1
|
Arisumi S, Fujiwara T, Yasumoto K, Tsutsui T, Saiwai H, Kobayakawa K, Okada S, Zhao H, Nakashima Y. Metallothionein 3 promotes osteoclast differentiation and survival by regulating the intracellular Zn 2+ concentration and NRF2 pathway. Cell Death Discov 2023; 9:436. [PMID: 38040717 PMCID: PMC10692135 DOI: 10.1038/s41420-023-01729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In osteoclastogenesis, the metabolism of metal ions plays an essential role in controlling reactive oxygen species (ROS) production, mitochondrial biogenesis, and survival, and differentiation. However, the mechanism regulating metal ions during osteoclast differentiation remains unclear. The metal-binding protein metallothionein (MT) detoxifies heavy metals, maintains metal ion homeostasis, especially zinc, and manages cellular redox levels. We carried out tests using murine osteoclast precursors to examine the function of MT in osteoclastogenesis and evaluated their potential as targets for future osteoporosis treatments. MT genes were significantly upregulated upon differentiation from osteoclast precursors to mature osteoclasts in response to receptor activators of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation, and MT3 expression was particularly pronounced in mature osteoclasts among MT genes. The knockdown of MT3 in osteoclast precursors demonstrated a remarkable inhibition of differentiation into mature osteoclasts. In preosteoclasts, MT3 knockdown suppressed the activity of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways upon RANKL stimulation, leading to affect cell survival through elevated cleaved Caspase 3 and poly (ADP-ribose) polymerase (PARP) levels. Additionally, ROS levels were decreased, and nuclear factor erythroid 2-related factor 2 (NRF2) (a suppressor of ROS) and the downstream antioxidant proteins, such as catalase (CAT) and heme oxygenase 1 (HO-1), were more highly expressed in the MT3 preosteoclast knockdowns. mitochondrial ROS, which is involved in mitochondrial biogenesis and the production of reactive oxygen species, were similarly decreased because cAMP response element-binding (CREB) and peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) were less activated due to MT3 depletion. Thus, by modulating ROS through the NRF2 pathway, MT3 plays a crucial role in regulating osteoclast differentiation and survival, acting as a metabolic modulator of intracellular zinc ions.
Collapse
Affiliation(s)
- Shinkichi Arisumi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keitaro Yasumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Osaka University, Suita, Japan
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA, USA
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
4
|
Filiberti S, Russo M, Lonardi S, Bugatti M, Vermi W, Tournier C, Giurisato E. Self-Renewal of Macrophages: Tumor-Released Factors and Signaling Pathways. Biomedicines 2022; 10:2709. [PMID: 36359228 PMCID: PMC9687165 DOI: 10.3390/biomedicines10112709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 04/11/2024] Open
Abstract
Macrophages are the most abundant immune cells of the tumor microenvironment (TME) and have multiple important functions in cancer. During tumor growth, both tissue-resident macrophages and newly recruited monocyte-derived macrophages can give rise to tumor-associated macrophages (TAMs), which have been associated with poor prognosis in most cancers. Compelling evidence indicate that the high degree of plasticity of macrophages and their ability to self-renew majorly impact tumor progression and resistance to therapy. In addition, the microenvironmental factors largely affect the metabolism of macrophages and may have a major influence on TAMs proliferation and subsets functions. Thus, understanding the signaling pathways regulating TAMs self-renewal capacity may help to identify promising targets for the development of novel anticancer agents. In this review, we focus on the environmental factors that promote the capacity of macrophages to self-renew and the molecular mechanisms that govern TAMs proliferation. We also highlight the impact of tumor-derived factors on macrophages metabolism and how distinct metabolic pathways affect macrophage self-renewal.
Collapse
Affiliation(s)
- Serena Filiberti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Mariapia Russo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
5
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
6
|
Huong LT, Gal M, Kim O, Tran PT, Nhiem NX, Kiem PV, Minh CV, Dang NH, Lee JH. 23-Hydroxyursolic acid from Viburnum lutescens inhibits osteoclast differentiation in vitro and lipopolysaccharide-induced bone loss in vivo by suppressing c-Fos and NF-κB signalling. Int Immunopharmacol 2022; 111:109038. [PMID: 35932612 DOI: 10.1016/j.intimp.2022.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Bone homeostasis is maintained by a combination of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Excessive osteoclast activity is linked to several bone-related disorders, including osteoporosis and rheumatoid arthritis. Pharmacological therapy might have a number of adverse effects. Therefore, the development of natural anti-osteoclastogenic drugs with greater efficacy and fewer adverse effects is desirable. In this study, the anti-osteoclastogenic effects of 23-hydroxyursolic acid (HUA), a triterpene isolated from Viburnum lutescens, were investigated in vitro and in vivo. HUA significantly inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced mature osteoclast differentiation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and F-actin ring formation. It also inhibited the expression of osteoclast-specific marker genes such OSCAR, MMP-9, TRAP, DC-STAMP, and CtsK, as well as transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) in response to RANKL. Mice orally administered with HUA (25 and 50 mg/kg) exhibited significant protection against bone loss and osteoclast formation induced by lipopolysaccharide (LPS). HUA suppressed RANKL-induced nuclear factor kappa B (NF-κB) activation and phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). These results suggest that HUA attenuates osteoclast formation in vitro and in vivo by suppressing the RANKL-mediated AP1, NF-κB, and NFATc1 pathways. Therefore, HUA may be a lead compound for the prevention or treatment of osteolytic bone disorders.
Collapse
Affiliation(s)
- Le Thanh Huong
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Okwha Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Phuong Thao Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Hai Dang
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea.
| |
Collapse
|
7
|
Kwak SC, Cheon YH, Lee CH, Jun HY, Yoon KH, Lee MS, Kim JY. Grape Seed Proanthocyanidin Extract Prevents Bone Loss via Regulation of Osteoclast Differentiation, Apoptosis, and Proliferation. Nutrients 2020; 12:nu12103164. [PMID: 33081167 PMCID: PMC7602819 DOI: 10.3390/nu12103164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Dietary procyanidin has been shown to be an important bioactive component that regulates various pharmacological activities to maintain metabolic homeostasis. In particular, grape seed proanthocyanidin extract (GSPE) is a commercially available medicine for the treatment of venous and lymphatic dysfunction. This study aimed to investigate whether GSPE protects against lipopolysaccharide (LPS)-induced bone loss in vivo and the related mechanism of action in vitro. The administration of GSPE restored the inflammatory bone loss phenotype stimulated by acute systemic injection of LPS in vivo. GSPE strongly suppressed receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and bone resorption activity of mature osteoclasts by decreasing the RANKL-induced nuclear factor-κB transcription activity. GSPE mediates this effect through decreased phosphorylation and degradation of NF-κB inhibitor (IκB) by IκB kinaseβ, subsequently inhibiting proto-oncogene cellular Fos and nuclear factor of activated T cells. Additionally, GSPE promotes osteoclast proliferation by increasing the phosphorylation of components of the Akt and mitogen-activated protein kinase signaling pathways and it also inhibits apoptosis by decreasing the activity of caspase-8, caspase-9, and caspase-3, as corroborated by a decrease in the Terminal deoxynucleotidyl transferase dUTP nick end labeling -positive cells. Our study suggests a direct effect of GSPE on the proliferation, differentiation, and apoptosis of osteoclasts and reveals the mechanism responsible for the therapeutic potential of GSPE in osteoclast-associated bone metabolism disease.
Collapse
Affiliation(s)
- Sung Chul Kwak
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan 54538, Korea;
| | - Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan 54538, Korea
| | - Hong Young Jun
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea; (H.Y.J.); (K.-H.Y.)
| | - Kwon-Ha Yoon
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea; (H.Y.J.); (K.-H.Y.)
- Department of Radiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan 54538, Korea
- Correspondence: (M.S.L.); (J.-Y.K.); Tel.: +82-63-859-2661 (M.S.L.); +82-63-850-6088 (J.-Y.K.)
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
- Correspondence: (M.S.L.); (J.-Y.K.); Tel.: +82-63-859-2661 (M.S.L.); +82-63-850-6088 (J.-Y.K.)
| |
Collapse
|
8
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
9
|
3-Hydroxyolean-12-en-27-oic Acids Inhibit RANKL-Induced Osteoclastogenesis in Vitro and Inflammation-Induced Bone Loss in Vivo. Int J Mol Sci 2020; 21:ijms21155240. [PMID: 32718089 PMCID: PMC7432734 DOI: 10.3390/ijms21155240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Olean-12-en-27-oic acids possess a variety of pharmacological effects. However, their effects and underlying mechanisms on osteoclastogenesis remain unclear. This study aimed to investigate the anti-osteoclastogenic effects of five olean-12-en-27-oic acid derivatives including 3α,23-isopropylidenedioxyolean-12-en-27-oic acid (AR-1), 3-oxoolean-12-en-27-oic acid (AR-2), 3α-hydroxyolean-12-en-27-oic acid (AR-3), 23-hydroxy-3-oxoolean-12-en-27-oic acid (AR-4), and aceriphyllic acid A (AR-5). Among the five olean-12-en-27-oic acid derivatives, 3-hydroxyolean-12-en-27-oic acid derivatives, AR-3 and AR-5, significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced mature osteoclast formation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, F-actin ring formation, and mineral resorption activity. AR-3 and AR-5 decreased RANKL-induced expression levels of osteoclast-specific marker genes such as c-Src, TRAP, and cathepsin K (CtsK) as well as c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Mice treated with either AR-3 or AR-5 showed significant protection of the mice from lipopolysaccharide (LPS)-induced bone destruction and osteoclast formation. In particular, AR-5 suppressed RANKL-induced phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). The results suggest that AR-3 and AR-5 attenuate osteoclast formation in vitro and in vivo by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and could potentially be lead compounds for the prevention or treatment of osteolytic bone diseases.
Collapse
|
10
|
Identification of anti-osteoclastogenic compounds from Cleistocalyx operculatus flower buds and their effects on RANKL-induced osteoclastogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Tran PT, Dang NH, Kim O, Van Cuong P, Dat NT, Hwangbo C, Van Minh C, Lee JH. Ethanol extract of Polyscias fruticosa leaves suppresses RANKL-mediated osteoclastogenesis in vitro and LPS-induced bone loss in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152908. [PMID: 30981187 DOI: 10.1016/j.phymed.2019.152908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many bone-related diseases such as osteoporosis and rheumatoid arthritis are commonly associated with the excessive activity of osteoclasts. Polyscias fruticosa has been used as traditional medicine for the treatment of ischemia and inflammation and also eaten as a salad. However, its effect on the bone related diseases has not been investigated yet. PURPOSE This study aimed to investigate the effect of ethanol extract of P. fruticosa on RANKL-induced osteoclastogenesis in vitro and LPS-induced bone loss in mouse, and evaluate anti-osteoclastogenic activities of its major constituents. METHODS BMMs or RAW264.7 cells were treated with ethanol extract from P. fruticose leaves (EEPL), followed by an evaluation of cell viability, RANKL-induced osteoclast differentiation, actin-ring formation, and resorption pits activity. Effects of EEPL on RANKL-induced phosphorylation of MAPKs were evaluated by Western blotting. The expression levels of NFATc1 and c-Fos were evaluated by Western blotting or immunofluorescence assay. The expression levels of osteoclast-specific marker genes were evaluated by Western blotting and reverse transcription-qPCR analysis. A LPS-induced murine bone loss model was used to evaluate the protective effect of EEPL on inflammation-induced bone loss. HPLC analysis was performed to identify the major constituents of EEPL. RESULTS EEPL significantly inhibited RANKL-induced osteoclast differentiation by decreasing the number of osteoclasts, osteoclast actin-ring formation, and bone resorption. EEPL suppressed RANKL-induced phosphorylation of p38 and JNK MAPKs, as well as the expression of c-Fos and NFATc1. EEPL decreased the expression levels of osteoclast marker genes, including MMP-9, TRAP and CtsK. Mice treated with EEPL significantly protected the mice from LPS-induced osteoclast formation and bone destruction as indicated by micro-CT and histological analysis of femurs. We also identified 3-O-[β-d-glucopyranosyl-(1→4)-β-d-glucuronopyranosyl] oleanolic acid 28-O-β-d-glucopyranosyl ester (1) and quercitrin (3) as the active constituents in EEPL for inhibiting RANKL-induced osteoclast differentiation. CONCLUSION The results showed that EEPL exerted anti-osteoclastogenic activity in vitro and in vivo by inhibiting RANKL-induced osteoclast differentiation and function, and suggested that EEPL could have beneficial applications for preventing or inhibiting osteoclast-mediated bone diseases.
Collapse
Affiliation(s)
- Phuong Thao Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Nguyen Hai Dang
- Advanced Center for Bio-Organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Okhwa Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Pham Van Cuong
- Advanced Center for Bio-Organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tien Dat
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), PMBBRC, Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chau Van Minh
- Advanced Center for Bio-Organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea.
| |
Collapse
|
12
|
Meng L, Almeida LN, Clauder AK, Lindemann T, Luther J, Link C, Hofmann K, Kulkarni U, Wong DM, David JP, Manz RA. Bone Marrow Plasma Cells Modulate Local Myeloid-Lineage Differentiation via IL-10. Front Immunol 2019; 10:1183. [PMID: 31214168 PMCID: PMC6555095 DOI: 10.3389/fimmu.2019.01183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Bone marrow plasma cells have been reported to represent a major source of IL-10; however, the impact of plasma cell derived IL-10 in that tissue remains poorly understood. We confirm in this study that even in the absence of acute immune reactions, mature plasma cells represent the dominant IL-10+ cell population in the bone marrow, and identify myeloid-lineage cells as a main local target for plasma cell derived IL-10. Using Vert-X IL-10 transcriptional reporter mice, we found that more than 50% of all IL-10+ cells in bone marrow were CD138+ plasma cells, while other IL-10+ B lineage cells were nearly absent in this organ. Accordingly, IL-10 was found in the supernatants of short-term cultures of FACS-sorted bone marrow plasma cells, confirming IL-10 secretion from these cells. IL-10+ bone marrow plasma cells showed a B220-/CD19-/MHCII low phenotype suggesting that these cells represent a mature differentiation stage. Approximately 5% of bone marrow leucocytes expressed the IL-10 receptor (IL-10R), most of them being CD115+/Ly6C+/CD11c- monocytes. Compared to littermate controls, young B lineage specific IL-10 KO mice showed increased numbers of CD115+ cells but normal populations of other myeloid cell types in bone marrow. However, at 7 months of age B lineage specific IL-10 KO mice exhibited increased populations of CD115+ myeloid and CD11c+ dendritic cells (DCs), and showed reduced F4/80 expression in this tissue; hence, indicating that bone marrow plasma cells modulate the differentiation of local myeloid lineage cells via IL-10, and that this effect increases with age. The effects of B cell/plasma cell derived IL-10 on the differentiation of CD115+, CD11c+, and F4/80+ myeloid cells were confirmed in co-culture experiments. Together, these data support the idea that IL-10 production is not limited to early plasma cell stages in peripheral tissues but is also an important feature of mature plasma cells in the bone marrow. Moreover, we provide evidence that already under homeostatic conditions in the absence of acute immune reactions, bone marrow plasma cells represent a non-redundant source for IL-10 that modulates local myeloid lineage differentiation. This is particularly relevant in older individuals.
Collapse
Affiliation(s)
- Lingzhang Meng
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Link
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Upasana Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - David Ming Wong
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Tran PT, Dat NT, Dang NH, Van Cuong P, Lee S, Hwangbo C, Van Minh C, Lee JH. Ganomycin I from Ganoderma lucidum attenuates RANKL-mediated osteoclastogenesis by inhibiting MAPKs and NFATc1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:1-8. [PMID: 30668419 DOI: 10.1016/j.phymed.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/19/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many bone-related diseases such as osteoporosis and rheumatoid arthritis are commonly associated with excessive activity of the osteoclast. Ganomycin I (GMI), a meroterpenoid isolated from Vietnamese mushroom Ganoderma lucidum, possesses a variety of beneficial effects on human health. However, its impact and underlying mechanism on osteoclastogenesis remain unclear. In the present study, we investigated the effect of GMI on RANKL-induced osteoclast formation in mouse BMMs and RAW264.7 cells. METHODS BMMs or RAW264.7 cells were treated with GMI followed by an evaluation of cell viability, RANKL-induced osteoclast differentiation, actin-ring formation, and resorption pits activity. Effects of GMI on RANKL-induced phosphorylation of MAPKs as well as the expression levels of NFATc1 and c-Fos were evaluated by Western blot analysis. Expression levels of osteoclast marker genes were evaluated by Western blot analysis and reverse transcription-qPCR. RESULTS GMI significantly inhibited RANKL-induced osteoclast differentiation by decreasing the number of osteoclasts, osteoclast actin-ring formation, and bone resorption in a dose-dependent manner without affecting cell viability. At molecular level, GMI inhibited the RANKL-induced phosphorylation of ERK, JNK, and p38 MAPKs, as well as the expression levels of c-Fos and NFATc1, which are known to be crucial transcription factors for osteoclast formation. In addition, GMI decreased expression levels of osteoclastogenesis specific marker genes including c-Src, CtsK, TRAP, MMP-9, OSCAR, and DC-STAMP in RANKL-stimulated BMMs. CONCLUSION Our findings suggest that GMI can attenuate osteoclast formation by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and the anti-osteoclastogenic activity of GMI may extend our understanding of molecular mechanisms underlying biological activities and pharmacological use of G. lucidum as a traditional anti-osteoporotic medicine.
Collapse
Affiliation(s)
- Phuong Thao Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Nguyen Tien Dat
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Hai Dang
- Advanced Center for Bio-Organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Van Cuong
- Advanced Center for Bio-Organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Suhyun Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), PMBBRC, Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chau Van Minh
- Advanced Center for Bio-Organic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea.
| |
Collapse
|
14
|
Wang L, Fang B, Fujiwara T, Krager K, Gorantla A, Li C, Feng JQ, Jennings ML, Zhou J, Aykin-Burns N, Zhao H. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem 2018; 293:9248-9264. [PMID: 29724825 DOI: 10.1074/jbc.ra117.000834] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/01/2018] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis, osteopenia, and pathological bone fractures are frequent complications of iron-overload conditions such as hereditary hemochromatosis, thalassemia, and sickle cell disease. Moreover, animal models of iron overload have revealed increased bone resorption and decreased bone formation. Although systemic iron overload affects multiple organs and tissues, leading to significant changes on bone modeling and remodeling, the cell autonomous effects of excessive iron on bone cells remain unknown. Here, to elucidate the role of cellular iron homeostasis in osteoclasts, we generated two mouse strains in which solute carrier family 40 member 1 (Slc40a1), a gene encoding ferroportin (FPN), the sole iron exporter in mammalian cells, was specifically deleted in myeloid osteoclast precursors or mature cells. The FPN deletion mildly increased iron levels in both precursor and mature osteoclasts, and its loss in precursors, but not in mature cells, increased osteoclastogenesis and decreased bone mass in vivo Of note, these phenotypes were more pronounced in female than in male mice. In vitro studies revealed that the elevated intracellular iron promoted macrophage proliferation and amplified expression of nuclear factor of activated T cells 1 (Nfatc1) and PPARG coactivator 1β (Pgc-1β), two transcription factors critical for osteoclast differentiation. However, the iron excess did not affect osteoclast survival. While increased iron stimulated global mitochondrial metabolism in osteoclast precursors, it had little influence on mitochondrial mass and reactive oxygen species production. These results indicate that FPN-regulated intracellular iron levels are critical for mitochondrial metabolism, osteoclastogenesis, and skeletal homeostasis in mice.
Collapse
Affiliation(s)
- Lei Wang
- From the Department of Orthopedics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China.,the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Bin Fang
- the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine.,the Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Toshifumi Fujiwara
- the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, and
| | - Akshita Gorantla
- Division of Radiation Health, Department of Pharmaceutical Sciences, and
| | - Chaoyuan Li
- the Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas 75246
| | - Jian Q Feng
- the Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas 75246
| | - Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jian Zhou
- From the Department of Orthopedics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China,
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, and
| | - Haibo Zhao
- the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, .,Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,the Research Department, Tibor Rubin Veterans Affairs Medical Center, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822, and.,the Division of Endocrinology, Department of Medicine, University of California at Irvine, Irvine, California 92697
| |
Collapse
|
15
|
Zuo C, Wang L, Kamalesh RM, Bowen ME, Moore DC, Dooner MS, Reginato AM, Wu Q, Schorl C, Song Y, Warman ML, Neel BG, Ehrlich MG, Yang W. SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. Bone Res 2018; 6:12. [PMID: 29644115 PMCID: PMC5886981 DOI: 10.1038/s41413-018-0013-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/15/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor (OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2 (encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-loxP"-mediated gene excision. SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, qRT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Chunlin Zuo
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA.,9Present Address: Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Lijun Wang
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Raghavendra M Kamalesh
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Margot E Bowen
- 2Orthopaedic Research Laboratories and Howard Hughes Medical Institute, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Douglas C Moore
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Mark S Dooner
- 3Division of Hematology and Oncology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Anthony M Reginato
- 4Division of Rheumatology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Qian Wu
- 5Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Christoph Schorl
- 6Department of Molecular and Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02912 USA
| | - Yueming Song
- 7Department of Orthopedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Matthew L Warman
- 2Orthopaedic Research Laboratories and Howard Hughes Medical Institute, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Benjamin G Neel
- 8Laura and Issac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016 USA
| | - Michael G Ehrlich
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Wentian Yang
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| |
Collapse
|
16
|
Wang L, Iorio C, Yan K, Yang H, Takeshita S, Kang S, Neel BG, Yang W. A ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages. FASEB J 2018; 32:875-887. [PMID: 29046360 PMCID: PMC5888401 DOI: 10.1096/fj.201700672rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
Activation of the RAS/ERK and its downstream signaling components is essential for growth factor-induced cell survival, proliferation, and differentiation. The Src homology-2 domain containing protein tyrosine phosphatase 2 (SHP2), encoded by protein tyrosine phosphatase, non-receptor type 11 ( Ptpn11), is a positive mediator required for most, if not all, receptor tyrosine kinase-evoked RAS/ERK activation, but differentially regulates the PI3K/AKT signaling cascade in various cellular contexts. The precise mechanisms underlying the differential effects of SHP2 deficiency on the PI3K pathway remain unclear. We found that mice with myelomonocytic cell-specific [ Tg(LysM-Cre); Ptpn11fl/fl mice] Ptpn11 deficiency exhibit mild osteopetrosis. SHP2-deficient bone marrow macrophages (BMMs) showed decreased proliferation in response to M-CSF and decreased osteoclast generation. M-CSF-evoked ERK1/2 activation was decreased, whereas AKT activation was enhanced in SHP2-deficient BMMs. ERK1/2, via its downstream target RSK2, mediates this negative feedback by negatively regulating phosphorylation of M-CSF receptor at Tyr721 and, consequently, its binding to p85 subunit of PI3K and PI3K activation. Pharmacologic inhibition of RSK or ERK phenotypically mimics the signaling defects observed in SHP2-deficient BMMs. Furthermore, this increase in PI3K/AKT activation enables BMM survival in the setting of SHP2 deficiency.-Wang, L., Iorio, C., Yan, K., Yang, H., Takeshita, S., Kang, S., Neel, B.G., Yang, W. An ERK/RSK-mediated negative feedback loop regulates M-CSF-evoked PI3K/AKT activation in macrophages.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedics, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Caterina Iorio
- Department of Medical Biophysics, Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kevin Yan
- Department of Orthopaedics, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Howard Yang
- College of Engineering, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sunao Takeshita
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Sumin Kang
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin G. Neel
- Department of Medical Biophysics, Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Wentian Yang
- Department of Orthopaedics, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
17
|
CSF-1-induced Src signaling can instruct monocytic lineage choice. Blood 2017; 129:1691-1701. [PMID: 28159742 DOI: 10.1182/blood-2016-05-714329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
Controlled regulation of lineage decisions is imperative for hematopoiesis. Yet, the molecular mechanisms underlying hematopoietic lineage choices are poorly defined. Colony-stimulating factor 1 (CSF-1), the cytokine acting as the principal regulator of monocyte/macrophage (M) development, has been shown to be able to instruct the lineage choice of uncommitted granulocyte M (GM) progenitors toward an M fate. However, the intracellular signaling pathways involved are unknown. CSF-1 activates a multitude of signaling pathways resulting in a pleiotropic cellular response. The precise role of individual pathways within this complex and redundant signaling network is dependent on cellular context, and is not well understood. Here, we address which CSF-1-activated pathways are involved in transmitting the lineage-instructive signal in primary bone marrow-derived GM progenitors. Although its loss is compensated for by alternative signaling activation mechanisms, Src family kinase (SFK) signaling is sufficient to transmit the CSF-1 lineage instructive signal. Moreover, c-Src activity is sufficient to drive M fate, even in nonmyeloid cells.
Collapse
|
18
|
Kim HJ, Ohk B, Yoon HJ, Kang WY, Seong SJ, Kim SY, Yoon YR. Docosahexaenoic acid signaling attenuates the proliferation and differentiation of bone marrow-derived osteoclast precursors and promotes apoptosis in mature osteoclasts. Cell Signal 2017; 29:226-232. [DOI: 10.1016/j.cellsig.2016.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
|
19
|
Seoane PI, Rückerl D, Casaravilla C, Barrios AA, Pittini Á, MacDonald AS, Allen JE, Díaz A. Particles from the Echinococcus granulosus laminated layer inhibit IL-4 and growth factor-driven Akt phosphorylation and proliferative responses in macrophages. Sci Rep 2016; 6:39204. [PMID: 27966637 PMCID: PMC5155279 DOI: 10.1038/srep39204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022] Open
Abstract
Proliferation of macrophages is a hallmark of inflammation in many type 2 settings including helminth infections. The cellular expansion is driven by the type 2 cytokine interleukin-4 (IL-4), as well as by M-CSF, which also controls homeostatic levels of tissue resident macrophages. Cystic echinococcosis, caused by the tissue-dwelling larval stage of the cestode Echinococcus granulosus, is characterised by normally subdued local inflammation. Infiltrating host cells make contact only with the acellular protective coat of the parasite, called laminated layer, particles of which can be ingested by phagocytic cells. Here we report that a particulate preparation from this layer (pLL) strongly inhibits the proliferation of macrophages in response to IL-4 or M-CSF. In addition, pLL also inhibits IL-4-driven up-regulation of Relm-α, without similarly affecting Chitinase-like 3 (Chil3/Ym1). IL-4-driven cell proliferation and up-regulation of Relm-α are both known to depend on the phosphatidylinositol (PI3K)/Akt pathway, which is dispensable for induction of Chil3/Ym1. Exposure to pLL in vitro inhibited Akt activation in response to proliferative stimuli, providing a potential mechanism for its activities. Our results suggest that the E. granulosus laminated layer exerts some of its anti-inflammatory properties through inhibition of PI3K/Akt activation and consequent limitation of macrophage proliferation.
Collapse
Affiliation(s)
- Paula I Seoane
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Dominik Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cecilia Casaravilla
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Anabella A Barrios
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Álvaro Pittini
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, UK
| | - Judith E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Alvaro Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
20
|
Ye S, Fujiwara T, Zhou J, Varughese KI, Zhao H. LIS1 Regulates Osteoclastogenesis through Modulation of M-SCF and RANKL Signaling Pathways and CDC42. Int J Biol Sci 2016; 12:1488-1499. [PMID: 27994513 PMCID: PMC5166490 DOI: 10.7150/ijbs.15583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/11/2016] [Indexed: 01/28/2023] Open
Abstract
We have previously reported that depletion of LIS1, a key regulator of microtubules and cytoplasmic dynein motor complex, in osteoclast precursor cells by shRNAs attenuates osteoclastogenesis in vitro. However, the underlying mechanisms remain unclear. In this study, we show that conditional deletion of LIS1 in osteoclast progenitors in mice led to increased bone mass and decreased osteoclast number on trabecular bone. In vitro mechanistic studies revealed that loss of LIS1 had little effects on cell cycle progression but accelerated apoptosis of osteoclast precursor cells. Furthermore, deletion of LIS1 prevented prolonged activation of ERK by M-CSF and aberrantly enhanced prolonged JNK activation stimulated by RANKL. Finally, lack of LIS1 abrogated M-CSF and RANKL induced CDC42 activation and retroviral transduction of a constitutively active form of CDC42 partially rescued osteoclastogenesis in LIS1-deficient macrophages. Therefore, these data identify a key role of LIS1 in regulation of cell survival of osteoclast progenitors by modulating M-CSF and RANKL induced signaling pathways and CDC42 activation.
Collapse
Affiliation(s)
- Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Toshifumi Fujiwara
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jian Zhou
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA;; Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Kottayil I Varughese
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Haibo Zhao
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA;; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
21
|
Zhou RP, Wu XS, Xie YY, Dai BB, Hu W, Ge JF, Chen FH. Functions of interleukin-34 and its emerging association with rheumatoid arthritis. Immunology 2016; 149:362-373. [PMID: 27550090 DOI: 10.1111/imm.12660] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic, synovial inflammation affecting multiple joints, finally leading to extra-articular lesions for which limited effective treatment options are currently available. Interleukin-34 (IL-34), recently discovered as the second colony-stimulating factor-1 receptor (CSF-1R) ligand, is a newly discovered cytokine. Accumulating evidence has disclosed crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis and inflammation. Recently, IL-34 was detected at high levels in patients with active RA and in experimental models of inflammatory arthritis. Blockade of functional IL-34 with a specific monoclonal antibody can reduce the severity of inflammatory arthritis, suggesting that targeting IL-34 or its receptors may constitute a novel therapeutic strategy for autoimmune diseases such as RA. Here, we have comprehensively discussed the structure and biological functions of IL-34, and reviewed recent advances in our understanding of the emerging role of IL-34 in the development of RA as well as its potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao-Shan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Bei-Bei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China. , .,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China. ,
| |
Collapse
|
22
|
Kim HJ, Ohk B, Kang WY, Seong SJ, Suk K, Lim MS, Kim SY, Yoon YR. Deficiency of Lipocalin-2 Promotes Proliferation and Differentiation of Osteoclast Precursors via Regulation of c-Fms Expression and Nuclear Factor-kappa B Activation. J Bone Metab 2016; 23:8-15. [PMID: 26981515 PMCID: PMC4791440 DOI: 10.11005/jbm.2016.23.1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 01/27/2023] Open
Abstract
Background Lipocalin-2 (LCN2), a small glycoprotein, has a pivotal role in diverse biological processes such as cellular proliferation and differentiation. We previously reported that LCN2 is implicated in osteoclast formation induced by receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). In the present study, we used a knockout mouse model to further investigate the role of LCN2 in osteoclast development. Methods Osteoclastogenesis was assessed using primary bone marrow-derived macrophages. RANKL and M-CSF signaling was determined by immunoblotting, cell proliferation by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), and apoptosis by cell death detection ELISA. Bone morphometric parameters were determined using a micro-computed tomography system. Results Our results showed that LCN2 deficiency increases tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast formation in vitro, a finding that reflects enhanced proliferation and differentiation of osteoclast lineage cells. LCN2 deficiency promotes M-CSF-induced proliferation of bone marrow macrophages (BMMs), osteoclast precursors, without altering their survival. The accelerated proliferation of LCN2-deficient precursors is associated with enhanced expression and activation of the M-CSF receptor, c-Fms. Furthermore, LCN2 deficiency stimulates the induction of c-Fos and nuclear factor of activated T cells c1 (NFATc1), key transcription factors for osteoclastogenesis, and promotes RANKL-induced inhibitor of kappa B (IκBα) phosphorylation. Interestingly, LCN2 deficiency does not affect basal osteoclast formation in vivo, suggesting that LCN2 might play a role in the enhanced osteoclast development that occurs under some pathological conditions. Conclusions Our study establishes LCN2 as a negative modulator of osteoclast formation, results that are in accordance with our previous findings.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea.; Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Boram Ohk
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Woo Youl Kang
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Sook Jin Seong
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi-Sun Lim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Young-Ran Yoon
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| |
Collapse
|
23
|
Kim JH, Kim N. Signaling Pathways in Osteoclast Differentiation. Chonnam Med J 2016; 52:12-7. [PMID: 26865996 PMCID: PMC4742606 DOI: 10.4068/cmj.2016.52.1.12] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate osteoclast differentiation through regulation of delicate signaling systems. Here, we summarize the critical or essential signaling pathways for osteoclast differentiation including M-CSF-c-Fms signaling, RANKL-RANK signaling, and costimulatory signaling for RANK.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
24
|
Richardson ET, Shukla S, Nagy N, Boom WH, Beck RC, Zhou L, Landreth GE, Harding CV. ERK Signaling Is Essential for Macrophage Development. PLoS One 2015; 10:e0140064. [PMID: 26445168 PMCID: PMC4596867 DOI: 10.1371/journal.pone.0140064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/20/2015] [Indexed: 11/25/2022] Open
Abstract
Macrophages depend on colony stimulating factor 1 (also known as M-CSF) for their growth and differentiation, but the requirements for intracellular signals that lead to macrophage differentiation and function remain unclear. M-CSF is known to activate ERK1 and ERK2, but the importance of this signaling pathway in macrophage development is unknown. In these studies, we characterized a novel model of Erk1-/-Erk2flox/floxLyz2Cre/Cre mice in which the ERK2 isoform is deleted from macrophages in the background of global ERK1 deficiency. Cultures of M-CSF-stimulated bone marrow precursors from these mice yielded reduced numbers of macrophages. Whereas macrophages developing from M-CSF-stimulated bone marrow of Erk2flox/floxLyz2Cre/Cre mice showed essentially complete loss of ERK2 expression, the reduced number of macrophages that develop from Erk1-/-Erk2flox/floxLyz2Cre/Cre bone marrow show retention of ERK2 expression, indicating selective outgrowth of a small proportion of precursors in which Cre-mediated deletion failed to occur. The bone marrow of Erk1-/-Erk2flox/floxLyz2Cre/Cre mice was enriched for CD11b+ myeloid cells, CD11bhi Gr-1hi neutrophils, Lin- c-Kit+ Sca–1+ hematopoietic stem cells, and Lin- c-Kit+ CD34+ CD16/32+ granulocyte-macrophage progenitors. Culture of bone marrow Lin- cells under myeloid-stimulating conditions yielded reduced numbers of monocytes. Collectively, these data indicate that the defect in production of macrophages is not due to a reduced number of progenitors, but rather due to reduced ability of progenitors to proliferate and produce macrophages in response to M-CSF-triggered ERK signaling. Macrophages from Erk1-/-Erk2flox/floxLyz2Cre/Cre bone marrow showed reduced induction of M-CSF-regulated genes that depend on the ERK pathway for their expression. These data demonstrate that ERK1/ERK2 play a critical role in driving M-CSF-dependent proliferation of bone marrow progenitors for production of macrophages.
Collapse
Affiliation(s)
- Edward T. Richardson
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Medical Scientist Training Program, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Supriya Shukla
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Nancy Nagy
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - W. Henry Boom
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Center for AIDS Research, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Rose C. Beck
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Center for AIDS Research, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kim HJ, Yoon HJ, Yoon KA, Gwon MR, Jin Seong S, Suk K, Kim SY, Yoon YR. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells. Exp Cell Res 2015; 334:301-9. [PMID: 25814363 DOI: 10.1016/j.yexcr.2015.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 01/28/2023]
Abstract
Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| | - Hye-Jin Yoon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Kyung-Ae Yoon
- Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Mi-Ri Gwon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Sook Jin Seong
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Shin-Yoon Kim
- Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| |
Collapse
|
26
|
Ma TT, Wu BT, Lin Y, Xiong HY, Wang Q, Li ZW, Cheng F, Tu ZG. IL-12 could induce monocytic tumor cells directional differentiation. Mol Cell Biochem 2015; 402:157-69. [PMID: 25563480 DOI: 10.1007/s11010-014-2323-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Interleukin-12 (IL-12), a member of interleukin family, plays a critical role in immune responses and anti-tumor activity. In this study, the effects of IL-12 on monocytic tumor cell lines differentiation to macrophagocyte and its likely mechanism was investigated. We examined the differentiation markers, morphological and functional changes, and possible mechanism in IL-12-treated THP-1 and U937 cells. It was found that IL-12 could up-regulated macrophage surface marker CD68 and CD11b expression in a time-dependent manner. Morphologically, after IL-12 treatment, THP-1 and U937 cells became round or irregular shape, even stretched many cell membrane protuberances; some cell nuclei became fuzzy or completely disappeared, and the chromatin appeared dense and cordlike. Furthermore, IL-12-induced monocytic tumor cell differentiation was accompanied by the growth arrest with G1-phase accumulation and S-phase reduction; apoptosis increased with anti-apoptosis protein Bcl-2 down-expression and pro-apoptosis protein Fas up-regulation, and enhanced phagocytosis function. The IL-12-induced macrophage differentiation of THP-1 and U937 cells was associated with the up-regulation of c-fms expression and the CSF-1R Tyr 809 site phosphorylation. These findings have revealed that IL-12 could induce monocytic tumor cells directional differentiation into macrophage-like cells, and its mechanism is possible connected with the up-regulation of c-fms expression and the phosphorylation of CSF-1R Tyr-809 site.
Collapse
Affiliation(s)
- Ting-Ting Ma
- College of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics of Education Ministry, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Instruction of hematopoietic lineage choice by cytokine signaling. Exp Cell Res 2014; 329:207-13. [PMID: 25046868 DOI: 10.1016/j.yexcr.2014.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/06/2023]
Abstract
Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support the production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response.
Collapse
|
28
|
Abstract
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.
Collapse
Affiliation(s)
- E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
29
|
Dan XM, Zhong ZP, Li YW, Luo XC, Li AX. Cloning and expression analysis of grouper (Epinephelus coioides) M-CSFR gene post Cryptocaryon irritans infection and distribution of M-CSFR(+) cells. FISH & SHELLFISH IMMUNOLOGY 2013; 35:240-248. [PMID: 23643873 DOI: 10.1016/j.fsi.2013.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The M-CSF/M-CSFR system plays a central role in the cell survival, proliferation, differentiation and maturation of the monocyte/macrophage lineage. In present study, we cloned the sequence of the M-CSFR cDNA from the orange-spotted grouper (Epinephelus coioides). Sequence analysis reveals that ten cysteines in the extracellular immunoglobulin-like (Ig-like) domains of EcM-CSFR are conserved in fish and mammals, its nine possible N-glycosylation sites are conserved in fish but not mammals, 7 of 8 identified mammal M-CSFR intracellular autophosphorylation tyrosine sites was found in EcM-CSFR. Real-time PCR showed that the constitutive expression level of EcM-CSFR was the highest in the spleen, less in the gill, kidney, head kidney and liver, least in the blood, skin, gut and thymus. A rabbit anti-EcM-CSFR polyclonal antibody against the recombinant EcM-CSFR extracellular domain was developed and it was efficient in labeling the monocytes and macrophages isolated from the head kidney. Immunochemistry analysis showed that M-CSFR(+) cells located in all tested paraffin-embedded tissues and M-CSFR(+) cell centres with the characteristic of melano-macrophage centres(MMCs) was found in the spleen, head kidney, kidney, gut and liver. All these results indicate the widespread distribution of macrophages in grouper tissues and its importance in fish immune system. In Crytocaryon irritans infected grouper, EcM-CSFR was transient up-regulated and rapidly down-regulated in skin, gill, head kidney and spleen. The possible activation mechanism of macrophage via EcM-CSFR signal transduction in the fish anti-C. irritans infection was discussed.
Collapse
Affiliation(s)
- Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | | | | | | | | |
Collapse
|
30
|
Xu F, Teitelbaum SL. Osteoclasts: New Insights. Bone Res 2013; 1:11-26. [PMID: 26273491 PMCID: PMC4472093 DOI: 10.4248/br201301003] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/19/2013] [Indexed: 11/10/2022] Open
Abstract
Osteoclasts, the bone-resorbing cells, play a pivotal role in skeletal development and adult bone remodeling. They also participate in the pathogenesis of various bone disorders. Osteoclasts differentiate from cells of the monocyte/macrophage lineage upon stimulation of two essential factors, the monocyte/macrophage colony stimulating factor (M-CSF) and receptor activation of NF-κB ligand (RANKL). M-CSF binds to its receptor c-Fms to activate distinct signaling pathways to stimulate the proliferation and survival of osteoclast precursors and the mature cell. RANKL, however, is the primary osteoclast differentiation factor, and promotes osteoclast differentiation mainly through controlling gene expression by activating its receptor, RANK. Osteoclast function depends on polarization of the cell, induced by integrin αvβ3, to form the resorptive machinery characterized by the attachment to the bone matrix and the formation of the bone-apposed ruffled border. Recent studies have provided new insights into the mechanism of osteoclast differentiation and bone resorption. In particular, c-Fms and RANK signaling have been shown to regulate bone resorption by cross-talking with those activated by integrin αvβ3. This review discusses new advances in the understanding of the mechanisms of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
31
|
Shinohara M, Nakamura M, Masuda H, Hirose J, Kadono Y, Iwasawa M, Nagase Y, Ueki K, Kadowaki T, Sasaki T, Kato S, Nakamura H, Tanaka S, Takayanagi H. Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. J Bone Miner Res 2012; 27:2464-75. [PMID: 22806988 DOI: 10.1002/jbmr.1703] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/22/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022]
Abstract
Class IA phosphatidylinositol 3-kinases (PI3Ks) are activated by growth factor receptors and regulate a wide range of cellular processes. In osteoclasts, they are activated downstream of α(v) β(3) integrin and colony-stimulating factor-1 receptor (c-Fms), which are involved in the regulation of bone-resorbing activity. The physiological relevance of the in vitro studies using PI3K inhibitors has been of limited value, because they inhibit all classes of PI3K. Here, we show that the osteoclast-specific deletion of the p85 genes encoding the regulatory subunit of the class IA PI3K results in an osteopetrotic phenotype caused by a defect in the bone-resorbing activity of osteoclasts. Class IA PI3K is required for the ruffled border formation and vesicular transport, but not for the formation of the sealing zone. p85α/β doubly deficient osteoclasts had a defect in macrophage colony-stimulating factor (M-CSF)-induced protein kinase B (Akt) activation and the introduction of constitutively active Akt recovered the bone-resorbing activity. Thus, the class IA PI3K-Akt pathway regulates the cellular machinery crucial for osteoclastic bone resorption, and may provide a molecular basis for therapeutic strategies against bone diseases.
Collapse
Affiliation(s)
- Masahiro Shinohara
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chitu V, Nacu V, Charles JF, Henne WM, McMahon HT, Nandi S, Ketchum H, Harris R, Nakamura MC, Stanley ER. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood 2012; 120:3126-35. [PMID: 22923495 PMCID: PMC3471520 DOI: 10.1182/blood-2012-04-425595] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022] Open
Abstract
Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)-dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 2012; 49:49-61. [DOI: 10.3109/10408363.2012.666845] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem 2012; 287:13694-704. [PMID: 22375015 DOI: 10.1074/jbc.m112.355610] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase.
Collapse
Affiliation(s)
- Wenfeng Yu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H. LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 2011; 6:e27285. [PMID: 22073305 PMCID: PMC3207863 DOI: 10.1371/journal.pone.0027285] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Microtubule organization and lysosomal secretion are both critical for the activation and function of osteoclasts, highly specialized polykaryons that are responsible for bone resorption and skeletal homeostasis. Here, we have identified a novel interaction between microtubule regulator LIS1 and Plekhm1, a lysosome-associated protein implicated in osteoclast secretion. Decreasing LIS1 expression by shRNA dramatically attenuated osteoclast formation and function, as shown by a decreased number of mature osteoclasts differentiated from bone marrow macrophages, diminished resorption pits formation, and reduced level of CTx-I, a bone resorption marker. The ablated osteoclast formation in LIS1-depleted macrophages was associated with a significant decrease in macrophage proliferation, osteoclast survival and differentiation, which were caused by reduced activation of ERK and AKT by M-CSF, prolonged RANKL-induced JNK activation and declined expression of NFAT-c1, a master transcription factor of osteoclast differentiation. Consistent with its critical role in microtubule organization and dynein function in other cell types, we found that LIS1 binds to and colocalizes with dynein in osteoclasts. Loss of LIS1 led to disorganized microtubules and aberrant dynein function. More importantly, the depletion of LIS1 in osteoclasts inhibited the secretion of Cathepsin K, a crucial lysosomal hydrolase for bone degradation, and reduced the motility of osteoclast precursors. These results indicate that LIS1 is a previously unrecognized regulator of osteoclast formation, microtubule organization, and lysosomal secretion by virtue of its ability to modulate dynein function and Plekhm1.
Collapse
Affiliation(s)
- Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kitagawa D, Gouda M, Kirii Y, Sugiyama N, Ishihama Y, Fujii I, Narumi Y, Akita K, Yokota K. Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase. J Biochem 2011; 151:47-55. [DOI: 10.1093/jb/mvr112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Sampaio NG, Yu W, Cox D, Wyckoff J, Condeelis J, Stanley ER, Pixley FJ. Phosphorylation of CSF-1R Y721 mediates its association with PI3K to regulate macrophage motility and enhancement of tumor cell invasion. J Cell Sci 2011; 124:2021-31. [PMID: 21610095 DOI: 10.1242/jcs.075309] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colony stimulating factor-1 (CSF-1) regulates macrophage morphology and motility, as well as mononuclear phagocytic cell proliferation and differentiation. The CSF-1 receptor (CSF-1R) transduces these pleiotropic signals through autophosphorylation of eight intracellular tyrosine residues. We have used a novel bone-marrow-derived macrophage cell line system to examine specific signaling pathways activated by tyrosine-phosphorylated CSF-1R in macrophages. Screening of macrophages expressing a single species of CSF-1R with individual tyrosine-to-phenylalanine residue mutations revealed striking morphological alterations upon mutation of Y721. M⁻/⁻.Y721F cells were apolar and ruffled poorly in response to CSF-1. Y721-P-mediated CSF-1R signaling regulated adhesion and actin polymerization to control macrophage spreading and motility. Moreover, the reduced motility of M⁻/⁻.Y721F macrophages was associated with their reduced capacity to enhance carcinoma cell invasion. Y721 phosphorylation mediated the direct association of the p85 subunit of phosphoinositide 3-kinase (PI3K) with the CSF-1R, but not that of phospholipase C (PLC) γ2, and induced polarized PtdIns(3,4,5)P₃ production at the putative leading edge, implicating PI3K as a major regulator of CSF-1-induced macrophage motility. The Y721-P-motif-based motility signaling was at least partially independent of both Akt and increased Rac and Cdc42 activation but mediated the rapid and transient association of an unidentified ~170 kDa phosphorylated protein with either Rac-GTP or Cdc42-GTP. These studies identify CSF-1R-Y721-P-PI3K signaling as a major pathway in CSF-1-regulated macrophage motility and provide a starting point for the discovery of the immediate downstream signaling events.
Collapse
Affiliation(s)
- Natalia G Sampaio
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Oka H, Mori M, Kihara H. F-spondin inhibits migration and differentiation of osteoclastic precursors. J Periodontol 2011; 82:1776-83. [PMID: 21488757 DOI: 10.1902/jop.2011.110111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Clinically, severe cemental resorption is a rare consequence of periodontitis, although alveolar bone resorption by osteoclasts is one of the main pathologic changes. F-spondin is a secreted neuronal glycoprotein that localizes to the cementum. F-spondin is among the cementum-specific factors in periodontal tissue that have been reported. However, the effects of F-spondin on osteoclastogenesis have not yet been established. We examined the effects of F-spondin on stages of osteoclastogenesis, migration, and differentiation in a mouse osteoclastic precursor model, RAW 264 cells. METHODS RAW 264 cells were treated with recombinant F-spondin. Macrophage colony stimulating factor (M-CSF)-induced cell migration was examined by migration assay performed with cell culture inserts. Osteoclastic differentiation was measured by counting tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. RESULTS In a transmigration assay, F-spondin significantly downregulated M-CSF-induced cell migration. Further, F-spondin significantly reduced the number of receptor activator of nuclear factor-kappa B ligand-induced TRAP-positive multinucleated cells. The receptor-associated protein, an antagonist of the low-density lipoprotein (LDL) receptor family, blocked the effects of F-spondin on M-CSF-induced migration. The suppressive effect of F-spondin on M-CSF-induced cell migration was blocked by knockdown of LDL receptor-related protein 8 (LRP8), a member of the LDL receptor family. CONCLUSIONS Our findings suggest that F-spondin downregulates recruitment to the root side of periodontal tissue via LRP8 and inhibits differentiation of osteoclastic precursors. It is suggested that F-spondin is essential to protect the root surface from resorption.
Collapse
Affiliation(s)
- Hiroko Oka
- Promoting Office of Graduate Program for BioDental Education, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan.
| | | | | |
Collapse
|
40
|
Kim HJ, Warren JT, Kim SY, Chappel JC, DeSelm CJ, Ross FP, Zou W, Teitelbaum SL. Fyn promotes proliferation, differentiation, survival and function of osteoclast lineage cells. J Cell Biochem 2011; 111:1107-13. [PMID: 20717919 DOI: 10.1002/jcb.22841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
c-Src and Lyn are the only Src family kinases (SFKs) with established activity in osteoclasts (OCs). c-Src promotes function via cytoskeletal organization of the mature resorptive cell while Lyn is a negative regulator of osteoclastogenesis. We establish that Fyn, another SFK, also impacts the OC, but in a manner distinctly different than c-Src and Lyn. Fyn deficiency principally alters cells throughout the osteoclastogenic process, resulting in diminished numbers of resorptive polykaryons. Arrested OC formation in the face of insufficient Fyn reflects reduced proliferation of precursors, in response to M-CSF and retarded RANK ligand (RANKL)-induced differentiation, attended by suppressed activation of the osteoclastogenic signaling molecules, c-Jun, and NF-κB. The anti-apoptotic properties of RANKL are also compromised in cells deleted of Fyn, an event mediated by increased Bim expression and failed activation of Akt. The defective osteoclastogenesis of Fyn-/- OCs dampens bone resorption, in vitro. Finally, while Fyn deficiency does not regulate basal osteoclastogenesis, in vivo, it reduces that stimulated by RANKL by ~2/3. Thus, Fyn is a pro-resorptive SFK, which exerts its effects by prompting proliferation and differentiation while attenuating apoptosis of OC lineage cells.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xiong Y, Song D, Cai Y, Yu W, Yeung YG, Stanley ER. A CSF-1 receptor phosphotyrosine 559 signaling pathway regulates receptor ubiquitination and tyrosine phosphorylation. J Biol Chem 2010; 286:952-60. [PMID: 21041311 DOI: 10.1074/jbc.m110.166702] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kim HJ, Zou W, Ito Y, Kim SY, Chappel J, Ross FP, Teitelbaum SL. Src-like adaptor protein regulates osteoclast generation and survival. J Cell Biochem 2010; 110:201-9. [PMID: 20225239 DOI: 10.1002/jcb.22527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Src-like adaptor protein (SLAP) is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. We investigated the role of SLAP in osteoclast development and resorptive function. Employing SLAP-deficient mice, we find lack of the adaptor enhances in vitro proliferation of osteoclast precursors in the form of bone marrow macrophages (BMMs), without altering their survival. Furthermore, osteoclastogenic markers appear more rapidly in SLAP-/- BMMs exposed to RANK ligand (RANKL). The accelerated proliferation of M-CSF-treated, SLAP-deficient precursors is associated with enhanced ERK activation. SLAP's role as a mediator of M-CSF signaling, in osteoclastic cells, is buttressed by complexing of the adaptor protein and c-Fms in lipid rafts. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. Thus, SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. These counterbalancing events yield indistinguishable bones of WT and SLAP-/- mice which contain equal numbers of osteoclasts in basal and stimulated conditions.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ito Y, Teitelbaum SL, Zou W, Zheng Y, Johnson JF, Chappel J, Ross FP, Zhao H. Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J Clin Invest 2010; 120:1981-93. [PMID: 20501942 DOI: 10.1172/jci39650] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 02/24/2010] [Indexed: 11/17/2022] Open
Abstract
The modeling and remodeling of bone requires activation and polarization of osteoclasts, achieved by reorganization of the cytoskeleton. Members of the Rho subfamily of small GTPases, including Cdc42, are known regulators of cytoskeletal components, but the role of these proteins in bone physiology and pathophysiology remains unclear. Here, we examined loss-of-function mice in which Cdc42 was selectively ablated in differentiated osteoclasts and gain-of-function animals wherein Cdc42Gap, a protein that inactivates the small GTPase, was deleted globally. Cdc42 loss-of-function mice were osteopetrotic and resistant to ovariectomy-induced bone loss, while gain-of-function animals were osteoporotic. Isolated Cdc42-deficient osteoclasts displayed suppressed bone resorption, while osteoclasts with increased Cdc42 activity had enhanced resorptive capacity. We further demonstrated that Cdc42 modulated M-CSF-stimulated cyclin D expression and phosphorylation of Rb and induced caspase 3 and Bim, thus contributing to osteoclast proliferation and apoptosis rates. Furthermore, Cdc42 was required for multiple M-CSF- and RANKL-induced osteoclastogenic signals including activation and expression of the differentiation factors MITF and NFATc1 and was a component of the Par3/Par6/atypical PKC polarization complex in osteoclasts. These data suggest that Cdc42 regulates osteoclast formation and function and may represent a promising therapeutic target for prevention of pathological bone loss.
Collapse
Affiliation(s)
- Yuji Ito
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zou W, Reeve JL, Zhao H, Ross FP, Teitelbaum SL. Syk tyrosine 317 negatively regulates osteoclast function via the ubiquitin-protein isopeptide ligase activity of Cbl. J Biol Chem 2009; 284:18833-9. [PMID: 19419964 DOI: 10.1074/jbc.m109.012385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytoskeletal organization of the osteoclast (OC), which is central to the capacity of the cell to resorb bone, is induced by occupancy of the alphavbeta3 integrin or the macrophage colony-stimulating factor (M-CSF) receptor c-Fms. In both circumstances, the tyrosine kinase Syk is an essential signaling intermediary. We demonstrate that Cbl negatively regulates OC function by interacting with Syk(Y317). Expression of nonphosphorylatable Syk(Y317F) in primary Syk(-/-) OCs enhances M-CSF- and alphavbeta3-induced phosphorylation of the cytoskeleton-organizing molecules, SLP76, Vav3, and PLCgamma2, to levels greater than wild type, thereby accelerating the resorptive capacity of the cell. Syk(Y317) suppresses cytoskeletal organization and function while binding the ubiquitin-protein isopeptide ligase Cbl. Consequently, Syk(Y317F) abolishes M-CSF- and integrin-stimulated Syk ubiquitination. Thus, Cbl/Syk(Y317) association negatively regulates OC function and therefore is essential for maintenance of skeletal homeostasis.
Collapse
Affiliation(s)
- Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
45
|
Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 2009; 15:259-66. [PMID: 19252502 DOI: 10.1038/nm.1910] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/05/2009] [Indexed: 12/16/2022]
Abstract
Osteoclasts are acid-secreting polykaryons that have high energy demands and contain abundant mitochondria. How mitochondrial biogenesis is integrated with osteoclast differentiation is unknown. We found that the transcription of Ppargc1b, which encodes peroxisome proliferator-activated receptor-gamma coactivator 1beta (PGC-1beta), was induced during osteoclast differentiation by cAMP response element-binding protein (CREB) as a result of reactive oxygen species. Knockdown of Ppargc1b in vitro inhibited osteoclast differentiation and mitochondria biogenesis, whereas deletion of the Ppargc1b gene in mice resulted in increased bone mass due to impaired osteoclast function. We also observed defects in PGC-1beta-deficient osteoblasts. Owing to the heightened iron demand in osteoclast development, transferrin receptor 1 (TfR1) expression was induced post-transcriptionally via iron regulatory protein 2. TfR1-mediated iron uptake promoted osteoclast differentiation and bone-resorbing activity, associated with the induction of mitochondrial respiration, production of reactive oxygen species and accelerated Ppargc1b transcription. Iron chelation inhibited osteoclastic bone resorption and protected against bone loss following estrogen deficiency resulting from ovariectomy. These data establish mitochondrial biogenesis orchestrated by PGC-1beta, coupled with iron uptake through TfR1 and iron supply to mitochondrial respiratory proteins, as a fundamental pathway linked to osteoclast activation and bone metabolism.
Collapse
|
46
|
Mabilleau G, Sabokbar A. Interleukin-32 promotes osteoclast differentiation but not osteoclast activation. PLoS One 2009; 4:e4173. [PMID: 19137064 PMCID: PMC2613539 DOI: 10.1371/journal.pone.0004173] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022] Open
Abstract
Background Interleukin-32 (IL-32) is a newly described cytokine produced after stimulation by IL-2 or IL-18 and IFN-γ. IL-32 has the typical properties of a pro-inflammatory mediator and although its role in rheumatoid arthritis has been recently reported its effect on the osteoclastogenesis process remains unclear. Methodology/Principal Findings In the present study, we have shown that IL-32 was a potent modulator of osteoclastogenesis in vitro, whereby it promoted the differentiation of osteoclast precursors into TRAcP+ VNR+ multinucleated cells expressing specific osteoclast markers (up-regulation of NFATc1, OSCAR, Cathepsin K), but it was incapable of inducing the maturation of these multinucleated cells into bone-resorbing cells. The lack of bone resorption in IL-32-treated cultures could in part be explain by the lack of F-actin ring formation by the multinucleated cells generated. Moreover, when IL-32 was added to PBMC cultures maintained with soluble RANKL, although the number of newly generated osteoclast was increased, a significant decrease of the percentage of lacunar resorption was evident suggesting a possible inhibitory effect of this cytokine on osteoclast activation. To determine the mechanism by which IL-32 induces such response, we sought to determine the intracellular pathways activated and the release of soluble mediators in response to IL-32. Our results indicated that compared to RANKL, IL-32 induced a massive activation of ERK1/2 and Akt. Moreover, IL-32 was also capable of stimulating the release of IL-4 and IFN-γ, two known inhibitors of osteoclast formation and activation. Conclusions/Significance This is the first in vitro report on the complex role of IL-32 on osteoclast precursors. Further clarification on the exact role of IL-32 in vivo is required prior to the development of any potential therapeutic approach.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK.
| | | |
Collapse
|
47
|
DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell 2008; 31:422-31. [PMID: 18691974 DOI: 10.1016/j.molcel.2008.06.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/06/2008] [Accepted: 06/06/2008] [Indexed: 01/04/2023]
Abstract
We examined the mechanism by which M-CSF regulates the cytoskeleton and function of the osteoclast, the exclusive bone resorptive cell. We show that binding of M-CSF to its receptor c-Fms generates a signaling complex comprising phosphorylated DAP12, an adaptor containing an immunoreceptor tyrosine-based activation motif (ITAM) and the nonreceptor tyrosine kinase Syk. c-Fms tyrosine 559, the exclusive binding site of c-Src, is necessary for regulation of DAP12/Syk signaling. Deletion of either of these molecules yields osteoclasts that fail to reorganize their cytoskeleton. Retroviral transduction of null precursors with wild-type or mutant DAP12 or Syk reveals that the SH2 domain of Syk and the ITAM tyrosine residues and transmembrane domain of DAP12 mediate M-CSF signaling. Our data provide genetic and biochemical evidence that uncovers an epistatic signaling pathway linking the receptor tyrosine kinase c-Fms to the immune adaptor DAP12 and the cytoskeleton.
Collapse
|
48
|
Yu W, Chen J, Xiong Y, Pixley FJ, Dai XM, Yeung YG, Stanley ER. CSF-1 receptor structure/function in MacCsf1r-/- macrophages: regulation of proliferation, differentiation, and morphology. J Leukoc Biol 2008; 84:852-863. [PMID: 18519746 PMCID: PMC2516905 DOI: 10.1189/jlb.0308171] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/23/2008] [Accepted: 05/01/2008] [Indexed: 12/19/2022] Open
Abstract
CSF-1 is the major regulator of tissue macrophage development and function. A GM-CSF-dependent, CSF-1 receptor (CSF-1R)-deficient F4/80(hi)Mac-1(+)Gr1(-)CD11c(+) bone marrow macrophage (BMM) line (MacCsf1r-/-) was developed to study the roles of the eight intracellular CSF-1R tyrosines phosphorylated upon receptor activation. Retroviral expression of the wild-type CSF-1R rescued the CSF-1-induced survival, proliferation, differentiation, and morphological characteristics of primary BMM. Mutation of all eight tyrosines failed to rescue, whereas the individual Y --> F mutants (544, 559, 697, 706, 721, 807, 921, 974) rescued these CSF-1-inducible phenotypes to varying degrees. The juxtamembrane domain Y559F and activation loop Y807F mutations severely compromised proliferation and differentiation, whereas Y706, Y721F, and Y974F mutations altered morphological responses, and Y706F increased differentiation. Despite their retention of significant in vitro tyrosine kinase activity, Y559F and Y807F mutants exhibited severely impaired in vivo receptor tyrosine phosphorylation, consistent with the existence of cellular mechanisms inhibiting CSF-1R tyrosine phosphorylation that are relieved by phosphorylation of these two sites. The MacCsf1r-/- macrophage line will facilitate genetic and proteomic approaches to CSF-1R structure/function studies in the major disease-related CSF-1R-expressing cell type.
Collapse
Affiliation(s)
- Wenfeng Yu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL, Ross FP. Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell 2008; 14:914-25. [PMID: 18539119 DOI: 10.1016/j.devcel.2008.03.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/13/2008] [Accepted: 03/31/2008] [Indexed: 01/23/2023]
Abstract
Maintenance of bone mass and integrity requires a tight balance between resorption by osteoclasts and formation by osteoblasts. Exocytosis of functional proteins is a prerequisite for the activity of both cells. In the present study, we show that synaptotagmin VII, a calcium sensor protein that regulates exocytosis, is associated with lysosomes in osteoclasts and bone matrix protein-containing vesicles in osteoblasts. Absence of synaptotagmin VII inhibits cathepsin K secretion and formation of the ruffled border in osteoclasts and bone matrix protein deposition in osteoblasts, without affecting the differentiation of either cell. Reflecting these in vitro findings, synaptotagmin VII-deficient mice are osteopenic due to impaired bone resorption and formation. Therefore, synaptotagmin VII plays an important role in bone remodeling and homeostasis by modulating secretory pathways functionally important in osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abram CL, Lowell CA. The diverse functions of Src family kinases in macrophages. FRONT BIOSCI-LANDMRK 2008; 13:4426-50. [PMID: 18508521 DOI: 10.2741/3015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|