observed in p53-disabling mutated backgrounds. Thus, our results point to a prominent and p53-independent role of HIPK2 in colon cancer survival.
Collapse
|
26
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
27
|
[Research progress and application of the homeodomain-interacting protein kinase-2]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:373-7. [PMID: 21496439 PMCID: PMC5999714 DOI: 10.3779/j.issn.1009-3419.2011.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Abstract
Background information. CtBPs [C-terminal (of E1A) binding protein] have roles in the nucleus as transcriptional co-repressors, and in the cytoplasm in the maintenance of vesicular membranes. CtBPs are expressed from two genes, CTBP1 and CTBP2, mRNA products of which are alternatively spliced at their 5′-ends to generate distinct protein isoforms. Extensive molecular and cellular analyses have identified CtBPs as regulators of pathways critical for tumour initiation, progression and response to therapy. However, little is known of the expression or regulation of CtBP isoforms in human cancer, nor of the relative contributions of CTBP1 and CTBP2 to the tumour cell phenotype. Results. Expression of CtBP proteins and CTBP1 and CTBP2 mRNA splice forms in breast cancer cell lines and tumour tissue was examined. CtBP1 proteins are identifiable as a single band on Western blots and are ubiquitously detectable in breast tumour samples, by both Western blotting and immunohistochemistry. CtBP1 is present in six of six breast cancer cell lines, although it is barely detectable in SKBr3 cells due to reduced CTBP1 mRNA expression. In the cell lines, the predominant CTBP1 mRNA splice form encodes CtBP1-S protein; in tumours, both major CTBP1 mRNA splice forms are variably expressed. CtBP2 proteins are ubiquitously expressed in all lines and tumour samples. The predominant CTBP2 mRNA encodes CtBP2-L, although an alternatively spliced form that encodes CtBP2-S, previously unidentified in humans, is expressed at low abundance. Both CtBP2-L and CtBP2-S are readily detectable as two distinct bands on Western blots; here we show that the CTBP2-L mRNA is translated from two AUG codons to generate both CtBP2-L and CtBP2-S. We have also identified an autoregulatory feedback mechanism whereby CtBP protein abundance is maintained in proliferating breast cancer cells through the post-transcriptional regulation of CtBP2. This feedback is disrupted by UV-C radiation or exposure to cisplatin. Finally, we demonstrate that CtBP1 and CtBP2 both have p53-dependent and -independent roles in suppressing the sensitivity of breast cancer cells to mechanistically diverse cancer chemotherapeutic agents. Conclusions. These studies support recent evidence that CtBP family proteins represent potential targets for therapeutic strategies for the treatment of cancer in general, and breast cancer in particular.
Collapse
|
29
|
TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 2011; 30:783-95. [PMID: 21224849 PMCID: PMC3041949 DOI: 10.1038/emboj.2010.351] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
Both TGF-β and FGF signalling regulate the epithelial–mesenchymal transition. Here, TGF-β is found to promote myofibroblast differentiation, while concomitant FGF pathway activation instead drives cells towards an invasive mesenchymal fate. The epithelial–mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair, and cancer progression in adult tissues. Here, we demonstrate that transforming growth factor (TGF)-β induced EMT and that long-term exposure to TGF-β elicited the epithelial–myofibroblastic transition (EMyoT) by inactivating the MEK-Erk pathway. During the EMT process, TGF-β induced isoform switching of fibroblast growth factor (FGF) receptors, causing the cells to become sensitive to FGF-2. Addition of FGF-2 to TGF-β-treated cells perturbed EMyoT by reactivating the MEK-Erk pathway and subsequently enhanced EMT through the formation of MEK-Erk-dependent complexes of the transcription factor δEF1/ZEB1 with the transcriptional corepressor CtBP1. Consequently, normal epithelial cells that have undergone EMT as a result of combined TGF-β and FGF-2 stimulation promoted the invasion of cancer cells. Thus, TGF-β and FGF-2 may cooperate with each other and may regulate EMT of various kinds of cells in cancer microenvironment during cancer progression.
Collapse
|
30
|
CtBP2 downregulation during neural crest specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 2011; 31:955-70. [PMID: 21199918 DOI: 10.1128/mcb.01062-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trunk neural crest (NC) cells differentiate to neurons, melanocytes, and glia. In NC cultures, cyclic AMP (cAMP) induces melanocyte differentiation while suppressing the neuronal sympathoadrenal lineage, depending on the signal intensity. Melanocyte differentiation requires activation of CREB and cAMP-dependent protein kinase A (PKA), but the role of PKA is not understood. We have demonstrated, in NC cultures, cAMP-induced transcription of the microphthalmia-associated transcription factor gene (Mitf) and the RE-1 silencing transcription factor gene (REST), both Wnt-regulated genes. In NC cultures and zebrafish, knockdown of the corepressor of Wnt-mediated transcription C-terminal binding protein 2 (CtBP2) but not CtBP1 derepressed Mitf and REST expression and enhanced melanocyte differentiation. cAMP in NC and B16 melanoma cells decreased CtBP2 protein levels, while inhibition of PKA or proteasome rescued CtBP2 degradation. Interestingly, knockdown of homeodomain-interacting protein kinase 2 (HIPK2), a CtBP stability modulator, increased CtBP2 levels, suppressed expression of Mitf, REST, and melanocyte differentiation, and increased neuronal gene expression and sympathoadrenal lineage differentiation. We conclude that cAMP/PKA via HIPK2 promotes CtBP2 degradation, leading to Mitf and REST expression. Mitf induces melanocyte specification, and REST suppresses neuron-specific gene expression and the sympathoadrenal lineage. Our studies identify a novel role for REST in NC cell differentiation and suggest cross talk between cAMP and Wnt signaling in NC lineage specification.
Collapse
|
31
|
Choi HJ, Lee JM, Kim H, Nam HJ, Shin HJR, Kim D, Ko E, Noh DY, Kim KI, Kim JH, Baek SH. Bcl3-dependent stabilization of CtBP1 is crucial for the inhibition of apoptosis and tumor progression in breast cancer. Biochem Biophys Res Commun 2010; 400:396-402. [DOI: 10.1016/j.bbrc.2010.08.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 12/19/2022]
|
32
|
Lee S, Syed N, Taylor J, Smith P, Griffin B, Baens M, Bai M, Bourantas K, Stebbing J, Naresh K, Nelson M, Tuthill M, Bower M, Hatzimichael E, Crook T. DUSP16 is an epigenetically regulated determinant of JNK signalling in Burkitt's lymphoma. Br J Cancer 2010; 103:265-74. [PMID: 20551953 PMCID: PMC2906728 DOI: 10.1038/sj.bjc.6605711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The mitogen-activated protein kinase (MAPK) phosphatases or dual specificity phosphatases (DUSPs) are a family of proteins that catalyse the inactivation of MAPK in eukaryotic cells. Little is known of the expression, regulation or function of the DUSPs in human neoplasia. Methods: We used RT–PCR and quantitative PCR (qPCR) to examine the expression of DUSP16 mRNA. The methylation in the DUSP16 CpG island was analysed using bisulphite sequencing and methylation-specific PCR. The activation of MAPK was determined using western blotting with phospho-specific antibodies for extra-cellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase (JNK). The proliferation of cell lines was assessed using the CellTiter 96 Aqueous One assay. Results: The expression of DUSP16, which inactivates MAPK, is subject to methylation-dependent transcriptional silencing in Burkitt's Lymphoma (BL) cell lines and in primary BL. The silencing is associated with aberrant methylation in the CpG island in the 5′ regulatory sequences of the gene blocking its constitutive expression. In contrast to BL, the CpG island of DUSP16 is unmethylated in other non-Hodgkin's lymphomas (NHLs) and epithelial malignancies. In BL cell lines, neither constitutive nor inducible ERK or p38 activity varied significantly with DUSP16 status. However, activation of JNK was increased in lines with DUSP16 methylation. Furthermore, methylation in the DUSP16 CpG island blocked transcriptional induction of DUSP16, thereby abrogating a normal physiological negative feedback loop that limits JNK activity, and conferred increased cellular sensitivity to agents, such as sorbitol and anthracycline chemotherapeutic agents that activate JNK. Conclusion: DUSP16 is a new epigenetically regulated determinant of JNK activation in BL.
Collapse
Affiliation(s)
- S Lee
- Laboratory of Cancer Genetics and Epigenetics, Breakthrough Breast Cancer, Institute of Cancer Research, Fulham Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis 2010; 48:73-85. [PMID: 20095055 DOI: 10.1002/dvg.20594] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research.
Collapse
Affiliation(s)
- Chunmei Guan
- College of Life Science, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Bitomsky N, Hofmann TG. Apoptosis and autophagy: Regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J 2009; 276:6074-83. [DOI: 10.1111/j.1742-4658.2009.07331.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Abstract
CtBPs (CtBP1 and CtBP2) act in the nucleus as transcriptional corepressors and in the cytoplasm as regulators of Golgi apparatus fission. Studies in which the expression or function of CtBPs has been inhibited have independently identified roles for CtBPs in both suppressing apoptosis and promoting cell cycle progression. Here, we have analyzed the consequences of ablating CtBP expression in breast cancer-derived cell lines. We found that loss of CtBP expression suppresses cell proliferation through a combination of apoptosis, reduction in cell cycle progression, and aberrations in transit through mitosis. The third phenotype includes errors in mitotic chromosome segregation that are associated with decreased association of the chromosome passenger protein aurora B with mitotic chromatin and that are likely to be a primary cause of the proapoptotic and antiproliferative effects of CtBP loss. We also show that loss of CtBP expression results in the activation of the transcription factor p53 and that loss of p53 function renders cells more susceptible to CtBP small interfering RNA-induced apoptosis.
Collapse
|
36
|
|
37
|
Chinnadurai G. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 2009; 69:731-4. [PMID: 19155295 DOI: 10.1158/0008-5472.can-08-3349] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CtBP1 and CtBP2 are closely related and evolutionarily conserved transcriptional corepressors. There is strong evidence linking CtBPs to tumorigenesis and tumor progression. CtBPs promote epithelial-mesenchymal transition and function as apoptosis antagonists. Also, CtBPs mediate repression of several tumor suppressor genes. Certain tumor suppressors also target CtBPs to restrain their tumor-promoting activity. Down-regulation of CtBPs mediated by some tumor suppressors results in p53-independent apoptosis and reduced tumor cell migration and invasion. The role of CtBPs in modulating the activities of different tumor suppressors is reviewed here. The results discussed here suggest that CtBPs may constitute a novel p53-independent anticancer target.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, Doisy Research Center, St Louis, Missouri 63104, USA.
| |
Collapse
|
38
|
|
39
|
Liberali P, Rämö P, Pelkmans L. Protein kinases: starting a molecular systems view of endocytosis. Annu Rev Cell Dev Biol 2008; 24:501-23. [PMID: 18598215 DOI: 10.1146/annurev.cellbio.041008.145637] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The field of endocytosis is in strong need of formal biophysical modeling and mathematical analysis. At the same time, endocytosis must be much better integrated into cellular physiology to understand the former's complex behavior in such a wide range of phenotypic variations. Furthermore, the concept that endocytosis provides the space-time for signal transduction can now be experimentally addressed. In this review, we discuss these principles and argue for a systematic and top-down approach to study the endocytic membrane system. We provide a summary of published observations on protein kinases regulating endocytic machinery components and discuss global unbiased approaches to further map out kinase regulatory networks. In particular, protein phosphorylation is at the heart of controlling the physical properties of endocytosis and of integrating these physical properties into the signal transduction networks of the cell to allow a fine-tuned response to the continuously varying physiological conditions of a cell.
Collapse
Affiliation(s)
- Prisca Liberali
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
40
|
|
41
|
Proteasome-mediated degradation of Tob is pivotal for triggering UV-induced apoptosis. Oncogene 2008; 28:401-11. [DOI: 10.1038/onc.2008.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Oikawa Y, Matsuda E, Nishii T, Ishida Y, Kawaichi M. Down-regulation of CIBZ, a novel substrate of caspase-3, induces apoptosis. J Biol Chem 2008; 283:14242-7. [PMID: 18375381 DOI: 10.1074/jbc.m802257200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously identified and characterized a murine BTB domain-containing protein, CIBZ (ZBTB38 in human), that interacts with CtBP and binds to methylated CpGs. However, its physiological function remained unknown. As CtBP is reportedly involved in p53-independent programmed cell death, we examine here whether CIBZ is associated with apoptosis. We found that CIBZ was highly expressed in proliferating C2C12 cells but that its expression levels decreased upon induction of apoptosis by serum starvation. Knockdown of CIBZ by small interfering RNA in C2C12 cells induced apoptosis, as determined by an increase of annexin V/propidium iodide labeling, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. CIBZ inhibition also activated caspase-7 and caspase-9, suggesting that CIBZ-associated apoptosis occurs through the mitochondrial pathway. Notably, knockdown of CIBZ in p53(-/-) mouse embryonic fibroblast cells also activated caspase-3 and cleavage of poly(ADP-ribose) polymerase, indicating that CIBZ-associated apoptosis is mediated by a p53-independent pathway; however, because both common and distinct targets are regulated by CIBZ- and CtBP-associated apoptosis, we conclude that more than one pathway is involved. Finally, using mutagenesis and an in vitro caspase cleavage assay, we show that CIBZ is a novel substrate of caspase-3 and identify two caspase-3 recognition sites. These findings indicate, collectively, that CIBZ plays an important role by participating in the negative regulation of apoptosis in murine cells.
Collapse
Affiliation(s)
- Yu Oikawa
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | |
Collapse
|
43
|
Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 2007; 28:269-81. [PMID: 17967884 DOI: 10.1128/mcb.01077-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
C-terminal binding protein (CtBP) family proteins CtBP1 and CtBP2 are highly homologous transcriptional corepressors and are recruited by a large number of transcription factors to mediate sequence-specific transcriptional repression. In addition to DNA-binding repressors, the nuclear protein complex of CtBP1 consists of enzymatic constituents such as histone deacetylases (HDAC1/2), histone methyl transferases (HMTases; G9a and GLP), and the lysine-specific demethylase (LSD1). Additionally, CtBPs also recruit the components of the sumoylation machinery. The CtBPs contain two different unique structural elements, a hydrophobic cleft, with which factors that contain motifs related to the E1A PLDLS motif bind, and a surface groove that binds with factors containing motifs related to the sequence RRTGXPPXL (RRT motif). By structure-based functional dissection of CtBP1, we show that the PLDLS-binding cleft region functions as the primary recruitment center for DNA-binding factors and for the core and auxiliary enzymatic constituents of the CtBP1 corepressor complex. We identify HDAC1/2, CoREST/LSD1, and Ubc9 (E2) as the core constituents of the CtBP1 complex, and these components interact with the PLDLS cleft region through non-PLDLS interactions. Among the CtBP core constituents, HDACs contribute predominantly to the repression activity of CtBP1. The auxiliary components include an HMTase complex (G9a/Wiz/CDYL) and two SUMO E3 ligases, HPC2 and PIAS1. The interaction of auxiliary components with CtBP1 is excluded by PLDLS (E1A)-mediated interactions. Although monomeric CtBP1 is proficient in the recruiting of both core and auxiliary components, NAD(H)-dependent dimerization is required for transcriptional repression. We also provide evidence that CtBP1 functions as a platform for sumoylation of cofactors.
Collapse
|
44
|
Mani-Telang P, Arnosti DN. Developmental expression and phylogenetic conservation of alternatively spliced forms of the C-terminal binding protein corepressor. Dev Genes Evol 2006; 217:127-35. [PMID: 17120023 PMCID: PMC1876751 DOI: 10.1007/s00427-006-0121-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 10/24/2006] [Indexed: 01/12/2023]
Abstract
The C-terminal binding protein (CtBP) is an evolutionarily conserved transcriptional corepressor found in multicellular eukaryotes. Multiple forms of the protein are typically found in animal cells, produced from separate genes and by alternative splicing. CtBP isoforms have also been implicated in cytoplasmic functions, including Golgi fission and vesicular trafficking. All forms of CtBP contain a conserved core domain that is homologous to alpha-hydroxyacid dehydrogenases, and a subset of isoforms (CtBP(L)) contain extensions at the C terminus. Despite distinct developmental profiles and knockout phenotypes in the mouse, the properties of different isoforms of the protein are found to be similar in many transcriptional assays. We have investigated the expression and conservation of distinct isoforms of the CtBP protein in insects and found that the expression of multiple, developmentally regulated isoforms is widely conserved. In a variety of Drosophila species, the relative abundance of CtBP(L) to CtBP(S) drops sharply after embryogenesis, revealing a conserved developmental shift. Despite the overall lower levels of this isoform, bioinformatic analysis reveals that exons encoding the C-terminal extension in CtBP(L) are conserved from Diptera to Coleoptera, suggesting that the CtBP(L) isoform contributes an important, evolutionarily conserved function.
Collapse
Affiliation(s)
- Priya Mani-Telang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - David N. Arnosti
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Corresponding author: FAX 517-353-9334
| |
Collapse
|