1
|
Fam96b recruits brain-type creatine kinase to fuel mitotic spindle formation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119410. [PMID: 36503010 DOI: 10.1016/j.bbamcr.2022.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mitosis is a complicated and ordered process with high energy demands and metabolite fluxes. Cytosolic creatine kinase (CK), an enzyme involved in ATP homeostasis, has been shown to be essential to chromosome movement during mitotic anaphase in sea urchin. However, it remains elusive for the molecular mechanism underlying the recruitment of cytosolic CK by the mitotic apparatus. In this study, Fam96b/MIP18, a component of the MMXD complex with a function in Fe/S cluster supply, was identified as a brain-type CK (CKB)-binding protein. The binding of Fam96b with CKB was independent of the presence of CKB substrates and did not interfere with CKB activity. Fam96b was prone to oligomerize via the formation of intermolecular disulfide bonds, while the binding of enzymatically active CKB could modulate Fam96b oligomerization. Oligomerized Fam96b recruited CKB and the MMXD complex to associate with the mitotic spindle. Depletion of Fam96b or CKB by siRNA in the HeLa cells led to mitotic defects, which further resulted in retarded cell proliferation, increased cell death and aberrant cell cycle progression. Rescue experiments indicated that both Fam96b oligomerization and CKB activity were essential to the proper formation of mitotic spindle. These findings suggest that Fam96b may act as a scaffold protein to coordinate the supply and homeostasis of ATP and Fe/S clusters during mitosis.
Collapse
|
2
|
Li N, Zhou Q, Yi Z, Zhang H, Zhou D. Ubiquitin protein E3 ligase ASB9 suppresses proliferation and promotes apoptosis in human spermatogonial stem cell line by inducing HIF1AN degradation. Biol Res 2023; 56:4. [PMID: 36683111 PMCID: PMC9869568 DOI: 10.1186/s40659-023-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are critical for sustaining spermatogenesis. Even though several regulators of SSC have been identified in rodents, the regulatory mechanism of SSC in humans has yet to be discovered. METHODS To explore the regulatory mechanisms of human SSCs, we analyzed publicly available human testicular single-cell sequencing data and found that Ankyrin repeat and SOCS box protein 9 (ASB9) is highly expressed in SSCs. We examined the expression localization of ASB9 using immunohistochemistry and overexpressed ASB9 in human SSC lines to explore its role in SSC proliferation and apoptosis. Meanwhile, we used immunoprecipitation to find the target protein of ASB9 and verified its functions. In addition, we examined the changes in the distribution of ASB9 in non-obstructive azoospermia (NOA) patients using Western blot and immunofluorescence. RESULTS The results of uniform manifold approximation and projection (UMAP) clustering and pseudotime analysis showed that ASB9 was highly expressed in SSCs, and its expression gradually increased during development. The immunohistochemical and dual-color immunofluorescence results displayed that ASB9 was mainly expressed in nonproliferating SSCs. Overexpression of ASB9 in the SSC line revealed significant inhibition of cell proliferation and increased apoptosis. We predicted the target proteins of ASB9 and verified that hypoxia-inducible factor 1-alpha inhibitor (HIF1AN), but not creatine kinase B-type (CKB), has a direct interaction with ASB9 in human SSC line using protein immunoprecipitation experiments. Subsequently, we re-expressed HIF1AN in ASB9 overexpressing cells and found that HIF1AN reversed the proliferative and apoptotic changes induced by ASB9 overexpression. In addition, we found that ABS9 was significantly downregulated in some NOA patients, implying a correlation between ASB9 dysregulation and impaired spermatogenesis. CONCLUSION ASB9 is predominantly expressed in human SSCs, it affects the proliferation and apoptotic process of the SSC line through HIF1AN, and its abnormal expression may be associated with NOA.
Collapse
Affiliation(s)
- Ning Li
- grid.216417.70000 0001 0379 7164Operating Department of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164Xiangya Nursing School, Central South University, Changsha, 410013 Hunan China
| | - Qianyin Zhou
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China
| | - Zhang Yi
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China
| | - Huan Zhang
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China
| | - Dai Zhou
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China ,grid.411427.50000 0001 0089 3695College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China ,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410013 Hunan China
| |
Collapse
|
3
|
Lumpkin RJ, Ahmad AS, Blake R, Condon CJ, Komives EA. The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases. Mol Cell Proteomics 2021; 20:100019. [PMID: 33268465 PMCID: PMC7950132 DOI: 10.1074/mcp.ra120.002414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Cullin RING E3 ligases (CRLs) ubiquitylate hundreds of important cellular substrates. Here we have assembled and purified the Ankyrin repeat and SOCS Box protein 9 CUL5 RBX2 ligase (ASB9-CRL) in vitro and show how it ubiquitylates one of its substrates, CKB. CRLs occasionally collaborate with RING between RING E3 ligases (RBRLs), and indeed, mass spectrometry analysis showed that CKB is specifically ubiquitylated by the ASB9-CRL-ARIH2-UBE2L3 complex. Addition of other E2s such as UBE2R1 or UBE2D2 contributes to polyubiquitylation but does not alter the sites of CKB ubiquitylation. Hydrogen–deuterium exchange mass spectrometry (HDX-MS) analysis revealed that CUL5 neddylation allosterically exposes its ARIH2 binding site, promoting high-affinity binding, and it also sequesters the NEDD8 E2 (UBE2F) binding site on RBX2. Once bound, ARIH2 helices near the Ariadne domain active site are exposed, presumably relieving its autoinhibition. These results allow us to propose a model of how neddylation activates ASB-CRLs to ubiquitylate their substrates. ARIH2 is required for ASB9CRL to polyubiquitylate 4/18 lysines on one creatine kinase subunit. HDX-MS reveals long-range allosteric opening of a cleft in CUL5 where the ARIH2 RBRL binds. HDX-MS reveals that neddylation of CUL5 alters the RBX2 conformation away from binding the E2∼NEDD8. HDX-MS reveals opening of the ARIH2 active site upon binding CUL5, thus releasing its autoinhibition.
Collapse
Affiliation(s)
- Ryan J Lumpkin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Alla S Ahmad
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Rachel Blake
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Christopher J Condon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
4
|
Kostrhon S, Prabu JR, Baek K, Horn-Ghetko D, von Gronau S, Klügel M, Basquin J, Alpi AF, Schulman BA. CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nat Chem Biol 2021; 17:1075-1083. [PMID: 34518685 PMCID: PMC8460447 DOI: 10.1038/s41589-021-00858-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023]
Abstract
An emerging mechanism of ubiquitylation involves partnering of two distinct E3 ligases. In the best-characterized E3-E3 pathways, ARIH-family RING-between-RING (RBR) E3s ligate ubiquitin to substrates of neddylated cullin-RING E3s. The E3 ARIH2 has been implicated in ubiquitylation of substrates of neddylated CUL5-RBX2-based E3s, including APOBEC3-family substrates of the host E3 hijacked by HIV-1 virion infectivity factor (Vif). However, the structural mechanisms remained elusive. Here structural and biochemical analyses reveal distinctive ARIH2 autoinhibition, and activation on assembly with neddylated CUL5-RBX2. Comparison to structures of E3-E3 assemblies comprising ARIH1 and neddylated CUL1-RBX1-based E3s shows cullin-specific regulation by NEDD8. Whereas CUL1-linked NEDD8 directly recruits ARIH1, CUL5-linked NEDD8 does not bind ARIH2. Instead, the data reveal an allosteric mechanism. NEDD8 uniquely contacts covalently linked CUL5, and elicits structural rearrangements that unveil cryptic ARIH2-binding sites. The data reveal how a ubiquitin-like protein induces protein-protein interactions indirectly, through allostery. Allosteric specificity of ubiquitin-like protein modifications may offer opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Sebastian Kostrhon
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J. Rajan Prabu
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maren Klügel
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jérôme Basquin
- grid.418615.f0000 0004 0491 845XDepartment of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Arno F. Alpi
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- grid.418615.f0000 0004 0491 845XDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
5
|
Lumpkin RJ, Baker RW, Leschziner AE, Komives EA. Structure and dynamics of the ASB9 CUL-RING E3 Ligase. Nat Commun 2020; 11:2866. [PMID: 32513959 PMCID: PMC7280518 DOI: 10.1038/s41467-020-16499-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 01/23/2023] Open
Abstract
The Cullin 5 (CUL5) Ring E3 ligase uses adaptors Elongins B and C (ELOB/C) to bind different SOCS-box-containing substrate receptors, determining the substrate specificity of the ligase. The 18-member ankyrin and SOCS box (ASB) family is the largest substrate receptor family. Here we report cryo-EM data for the substrate, creatine kinase (CKB) bound to ASB9-ELOB/C, and for full-length CUL5 bound to the RING protein, RBX2, which binds various E2s. To date, no full structures are available either for a substrate-bound ASB nor for CUL5. Hydrogen-deuterium exchange (HDX-MS) mapped onto a full structural model of the ligase revealed long-range allostery extending from the substrate through CUL5. We propose a revised allosteric mechanism for how CUL-E3 ligases function. ASB9 and CUL5 behave as rigid rods, connected through a hinge provided by ELOB/C transmitting long-range allosteric crosstalk from the substrate through CUL5 to the RBX2 flexible linker.
Collapse
Affiliation(s)
- Ryan J Lumpkin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92092-0378, USA
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92092-0378, USA.
| |
Collapse
|
6
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Hüttenhain R, Xu J, Burton LA, Gordon DE, Hultquist JF, Johnson JR, Satkamp L, Hiatt J, Rhee DY, Baek K, Crosby DC, Frankel AD, Marson A, Harper JW, Alpi AF, Schulman BA, Gross JD, Krogan NJ. ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host Microbe 2019; 26:86-99.e7. [PMID: 31253590 DOI: 10.1016/j.chom.2019.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
The Cullin-RING E3 ligase (CRL) family is commonly hijacked by pathogens to redirect the host ubiquitin proteasome machinery to specific targets. During HIV infection, CRL5 is hijacked by HIV Vif to target viral restriction factors of the APOBEC3 family for ubiquitination and degradation. Here, using a quantitative proteomics approach, we identify the E3 ligase ARIH2 as a regulator of CRL5-mediated APOBEC3 degradation. The CUL5Vif/CBFß complex recruits ARIH2 where it acts to transfer ubiquitin directly to the APOBEC3 targets. ARIH2 is essential for CRL5-dependent HIV infectivity in primary CD4+ T cells. Furthermore, we show that ARIH2 cooperates with CRL5 to prime other cellular substrates for polyubiquitination, suggesting this may represent a general mechanism beyond HIV infection and APOBEC3 degradation. Taken together, these data identify ARIH2 as a co-factor in the Vif-hijacked CRL5 complex that contributes to HIV infectivity and demonstrate the operation of the E1-E2-E3/E3-substrate ubiquitination mechanism in a viral infection context.
Collapse
Affiliation(s)
- Ruth Hüttenhain
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA.
| | - Jiewei Xu
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Lily A Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David E Gordon
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Laura Satkamp
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kheewoong Baek
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arno F Alpi
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase. Virology 2019; 532:55-68. [DOI: 10.1016/j.virol.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
10
|
Gonadotropin regulation of ankyrin-repeat and SOCS-box protein 9 (ASB9) in ovarian follicles and identification of binding partners. PLoS One 2019; 14:e0212571. [PMID: 30811458 PMCID: PMC6392328 DOI: 10.1371/journal.pone.0212571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the large SOCS-box containing proteins family and acts as the specific substrate recognition component of E3 ubiquitin ligases in the process of ubiquitination and proteasomal degradation. We previously identified ASB9 as a differentially expressed gene in granulosa cells (GC) of bovine ovulatory follicles. This study aimed to further investigate ASB9 mRNA and protein regulation, identify binding partners in GC of bovine ovulatory follicles, and study its function. GC were obtained from small follicles (SF: 2–4 mm), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 hours following hCG injection (OF). Analyses by RT-PCR showed a 104-fold greater expression of ASB9 in GC of OF than in DF. Steady-state levels of ASB9 in follicular walls (granulosa and theca cells) analyzed at 0, 6, 12, 18 and 24 hours after hCG injection showed a significant induction of ASB9 expression at 12 and 18 hours, reaching a maximum induction of 10.2-fold at 24 hours post-hCG as compared to 0 hour. These results were confirmed in western blot analysis showing strongest ASB9 protein amounts in OF. Yeast two-hybrid screening of OF-cDNAs library resulted in the identification of 10 potential ASB9 binding partners in GC but no interaction was found between ASB9 and creatine kinase B (CKB) in these GC. Functional studies using CRISPR-Cas9 approach revealed that ASB9 inhibition led to increased GC proliferation and modulation of target genes expression. Overall, these results support a physiologically relevant role of ASB9 in the ovulatory follicle by targeting specific proteins likely for degradation, contributing to reduced GC proliferation, and could be involved in the final GC differentiation into luteal cells.
Collapse
|
11
|
|
12
|
Identification of ASB7 as ER stress responsive gene through a genome wide in silico screening for genes with ERSE. PLoS One 2018; 13:e0194310. [PMID: 29630609 PMCID: PMC5890977 DOI: 10.1371/journal.pone.0194310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
The endoplasmic reticulum (ER) not only performs its basic function of regulating calcium homeostasis, lipid biosynthesis, folding, modifying and transporting proteins but also plays a decisive role in regulating multiple cellular processes ranging from cell growth and differentiation to apoptosis and autophagy. Disturbances in ER homeostasis initiate the unfolded protein response (UPR) implicated in the pathogenesis of many human diseases. Drugging the UPR components for therapeutic interventions has received considerable attention. The purpose of this study is to identify genes that are previously unsuspected to be regulated under ER stress. Because ER stress-inducible gene expression is majorly regulated under ERSE elements, we screened human genome by adopting an in silico approach using ERSE elements (I, II, III) as probes and identified 337 candidate genes. Having knowledge of the importance of E3 ubiquitin ligase in the ERAD machinery; we validated our preliminary search by focusing on one of the hits i.e. ASB7 gene that encodes E3 ubiquitin ligase. In HeLa cells, we found that pharmacological induction of ER stress led to an increase in the expression of ASB7 with simultaneous activation of UPR pathways. Although knockdown of ASB7 expression leads to significant reduction in GRP78 and CHOP mRNA levels, it did not protect cells from ER stress-induced cell death. Also, an up-regulation in the expression of pro-inflammatory genes like TNF-α and IL-1β in ASB7 knockdown cells was observed under ER stress. Collectively, our findings suggest that ASB7 is regulated under ER stress and this study also identifies several other genes that could apparently be regulated under ER stress.
Collapse
|
13
|
Wang W, Jiang W, Hou L, Duan H, Wu Y, Xu C, Tan Q, Li S, Zhang D. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI. BMC Genomics 2017; 18:872. [PMID: 29132311 PMCID: PMC5683603 DOI: 10.1186/s12864-017-4257-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023] Open
Abstract
Background The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. Results In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly correlated with BMI (r = 0.56, P = 0.04), and hub genes of KCNN1 and AQP10 were differentially expressed. Conclusion We identified significant genes and specific modules potentially related to BMI based on the gene expression profile data of monozygotic twins. The findings may help further elucidate the underlying mechanisms of obesity development and provide novel insights to research potential gene biomarkers and signaling pathways for obesity treatment. Further analysis and validation of the findings reported here are important and necessary when more sample size is acquired. Electronic supplementary material The online version of this article (10.1186/s12864-017-4257-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Wenjie Jiang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Haiping Duan
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China.,Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China.,Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Qihua Tan
- Epidemiology, Biostatistics and Bio-demography, Institute of Public Health, University of Southern Denmark, DK-5000, Odense C, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Shuxia Li
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China.
| |
Collapse
|
14
|
Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep 2017; 7:5679. [PMID: 28720891 PMCID: PMC5515956 DOI: 10.1038/s41598-017-06033-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with genetic and clinical heterogeneity. The interplay of de novo and inherited rare variants has been suspected in the development of ASD. Here, we applied whole exome sequencing (WES) on 19 trios from singleton Saudi families with ASD. We developed an analysis pipeline that allows capturing both de novo and inherited rare variants predicted to be deleterious. A total of 47 unique rare variants were detected in 17 trios including 38 which are newly discovered. The majority were either autosomal recessive or X-linked. Our pipeline uncovered variants in 15 ASD-candidate genes, including 5 (GLT8D1, HTATSF1, OR6C65, ITIH6 and DDX26B) that have not been reported in any human condition. The remaining variants occurred in genes formerly associated with ASD or other neurological disorders. Examples include SUMF1, KDM5B and MXRA5 (Known-ASD genes), PRODH2 and KCTD21 (implicated in schizophrenia), as well as USP9X and SMS (implicated in intellectual disability). Consistent with expectation and previous studies, most of the genes implicated herein are enriched for biological processes pertaining to neuronal function. Our findings underscore the private and heterogeneous nature of the genetic architecture of ASD even in a population with high consanguinity rates.
Collapse
|
15
|
The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. CHINESE JOURNAL OF CANCER 2017; 36:11. [PMID: 28088228 PMCID: PMC5237493 DOI: 10.1186/s40880-017-0180-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Background Ankyrin repeat and SOCS box protein 3 (ASB3) is a member of ASB family and contains ankyrin repeat sequence and SOCS box domain. Previous studies indicated that it mediates the ubiquitination and degradation of tumor necrosis factor receptor 2 and is likely involved in inflammatory responses. However, its effects on oncogenesis are unclear. This study aimed to investigate the effects of ASB3 on the growth and metastasis of colorectal cancer (CRC). Methods We used next-generation sequencing or Sanger sequencing to detect ASB3 mutations in CRC specimens or cell lines, and used real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical or immunofluorescence assay to determine gene expression. We evaluated cell proliferation by MTT and colony formation assays, tested cell cycle distribution by flow cytometry, and assessed cell migration and invasion by transwell and wound healing assays. We also performed nude mouse experiments to evaluate tumorigenicity and hepatic metastasis potential of tumor cells. Results We found that ASB3 gene was frequently mutated (5.3%) and down-regulated (70.4%) in CRC cases. Knockdown of endogenous ASB3 expression promoted CRC cell proliferation, migration, and invasion in vitro and facilitated tumorigenicity and hepatic metastasis in vivo. Conversely, the ectopic overexpression of wild-type ASB3, but not that of ASB3 mutants that occurred in clinical CRC tissues, inhibited tumor growth and metastasis. Further analysis showed that ASB3 inhibited CRC metastasis likely by retarding epithelial-mesenchymal transition, which was characterized by the up-regulation of β-catenin and E-cadherin and the down-regulation of transcription factor 8, N-cadherin, and vimentin. Conclusion ASB3 dysfunction resulted from gene mutations or down-regulated expression frequently exists in CRC and likely plays a key role in the pathogenesis and progression of CRC.
Collapse
|
16
|
Schiffer JM, Malmstrom RD, Parnell J, Ramirez-Sarmiento C, Reyes J, Amaro RE, Komives EA. Model of the Ankyrin and SOCS Box Protein, ASB9, E3 Ligase Reveals a Mechanism for Dynamic Ubiquitin Transfer. Structure 2016; 24:1248-1256. [PMID: 27396830 PMCID: PMC4972691 DOI: 10.1016/j.str.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 01/14/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are elongated and bowed protein complexes that transfer ubiquitin over 60 Å to proteins targeted for proteasome degradation. One such CRL contains the ankyrin repeat and SOCS box protein 9 (ASB9), which binds to and partially inhibits creatine kinase (CK). While current models for the ASB9-CK complex contain some known interface residues, the overall structure and precise interface of the ASB9-CK complex remains unknown. Through an integrative modeling approach, we report a third-generation model that reveals precisely the interface interactions and also fits the shape of the ASB9-CK complex as determined by small-angle X-ray scattering. We constructed an atomic model for the entire CK-targeting CRL to uncover dominant modes of motion that could permit ubiquitin transfer. Remarkably, only the correctly docked CK-containing E3 ligase and not incorrectly docked structures permitted close approach of ubiquitin to the CK substrate.
Collapse
Affiliation(s)
- Jamie M Schiffer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| | - Robert D Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA; National Biomedical Computation Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0608, USA
| | - Jonathan Parnell
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| | - Cesar Ramirez-Sarmiento
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Javiera Reyes
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA; National Biomedical Computation Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0608, USA.
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA.
| |
Collapse
|
17
|
Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids 2016; 48:1751-74. [DOI: 10.1007/s00726-016-2267-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
|
18
|
Keller KE, Wirtz MK. Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res 2016; 158:154-160. [PMID: 27296073 DOI: 10.1016/j.exer.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Abstract
Evidence is accumulating to suggest that mutations in the Ankyrin and SOCS Box-containing protein-10 (ASB10) gene are associated with glaucoma. Since its identification in a large Oregon family with primary open-angle glaucoma (POAG), ASB10 variants have been associated with disease in US, German and Pakistani cohorts. ASB10 is a member of the ASB family of proteins, which have a common structure including a unique N-terminus, a variable number of central ankyrin (ANK) repeat domains and a suppressor of cytokine signaling (SOCS) box at the C-terminus. Mutations in ASB10 are distributed throughout the entire length of the gene including the two alternatively spliced variants of exon 1. A homozygous mutation in a Pakistani individual with POAG, which lies in the center of the SOCS box, is associated with a particularly severe form of the disease. Like other SOCS box-containing proteins, ASB10 functions in ubiquitin-mediated degradation pathways. The ANK repeats bind to proteins destined for degradation. The SOCS box recruits ubiquitin ligase proteins to form a complex to transfer ubiquitin to a substrate bound to the ANK repeats. The ubiquitin-tagged protein then enters either the proteasomal degradation pathway or the autophagic-lysosomal pathway. The choice of pathway appears to be dependent on which lysine residues are used to build polyubiquitin chains. However, these reciprocal pathways work in tandem to degrade proteins because inhibition of one pathway increases degradation via the other pathway. In this publication, we will review the literature that supports identification of ASB10 as a glaucoma-associated gene and the current knowledge of the function of the ASB10 protein. In addition, we present new data that indicates ASB10 expression is up-regulated by the inflammatory cytokines tumor necrosis factor-α and interleukin-1α. Finally, we will describe the emerging role of other SOCS box-containing proteins in protein degradation pathways in ocular cells.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Mary K Wirtz
- Casey Eye Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
19
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
20
|
Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets? Biochimie 2016; 122:339-47. [DOI: 10.1016/j.biochi.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/01/2015] [Indexed: 11/18/2022]
|
21
|
Balasubramaniam D, Schiffer J, Parnell J, Mir SP, Amaro RE, Komives EA. How the ankyrin and SOCS box protein, ASB9, binds to creatine kinase. Biochemistry 2015; 54:1673-80. [PMID: 25654263 DOI: 10.1021/bi501420n] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ankyrin repeat and SOCS box (ASB) family is composed of 18 proteins and belongs to the suppressor of cytokine signaling (SOCS) box protein superfamily. The ASB proteins function as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that specifically transfer ubiquitin to cellular proteins targeting them for degradation by the proteasome. ASB9 binds to creatine kinase (CK) and targets it for degradation; however, the way in which ASB9 interacts with CK is not yet known. We present a complete characterization of the binding of ASB9 to CK. One ASB9 molecule binds to a dimer of CK. The binding affinity of ASB9(1-252) was extremely tight, and no dissociation could be observed. Deletion of the 34 N-terminal amino acids forming ASB9(35-252) resulted in weakening of the binding, so that a binding affinity of 2.6 nM could be measured. Amide hydrogen-deuterium exchange (HDXMS) experiments showed that both ASB9(1-252) and ASB9(35-252) protected the same region of CK, residues 182-203, which forms one side of the active site. The HDXMS experiments indicated that the N-terminal disordered region and first ankyrin repeat of ASB9 are protected from exchange in the complex. Molecular docking yielded a structural model consistent with all of the data that suggested the N-terminal residues of ASB9(1-252) may lie in one CK active site. This model was corroborated by enzymatic activity assays and mutational analysis.
Collapse
Affiliation(s)
- Deepa Balasubramaniam
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | | | | | | | | | | |
Collapse
|
22
|
Sproul AA, Jacob S, Pre D, Kim SH, Nestor MW, Navarro-Sobrino M, Santa-Maria I, Zimmer M, Aubry S, Steele JW, Kahler DJ, Dranovsky A, Arancio O, Crary JF, Gandy S, Noggle SA. Characterization and molecular profiling of PSEN1 familial Alzheimer's disease iPSC-derived neural progenitors. PLoS One 2014; 9:e84547. [PMID: 24416243 PMCID: PMC3885572 DOI: 10.1371/journal.pone.0084547] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/15/2013] [Indexed: 12/16/2022] Open
Abstract
Presenilin 1 (PSEN1) encodes the catalytic subunit of γ-secretase, and PSEN1 mutations are the most common cause of early onset familial Alzheimer's disease (FAD). In order to elucidate pathways downstream of PSEN1, we characterized neural progenitor cells (NPCs) derived from FAD mutant PSEN1 subjects. Thus, we generated induced pluripotent stem cells (iPSCs) from affected and unaffected individuals from two families carrying PSEN1 mutations. PSEN1 mutant fibroblasts, and NPCs produced greater ratios of Aβ42 to Aβ40 relative to their control counterparts, with the elevated ratio even more apparent in PSEN1 NPCs than in fibroblasts. Molecular profiling identified 14 genes differentially-regulated in PSEN1 NPCs relative to control NPCs. Five of these targets showed differential expression in late onset AD/Intermediate AD pathology brains. Therefore, in our PSEN1 iPSC model, we have reconstituted an essential feature in the molecular pathogenesis of FAD, increased generation of Aβ42/40, and have characterized novel expression changes.
Collapse
Affiliation(s)
- Andrew A. Sproul
- The New York Stem Cell Foundation, New York, New York, United States of America
- * E-mail: (AAS); (SAN)
| | - Samson Jacob
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Deborah Pre
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Soong Ho Kim
- Departments of Neurology and Psychiatry and the Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael W. Nestor
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Miriam Navarro-Sobrino
- Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Ismael Santa-Maria
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Matthew Zimmer
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Soline Aubry
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - John W. Steele
- Departments of Neurology and Psychiatry and the Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David J. Kahler
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Alex Dranovsky
- Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - John F. Crary
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Sam Gandy
- Departments of Neurology and Psychiatry and the Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J Peters Veterans Administration Medical Center, Bronx, New York, United States of America
| | - Scott A. Noggle
- The New York Stem Cell Foundation, New York, New York, United States of America
- * E-mail: (AAS); (SAN)
| |
Collapse
|
23
|
Andresen CA, Smedegaard S, Sylvestersen KB, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen TK, Nielsen ML, Flores-Morales A. Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem 2013; 289:2043-54. [PMID: 24337577 DOI: 10.1074/jbc.m113.534602] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases.
Collapse
|
24
|
Uranbileg B, Enooku K, Soroida Y, Ohkawa R, Kudo Y, Nakagawa H, Tateishi R, Yoshida H, Shinzawa S, Moriya K, Ohtomo N, Nishikawa T, Inoue Y, Tomiya T, Kojima S, Matsuura T, Koike K, Yatomi Y, Ikeda H. High ubiquitous mitochondrial creatine kinase expression in hepatocellular carcinoma denotes a poor prognosis with highly malignant potential. Int J Cancer 2013; 134:2189-98. [PMID: 24174293 DOI: 10.1002/ijc.28547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 11/08/2022]
Abstract
We previously reported the increased serum mitochondrial creatine kinase (MtCK) activity in patients with hepatocellular carcinoma (HCC), mostly due to the increase in ubiquitous MtCK (uMtCK), and high uMtCK mRNA expression in HCC cell lines. We explored the mechanism(s) and the relevance of high uMtCK expression in HCC. In hepatitis C virus core gene transgenic mice, known to lose mitochondrial integrity in liver and subsequently develop HCC, uMtCK mRNA and protein levels were increased in HCC tissues but not in non-tumorous liver tissues. Transient overexpression of ankyrin repeat and suppressor of cytokine signaling box protein 9 (ASB9) reduced uMtCK protein levels in HCC cells, suggesting that increased uMtCK levels in HCC cells may be caused by increased gene expression and decreased protein degradation due to reduced ASB9 expression. The reduction of uMtCK expression by siRNA led to increased cell death, and reduced proliferation, migration and invasion in HCC cell lines. Then, consecutive 105 HCC patients, who underwent radiofrequency ablation with curative intent, were enrolled to analyze their prognosis. The patients with serum MtCK activity >19.4 U/L prior to the treatment had significantly shorter survival time than those with serum MtCK activity ≤ 19.4 U/L, where higher serum MtCK activity was retained as an independent risk for HCC-related death on multivariate analysis. In conclusion, high uMtCK expression in HCC may be caused by hepatocarcinogenesis per se but not by loss of mitochondrial integrity, of which ASB9 could be a negative regulator, and associated with highly malignant potential to suggest a poor prognosis.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thomas J, Matak-Vinkovic D, Van Molle I, Ciulli A. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry 2013; 52:5236-46. [PMID: 23837592 PMCID: PMC3756526 DOI: 10.1021/bi400758h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/09/2013] [Indexed: 01/17/2023]
Abstract
Proteins of the ankyrin-repeat and SOCS-box (ASB) family act as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that catalyze the specific polyubiquitination of cellular proteins to target them for degradation by the proteasome. Therefore, ASB multimeric complexes are involved in numerous cell processes and pathways; however, their interactions, assembly, and biological roles remain poorly understood. To enhance our understanding of ASB CRL systems, we investigated the structure, affinity, and assembly of the quaternary multisubunit complex formed by ASB9, Elongin B, Elongin C (EloBC), and Cullin 5. Here, we describe the application of several biophysical techniques including differential scanning fluorimetry, isothermal titration calorimetry (ITC), nanoelectrospray ionization, and ion-mobility mass spectrometry (IM-MS) to provide structural and thermodynamic information for a quaternary ASB CRL complex. We find that ASB9 is unstable alone but forms a stable ternary complex with EloBC that binds with high affinity to the Cullin 5 N-terminal domain (Cul5NTD) but not to Cul2NTD. The structure of the monomeric ASB9-EloBC-Cul5NTD quaternary complex is revealed by molecular modeling and is consistent with IM-MS and temperature-dependent ITC data. This is the first experimental study to validate structural information for the assembly of the quaternary N-terminal region of an ASB CRL complex. The results suggest that ASB E3 ligase complexes function and assemble in an analogous manner to that of other CRL systems and provide a platform for further molecular investigation of this important protein family. The data reported here will also be of use for the future development of chemical probes to examine the biological function and modulation of other ECS-type CRL systems.
Collapse
Affiliation(s)
- Jemima
C. Thomas
- Department
of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Dijana Matak-Vinkovic
- Department
of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Inge Van Molle
- Department
of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | | |
Collapse
|
26
|
Muniz JRC, Guo K, Kershaw NJ, Ayinampudi V, von Delft F, Babon JJ, Bullock AN. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. J Mol Biol 2013; 425:3166-77. [PMID: 23806657 PMCID: PMC3779351 DOI: 10.1016/j.jmb.2013.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 01/30/2023]
Abstract
Multi-subunit Cullin-RING E3 ligases often use repeat domain proteins as substrate-specific adaptors. Structures of these macromolecular assemblies are determined for the F-box-containing leucine-rich repeat and WD40 repeat families, but not for the suppressor of cytokine signaling (SOCS)-box-containing ankyrin repeat proteins (ASB1-18), which assemble with Elongins B and C and Cul5. We determined the crystal structures of the ternary complex of ASB9-Elongin B/C as well as the interacting N-terminal domain of Cul5 and used structural comparisons to establish a model for the complete Cul5-based E3 ligase. The structures reveal a distinct architecture of the ASB9 complex that positions the ankyrin domain coaxial to the SOCS box-Elongin B/C complex and perpendicular to other repeat protein complexes. This alternative architecture appears favorable to present the ankyrin domain substrate-binding site to the E2-ubiquitin, while also providing spacing suitable for bulky ASB9 substrates, such as the creatine kinases. The presented Cul5 structure also differs from previous models and deviates from other Cullins via a rigid-body rotation between Cullin repeats. This work highlights the adaptability of repeat domain proteins as scaffolds in substrate recognition and lays the foundation for future structure-function studies of this important E3 family.
Collapse
Affiliation(s)
- João R C Muniz
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Tee JM, Sartori da Silva MA, Rygiel AM, Muncan V, Bink R, van den Brink GR, van Tijn P, Zivkovic D, Kodach LL, Guardavaccaro D, Diks SH, Peppelenbosch MP. asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev 2012; 21:3091-103. [PMID: 22512762 DOI: 10.1089/scd.2012.0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The specific molecular determinants that govern progenitor expansion and final compartment size in the myogenic lineage, either during gestation or during regenerative myogenesis, remain largely obscure. Recently, we retrieved d-asb11 from a zebrafish screen designed to identify gene products that are downregulated during embryogenesis upon terminal differentiation and identified it as a potential regulator of compartment size in the ectodermal lineage. A role in mesodermal derivatives remained, however, unexplored. Here we report pan-vertebrate expression of Asb11 in muscle compartments, where it highly specifically localizes to the Pax7(+) muscle satellite cell compartment. Forced expression of d-asb11 impaired terminal differentiation and caused enhanced proliferation in the myogenic progenitor compartment both in in vivo and in vitro model systems. Conversely, introduction of a germline hypomorphic mutation in the zebrafish d-asb11 gene produced premature differentiation of the muscle progenitors and delayed regenerative responses in adult injured muscle. Thus, the expression of d-asb11 is necessary for muscle progenitor expansion, whereas its downregulation marks the onset of terminal differentiation. Hence, we provide evidence that d-asb11 is a principal regulator of embryonic as well as adult regenerative myogenesis.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Varlamova EG, Novoselov VI. Search for partners of a new mammalian selenium-containing protein V (SelV) and expression of its mRNA during ontogenesis and spermatogenesis. Mol Biol 2012. [DOI: 10.1134/s0026893312010244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
|
30
|
Linossi EM, Nicholson SE. The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life 2012; 64:316-23. [PMID: 22362562 DOI: 10.1002/iub.1011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/25/2012] [Indexed: 01/29/2023]
Abstract
The suppressor of cytokine signalling (SOCS) box was first identified in the SH2-containing SOCS box family (cytokine-inducible SH2-containing protein, SOCS1-7) and is a 40-amino acid motif, which functions to recruit an E3 ubiquitin ligase complex consisting of the adapter proteins elongins B and C, Rbx2 and the scaffold protein Cullin5. The SOCS box is found in a diverse array of intracellular signalling molecules, many of which contain different protein interaction domains such as SPRY and WD40 domains, leucine and ankyrin repeats or other functional domains such as GTPases. In general, the SOCS box-containing proteins are thought to act as substrate-recognition modules to mediate the polyubiquitination and subsequent degradation of substrate proteins by the 26S proteasome.
Collapse
Affiliation(s)
- Edmond M Linossi
- Inflammation Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria
| | | |
Collapse
|
31
|
Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T. The Role of Elongin BC-Containing Ubiquitin Ligases. Front Oncol 2012; 2:10. [PMID: 22649776 PMCID: PMC3355856 DOI: 10.3389/fonc.2012.00010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Elongin complex was originally identified as a positive regulator of RNA polymerase II and is composed of a transcriptionally active subunit (A) and two regulatory subunits (B and C). The Elongin BC complex enhances the transcriptional activity of Elongin A. “Classical” SOCS box-containing proteins interact with the Elongin BC complex and have ubiquitin ligase activity. They also interact with the scaffold protein Cullin (Cul) and the RING domain protein Rbx and thereby are members of the Cullin RING ligase (CRL) superfamily. The Elongin BC complex acts as an adaptor connecting Cul and SOCS box proteins. Recently, it was demonstrated that classical SOCS box proteins can be further divided into two groups, Cul2- and Cul5-type proteins. The classical SOCS box-containing protein pVHL is now classified as a Cul2-type protein. The Elongin BC complex containing CRL family is now considered two distinct protein assemblies, which play an important role in regulating a variety of cellular processes such as tumorigenesis, signal transduction, cell motility, and differentiation.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
32
|
Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci 2011; 12:95. [PMID: 21955513 PMCID: PMC3192677 DOI: 10.1186/1471-2202-12-95] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/28/2011] [Indexed: 01/08/2023] Open
Abstract
Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4) is expressed in neuropeptide Y and proopiomelanocortin (POMC) neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s) of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4) is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.
Collapse
|
33
|
Razinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, Calderwood DA. The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. J Cell Sci 2011; 124:2631-41. [PMID: 21750192 DOI: 10.1242/jcs.084343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filamins are an important family of actin-binding and crosslinking proteins that mediate remodeling of the actin cytoskeleton and maintain extracellular matrix connections by anchoring transmembrane proteins to actin filaments and linking them to intracellular signaling cascades. We recently found that filamins are targeted for proteasomal degradation by the E3 ubiquitin ligase specificity subunit ASBα and that acute degradation of filamins through this ubiquitin-proteasome pathway correlates with cell differentiation. Specifically, in myeloid leukemia cells retinoic-acid-induced expression of ASB2α triggers filamin degradation and recapitulates early events crucial for cell differentiation. ASB2α is thought to link substrates to the ubiquitin transferase machinery; however, the mechanism by which ASB2α interacts with filamin to induce degradation remained unknown. Here, we use cell-based and biochemical assays to show that the subcellular localization of ASB2α to actin-rich structures is dependent on filamin and that the actin-binding domain (ABD) of filamin mediates the interaction with ASB2α. Furthermore, we show that the ABD is necessary and sufficient for ASB2α-mediated filamin degradation. We propose that ASB2α exerts its effect by binding the ABD and mediating its polyubiquitylation, so targeting filamins for degradation. These studies provide the molecular basis for ASB2α-mediated filamin degradation and unravel an important mechanism by which filamin levels can be acutely regulated.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nie L, Zhao Y, Wu W, Yang YZ, Wang HC, Sun XH. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res 2010; 21:754-69. [PMID: 21119685 DOI: 10.1038/cr.2010.165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch signaling controls multiple developmental processes, thus demanding versatile functions. We have previously shown that this may be partly achieved by accelerating ubiquitin-mediated degradation of important regulators of differentiation. However, the underlying mechanism was unknown. We now find that Notch signaling transcriptionally activates the gene encoding ankyrin-repeat SOCS box-containing protein 2 (Asb2). Asb2 promotes the ubiquitination of Notch targets such as E2A and Janus kinase (Jak) 2, and a dominant-negative (DN) mutant of Asb2 blocks Notch-induced degradation of these proteins. Asb2 likely binds Jak2 directly but associates with E2A through Skp2. We next provide evidence to suggest that Asb2 bridges the formation of non-canonical cullin-based complexes through interaction with not only ElonginB/C and Cullin (Cul) 5, but also the F-box-containing protein, Skp2, which is known to associate with Skp1 and Cul1. Consistently, ablating the function of Cul1 or Cul5 using DN mutants or siRNAs protected both E2A and Jak2 from Asb2-mediated or Notch-induced degradation. By shifting monomeric E3 ligase complexes to dimeric forms through activation of Asb2 transcription, Notch could effectively control the turnover of a variety of substrates and it exerts diverse effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lei Nie
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kwon S, Kim D, Rhee JW, Park JA, Kim DW, Kim DS, Lee Y, Kwon HJ. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function. BMC Biol 2010; 8:23. [PMID: 20302626 PMCID: PMC2852384 DOI: 10.1186/1741-7007-8-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9). RESULTS We found that a variant of ASB9 that lacks the SOCS box (ASB9DeltaSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9DeltaSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9DeltaSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9DeltaSOCS. CONCLUSIONS ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9DeltaSOCS may be a key factor in the growth of human cell lines and primary cells.
Collapse
Affiliation(s)
- Sanghoon Kwon
- Department of Microbiology, College of Medicine, Hallym University, Gangwon-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li JY, Chai BX, Zhang W, Wang H, Mulholland MW. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype. Endocrinology 2010; 151:134-42. [PMID: 19934378 PMCID: PMC2803157 DOI: 10.1210/en.2009-0560] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ankyrin repeat and suppressor of cytokine signaling box-containing protein 4 (Asb-4) is specifically expressed in the energy homeostasis-related brain areas and colocalizes with proopiomelanocortin (POMC) neurons of the arcuate nucleus (ARC). Injection of insulin into the third ventricle of the rat brain increased Asb-4 mRNA expression in the paraventricular nucleus but not in the ARC of the hypothalamus, whereas injection of leptin (ip) increased Asb-4 expression in both mouse paraventricular nucleus and ARC. A transgenic mouse in which Myc-tagged Asb-4 is specifically expressed in POMC neurons of the ARC was made and used to study the effects of Asb-4 on ingestive behavior and metabolic rate. Animals with overexpression of Asb-4 in POMC neurons demonstrated an increase in food intake. However, POMC-Asb-4 transgenic animals gained significantly less weight from 6-30 wk of age. The POMC-Asb-4 mice had reduced fat mass and increased lean mass and lower levels of blood leptin. The transgenic animals were resistant to high-fat diet-induced obesity. Transgenic mice had significantly higher rates of oxygen consumption and carbon dioxide production than wild-type mice during both light and dark periods. The locomotive activity of transgenic mice was increased. The overexpression of Asb-4 in POMC neurons increased POMC mRNA expression in the ARC. The transgenic animals had no observed effect on peripheral glucose metabolism and the activity of the autonomic nervous system. These results indicate that Asb-4 is a key regulatory protein in the central nervous system, involved in the control of feeding behavior and metabolic rate.
Collapse
Affiliation(s)
- Ji-Yao Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang Y, Li H, Wang X, Gao X, Liu X. Regulation of T cell development and activation by creatine kinase B. PLoS One 2009; 4:e5000. [PMID: 19337362 PMCID: PMC2659424 DOI: 10.1371/journal.pone.0005000] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/04/2009] [Indexed: 01/19/2023] Open
Abstract
Creatine kinase catalyzes the reversible transfer of the N-phosphoryl group from phosphocreatine to ADP to generate ATP and plays a key role in highly energy-demanding processes such as muscle contraction and flagellar motility; however, its role in signal transduction (which frequently involves ATP-consuming phosphorylation) and consequent cell-fate decisions remains largely unknown. Here we report that creatine kinase B was significantly up-regulated during the differentiation of double-positive thymocytes into single-positive thymocytes. Ectopic expression of creatine kinase B led to increased ATP level and enhanced phosphorylation of the TCR signaling proteins. Consequentially, transgenic expression of creatine kinase B promoted the expression of Nur77 and Bim proteins and the cell death of TCR signaled thymocyte. In addition, the activation, proliferation and cytokine secretion of T cells were also enhanced by the expression of creatine kinase B transgene. In contrast, treatment of T cells with specific creatine kinase inhibitor or creatine kinase B shRNA resulted in severely impaired T cell activation. Taken together, our results indicate that creatine kinase B plays an unexpected role in modulating TCR-mediated signaling and critically regulates thymocyte selection and T cell activation.
Collapse
Affiliation(s)
- Yafeng Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hai Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiaolong Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
38
|
Shi YQ, Du LC, Wang QZ, Han CF. Ankrd7, a novel gene specifically expressed in Sertoli cells and its potential roles in Sertoli cell maturation. Mol Cells 2009; 27:199-203. [PMID: 19277502 DOI: 10.1007/s10059-009-0024-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/18/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022] Open
Abstract
The somatic Sertoli cells play an essential role in testis determination and spermatogenesis by providing nutrition and structural support. In the current study, we report on the novel Ankrd7 gene that contains five ankyrin repeat domains. This gene was specifically expressed in Sertoli cells and was regulated in a maturation-dependent manner. Its expression was restricted to testicular tissue, and its mRNA could be detected in testes at as early as 14 dpp (days post partum) using RT-PCR analysis. In both testicular tissue sections and in vitro cultured Sertoli cells, the Ankrd7 protein was localized to the nucleus of the Sertoli cell. Immuno-histochemistry and immunocytochemistry investigations showed that the protein was detectable in testicular tissues at 20 dpp, at which time Sertoli cells were gradually differentiating into their mature cellular form. These results suggest that Ankrd7 is probably involved in the process of Sertoli cell maturation and in spermatogenesis.
Collapse
Affiliation(s)
- Yu-Qiang Shi
- College of Bio-Engineering, Weifang University, Weifang, Shandong Province, 261061, People's Republic of China.
| | | | | | | |
Collapse
|
39
|
Ferguson JE, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol 2007; 27:6407-19. [PMID: 17636018 PMCID: PMC2099627 DOI: 10.1128/mcb.00511-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms of endothelial differentiation into a functional vascular network are incompletely understood. To identify novel factors in endothelial development, we used a microarray screen with differentiating embryonic stem (ES) cells that identified the gene for ankyrin repeat and SOCS box protein 4 (ASB4) as the most highly differentially expressed gene in the vascular lineage during early differentiation. Like other SOCS box-containing proteins, ASB4 is the substrate recognition molecule of an elongin B/elongin C/cullin/Roc ubiquitin ligase complex that mediates the ubiquitination and degradation of substrate protein(s). High levels of ASB4 expression in the embryonic vasculature coincide with drastic increases in oxygen tension as placental blood flow is initiated. However, as vessels mature and oxygen levels stabilize, ASB4 expression is quickly downregulated, suggesting that ASB4 may function to modulate an endothelium-specific response to increasing oxygen tension. Consistent with the hypothesis that ASB4 function is regulated by oxygen concentration, ASB4 interacts with the factor inhibiting HIF1alpha (FIH) and is a substrate for FIH-mediated hydroxylation via an oxygen-dependent mechanism. Additionally, overexpression of ASB4 in ES cells promotes differentiation into the vascular lineage in an oxygen-dependent manner. We postulate that hydroxylation of ASB4 in normoxia promotes binding to and degradation of substrate protein(s) to modulate vascular differentiation.
Collapse
Affiliation(s)
- James E Ferguson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|