1
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Koohi-Hosseinabadi O, Shahriarirad R, Dehghanian A, Amini L, Barzegar S, Daneshparvar A, Alavi O, Khazraei SP, Hosseini S, Arabi Monfared A, Khorram R, Tanideh N, Ashkani-Esfahani S. In-vitro and in-vivo assessment of biocompatibility and efficacy of ostrich eggshell membrane combined with platelet-rich plasma in Achilles tendon regeneration. Sci Rep 2025; 15:841. [PMID: 39755875 PMCID: PMC11700202 DOI: 10.1038/s41598-025-85131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role. Ostrich eggshell membrane (ESM), characterized by a strong preferential orientation of calcite crystals, forms a semipermeable polymer network with excellent mechanical properties compared to membranes from other bird species, emerging as a potential natural scaffold candidate. Coupled with platelet-rich plasma (PRP), known for its regenerative properties, ESM holds promise for improving tendon repair. This study aims to evaluate the biocompatibility and efficacy of an ESM-PRP scaffold in treating Achilles tendon ruptures, employing in vitro and in vivo assessments to gauge its potential in tendon regeneration in living organisms. Ostrich ESM was prepared from pathogen-free ostrich eggs, sterilized with UV radiation and prepared in desired dimensions before implantation (1.5 × 1 cm). High-resolution scanning electron microscopy (HRSEM) was utilized to visualize the sample morphology and fiber bonding. In vitro biocompatibility was assessed using the MTT assay and DAPI staining, while in vivo biocompatibility was evaluated in a rat model. For the in vivo Achilles tendinopathy assay, rats were divided into groups and subjected to AT rupture followed by treatment with ESM, PRP, or a combination. SEM was employed to evaluate tendon morphology, and real-time PCR was conducted to analyze gene expression levels. The in vivo assay indicated that the ESM scaffold was safe for an extended period of 8 weeks, showing no signs of inflammation based on histopathological analysis. In the Achilles tendon rupture model, combining ESM with PRP enhanced tendon healing after 14 weeks post-surgery. This finding was supported by histopathological, morphological, and mechanical evaluations of tendon tissues compared to normal tendons, untreated tendinopathy, and injured tendons treated with the ESM scaffold. Gene expression analysis revealed significantly increased expression of Col1a1, Col3a1, bFGF, Scleraxis (Scx), and tenomodulin in the ESM-PRP groups. The findings of our study demonstrate that the combination of Ostrich ESM with PRP significantly enhances AT repair and is a biocompatible scaffold for the application in living organisms.
Collapse
Affiliation(s)
- Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amireza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University, Shiraz, Iran
| | - Laleh Amini
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Afrooz Daneshparvar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Ali Arabi Monfared
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, P. O. Box: 7134845794, Shiraz, Iran.
- Pharmacology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soheil Ashkani-Esfahani
- Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Wang Y, Huang Y, Zhou P, Lu S, Lin J, Wen G, Shi X, Guo Y. Effects of dietary glucosamine sulfate sodium on early laying performance and eggshell quality of laying hens. Poult Sci 2024; 103:103982. [PMID: 39013294 PMCID: PMC11519691 DOI: 10.1016/j.psj.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
This study was conducted to determine the influence of dietary glucosamine sulfate sodium (GSS) on laying performance, blood profiles, eggshell and inner quality of eggs and relative expression of the genes related to eggshell in laying hens at early stage. A total of 640 twenty-weeks-old Lohmann laying hens were randomly allotted to 4 treatments with 10 replicates of 16 hens each. The experiment lasted for 8 wk, and dietary treatments were: 1) CON, basal diet; 2) G1, CON + 0.2% GSS; 3) G2, CON + 0.4% GSS; 4) G3, CON + 0.6% GSS. The inclusion of GSS increased average daily feed intake, laying rate, and egg mass (P < 0.05) linearly during wk 21 to 25, 25 to 29, and 21 to 29, egg weight during wk 21 to 25 and 25 to 29, and improved (P < 0.05) feed conversion ratio linearly during wk 21 to 25. The supplementation of GSS increased (P < 0.05) albumen height quadratically, Haugh unit, calcium content, calcium mass, phosphorus content and phosphorus mass linearly at the end of 25th and 29th wk. At the end of 29th wk, the eggshell strength, eggshell weight, eggshell ratio, and eggshell thickness were increased (P < 0.05) linearly in GSS treatments compared with CON. The addition of GSS increased (P < 0.05) serum calcium, estrogen 2, and calcitonin, while decreased (P < 0.05) serum tartrate resistant acid phosphatase (TRAP), parathormone, IL-6 and prostaglandin E2 (PGE2) at the end of 29th wk. The inclusion of GSS increased (P < 0.05) the relative expression of ovocalyxin-32 and ovocalyxin-36 linearly at the end of 29th wk, and ovalbumin, osteopontin, calbindin 1, and ovocleidin-116 linearly at the end of 25th and 29th wk. Quadratic effects were observed (P < 0.05) in the laying rate during wk 21 to 25, serum TRAP and PGE2, the relative expression of ovocleidin-116 at the end of 29th wk. In summary, the inclusion of GSS up-regulated relative expression of osteopontin, ovocleidin-116, ovocalyxin-32 and ovocalyxin-36 in uterus, promoted the serum PGE2 and calcitonin, thus increased the calcium content of eggshell and finally enhanced eggshell quality.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, China Agriculture University, Beijing 100193, PR China
| | - Yanhua Huang
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Panhong Zhou
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Shengtao Lu
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Jiale Lin
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Guanglin Wen
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China
| | - Xiaoli Shi
- College Animal Science, Guizhou University, Guiyang 550025, PR China; Key laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, Ministry of Education, Guiyang 550025, PR China.
| | - Yuming Guo
- College of Animal Science and Technology, China Agriculture University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Elejalde-Cadena NR, Hernández D, Capitelli F, Islas SR, Rosales-Hoz MJ, Zema M, Tarantino SC, Siliqi D, Moreno A. Influence of Intramineral Proteins on the Growth of Carbonate Crystals Using as a Scaffold Membranes of Ratite Birds and Crocodiles Eggshells. MEMBRANES 2023; 13:869. [PMID: 37999355 PMCID: PMC10672969 DOI: 10.3390/membranes13110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
The lack of information on structural basis where proteins are involved, as well as the biomineralization processes of different systems such as bones, diatom frustules, and eggshells, have intrigued scientists from different fields for decades. This scientific curiosity has led to the use of methodologies that help understand the mechanism involved in the formation of these complex structures. Therefore, this work focuses on the use of eggshell membranes from different species of ratites (emu and ostrich) and reptiles (two species of crocodiles) as a model to differentiate biocalcification and biosilicification by introducing calcium phosphate or silica inside the membrane fiber mantles. We performed this to obtain information about the process of eggshell formation as well as the changes that occur in the membrane during crystal formation. In order to identify and understand the early processes leading to the formation of the microstructures present in the eggshell, we decided to carry out the synthesis of silica-carbonate of calcium, barium, and strontium called biomorph in the presence of intramineral proteins. This was carried out to evaluate the influence of these proteins on the formation of specific structures. We found that the proteins on untreated membranes, present a structural growth similar to those observed in the inner part of the eggshell, while in treated membranes, the structures formed present a high similarity with those observed in the outer and intermediate part of the eggshell. Finally, a topographic and molecular analysis of the biomorphs and membranes was performed by scanning electron microscopy (SEM), Raman and Fourier-transform Infrared (FTIR) spectroscopies.
Collapse
Affiliation(s)
- Nerith R. Elejalde-Cadena
- Institute of Physics, National Autonomous University of Mexico, Circuito de la Investigación Científica s/n, Ciudad Universitaria, Ciudad de Mexico 045010, Mexico;
- Institute of Chemistry, National Autonomous University of Mexico, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico;
| | - Denisse Hernández
- Institute of Chemistry, National Autonomous University of Mexico, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico;
| | - Francesco Capitelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria km 29,300, 00016 Rome, Italy;
| | - Selene R. Islas
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cd. Universitaria, Ciudad de Mexico 045010, Mexico;
| | - Maria J. Rosales-Hoz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de Mexico 07360, Mexico;
| | - Michele Zema
- Department of Earth and Geoenvironmental Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Serena C. Tarantino
- Department of Chemistry, University of Pavia, Vialle Taramelli 16, 27100 Pavia, Italy;
- Institute of Geoscience and Georesources (IGG), National Research Council (CNR), Via Ferrata 1, 27100 Pavia, Italy
| | - Dritan Siliqi
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Abel Moreno
- Institute of Chemistry, National Autonomous University of Mexico, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
5
|
Elkomy HS, Koshich II, Mahmoud SF, Abo-Samaha MI. Use of lactulose as a prebiotic in laying hens: its effect on growth, egg production, egg quality, blood biochemistry, digestive enzymes, gene expression and intestinal morphology. BMC Vet Res 2023; 19:207. [PMID: 37845670 PMCID: PMC10578020 DOI: 10.1186/s12917-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The rising popularity of eggs as an alternative source of protein to meat has led to significant increase in egg consumption over the past decade. To meet the increasing demand for eggs, poultry farmers have used antibiotics to treat infections and, to some extent, promote growth and egg production in raising layer. However, the emergence and global spread of antibiotic resistant bacteria has now necessitated antibiotic-free poultry farming. As alternatives to antibiotics, prebiotics are feed additives that can be used to improve the growth and laying performance of poultry which positively impacts their performance and general health. In this study we evaluated the effect of lactulose, formulated as Vetelact, on body weight, egg production, egg quality, blood biochemical parameters and expression of genes associated with reproductive performance in laying hens. RESULTS Vetelact supplementation improved egg weight, egg production as well as egg quality. Following Vetalact supplementation, the levels of total bilirubin, total protein, globulin and phosphorus were increased, while the activities of alkaline phosphatase and lipase enzymes were increased compared to control. Vetelact at 0.10 ml/kg body weight upregulated OCX-36, OVAL, CALB1, OC-116, OCX-32 and IL8 transcripts while downregulating the transcription of Gal-10, PENK and AvBD9. At this optimal inclusion rate of Vetalect, histomorphologic analyses of intestinal tissue showed increased villi length with more goblet cell distribution and obvious mucus covering a surface, increase in the depth of intestinal crypts produce digestive enzymes, as well as more developed muscle layer that promote improved nutrient absorption. CONCLUSION Vetelact at a dose of 0.10 ml/ kg body weight was effective in improving productive performance of laying hens. Adding lactulose (0.10 ml/ kg body weight) to layer diet is recommended to promote growth and improve egg laying performance in antibiotics-free poultry production.
Collapse
Affiliation(s)
- Hassan S Elkomy
- Poultry Breeding and Production, Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
- Moscow State Academy of Veterinary Medicine and Biotechnology Named After K.I. Skryabin, 23, Academician Skryabin Street, Moscow, 109472, Russia
| | - Ivan I Koshich
- Moscow State Academy of Veterinary Medicine and Biotechnology Named After K.I. Skryabin, 23, Academician Skryabin Street, Moscow, 109472, Russia
| | - Sahar F Mahmoud
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhur University, Damanhur, 22511, Egypt
| | - Magda I Abo-Samaha
- Poultry Breeding and Production, Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt.
| |
Collapse
|
6
|
Elhamouly M, Nii T, Isobe N, Yoshimura Y. Aging-associated increased nitric oxide production is a potential cause of inferior eggshell quality produced by aged laying hens. Theriogenology 2023; 205:63-72. [PMID: 37086586 DOI: 10.1016/j.theriogenology.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Abstract
It is important to prolong the productive life of laying hens without compromising their welfare. Therefore, in this study, we aimed to identify the cause for inferior quality egg production of aged hens by investigating the aging-associated molecular changes related to eggshell formation in the isthmic and uterine mucosae and determining whether nitric oxide plays a role in decreasing the quality of eggs produced by aged hens. Young (35 weeks old) and aged (130 weeks old) White Leghorn laying hens were used in this study to determine the effects of age on the expression of proteins related to eggshell membranes formation in the isthmus and eggshell biomineralization and nitric oxide production in the uterus. Nitric oxide synthesis during the ovulatory cycle was examined in twenty-five laying hens (46-52 weeks old) euthanized at 0, 4, 7, 16, and 24 h after oviposition. S-Nitroso-N-acetylpenicillamine (a nitric oxide donor) was added to the cultured isthmic and uterine mucosal cells to examine the effects of nitric oxide on the expression of genes related to eggshell membranes formation and eggshell biomineralization, respectively. The results showed that the protein abundance of collagen I and V in the isthmic mucosa and collagen V in the eggshell membranes were lower in aged hens than in young hens. The mRNA expression levels of calbindin, osteopontin, and ovocalyxin-36 and the protein abundance of calbindin and carbonic anhydrase-2 were lower in the uterine mucosa of aged hens than in that of young hens. Nitric oxide synthesis was higher in the uterine mucosa of aged hens than in that of young hens. Nitric oxide downregulated the mRNA expression levels of osteopontin and ovocalyxin-36 in cultured uterine mucosal cells. Our results indicated that the eggshell quality decreases with aging due to molecular changes in the uterine mucosa affecting the eggshell membrane formation and eggshell biomineralization. Moreover, nitric oxide overproduction may play a role in this dysfunction.
Collapse
Affiliation(s)
- M Elhamouly
- Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - T Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - N Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Y Yoshimura
- Hiroshima Study Center, The Open University of Japan, Hiroshima, 730-0053, Japan.
| |
Collapse
|
7
|
Wu Y, Sun Y, Zhang H, Xiao H, Pan A, Shen J, Pu Y, Liang Z, Du J, Pi J. Multiomic analysis revealed the regulatory role of the KRT14 gene in eggshell quality. Front Genet 2022; 13:927670. [PMID: 36212119 PMCID: PMC9536113 DOI: 10.3389/fgene.2022.927670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Eggshell strength and thickness are critical factors in reducing the egg breaking rate and preventing economic losses. The calcite biomineralization process is very important for eggshell quality. Therefore, we employed transcriptional sequencing and proteomics to investigate the differences between the uteruses of laying hens with high- and low-breaking-strength shells. Results: A total of 1,028 differentially expressed genes (DEGs) and 270 differentially expressed proteins (DEPs) were identified. The analysis results of GO terms and KEGG pathways showed that most of the DEGs and DEPs were enriched in vital pathways related to processes such as calcium metabolism, hormone and amino acid biosynthesis, and cell proliferation and apoptosis. Several DEGs and DEPs that were coexpressed at mRNA and protein levels were verified. KRT14 (keratin-14) is a candidate gene (protein) obtained by multiple omics analysis due to the fold difference of KRT14 being the largest. After the overexpression of KRT14 in uterine epithelial cells, the expressions of OC116 (ovocleididin-116), CALB1 (calbindin 1), and BST1 (ADP-ribosyl cyclase 2) were found to be increased significantly, while the expression of OC17 (ovocleididin-17) was found to be decreased significantly. Conclusion: In summary, this study confirms that during normal calcification, there are differences in ion transport between the uterus of hens producing high-breaking-strength eggshells and those producing low-breaking-strength eggshells, which may help elucidate the eggshell calcification process. The KRT14 gene may promote calcium metabolism and deposition of calcium carbonate in eggshells.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Yanyan Sun
- Institute of Animal Sciences of CAAS, Beijing, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- *Correspondence: Jinsong Pi,
| |
Collapse
|
8
|
Xie HX, Liang XX, Li WM, Chen ZQ, Wang XF, Ding ZH, Zhou XM, Du WG. The eggshell-matrix protein gene OC-17 is functionally lost in the viviparous Chinese crocodile lizard. J Evol Biol 2022; 35:1568-1575. [PMID: 36129910 DOI: 10.1111/jeb.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Thickness reduction or loss of the calcareous eggshell is one of major phenotypic changes in the transition from oviparity to viviparity. Whether the reduction of eggshells in viviparous squamates is associated with specific gene losses is unknown. Taking advantage of a newly generated high-quality genome of the viviparous Chinese crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin-17 gene (OC-17), which encodes an eggshell matrix protein that is essential for calcium deposition in eggshells, is not intact in the crocodile lizard genome. Only OC-17 transcript fragments were found in the oviduct transcriptome, and no OC-17 peptides were identified in the eggshell proteome of crocodile lizards. In contrast, OC-17 was present in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the loss of OC-17 is not common in viviparous species, viviparous squamates show fewer intact eggshell-specific proteins than oviparous squamates. Our study implies that functional loss of eggshell-matrix protein genes may be involved in the reduction of eggshells during the transition from oviparity to viviparity in the crocodile lizard.
Collapse
Affiliation(s)
- Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Han Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
10
|
Dai D, Qi GH, Wang J, Zhang HJ, Qiu K, Wu SG. Intestinal microbiota of layer hens and its association with egg quality and safety. Poult Sci 2022; 101:102008. [PMID: 35841638 PMCID: PMC9289868 DOI: 10.1016/j.psj.2022.102008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022] Open
Abstract
The intestinal microbiota has attracted tremendous attention in the field of the poultry industry due to its critical role in the modulation of nutrient utilization, immune system, and consequently the improvement of the host health and production performance. Accumulating evidence implies intestinal microbiota of laying hens is a potential mediator to improve the prevalent issues in terms of egg quality decline in the late phase of laying production. However, the regulatory effect of intestinal microbiota on egg quality in laying hens remains elusive, which requires consideration of microbial baseline composition and succession during their long lifespans. Notable, although Firmicutes, Bacteroidetes, and Proteobacteria form the vast majority of intestinal microbiota in layer hens, dynamic intestinal microbiota succession occurs throughout all laying periods. In addition to the direct effects on egg safety, intestinal microbiota and its metabolites such as short-chain fatty acids, bile acids, and tryptophan derivatives, are suggested to indirectly modulate egg quality through the microbiota-gut-liver/brain-reproductive tract axis. These findings can extend our understanding of the crosstalk between intestinal microbiota and the host to improve egg quality and safety. This paper reviews the compositions of intestinal microbiota in different physiological stages of laying hens and their effects on egg quality and proposes that intestinal microbiota may become a potential target for modulating egg quality and safety by nutritional strategies in the future.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Halgrain M, Georgeault S, Bernardet N, Hincke MT, Réhault-Godbert S. Concomitant Morphological Modifications of the Avian Eggshell, Eggshell Membranes and the Chorioallantoic Membrane During Embryonic Development. Front Physiol 2022; 13:838013. [PMID: 35574476 PMCID: PMC9091813 DOI: 10.3389/fphys.2022.838013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
The chicken eggshell (ES) consists of 95% calcium carbonate and 3.5% organic matter, and represents the first physical barrier to protect the developing embryo, while preventing water loss. During the second half of development, calcium ions from the inner ES are progressively solubilized to support mineralization of the embryonic skeleton. This process is mediated by the chorioallantoic membrane (CAM), which is an extraembryonic structure that adheres to the eggshell membranes (ESM) lining the inner ES. The CAM surrounds the embryo and all egg contents by day 11 of incubation (Embryonic Incubation Day 11, EID11) and is fully differentiated and functionally active by day 15 of incubation (Embryonic Incubation Day 15, EID15). In this study, we explored the simultaneous morphological modifications in the ES, ESM and the CAM at EID11 and EID15 by scanning electron microscopy. We observed that the tips of the mammillary knobs of the ES remain tightly attached to the ESM fibers, while their bases become progressively eroded and then detached from the bulk ES. Concomitantly, the CAM undergoes major structural changes that include the progressive differentiation of villous cells whose villi extend to reach the ESM and the ES. These structural data are discussed with respect to the importance of ES decalcification in providing the calcium necessary for mineralization of embryo's skeleton. In parallel, eggshell decalcification and weakening during incubation is likely to impair the ability of the ES to protect the embryo. It is assumed that the CAM could counteract this apparent weakening as an additional layer of physical, cellular and molecular barriers against environmental pressures, including pathogens, dehydration and shocks. However, such hypothesis needs to be further investigated.
Collapse
Affiliation(s)
| | - Sonia Georgeault
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, Tours, France
| | | | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
12
|
Kulshreshtha G, D’Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. Properties, Genetics and Innate Immune Function of the Cuticle in Egg-Laying Species. Front Immunol 2022; 13:838525. [PMID: 35281050 PMCID: PMC8914949 DOI: 10.3389/fimmu.2022.838525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Cleidoic eggs possess very efficient and orchestrated systems to protect the embryo from external microbes until hatch. The cuticle is a proteinaceous layer on the shell surface in many bird and some reptile species. An intact cuticle forms a pore plug to occlude respiratory pores and is an effective physical and chemical barrier against microbial penetration. The interior of the egg is assumed to be normally sterile, while the outer eggshell cuticle hosts microbes. The diversity of the eggshell microbiome is derived from both maternal microbiota and those of the nesting environment. The surface characteristics of the egg, outer moisture layer and the presence of antimicrobial molecules composing the cuticle dictate constituents of the microbial communities on the eggshell surface. The avian cuticle affects eggshell wettability, water vapor conductance and regulates ultraviolet reflectance in various ground-nesting species; moreover, its composition, thickness and degree of coverage are dependent on species, hen age, and physiological stressors. Studies in domestic avian species have demonstrated that changes in the cuticle affect the food safety of eggs with respect to the risk of contamination by bacterial pathogens such as Salmonella and Escherichia coli. Moreover, preventing contamination of internal egg components is crucial to optimize hatching success in bird species. In chickens there is moderate heritability (38%) of cuticle deposition with a potential for genetic improvement. However, much less is known about other bird or reptile cuticles. This review synthesizes current knowledge of eggshell cuticle and provides insight into its evolution in the clade reptilia. The origin, composition and regulation of the eggshell microbiome and the potential function of the cuticle as the first barrier of egg defense are discussed in detail. We evaluate how changes in the cuticle affect the food safety of table eggs and vertical transmission of pathogens in the production chain with respect to the risk of contamination. Thus, this review provides insight into the physiological and microbiological characteristics of eggshell cuticle in relation to its protective function (innate immunity) in egg-laying birds and reptiles.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Liliana D’Alba
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Ian C. Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Khogali MK, Wen K, Jauregui D, Liu L, Zhao M, Gong D, Geng T. Uterine structure and function contributes to the formation of the sandpaper-shelled eggs in laying hens. Anim Reprod Sci 2021; 232:106826. [PMID: 34403835 DOI: 10.1016/j.anireprosci.2021.106826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The avian eggshell is formed in the uterus, and eggshell quality usually decreases markedly in the late phase of hen laying cycles. Production of sandpaper-shelled eggs (SE), a category of eggs with relatively less eggshell quality, causes a great economic loss. Underlying mechanisms of SE formation, however, remain unclear. For the present study, it was hypothesized that alterations in uterine structure and function contribute to SE formation. To test this hypothesis, uterine samples were collected from 450-day-old hens that produced normal eggs (NE) and SE (based on 2-week-long assessments, n = 10) for histomorphological and transcriptome analyses. Compared with the NE group, uteri of the SE group were apparently atrophied. Furthermore, a total of 211 differentially expressed genes (DEGs) were identified in the uteri of hens of the two groups. These DEGs were clustered into 145 gene ontology terms (FDR < 0.05) and enriched in 12 KEGG pathways (P < 0.10), which are primarily related to organ morphogenesis and development, cell growth, differentiation and death, ion transport, endocrine and cell communication, immune response, and corticotropin-releasing hormones. In particular, corticotropin may be an important factor in SE formation because of effects on ion transport. Furthermore, as indicated by lesser abundances of relevant mRNA transcripts, the lesser expression of genes related to ion transport and matrix proteins also contribute to SE production because of effects on eggshell formation. In conclusion, results from this study revealed there were structural and functional differences in the hen uterus in NE and SE groups.
Collapse
Affiliation(s)
- Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, 13314, Sudan
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Diego Jauregui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effect of organic and inorganic dietary selenium supplementation on gene expression in oviduct tissues and Selenoproteins gene expression in Lohman Brown-classic laying hens. BMC Vet Res 2021; 17:281. [PMID: 34419016 PMCID: PMC8380377 DOI: 10.1186/s12917-021-02964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens. Results Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15–20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p < 0.05) mRNA expression of OC-17 and OC-116 in shell gland of organic Se hen compared to inorganic and basal diet treatments. Similarly, dietary Se treatments affected the mRNA expression of OCX-32 and OCX-36 in the shell gland of laying hens. In the magnum, mRNA expression of OC-17 was significantly (p < 0.05) higher in hens fed-bacterial organic, while OC-116 mRNA expression was down-regulated in dietary Se supplemented groups compared to non-Se supplemented hens. Moreover, when compared to sodium selenite, only ADS18 bacterial Se showed significantly (p < 0.05) higher mRNA levels in GPX1, GPX4, DIO1, DIO2 and SELW1, while Se-yeast showed significantly (p < 0.05) higher mRNA levels in TXNRD1 than the non-Se group. Conclusions Dietary Se supplementation especially that from a bacterial organic source, improved shell gland and hepatic selenoproteins gene expression in laying hens, indicating that it could be used as a viable alternative source of Se in laying hens. The findings could suggest that organic Se upregulation of shell gland genes and hepatic selenoproteins in laying hens is efficient.
Collapse
Affiliation(s)
- A I Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - A M Dalia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - H Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Le Roy N, Stapane L, Gautron J, Hincke MT. Evolution of the Avian Eggshell Biomineralization Protein Toolkit - New Insights From Multi-Omics. Front Genet 2021; 12:672433. [PMID: 34046059 PMCID: PMC8144736 DOI: 10.3389/fgene.2021.672433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The avian eggshell is a remarkable biomineral, which is essential for avian reproduction; its properties permit embryonic development in the desiccating terrestrial environment, and moreover, are critically important to preserve unfertilized egg quality for human consumption. This calcium carbonate (CaCO3) bioceramic is made of 95% calcite and 3.5% organic matrix; it protects the egg contents against microbial penetration and mechanical damage, allows gaseous exchange, and provides calcium for development of the embryonic skeleton. In vertebrates, eggshell occurs in the Sauropsida and in a lesser extent in Mammalia taxa; avian eggshell calcification is one of the fastest known CaCO3 biomineralization processes, and results in a material with excellent mechanical properties. Thus, its study has triggered a strong interest from the researcher community. The investigation of eggshell biomineralization in birds over the past decades has led to detailed characterization of its protein and mineral constituents. Recently, our understanding of this process has been significantly improved using high-throughput technologies (i.e., proteomics, transcriptomics, genomics, and bioinformatics). Presently, more or less complete eggshell proteomes are available for nine birds, and therefore, key proteins that comprise the eggshell biomineralization toolkit are beginning to be identified. In this article, we review current knowledge on organic matrix components from calcified eggshell. We use these data to analyze the evolution of selected matrix proteins and underline their role in the biological toolkit required for eggshell calcification in avian species. Amongst the panel of eggshell-associated proteins, key functional domains are present such as calcium-binding, vesicle-binding and protein-binding. These technical advances, combined with progress in mineral ultrastructure analyses, have opened the way for new hypotheses of mineral nucleation and crystal growth in formation of the avian eggshell, including transfer of amorphous CaCO3 in vesicles from uterine cells to the eggshell mineralization site. The enrichment of multi-omics datasets for bird species is critical to understand the evolutionary context for development of CaCO3 biomineralization in metazoans, leading to the acquisition of the robust eggshell in birds (and formerly dinosaurs).
Collapse
Affiliation(s)
| | | | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Gautron J, Stapane L, Le Roy N, Nys Y, Rodriguez-Navarro AB, Hincke MT. Avian eggshell biomineralization: an update on its structure, mineralogy and protein tool kit. BMC Mol Cell Biol 2021; 22:11. [PMID: 33579194 PMCID: PMC7881572 DOI: 10.1186/s12860-021-00350-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The avian eggshell is a natural protective envelope that relies on the phenomenon of biomineralization for its formation. The shell is made of calcium carbonate in the form of calcite, which contains hundreds of proteins that interact with the mineral phase controlling its formation and structural organization, and thus determine the mechanical properties of the mature biomaterial. We describe its mineralogy, structure and the regulatory interactions that integrate the mineral and organic constituents during eggshell biomineralization. Main Body. We underline recent evidence for vesicular transfer of amorphous calcium carbonate (ACC), as a new pathway to ensure the active and continuous supply of the ions necessary for shell mineralization. Currently more than 900 proteins and thousands of upregulated transcripts have been identified during chicken eggshell formation. Bioinformatic predictions address their functionality during the biomineralization process. In addition, we describe matrix protein quantification to understand their role during the key spatially- and temporally- regulated events of shell mineralization. Finally, we propose an updated scheme with a global scenario encompassing the mechanisms of avian eggshell mineralization. CONCLUSION With this large dataset at hand, it should now be possible to determine specific motifs, domains or proteins and peptide sequences that perform a critical function during avian eggshell biomineralization. The integration of this insight with genomic data (non-synonymous single nucleotide polymorphisms) and precise phenotyping (shell biomechanical parameters) on pure selected lines will lead to consistently better-quality eggshell characteristics for improved food safety. This information will also address the question of how the evolutionary-optimized chicken eggshell matrix proteins affect and regulate calcium carbonate mineralization as a good example of biomimetic and bio-inspired material design.
Collapse
Affiliation(s)
- J Gautron
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France.
| | - L Stapane
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | - N Le Roy
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | - Y Nys
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | - A B Rodriguez-Navarro
- Departmento de Mineralogia y Petrologia, Universidad de Granada, 18071, Granada, Spain
| | - M T Hincke
- Department of Innovation in Medical Education, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| |
Collapse
|
17
|
Danso-Boateng E, Mohammed AS, Sander G, Wheatley AD, Nyktari E, Usen IC. Production and characterisation of adsorbents synthesised by hydrothermal carbonisation of biomass wastes. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AbstractSurface structure and chemical properties of adsorbents are important factors required to understand the mechanism of adsorption. The purpose of this study was to produce hydrochars from biomass using hydrothermal carbonisation (HTC) and to analyse their sorption capacities. The biomass used in this study were coco-peat (CP), coconut shell (CS), eggshell (ES), rice husk (RH) and lemon peel (LP). The operating conditions for HTC were 200 °C and 20 h residence time. The characterisation methods consisted of Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Fourier Transform Infrared Ray (FTIR) Spectroscopy, and Brunauer, Emmett and Teller (BET). The results showed that HTC improved the sorption capacities of the biomass wastes. It was found that hydrochars were crispy and flaky with more micro- and meso-porous structures, indicating that lignin and other components were denatured due to carbonisation. This led to the creation of more active sites for sorption and pollutant binding. The hydrochars showed a percentage increase in carbon content and a decrease in oxygen content with traces of other elements, compared to their corresponding raw biomass. The major functional groups identified were –OH and –COOH. The surface area of the hydrochars which include CP (2.14 m2/g), CS (14.04 m2/g), ES (0.50 m2/g), RH (15.74 m2/g), and LP (6.89 m2/g) were significantly improved compared with those of the raw biomass. The study showed that the hydrochars produced from the biomass wastes have the potential to be used as adsorbents.
Collapse
|
18
|
Effects of Essential Oils-Based Supplement and Salmonella Infection on Gene Expression, Blood Parameters, Cecal Microbiome, and Egg Production in Laying Hens. Animals (Basel) 2021; 11:ani11020360. [PMID: 33535430 PMCID: PMC7912222 DOI: 10.3390/ani11020360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
One of the main roles in poultry resistance to infections caused by Salmonella is attributed to host immunity and intestinal microbiota. We conducted an experiment that involved challenging Lohmann White laying hens with Salmonella Enteritidis (SE), feeding them a diet supplemented with an EOs-based phytobiotic Intebio®. At 1 and 7 days post-inoculation, the expression profiles of eight genes related to immunity, transport of nutrients in the intestine, and metabolism were examined. Cecal microbiome composition and blood biochemical/immunological indices were also explored and egg production traits recorded. As a result, the SE challenge of laying hens and Intebio® administration had either a suppressive or activating effect on the expression level of the studied genes (e.g., IL6 and BPIFB3), the latter echoing mammalian/human tissue-specific expression. There were also effects of the pathogen challenge and phytobiotic intake on the cecal microbiome profiles and blood biochemical/immunological parameters, including those reflecting the activity of the birds' immune systems (e.g., serum bactericidal activity, β-lysine content, and immunoglobulin levels). Significant differences between control and experimental subgroups in egg performance traits (i.e., egg weight/number/mass) were also found. The phytobiotic administration suggested a positive effect on the welfare and productivity of poultry.
Collapse
|
19
|
Zhu M, Li H, Miao L, Li L, Dong X, Zou X. Dietary cadmium chloride impairs shell biomineralization by disrupting the metabolism of the eggshell gland in laying hens. J Anim Sci 2020; 98:5715281. [PMID: 31974567 DOI: 10.1093/jas/skaa025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/23/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we identified cadmium (Cd) as a potential endocrine disruptor that impairs laying performance, egg quality, and eggshell deposition and induces oxidative stress and inflammation in the eggshell glands of laying hens. A total of 480 38-wk-old laying hens were randomly assigned into 5 groups that were fed a basal diet (control) or a basal diet supplemented with Cd (provided as CdCl2·2.5 H2O) at 7.5, 15, 30, and 60 mg Cd per kg feed for 9 wk. The results showed that, when compared with the control group, a low dose of dietary Cd (7.5 mg/kg) had positive effects on egg quality by improving albumen height, Haugh unit, yolk color, and shell thickness at the third or ninth week. However, with the increase in the dose and duration of Cd exposure, the laying performance, egg quality, and activities of eggshell gland antioxidant enzymes (catalase [CAT], glutathione peroxide [GSH-Px]), and ATPase (Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) deteriorated, and the activity of total nitric oxide synthase (T-NOS) and the level of malondialdehyde (MDA) increased significantly (P < 0.05). The histopathology and real-time quantitative PCR results showed that Cd induced endometrial epithelial cell proliferation accompanied by upregulation of the mRNA levels of progesterone receptor (PgR) and epidermal growth factor receptor (EGFR), downregulation of the mRNA levels of estrogen receptor α (ERα) and interleukin 6 (IL6), and inflammation of the eggshell gland accompanied by significantly increased expression of complement C3 and pro-inflammatory cytokine tumor necrosis factor α (TNFα) (P < 0.05). In addition, the ultrastructure of the eggshell showed that dietary supplementation with 7.5 mg/kg Cd increased the palisade layer and total thickness of the shell, but with the increase in dietary Cd supplementation (30 and 60 mg/kg) the thickness of the palisade layer and mammillary layer decreased significantly (P < 0.05), and the outer surface of the eggshell became rougher. Correspondingly, the expression of calbindin 1 (CALB1), ovocalyxin-32 (OCX-32), ovocalyxin-36 (OCX-36), osteopontin (SPP1), and ovocledidin-17 (OC-17) decreased significantly (P < 0.05) with increasing dietary Cd supplementation. Conclusively, the present study demonstrates that dietary supplementation with Cd negatively affects laying performance, egg quality, and eggshell deposition by disturbing the metabolism of eggshell glands in laying hens but has a positive effect on egg quality at low doses.
Collapse
Affiliation(s)
- Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Huaiyu Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liping Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Lanlan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
20
|
Zhang F, Yin ZT, Zhang JF, Zhu F, Hincke M, Yang N, Hou ZC. Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation. Genomics 2020; 112:3687-3695. [PMID: 32334113 DOI: 10.1016/j.ygeno.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Duck egg quality improvement is an essential target for Asian poultry breeding. In total, 15 RNA-Seq libraries (magnum, isthmus, and uterus at two different physiological states) were sequenced from 48 weeks old Pekin ducks. De novo assembly and annotation methods were utilized to generate new reference transcripts. Our results revealed that 1264 and 2517 genes were differentially expressed in magnum and uterus in the presence versus absence of an egg, respectively. We identified 1089 genes that were differentially expressed in isthmus compared to uterus (in both presence and absence of a calcifying egg). We observed that 11 common DEGs were detected in the egg white proteomes of 6 different bird species including domestic Chicken, Duck, Goose, Turkey, Quail, and Pigeon. On the other hand, only one of the top five most highly expressed genes in duck isthmus was in this category for the chicken isthmus (SPINK7). Among the large number of DEGs during eggshell formation in ducks, only 41 genes showed a similar differential expression pattern in both duck and chicken. By combining chicken QTL database, chicken oviduct transcriptome and egg proteome data for five bird species, we have obtained high-quality gene lists for egg formation. This is the first study to elucidate the transcriptomic changes in different duck oviduct segments during egg formation, and to integrate QTL, proteome and transcriptome data to probe the functional genes associated with albumen secretion and eggshell mineralization.
Collapse
Affiliation(s)
- Fan Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jin-Feng Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa KIH 8M5, Canada
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Riou C, Brionne A, Cordeiro L, Harichaux G, Gargaros A, Labas V, Gautron J, Gérard N. Avian uterine fluid proteome: Exosomes and biological processes potentially involved in sperm survival. Mol Reprod Dev 2020; 87:454-470. [PMID: 32350983 DOI: 10.1002/mrd.23333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Uterine fluid is an aqueous milieu to which sperm are exposed during their storage and ascent. In this study, a bottom-up proteomic strategy and bioinformatic analysis of hen uterine fluid was performed to improve the understanding of this fluid and its potential role in sperm survival mechanisms. The proteomic data were submitted to ProteomeXchange. Among the 913 proteins identified, 160 are known to be secreted and 640 are referenced in exosomes databases. We isolated exosomes from the avian uterine fluid, analyzed them using electron microscopy, and targeted several exosomes markers (ANXA1/2/4/5, VCP, HSP90A, HSPA8, PARK7, and MDH1) using immunoblotting. Electron microscopy and immunohistochemistry were also used to analyze uterovaginal junctions for the exosomal proteins ANXA4, VCP, and PARK7. Exosomes were observed both at the surface epithelium and inside sperm storage tubules. Our data were compared with two previously published studies on proteomic of hen uterine fluid, and with one study describing the proteomic content of rooster seminal plasma and sperm. In conclusion, we demonstrated for the first time that avian uterine fluid contains exosomes. These may play a key role in preserving sperm functions within the female genital tract. Their presence in the sperm storage tubules may represent an important mechanism regarding interaction between the female genital tract and sperm.
Collapse
Affiliation(s)
- Cindy Riou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France.,ALLICE, Station de Phénotypage, Nouzilly, France
| | | | - Luiz Cordeiro
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France.,Federal University of Semi Arid Region, Mossoro, Rio Grande do Norte, Brazil
| | - Grégoire Harichaux
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France.,INRAE, Université de Tours, CHU de Tours, BIANIM, Nouzilly, France
| | - Audrey Gargaros
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France.,INRAE, Université de Tours, CHU de Tours, BIANIM, Nouzilly, France
| | - Valérie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France.,INRAE, Université de Tours, CHU de Tours, BIANIM, Nouzilly, France
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Nadine Gérard
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
22
|
Yin Z, Lian L, Zhu F, Zhang ZH, Hincke M, Yang N, Hou ZC. The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics 2020; 112:243-251. [DOI: 10.1016/j.ygeno.2019.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/12/2019] [Accepted: 02/06/2019] [Indexed: 02/08/2023]
|
23
|
Prochazkova P, Roubalova R, Dvorak J, Navarro Pacheco NI, Bilej M. Pattern recognition receptors in annelids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103493. [PMID: 31499098 DOI: 10.1016/j.dci.2019.103493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The existence of pattern recognition receptors (PRRs) on immune cells was discussed in 1989 by Charles Janeway, Jr., who proposed a general concept of the ability of PRRs to recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, PRRs trigger intracellular signaling cascades resulting in the expression of various proinflammatory molecules. These recognition molecules represent an important and efficient innate immunity tool of all organisms. As invertebrates lack the instruments of the adaptive immune system, based on "true" lymphocytes and functional antibodies, the importance of PRRs are even more fundamental. In the present review, the structure, specificity, and expression profiles of PRRs characterized in annelids are discussed, and their role in innate defense is suggested.
Collapse
Affiliation(s)
- P Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic.
| | - R Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - J Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - N I Navarro Pacheco
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - M Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| |
Collapse
|
24
|
|
25
|
|
26
|
Zhang J, Wang Y, Zhang C, Xiong M, Rajput SA, Liu Y, Qi D. The differences of gonadal hormones and uterine transcriptome during shell calcification of hens laying hard or weak-shelled eggs. BMC Genomics 2019; 20:707. [PMID: 31510913 PMCID: PMC6737649 DOI: 10.1186/s12864-019-6017-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Eggshell breaking strength is critical to reduce egg breaking rate and avoid economic loss. The process of eggshell calcification initiates with the egg entering the uterus and lasts about 18 h. It follows a temporal sequence corresponding to the initiation, growth and termination periods of shell calcification. During each period of shell calcification, our study investigated the differences of gonadal hormones and uterine transcriptome in laying hens producing a high or low breaking strength shell. Results 60 Hy-line Brown laying hens were selected and divided into two groups according to eggshell breaking strength. Eggshell breaking strength of 44.57 ± 0.91 N and 26.68 ± 0.38 N were considered to be the high strength group (HS) and low strength group (LS), respectively. The results showed that mammillary thickness and mammillary knob width of eggshells were significantly lower in the HS. Serum progesterone (P4) and 1,25-dihydroxy vitamin D3 [1,25-(OH)2D3] were significantly higher in the HS compared to the LS during the initiation period of calcification. Serum estradiol (E2) and calcium did not change significantly. All factors mentioned above had no significant differences in the growth and termination periods of calcification. The relative expression of CaBP-D28k and PMCA 1b were not significantly different between HS and LS. The relative expression of NCX1 was significantly higher in HS compared to LS. Moreover, 1777 differentially expressed genes (DEGs) were obtained in the initiation period of calcification. However, few DEGs were identified in the growth or termination periods of calcification. 30 DEGs were selected as candidate genes involved in eggshell calcification during the initiation period of calcification by the analysis of GO terms and KEGG pathways. Conclusions Our study concluded that mammillary thickness and mammillary knob width of the HS were significantly lower than LS. P4 and 1,25-(OH)2D3 were significantly higher in the initiation period of HS. They may impact initial calcification when the mammillary layer is formed. The initiation period of calcification determined eggshell strength rather than the growth or termination periods. We inferred P4 or 1,25-(OH)2D3 may effect the ultrastructure of the mammillary layer by regulating the expression of uterine genes. Electronic supplementary material The online version of this article (10.1186/s12864-019-6017-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiacai Zhang
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanan Wang
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Zhang
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mingxin Xiong
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shahid Ali Rajput
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yun Liu
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Desheng Qi
- College of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
27
|
Gautron J, Guyot N, Brionne A, Réhault-Godbert S. Bioactive Minor Egg Components. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the last 15 years, the development of functional genomics has increased the number of egg proteins identified from 50 to about 1300. These proteins are initially present in eggs to support a harmonious embryonic development. Consequently, this closed embryonic chamber contains molecules exhibiting diverse functions, including defense, nutrition and many predicted biological activities, which have been investigated using both bioinformatics and experimental investigations. In this chapter, we focus on some very interesting activities of high potential reported for minor egg proteins (excluding ovalbumin, ovotransferrin and lysozyme). The shell matrix proteins are involved in the calcification process to define and control the final texture of the shell and thereby its mechanical properties. Antimicrobial proteins are part of innate immunity and are mainly present in the white and vitelline membranes. They encompass several protein families, including protease inhibitors, vitamin-binding proteins, defensins, LBP-PLUNC family proteins and heparin-binding proteins. The egg also possesses additional bioactive proteins with direct anti-cancerous and antioxidant activities or whose biochemical properties are currently used to develop diagnostic tools and strategies for targeted therapy. Finally, this chapter also reports some emerging functions in tissue remodeling/wound healing and proposes some relevant bioactive candidates and research fields that would be interesting to investigate further.
Collapse
Affiliation(s)
- J. Gautron
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | - N. Guyot
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | - A. Brionne
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | | |
Collapse
|
28
|
Bain MM, Zheng J, Zigler M, Whenham N, Quinlan-Pluck F, Jones AC, Roberts M, Icken W, Olori VE, Dunn IC. Cuticle deposition improves the biosecurity of eggs through the laying cycle and can be measured on hatching eggs without compromising embryonic development. Poult Sci 2019; 98:1775-1784. [DOI: 10.3382/ps/pey528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
|
29
|
Khan S, Wu SB, Roberts J. RNA-sequencing analysis of shell gland shows differences in gene expression profile at two time-points of eggshell formation in laying chickens. BMC Genomics 2019; 20:89. [PMID: 30683053 PMCID: PMC6347800 DOI: 10.1186/s12864-019-5460-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/17/2019] [Indexed: 01/18/2023] Open
Abstract
Background Eggshell formation takes place in the shell gland of the oviduct of laying hens. The eggshell is rich in calcium and various glycoproteins synthesised in the shell gland. Although studies have identified genes involved in eggshell formation, little is known about the regulation of genes in the shell gland particularly in a temporal manner. The current study investigated the global gene expression profile of the shell gland of laying hens at different time-points of eggshell formation using RNA-Sequencing (RNA-Seq) analysis. Results Gene expression profiles of the shell gland tissue at 5 and 15 h time-points were clearly distinct from each other. Out of the 14,334 genes assessed for differential expression in the shell gland tissue, 278 genes were significantly down-regulated (log2 fold change > 1.5; FDR < 0.05) and 413 genes were significantly up-regulated at 15 h relative to the 5 h time-point of eggshell formation. The down-regulated genes annotated to Gene Ontology (GO) terms showed anion transport, synaptic vesicle localisation, organic anion transport, secretion and signal release as the five most enriched terms. The up-regulated gene annotation showed regulation of phospholipase activities, alanine transport, transmembrane receptor protein tyrosine kinase signalling pathway, regulation of blood vessels diameter and 3, 5-cyclic nucleotide phosphodiesterase activity as the five most enriched GO terms. The putative functions of genes identified ranged from calcium binding to receptor activity. Validation of RNA-Seq results through qPCR showed a positive correlation. Conclusions The down-regulated genes at 15 h relative to the 5 h time-point were most likely involved in the transport of molecules and synthesis activities, initiating the formation of the eggshell. The up-regulated genes were most likely involved in calcium transportation, as well as synthesis and secretory activities of ions and molecules, reflecting the peak stage of eggshell formation. The findings in the current study improve our understanding of eggshell formation at the molecular level and provide a foundation for further studies of mRNA and possibly microRNA regulation involved in eggshell formation in the shell gland of laying hens. Electronic supplementary material The online version of this article (10.1186/s12864-019-5460-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samiullah Khan
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia.,Present address: School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia.
| | - Juliet Roberts
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
30
|
Eggshell matrix proteins OC-116, OC-17 and OCX36 in hen's sperm storage tubules. Anim Reprod Sci 2017; 185:28-41. [DOI: 10.1016/j.anireprosci.2017.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/04/2023]
|
31
|
Socha JK, Hrabia A. Alterations in apoptotic markers and egg-specific protein gene expression in the chicken oviduct during pause in laying induced by tamoxifen. Theriogenology 2017; 105:126-134. [PMID: 28963886 DOI: 10.1016/j.theriogenology.2017.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022]
Abstract
The aim of this study was to examine the cell apoptosis, gene expression and activity of caspases 2, 3, 8 and 9, and the mRNA expression of selected egg-specific proteins in the chicken oviduct during pause in egg laying induced by tamoxifen (TMX) treatment. The experiment was carried out on Hy-Line Brown laying hens. The control birds were treated subcutaneously with vehicle (ethanol) and the experimental ones with TMX at a dose of 6 mg/kg of body weight. Hens were treated daily until a pause in egg laying occurred and sacrificed on Day 7 of the experiment. Within the oviductal wall, the highest number of apoptotic cells (TUNEL-positive) was found in the luminal epithelium and the lowest in the stroma. The administration of TMX increased the percentage of apoptotic cells in the magnum, isthmus, and shell gland as well as immunoreactivity for caspases 3 and 9. Real-time PCR analysis revealed the segment-dependent mRNA expression of caspases 2, 3, 8 and 9. Treatment of hens with TMX elevated the level of caspase-2 transcript in the infundibulum, caspases 2, 3 and 8 in the isthmus, and caspase-9 in the shell gland (P < 0.05 - P < 0.001). As shown by fluorometric method TMX caused an increase in the activity of caspases 3 and 8 in the magnum, isthmus and shell gland, and the activity of caspases 2 and 9 in the isthmus and shell gland (P < 0.05 - P < 0.01). The expression of ovalbumin, avidin and ovocleidin-116 mRNAs was decreased (P < 0.05 - P < 0.001), ovocalyxin-36 mRNA level tended to increase, and ovocalyxin-32 expression was not affected by TMX. The results obtained indicate that caspases are involved in the chicken oviduct regression during a pause in laying induced by TMX, and estrogen is involved in the regulation of examined caspase expression and activity. The changes in mRNA transcript levels of some examined egg-specific proteins after TMX treatment suggest that there is a relationship between estrogen action and the expression of these genes.
Collapse
Affiliation(s)
- Joanna K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
32
|
Wilson PW, Suther CS, Bain MM, Icken W, Jones A, Quinlan-Pluck F, Olori V, Gautron J, Dunn IC. Understanding avian egg cuticle formation in the oviduct: a study of its origin and deposition. Biol Reprod 2017; 97:39-49. [PMID: 28859284 PMCID: PMC5803769 DOI: 10.1093/biolre/iox070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 01/03/2023] Open
Abstract
The cuticle is a unique invisible oviduct secretion that protects avian eggs from bacterial penetration through gas exchange pores. Despite its importance, experimental evidence is lacking for where, when, and what is responsible for its deposition. By using knowledge about the ovulatory cycle and oviposition, we have manipulated cuticle deposition to obtain evidence on these key points. Cuticle deposition was measured using staining and spectrophotometry. Experimental evidence supports the location of cuticle deposition to be the shell gland pouch (uterus), not the vagina, and the time of deposition to be within the final hour before oviposition. Oviposition induced by arginine vasotocin or prostaglandin, the penultimate and ultimate factors for the induction of oviposition, produces an egg with no cuticle; therefore, these factors are not responsible for cuticle secretion. Conversely, oviposition induced by GNRH, which mimics the normal events of ovulation and oviposition, results in a normal cuticle. There is no evidence that cuticle deposition differs at the end of a clutch and, therefore, there is no evidence that the ovulatory surge of progesterone affects cuticle deposition. Overall, the results demonstrate that the cuticle is a specific secretion and is not merely an extension of the organic matrix of the shell. Cuticle deposition was found to be reduced by an environmental stressor, and there is no codependence of the deposition of pigment and cuticle. Defining the basic facts surrounding cuticle deposition will help reduce contamination of hen's eggs and increase understanding of the strategies birds use to protect their eggs.
Collapse
Affiliation(s)
- Peter W. Wilson
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, UK
| | - Ceara S. Suther
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Maureen M. Bain
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | | | - Anita Jones
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | - Fiona Quinlan-Pluck
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | | | - Joël Gautron
- INRA, UR83 Recherches Avicoles, Nouzilly, France
| | - Ian C. Dunn
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, UK
| |
Collapse
|
33
|
Zhang M, Wang N, Xu Q, Harlina PW, Ma M. An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36. Korean J Food Sci Anim Resour 2017; 36:769-778. [PMID: 28115888 PMCID: PMC5243961 DOI: 10.5851/kosfa.2016.36.6.769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient.
Collapse
Affiliation(s)
- Maojie Zhang
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ning Wang
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qi Xu
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Putri Widyanti Harlina
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Meihu Ma
- National and Local Joint Engineering Research Center for Egg Processing Technology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
34
|
Ahmed TAE, Suso HP, Hincke MT. In-depth comparative analysis of the chicken eggshell membrane proteome. J Proteomics 2017; 155:49-62. [PMID: 28087451 DOI: 10.1016/j.jprot.2017.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
The avian eggshell membrane (ESM) is stabilized by extensive cross-linkages, making the identification of its protein constituents technically challenging. Herein, we applied various extraction/solubilization conditions followed by proteomic analysis to characterize the protein constituents of ESM derived from the unfertilized chicken eggs. The egg white and eggshell proteomes (including previous published work) were determined and compared to ESM to identify proteins that are relatively or highly specific to ESM. Merging the results from different extraction/solubilization conditions with various proteomes allowed the identification of 472, 225, and 488 proteins in the ESM, egg white, and eggshell proteomes, respectively. Of these, 163 and 124 proteins were relatively or highly specific to ESM, respectively. GO term analysis of the common proteins and ESM unique proteins generated 8 and 9 significantly enriched functional groups, respectively. Different families of proteins that were identified as ESM-specific included collagens, CREMPs, histones, AvBDs, lysyl oxidase-like 2 (LOXL2), and ovocalyxin-36 (OCX36). These proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. Overall, our results highlight the structural nature of the ESM constituents that are relevant to various biomedical applications, such as wound healing. BIOLOGICAL SIGNIFICANCE The eggshell membranes (ESM) are a highly resilient double-layered fibrous meshwork that is secreted while the forming egg transits a specialized oviduct segment, the white isthmus. The ESM protects against pathogen invasion and provides a platform for nucleation of the calcitic eggshell (ES). ESM is greatly stabilized by the extensive desmosine, isodesmosine and disulfide cross-linkages which make the identification of its protein constituents by standard proteomic approaches technically challenging. Comparative proteomic analyses of ESM, egg white, and ES proteins showed proteins groups that are relatively or highly specific to ESM. These groups of proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. These features are essential for eggshell quality and for the prevention of pathogen invasion which reinforce food safety of the table egg.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
35
|
Abstract
Salmonella Enteritidis (SE) is the predominant cause of the food-borne salmonellosis in humans, in part because this serotype has the unique ability to contaminate chicken eggs without causing discernible illness in the infected birds. Attempts to develop effective vaccines and eradicate SE from chickens are undermined by significant limitations in our current understanding of the genetic basis of pathogenesis of SE in this reservoir host. In this chapter, we summarize the infection kinetics and provide an overview of the current understanding of genetic factors underlying SE infection in the chicken host. We also discuss the important knowledge gaps that, if addressed, will improve our understanding of the complex biology of SE in young chickens and in egg laying hens.
Collapse
|
36
|
Liu L, Fan Y, Zhang Z, Yang C, Geng T, Gong D, Hou Z, Ning Z. Analysis of gene expression and regulation implicates C2H9orf152 has an important role in calcium metabolism and chicken reproduction. Anim Reprod Sci 2017; 176:1-10. [PMID: 27889102 DOI: 10.1016/j.anireprosci.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/14/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
The reproductive system of a female bird is responsible for egg production. The genes highly expressed in oviduct are potentially important. From RNA-seq analysis, C2H9orf152 (an orthologous gene of human C9orf152) was identified as highly expressed in chicken uterus. To infer its function, we obtained and characterized its complete cDNA sequence, determined its spatiotemporal expression, and probed its transcription factor(s) through pharmaceutical approach. Data showed that the complete cDNA sequence was 1468bp long with a 789bp of open reading frame. Compared to other tested tissues, this gene was highly expressed in the oviduct and liver tissues, especially uterus. Its expression in uterus was gradually increased during developmental and reproductive periods, which verified its involvement in the growth and maturity of reproductive system. In contrast, its expression was not significant different between active and quiescent uterus, suggesting the role of C2H9orf152 in reproduction is likely due to its long-term effect. Moreover, based on its 5'-flanking sequence, Foxd3 and Hnf4a were predicted as transcription factors of C2H9orf152. Using berberine or retinoic acid (which can regulate the activities of Hnf4a and Foxd3, respectively), we demonstrated suppression of C2H9orf152 by the chemicals in chicken primary hepatocytes. As retinoic acid regulates calcium metabolism, and Hnf4a is a key nuclear factor to liver, these findings suggest that C2H9orf152 is involved in liver function and calcium metabolism of reproductive system. In conclusion, C2H9orf152 may have a long-term effect on chicken reproductive system by regulating calcium metabolism, suggesting this gene has an important implication in the improvement of egg production and eggshell quality.
Collapse
Affiliation(s)
- Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| | - Yanfeng Fan
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China.
| | - Zhenhe Zhang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| | - Chan Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Yoshimura Y, Barua A. Female Reproductive System and Immunology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:33-57. [PMID: 28980228 DOI: 10.1007/978-981-10-3975-1_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Health of the reproductive organs is essential for formation and production of high quality and hygienic eggs. It is of importance to review the structures and functions of female reproductive system for better understanding of the mechanism by which the eggs are formed. The unique functions of ovarian cells for follicular growth and differentiation as well as steroidogenesis and oocyte maturation are regulated by gonadotropins and gonadal steroids. The oviduct is responsible for egg formation, while the unique function to store sperms for a prolonged period takes place in the specific tissue of this organ. The unique innate and adaptive immuno-defense systems that play essential role to prevent infection are developed in the ovary and oviduct. Toll-like receptors (TLRs) that recognize the molecular pattern of microbes and initiate the immunoresponse are expressed in those organs. Avian β-defensins (AvBDs), a member of antimicrobial peptides, are synthesized by the ovarian and oviductal cells. Challenge of those cells by TLR ligands upregulates the expression of proinflammatory cytokines, which in turn stimulate the expression of AvBDs. The adaptive immune system in the ovary and oviduct is also unique, since the migration of lymphocytes is enhanced by estrogens. In contrast to the development of immuno-defense system, spontaneous ovarian cancer and uterine fibroids appear more frequently in chickens than in mammals, and thus chickens could be used as a model for studying these diseases. Thus the avian reproductive organs have unique functions not only for egg formation but also for the immuno-defense system, which is essential for prevention of infection and production of hygienic eggs.
Collapse
Affiliation(s)
- Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Animesh Barua
- Departments of Pharmacology, Obstetrics & Gynecology and Pathology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
38
|
Identification of TENP as the Gene Encoding Chicken Egg White Ovoglobulin G2 and Demonstration of Its High Genetic Variability in Chickens. PLoS One 2016; 11:e0159571. [PMID: 27472057 PMCID: PMC4966965 DOI: 10.1371/journal.pone.0159571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Ovoglobulin G2 (G2) has long been known as a major protein constituent of chicken egg white. However, little is known about the biochemical properties and biological functions of G2 because the gene encoding G2 has not been identified. Therefore, the identification of the gene encoding G2 and an analysis of its genetic variability is an important step toward the goal of understanding the biological functions of the G2 protein and its utility in poultry production. To identify and characterize the gene encoding G2, we separated G2 from egg white using electrophoresis on a non-denaturing polyacrylamide gel. Two polymorphic forms of G2 protein (G2A and G2B), with different mobilities (fast and slow respectively), were detected by staining. The protein band corresponding to G2B was electro-eluted from the native gel, re-electrophoresed under denaturing conditions and its N-terminal sequence was determined by Edman degradation following transfer onto a membrane. Sequencing of the 47 kDa G2B band revealed it to be identical to TENP (transiently expressed in neural precursors), also known as BPI fold-containing family B, member 2 (BPIFB2), a protein with strong homology to a bacterial permeability-increasing protein family (BPI) in mammals. Full-length chicken TENP cDNA sequences were determined for 78 individuals across 29 chicken breeds, lines, and populations, and consequently eleven non-synonymous substitutions were detected in the coding region. Of the eleven non-synonymous substitutions, A329G leading to Arg110Gln was completely associated with the noted differential electrophoretic mobility of G2. Specifically G2B, with a slower mobility is encoded by A329 (Arg110), whereas G2A, with a faster mobility, is encoded by G329 (Gln110). The sequence data, derived from the coding region, also revealed that the gene encoding G2 demonstrates significant genetic variability across different chicken breeds/lines/populations. These variants, and how they correlate with egg white properties, may allow us to understand further G2’s functions.
Collapse
|
39
|
Arabidopsis LBP/BPI related-1 and -2 bind to LPS directly and regulate PR1 expression. Sci Rep 2016; 6:27527. [PMID: 27273538 PMCID: PMC4897604 DOI: 10.1038/srep27527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 12/30/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria and acts as a pathogen-associated molecular pattern that triggers immune responses in both plants and animals. LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI), which bind to LPS and play important roles in immunity of mammals, have been well studied. However, the molecule contributing to LPS binding in plants is mostly unknown. The Arabidopsis genome carries two genes encoding LBP/BPI-related proteins which we designated as AtLBP/BPI related-1 (AtLBR-1) and AtLBP/BPI related-2 (AtLBR-2). We found that their N-terminal domains were co-purified with cell wall-derived LPS when expressed in E. coli. Since this finding implied the direct binding of AtLBRs to LPS, we also confirmed binding by using LPS-free AtLBRs and purified LPS. AtLBRs directly bind to both rough and smooth types of LPS. We also demonstrated that LPS-treated atlbr mutant Arabidopsis exhibit a significant delay of induction of defence-related gene pathogenesis-related 1 (PR1) but no other PR genes. Furthermore, LPS-treated atlbr mutants showed defects in reactive oxygen species (ROS) generation. These results demonstrate that, as well as LBP and BPI of mammals, AtLBRs also play an important role in the LPS-induced immune response of plants.
Collapse
|
40
|
Škanta F, Procházková P, Roubalová R, Dvořák J, Bilej M. LBP/BPI homologue in Eisenia andrei earthworms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:1-6. [PMID: 26297397 DOI: 10.1016/j.dci.2015.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 05/17/2023]
Abstract
LBP/BPIs are pattern recognition receptors that are often present in vertebrates and in invertebrates, and they play a defense role against pathogens. We have identified 1698 bp cDNA sequence from the Eisenia andrei earthworm with predicted amino acid sequence that shares homology with the LBP/BPI family (EaLBP/BPI). Sequence analysis of EaLBP/BPI proved the existence of two conserved domains with the potential ability to bind LPS. The predicted molecular mass of the EaLBP/BPI protein is 53.5 kDa, and its high basicity (pI 9.8) is caused by its high arginine content. Constitutive transcription of the Ealbp/bpi gene was shown in all tested tissues, with the highest level in coelomocytes and seminal vesicles; the lowest level was detected in the intestine. On the contrary, another earthworm LPS-binding molecule CCF (coelomic cytolytic factor) was expressed only in the intestine and coelomocytes. In E. andrei coelomocytes, the transcription of Ealbp/bpi gene was up-regulated in response to bacterial stimulation, reaching a maximum at 8 and 16 h post stimulation with Bacillus subtilis and Escherichia coli, respectively.
Collapse
Affiliation(s)
- František Škanta
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Petra Procházková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, Prague 4, 142 20, Czech Republic.
| | - Radka Roubalová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Jiří Dvořák
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, Prague 4, 142 20, Czech Republic
| |
Collapse
|
41
|
Cordeiro CM, Hincke MT. Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. J Proteomics 2016; 130:11-25. [DOI: 10.1016/j.jprot.2015.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
|
42
|
Mann K. The calcified eggshell matrix proteome of a songbird, the zebra finch (Taeniopygia guttata). Proteome Sci 2015; 13:29. [PMID: 26628892 PMCID: PMC4666066 DOI: 10.1186/s12953-015-0086-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022] Open
Abstract
Background The proteins of avian eggshell organic matrices are thought to control the mineralization of the eggshell in the shell gland (uterus). Proteomic analysis of such matrices identified many candidates for such a role. However, all matrices analyzed to date come from species of one avian family, the Phasianidae. To analyze the conservation of such proteins throughout the entire class Aves and to possibly identify a common protein toolkit enabling eggshell mineralization, it is important to analyze eggshell matrices from other avian families. Because mass spectrometry-based in-depth proteomic analysis still depends on sequence databases as comprehensive and accurate as possible, the obvious choice for a first such comparative study was the eggshell matrix of zebra finch, the genome sequence of which is the only songbird genome published to date. Results The zebra finch eggshell matrix comprised 475 accepted protein identifications. Most of these proteins (84 %) were previously identified in species of the Phasianidae family (chicken, turkey, quail). This also included most of the so-called eggshell-specific proteins, the ovocleidins and ovocalyxins. Ovocleidin-116 was the second most abundant protein in the zebra finch eggshell matrix. Major proteins also included ovocalyxin-32 and -36. The sequence of ovocleidin-17 was not contained in the sequence database, but a presumptive homolog was tentatively identified by N-terminal sequence analysis of a prominent 17 kDa band. The major proteins also included three proteins similar to ovalbumin, the most abundant of which was identified as ovalbumin with the aid of two characteristic phosphorylation sites. Several other proteins identified in Phasianidae eggshell matrices were not identified. When the zebra finch sequence database contained a sequence similar to a missing phasianid protein it may be assumed that the protein is missing from the matrix. This applied to ovocalyxin-21/gastrokine-1, a major protein of the chicken eggshell matrix, to EDIL3 and to lactadherin. In other cases failure to identify a particular protein may be due to the absence of this protein from the sequence database, highlighting the importance of better, more comprehensive sequence databases. Conclusions The results indicate that ovocleidin-116, ovocleidin-17, ovocalyxin-36 and ovocalyxin-32 may be universal avian eggshell-mineralizing proteins. All the more important it is to elucidate the role of these proteins at the molecular level. This cannot be achieved by proteomic studies but will need application of other methods, such as atomic force microscopy or gene knockouts. However, it will also be important to analyze more eggshell matrices of different avian families to unequivocally identify other mineralization toolkit proteins apart from ovocleidins and ovocalyxins. Progress in this respect will depend critically on the availability of more, and more comprehensive, sequence databases. The development of faster and cheaper nucleotide sequencing methods has considerably accelerated genome and transcriptome sequencing, but this seems to concur with frequent publication of incomplete and fragmented sequence databases. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0086-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152 Martinsried, Am Klopferspitz 18 Germany
| |
Collapse
|
43
|
Makkar S, Liyanage R, Kannan L, Packialakshmi B, Lay JO, Rath NC. Chicken Egg Shell Membrane Associated Proteins and Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9888-9898. [PMID: 26485361 DOI: 10.1021/acs.jafc.5b04266] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the egg shell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high-performance reverse phase liquid chromatographic separation (HPLC), and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCl extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol-soluble fraction contained several clusterin peptides and defensins, particularly, two isoforms of gallin. The ratios of the two isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several antimicrobial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry and improve their disease resistance.
Collapse
Affiliation(s)
- Sarbjeet Makkar
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA; ‡Department of Poultry Science; #State Wide Mass Spectrometry Facility; and ⊥Cell & Molecular Biology Program, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Rohana Liyanage
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA; ‡Department of Poultry Science; #State Wide Mass Spectrometry Facility; and ⊥Cell & Molecular Biology Program, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Lakshmi Kannan
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA; ‡Department of Poultry Science; #State Wide Mass Spectrometry Facility; and ⊥Cell & Molecular Biology Program, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Balamurugan Packialakshmi
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA; ‡Department of Poultry Science; #State Wide Mass Spectrometry Facility; and ⊥Cell & Molecular Biology Program, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Jack O Lay
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA; ‡Department of Poultry Science; #State Wide Mass Spectrometry Facility; and ⊥Cell & Molecular Biology Program, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Narayan C Rath
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA; ‡Department of Poultry Science; #State Wide Mass Spectrometry Facility; and ⊥Cell & Molecular Biology Program, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
44
|
Mann K, Mann M. Proteomic analysis of quail calcified eggshell matrix: a comparison to chicken and turkey eggshell proteomes. Proteome Sci 2015; 13:22. [PMID: 26312056 PMCID: PMC4550075 DOI: 10.1186/s12953-015-0078-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Background Eggshell mineralization in commercially important species such as chicken, turkey or quail is of interest as a general model of calcium carbonate biomineralization. Knowledge of proteins and molecular mechanisms in eggshell assembly may also pave the way to manipulation of thickness of the calcified layer or other features. Comparison of eggshell matrix proteomes of different species may contribute to a better understanding of the mineralization process. The recent publication of the quail genome sequence now enables the proteomic analysis of the quail shell matrix and this comparison with those of chicken and turkey. Results The quail eggshell proteome comprised 622 identified proteins, 311 of which were shared with chicken and turkey eggshell proteomes. Forty-eight major proteins (iBAQ-derived abundance higher than 0.1 % of total identified proteome) together covered 94 % of total proteome mass. Fifteen of these are also among the most abundant proteins in chicken and turkey eggshell matrix. Only three proteins with a percentage higher than 1.0 % of the total had not previously been identified as eggshell matrix proteins. These were an uncharacterized member of the latexin family, an uncharacterized protease inhibitor containing a Kunitz domain, and gastric intrinsic factor. The most abundant proteins were ovocleidin-116, ovalbumin and ovocalyxin-36 representing approximately 31, 13 and 8 % of the total identified proteome, respectively. The major phosphoproteins were ovocleidin-116 and osteopontin. While osteopontin phosphorylation sites were predominantly conserved between chicken and quail sequences, conservation was less in ovocleidin-116. Conclusions Ovocleidin-116 and ovocalyxin-36 are among the most abundant eggshell matrix proteins in all three species of the family Phasianidae analyzed so far, indicating that their presently unknown function is essential for eggshell mineralization. Evidence for other chicken eggshell-specific proteins in quail was inconclusive. Therefore measurement of additional eggshell proteomes, especially from species of different families and preferentially from outside the order Galliformes, will be necessary. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0078-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
45
|
Abstract
Sepia officinalis egg protection is ensured by a complex capsule produced by the female accessory genital glands and the ink bag. Our study is focused on the proteins constituting the main egg case. De novo transcriptomes from female genital glands provided essential databases for protein identification. A proteomic approach in SDS-PAGE coupled with MS unveiled a new egg case protein family: SepECPs, for Sepia officinalisEgg Case Proteins. N-glycosylation was demonstrated by PAS staining SDS-PAGE gels. These glycoproteins are mainly produced in the main nidamental glands. SepECPs share high sequence homology, especially in the signal peptide and the three cysteine-rich domains. SepECPs have a high number of cysteines, with conserved motifs involved in 3D-structure. SDS-PAGE showed that SepECPs could form dimers; this result was confirmed by TEM observations, which also revealed a protein network. This network is similar to the capsule network, and it associates these structural proteins with polysaccharides, melanin and bacteria to form a tight mesh. Its hardness and elasticity provide physical protection to the embryo. In addition, SepECPs also have bacteriostatic antimicrobial activity on GRAM- bacteria. By observing the SepECP / Vibrio aestuarianus complex in SEM, we demonstrated the ability of these proteins to agglomerate bacteria and thus inhibit their growth. These original proteins identified from the outer egg case ensure the survival of the species by providing physical and chemical protection to the embryos released in the environment without any maternal protection.
Collapse
|
46
|
Neunzehn J, Szuwart T, Wiesmann HP. Eggshells as natural calcium carbonate source in combination with hyaluronan as beneficial additives for bone graft materials, an in vitro study. Head Face Med 2015; 11:12. [PMID: 25885793 PMCID: PMC4436844 DOI: 10.1186/s13005-015-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/08/2015] [Indexed: 12/16/2022] Open
Abstract
Introduction In bone metabolism and the formation especially in bone substitution, calcium as basic module is of high importance. Different studies have shown that the use of eggshells as a bone substitute material is a promising and inexpensive alternative. In this in vitro study, the effects of eggshell granulate and calcium carbonate towards primary bovine osteoblasts were investigated. Hyaluronan (HA) was used as artificial extracellular matrix (ECM) for the used cells to facilitate proliferation and differentiation and to mimic the physiological requirements given by the egg in vivo. Methods Hyaluronan, eggshells, a combination of hyaluronan and eggshells and CaCO3 were applied to the cells as additive to the used standard medium (modified High Growth Enhancement Medium) in a concentration of 0,1 g/l. The effect of the additives in the culture medium was examined by proliferation tests, immunohistochemical staining (anti-collagen type I, anti-osteopontin, anti-osteonectin and anti-osteocalcin) and kinetic oxygen measurements. Results Our investigations revealed that all investigated additives show beneficial effect on osteoblast activity. Cell proliferation, differentiation and the metabolic activity of the differentiated cells could be influenced positively. Especially in the case cell cultures treated with eggshells the strongest effects were detected, while for the hyaluronan compared with eggshells, a weaker increase in cell activity was observed. Conclusion In summary, it can be stated that the investigated components come into consideration as beneficial supplements for bone graft materials especially for maxillo facial surgery application.
Collapse
Affiliation(s)
- Jörg Neunzehn
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069, Dresden, Germany.
| | - Thomas Szuwart
- Department of Cranio-Maxillofacial Surgery, University Hospital of Muenster, Research Group Vascular Biology of Oral Structures (VABOS), Waldeyerstr 30, Muenster, 48149, Germany.
| | - Hans-Peter Wiesmann
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069, Dresden, Germany.
| |
Collapse
|
47
|
Yoshimura Y. Avian β-defensins expression for the innate immune system in hen reproductive organs. Poult Sci 2015; 94:804-9. [DOI: 10.3382/ps/peu021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
48
|
Marie P, Labas V, Brionne A, Harichaux G, Hennequet-Antier C, Nys Y, Gautron J. Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization. J Proteomics 2014; 113:178-93. [PMID: 25284052 DOI: 10.1016/j.jprot.2014.09.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED Gallus gallus eggshell is a bioceramic composed of 95% calcium carbonate in calcitic form and 3.5% extracellular organic matrix. The calcification process occurs in the uterine fluid where biomineralization follows a temporal sequence corresponding to the initiation, growth and termination stages of crystal growth. Eggshell texture and its ultrastructure are regulated by organic matrix proteins, which control mineralization process and influence the eggshell biomechanical properties. We performed proteomic qualitative analyses and identified 308 uterine fluid proteins. Quantitative analysis showed differential abundances at the three stages of shell biomineralization for 64 of them. Cluster analysis revealed a first group of proteins related to mineralization and mainly present at the onset of calcification including OVOT, OVAL, OC-17, and two novel calcium binding proteins (EDIL3, MFGE8). A second group of proteins mainly present at the initiation and termination of shell formation was potentially involved in the regulation of the activity of the uterine fluid proteins (e.g. molecular chaperones, folding proteins, proteases and protease inhibitors). OCX21, a protein highly concentrated in the fluid and the shell, belongs to this group. A third group equally represented at all stages of shell mineralization corresponded to antibacterial proteins that could protect the forming egg against microbial invasion. BIOLOGICAL SIGNIFICANCE The calcitic avian eggshell protects the developing embryo and, moreover, ensures that the nutritious table egg remains free of pathogens. The eggshell is formed by nucleation upon a fibrous scaffold (the eggshell membranes) followed by an interaction between the growing mineral crystals and the shell organic matrix. This interaction leads to a highly ordered shell microstructure and texture which contribute to its exceptional mechanical properties. Shell mineralization occurs in three distinct phases of calcification (initiation, growth and termination), which are associated with distinct populations of matrix proteins that are secreted into the acellular uterine fluid as modulators of the process. The recent development of high-throughput methods has led to the identification of many proteins in the shell, but little is known concerning their role in shell formation. In order to determine precisely the importance of particular proteins relative to eggshell mineralization, this project used qualitative and quantitative proteomics of the uterine fluid constituents, coupled with bioinformatic analysis, to predict the functional role of proteins secreted at each of the three main stages of shell calcification. Besides its relevance to food production and to hen reproduction, eggshell calcification is furthermore a relevant model for studying calcium carbonate biomineralization on a two-dimensional membrane support. Better understanding of this process will provide insight into the fabrication of ceramics at ambient pressure and temperature.
Collapse
Affiliation(s)
- Pauline Marie
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Valérie Labas
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Aurélien Brionne
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Grégoire Harichaux
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | | | - Yves Nys
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Joël Gautron
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France.
| |
Collapse
|
49
|
Baláž M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater 2014; 10:3827-43. [PMID: 24681370 DOI: 10.1016/j.actbio.2014.03.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 01/13/2023]
Abstract
Eggshell membrane (ESM) is a unique biomaterial, which is generally considered as waste. However, it has extraordinary properties which can be utilized in various fields and its potential applications are therefore now being widely studied. The first part of this review focuses on the chemical composition and morphology of ESM. The main areas of ESM application are discussed in the second part. These applications include its utilization as a biotemplate for the synthesis of nanoparticles; as a sorbent of heavy metals, organics, dyes, sulfonates and fluorides; as the main component of biosensors; in medicine; and various other applications. For each area of interest, a detailed literature survey is given.
Collapse
|
50
|
Liu Z, Zheng Q, Zhang X, Lu L. Microarray analysis of genes involved with shell strength in layer shell gland at the early stage of active calcification. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:609-24. [PMID: 25049830 PMCID: PMC4093333 DOI: 10.5713/ajas.2012.12398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/08/2012] [Accepted: 09/15/2012] [Indexed: 01/13/2023]
Abstract
The objective of this study was to get a comprehensive understanding of how genes in chicken shell gland modulate eggshell strength at the early stage of active calcification. Four 32-week old of purebred Xianju hens with consistent high or low shell breakage strength were grouped into two pairs. Using Affymetrix Chicken Array, a whole-transcriptome analysis was performed on hen’s shell gland at 9 h post oviposition. Gene ontology enrichment analysis for differentially expressed (DE) transcripts was performed using the web-based GOEAST, and the validation of DE-transcripts was tested by qRT-PCR. 1,195 DE-transcripts, corresponding to 941 unique genes were identified in hens with strong eggshell compared to weak shell hens. According to gene ontology annotations, there are 77 DE-transcripts encoding ion transporters and secreted extracellular matrix proteins, and at least 26 DE-transcripts related to carbohydrate metabolism or post-translation glycosylation modification; furthermore, there are 88 signaling DE-transcripts. GO term enrichment analysis suggests that some DE-transcripts mediate reproductive hormones or neurotransmitters to affect eggshell quality through a complex suite of biophysical processes. These results reveal some candidate genes involved with eggshell strength at the early stage of active calcification which may facilitate our understanding of regulating mechanisms of eggshell quality.
Collapse
Affiliation(s)
- Zhangguo Liu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Qi Zheng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Xueyu Zhang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Lizhi Lu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| |
Collapse
|