1
|
Miceli M, Cannariato M, Tortarolo R, Pallante L, Zizzi EA, Deriu MA. Conformational Dynamics and Molecular Characterization of Alsin MORN Monomer and Dimeric Assemblies. Proteins 2024; 92:1343-1353. [PMID: 39023312 DOI: 10.1002/prot.26728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Despite the ubiquity of membrane occupation recognition nexus (MORN) motifs across diverse species in both eukaryotic and prokaryotic organisms, these protein domains remain poorly characterized. Their significance is underscored in the context of the Alsin protein, implicated in the debilitating condition known as infantile-onset ascending hereditary spastic paralysis (IAHSP). Recent investigations have proposed that mutations within the Alsin MORN domain disrupt proper protein assembly, precluding the formation of the requisite tetrameric configuration essential for the protein's inherent biological activity. However, a comprehensive understanding of the relationship between the biological functions of Alsin and its three-dimensional molecular structure is hindered by the lack of available experimental structures. In this study, we employed and compared several protein structure prediction algorithms to identify a three-dimensional structure for the putative MORN of Alsin. Furthermore, inspired by experimental pieces of evidence from previous studies, we employed the developed models to predict and investigate two homo-dimeric assemblies, characterizing their stability. This study's insights into the three-dimensional structure of the Alsin MORN domain and the stability dynamics of its homo-dimeric assemblies suggest an antiparallel linear configuration stabilized by a noncovalent interaction network.
Collapse
Affiliation(s)
- Marcello Miceli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Cannariato
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Riccardo Tortarolo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Eric A Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco A Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
2
|
Wang Z, Wang Z, Li X, Chen Z, Liu Y, Zhang F, Dai Q, Yu Q, Li N. Identification and Analysis of the Expression of the PIP5K Gene Family in Tomatoes. Int J Mol Sci 2023; 25:159. [PMID: 38203328 PMCID: PMC10778592 DOI: 10.3390/ijms25010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
To explore the function of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) in tomatoes, members of the tomato PIP5K family were identified and characterized using bioinformatic methods, and their expression patterns were also analyzed under salt stress and in different tissues. Twenty-one PIP5K members-namely, SlPIP5K1-SlPIP5K21-were identified from ten chromosomes, and these were divided into three groups according to a phylogenetic analysis. Further bioinformatic analysis showed four pairs of collinear relationships and fragment replication events among the SlPIP5K family members. To understand the possible roles of the SlPIP5Ks, a cis-acting element analysis was conducted, which indicated that tomato PIP5Ks could be associated with plant growth, hormones, and stress responses. We further validated the results of the in silico analysis by integrating RNA-seq and qRT-PCR techniques for salt- and hormone-treated tomato plants. Our results showed that SlPIP5K genes exhibited tissue- and treatment-specific patterns, and some of the SlPIP5Ks exhibited significantly altered expressions after our treatments, suggesting that they might be involved in these stresses. We selected one of the SlPIP5Ks that responded to our treatments, SlPIP5K2, to further understand its subcellular localization. Our results showed that SlPIP5K2 was located on the membrane. This study lays a foundation for the analysis of the biological functions of the tomato SlPIP5K genes and can also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation, especially under salt stress.
Collapse
Affiliation(s)
- Zepeng Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhongyu Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Xianguo Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhaolong Chen
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yuxiang Liu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fulin Zhang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Dai
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| |
Collapse
|
3
|
Li Z, Gao Y, Yan J, Wang S, Wang S, Liu Y, Wang S, Hua J. Golgi-localized MORN1 promotes lipid droplet abundance and enhances tolerance to multiple stresses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1890-1903. [PMID: 37097077 DOI: 10.1111/jipb.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified a Membrane Occupation and Recognition Nexus 1 (MORN1) gene as a contributor to natural variations of stress tolerance through genome-wide association study in Arabidopsis thaliana. Characterization of its loss-of-function mutant and natural variants revealed that the MORN1 gene is a positive regulator of plant growth, disease resistance, cold tolerance, and heat tolerance. The MORN1 protein is associated with the Golgi and is also partly associated with LD. Protein truncations that disrupt these associations abolished the biological function of the MORN1 protein. Furthermore, the MORN1 gene is a positive regulator of LD abundance, and its role in LD number regulation and stress tolerance is highly linked. Therefore, this study identifies MORN1 as a positive regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of plant growth and stress responses.
Collapse
Affiliation(s)
- Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yue Gao
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Shuai Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Shu Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yuanyuan Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
von der Mark C, Cruz TMD, Blanco‐Touriñan N, Rodriguez‐Villalon A. Bipartite phosphoinositide-dependent modulation of auxin signaling during xylem differentiation in Arabidopsis thaliana roots. THE NEW PHYTOLOGIST 2022; 236:1734-1747. [PMID: 36039703 PMCID: PMC9826227 DOI: 10.1111/nph.18448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Efficient root-to-shoot delivery of water and nutrients in plants relies on the correct differentiation of xylem cells into hollow elements. While auxin is integral to the formation of xylem cells, it remains poorly characterized how each subcellular pool of this hormone regulates this process. Combining genetic and cell biological approaches, we investigated the bipartite activity of nucleoplasmic vs plasma membrane-associated phosphatidylinositol 4-phosphate kinases PIP5K1 and its homolog PIP5K2 in Arabidopsis thaliana roots and uncovered a novel mechanism by which phosphoinositides integrate distinct aspects of the auxin signaling cascade and, in turn, regulate the onset of xylem differentiation. The appearance of undifferentiated cells in protoxylem strands of pip5k1 pip5k2 is phenomimicked in auxin transport and perception mutants and can be partially restored by the nuclear residence of PIP5K1. By contrast, exclusion of PIP5K1 from the nucleus hinders the auxin-mediated induction of the xylem master regulator VASCULAR RELATED NAC DOMAIN (VND) 7. A xylem-specific increase of auxin levels abolishes pip5k1 pip5k2 vascular defects, indicating that the establishment of auxin maxima is required to activate VND7-mediated xylem differentiation. Our results describe a new mechanism by which distinct subcellular pools of phosphoinositides integrate auxin transport and perception to initiate xylem differentiation in a spatiotemporal manner.
Collapse
Affiliation(s)
- Claudia von der Mark
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | - Tiago M. D. Cruz
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | - Noel Blanco‐Touriñan
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | | |
Collapse
|
5
|
Zhou J, Liu H, Lin Y, Zhao J. Membrane Occupation and Recognition Nexus (MORN) motif controls protein localization and function. FEBS Lett 2022; 596:1839-1850. [PMID: 35568981 DOI: 10.1002/1873-3468.14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Membrane Occupation and Recognition Nexus (MORN) motif was first defined in 2000, when it was identified in the junctophilin protein family. Dozens of studies have been published ever since, mainly focusing on the function of a given MORN motif-containing protein in parasites, plants or animal cells. Proteins with MORN motifs are not only expressed in most animal and plant cell types but also significantly differ in their intracellular localization, suggesting that the MORN motifs may fulfil multiple physiological functions. Recent studies have found that MORN motif-containing proteins junctophilin 1/2 and MORN3 play a role in cardiac hypertrophy, skeletal muscle fiber stability and cancer. Hence, MORN motif-containing proteins may be exploited to develop improved treatments for various pathological conditions, such as cardiovascular diseases. Here, we review current research on MORN motif-containing proteins in different organisms and provide both ideas and approaches for follow-up exploration of their functions and applications.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yushuang Lin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
6
|
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci 2022; 23:ijms23063227. [PMID: 35328648 PMCID: PMC8954910 DOI: 10.3390/ijms23063227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.
Collapse
|
7
|
Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. THE NEW PHYTOLOGIST 2022; 233:2185-2202. [PMID: 34931304 DOI: 10.1111/nph.17930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Max Fernkorn
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Katharina Blersch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1000 BE, the Netherlands
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| |
Collapse
|
8
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Abstract
Rhodopsins are light-activated proteins displaying an enormous versatility of function as cation/anion pumps or sensing environmental stimuli and are widely distributed across all domains of life. Even with wide sequence divergence and uncertain evolutionary linkages between microbial (type 1) and animal (type 2) rhodopsins, the membrane orientation of the core structural scaffold of both was presumed universal. This was recently amended through the discovery of heliorhodopsins (HeRs; type 3), that, in contrast to known rhodopsins, display an inverted membrane topology and yet retain similarities in sequence, structure, and the light-activated response. While no ion-pumping activity has been demonstrated for HeRs and multiple crystal structures are available, fundamental questions regarding their cellular and ecological function or even their taxonomic distribution remain unresolved. Here, we investigated HeR function and distribution using genomic/metagenomic data with protein domain fusions, contextual genomic information, and gene coexpression analysis with strand-specific metatranscriptomics. We bring to resolution the debated monoderm/diderm occurrence patterns and show that HeRs are restricted to monoderms. Moreover, we provide compelling evidence that HeRs are a novel type of sensory rhodopsins linked to histidine kinases and other two-component system genes across phyla. In addition, we also describe two novel putative signal-transducing domains fused to some HeRs. We posit that HeRs likely function as generalized light-dependent switches involved in the mitigation of light-induced oxidative stress and metabolic circuitry regulation. Their role as sensory rhodopsins is corroborated by their photocycle dynamics and their presence/function in monoderms is likely connected to the higher sensitivity of these organisms to light-induced damage. IMPORTANCE Heliorhodopsins are enigmatic, novel rhodopsins with a membrane orientation that is opposite to all known rhodopsins. However, their cellular and ecological functions are unknown, and even their taxonomic distribution remains a subject of debate. We provide evidence that HeRs are a novel type of sensory rhodopsins linked to histidine kinases and other two-component system genes across phyla boundaries. In support of this, we also identify two novel putative signal transducing domains in HeRs that are fused with them. We also observe linkages of HeRs to genes involved in mitigation of light-induced oxidative stress and increased carbon and nitrogen metabolism. Finally, we synthesize these findings into a framework that connects HeRs with the cellular response to light in monoderms, activating light-induced oxidative stress defenses along with carbon/nitrogen metabolic circuitries. These findings are consistent with the evolutionary, taxonomic, structural, and genomic data available so far.
Collapse
|
10
|
Targeting JP2: A New Treatment for Pulmonary Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2003446. [PMID: 34394822 PMCID: PMC8363443 DOI: 10.1155/2021/2003446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary hypertension (PH) is a disease with a complex etiology and high mortality rate. Abnormal pulmonary vasoconstriction and pulmonary vascular remodeling lead to an increase in mean pulmonary arterial blood pressure for which, and there is currently no cure. Junctophilin-2 (JP2) is beneficial for the assembly of junctional membrane complexes, the structural basis for excitation-contraction coupling that tethers the plasma membrane to the sarcoplasmic reticulum/endoplasmic reticulum and is involved in maintaining intracellular calcium concentration homeostasis and normal muscle contraction function. Recent studies have shown that JP2 maintains normal contraction and relaxation of vascular smooth muscle. In some experimental studies of drug treatments for PH, JP2 expression was increased, which improved pulmonary vascular remodeling and right ventricular function. Based on JP2 research to date, this paper summarizes the current understanding of JP2 protein structure, function, and related heart diseases and mechanisms and analyzes the feasibility and possible therapeutic strategies for targeting JP2 in PH.
Collapse
|
11
|
Jaskiewicz JJ, Tremblay JM, Tzipori S, Shoemaker CB. Identification and characterization of a new 34 kDa MORN motif-containing sporozoite surface-exposed protein, Cp-P34, unique to Cryptosporidium. Int J Parasitol 2021; 51:761-775. [PMID: 33774040 DOI: 10.1016/j.ijpara.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
Despite the public health impact of childhood diarrhea caused by Cryptosporidium, effective drugs and vaccines against this parasite are unavailable. Efforts to identify vaccine targets have focused on critical externally exposed virulence factors expressed in the parasite s invasive stages. However, no single surface antigen has yet been found that can elicit a significant protective immune response and it is likely that pooling multiple immune targets will be necessary. Discovery of surface proteins on Cryptosporidium sporozoites is therefore vital to this effort to develop a multi-antigenic vaccine. In this study we applied a novel single-domain camelid antibody (VHH) selection method to identify immunogenic proteins expressed on the surface of Cryptosporidium parvum sporozoites. By this approach, VHHs were identified that recognize two sporozoite surface-exposed antigens, the previously identified gp900 and an unrecognized immunogenic protein, Cp-P34. This Cp-P34 antigen, which contains multiple Membrane Occupation and Recognition Nexus (MORN) repeats, is found in excysted sporozoites as well as in the parasite s intracellular stages. Cp-P34 appears to accumulate inside the parasite and transiently appears on the surface of sporozoites to be shed in trails. Identical or nearly identical orthologs of Cp-P34 are found in the Cryptosporidium hominis and Cryptosporidium tyzzeri genomes. Except for the conserved MORN motifs, the Cp-P34 gene shares no significant homology with genes of other protozoans and thus appears to be unique to Cryptosporidium spp. Cp-P34 elicits immune responses in naturally exposed alpacas and warrants further investigation as a potential vaccine candidate.
Collapse
Affiliation(s)
- Justyna J Jaskiewicz
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA.
| |
Collapse
|
12
|
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 2020; 15:e0242677. [PMID: 33296386 PMCID: PMC7725318 DOI: 10.1371/journal.pone.0242677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.
Collapse
Affiliation(s)
- Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Kim Setiawan
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Linda Trübestein
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Gehin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Institute of Bioengineering, Laboratory of Lipid Cell Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Martin Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Geneva, Switzerland
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Terry K. Smith
- School of Biology, BSRC, University of St. Andrews, St. Andrews, United Kingdom
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Genome-wide systematic characterization and expression analysis of the phosphatidylinositol 4-phosphate 5-kinases in plants. Gene 2020; 756:144915. [PMID: 32580009 DOI: 10.1016/j.gene.2020.144915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are key enzymes in the process of phosphatidylinositol signaling pathway and have essential functions in growth, development, and biotic and abiotic stresses responses in plants. However, the evolutionary history and patterns of PIP5K genes in plants have not been examined systematically. Here, we use whole-genome sequences from eight plant species of land plants and algae to define the evolutionary relationships between these proteins in plants. 85 PIP5K genes were identified and divided into two subfamilies based on phylogenetic analyses. PIP5K members in subfamily II underwent several duplication events in land plants, resulting in multiple gene copies in angiosperms, while PIP5K members in subfamily I displayed low-copy numbers and lost in eudicots. Furthermore, PIP5K genes within the same subfamily had similar motifs and intron/exon features. Nine duplicated soybean gene pairs, four duplicated Arabidopsis gene pairs and two rice duplicated gene pairs were identified and many of them localized in synteny genomic regions. These duplicate events were formed by Whole-genome duplication (WGD)/segmental duplications. In addition, the ratios of non-synonymous to synonymous substitutions (Ka/Ks) showed that the PIP5K family had undergone purifying selection in higher plants. Expression analysis showed that PIP5K genes had complex and variable expression patterns in different developmental stages. The specificity of these genes is utilized to provide evidence for selective expression in the evolutionary process.
Collapse
|
14
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
15
|
Fang F, Ye S, Tang J, Bennett MJ, Liang W. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. THE NEW PHYTOLOGIST 2020; 225:1234-1246. [PMID: 31550392 DOI: 10.1111/nph.16216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 05/27/2023]
Abstract
Uniform growth of the main shoot and tillers significantly influences rice plant architecture and grain yield. The WUSCHEL-related homeobox transcription factor DWT1 is a key regulator of this important agronomic trait, disruption of which causes enhanced main shoot dominance and tiller dwarfism by an unknown mechanism. Here, we have used yeast-two-hybrid screening to identify OsPIP5K1, a member of the rice phosphatidylinositol-4-phosphate 5-kinase family, as a protein that interacts with DWT1. Cytological analyses confirmed that DWT1 induces accumulation of OsPIP5K1 and its product PI(4,5)P2 , a phosphoinositide secondary messenger, in nuclear bodies. Mutation of OsPIP5K1 compounds the dwarf dwt1 phenotype but abolishes the main shoot dominance. Conversely, overexpression of OsPIP5K1 partially rescues dwt1 developmental defects. Furthermore, we showed that DWL2, the homologue of DWT1, is also able to interact with OsPIP5K1 and shares partial functional redundancy with DWT1 in controlling rice uniformity. Overall, our data suggest that nuclear localised OsPIP5K1 acts with DWT1 and/or DWL2 to coordinate the uniform growth of rice shoots, likely to be through nuclear phosphoinositide signals, and provides insights into the regulation of rice uniformity via a largely unexplored plant nuclear signalling pathway.
Collapse
Affiliation(s)
- Fang Fang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Shiwei Ye
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jingyao Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| |
Collapse
|
16
|
Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes. Sci Rep 2019; 9:8120. [PMID: 31148576 PMCID: PMC6544628 DOI: 10.1038/s41598-019-44542-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.
Collapse
|
17
|
Chloroplast division protein ARC3 acts on FtsZ2 by preventing filament bundling and enhancing GTPase activity. Biochem J 2018; 475:99-115. [PMID: 29138260 DOI: 10.1042/bcj20170697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/28/2023]
Abstract
Chloroplasts evolved from cyanobacterial endosymbiotic ancestors and their division is a complex process initiated by the assembly of cytoskeletal FtsZ (Filamentous temperature sensitive Z) proteins into a ring structure at the division site (Z-ring). The cyanobacterial Z-ring positioning system (MinCDE proteins) is also conserved in chloroplasts, except that MinC was lost and replaced by the eukaryotic ARC3 (accumulation and replication of chloroplasts). Both MinC and ARC3 act as negative regulators of FtsZ assembly, but ARC3 bears little sequence similarity with MinC. Here, light scattering assays, co-sedimentation, GTPase assay and transmission electron microscopy in conjunction with single-particle analysis have been used to elucidate the structure of ARC3 and its effect on its main target in chloroplast division, FtsZ2. Analysis of FtsZ2 in vitro assembly reactions in the presence and absence of GMPCPP showed that ARC3 promotes FtsZ2 debundling and disassembly of existing filaments in a concentration-dependent manner and requires GTP hydrolysis. Three-dimensional reconstruction of ARC3 revealed an almost circular molecule in which the FtsZ-binding N-terminus and the C-terminal PARC6 (paralog of ARC6)-binding MORN (Membrane Occupation and Recognition Nexus) domain are in close proximity and suggest a model for PARC6-enabled binding of ARC3 to FtsZ2. The latter is corroborated by in vivo data.
Collapse
|
18
|
Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:862-878. [PMID: 28949047 DOI: 10.1111/tpj.13724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/22/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
The Arabidopsis phosphoinositide kinase PIP5K2 has been implicated in the control of membrane trafficking and is important for development and growth. In addition to cytosolic functions of phosphoinositides, a nuclear phosphoinositide system has been proposed, but evidence for nuclear phosphoinositides in plants is limited. Fluorescence-tagged variants of PIP5K2 reside in the nucleus of Arabidopsis root meristem cells, in addition to reported plasma membrane localization. Here we report on the interaction of PIP5K2 with alpha-importins and characterize its nuclear localization sequences (NLSs). The PIP5K2 sequence contains four putative NLSs (NLSa-NLSd) and only a PIP5K2 fragment containing NLSs is imported into nuclei of onion epidermis cells upon transient expression. PIP5K2 interacts physically with alpha-importin isoforms in cytosolic split-ubiquitin-based yeast two-hybrid tests, in dot-blot experiments and in immuno-pull-downs. A 27-amino-acid fragment of PIP5K2 containing NLSc is necessary and sufficient to mediate the nuclear import of a large cargo fusion consisting of two mCherry markers fused to RubisCO large subunit. Substitution of basic residues in NLSc results in reduced import of PIP5K2 or other cargoes into plant nuclei. The data suggest that PIP5K2 is subject to active, alpha-importin-mediated nuclear import, consistent with a nuclear role for PIP5K2 in addition to its reported cytosolic functions. The detection of both substrate and product of PIP5K2 in plant nuclei according to reporter fluorescence and immunofluorescence further supports the notion of a nuclear phosphoinositide system in plants. Variants of PIP5K2 with reduced nuclear residence might serve as tools for the future functional study of plant nuclear phosphoinositides.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Franziska Daamen
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Franziska Heinrich
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
19
|
Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. PLANT REPRODUCTION 2016; 29:3-20. [PMID: 26676144 DOI: 10.1007/s00497-015-0270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
Phosphoinositides in pollen. In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
21
|
Morriswood B. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure. Cells 2015; 4:726-47. [PMID: 26540076 PMCID: PMC4695855 DOI: 10.3390/cells4040726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei is a uniflagellated protist and the causative agent of African trypanosomiasis, a neglected tropical disease. The single flagellum of T. brucei is essential to a number of cellular processes such as motility, and has been a longstanding focus of scientific enquiry. A number of cytoskeletal structures are associated with the flagellum in T. brucei, and one such structure—a multiprotein complex containing the repeat motif protein TbMORN1—is the focus of this review. The TbMORN1-containing complex, which was discovered less than ten years ago, is essential for the viability of the mammalian-infective form of T. brucei. The complex has an unusual asymmetric morphology, and is coiled around the flagellum to form a hook shape. Proteomic analysis using the proximity-dependent biotin identification (BioID) technique has elucidated a number of its components. Recent work has uncovered a role for TbMORN1 in facilitating protein entry into the cell, thus providing a link between the cytoskeleton and the endomembrane system. This review summarises the extant data on the complex, highlights the outstanding questions for future enquiry, and provides speculation as to its possible role in a size-exclusion mechanism for regulating protein entry. The review additionally clarifies the nomenclature associated with this topic, and proposes the adoption of the term “hook complex” to replace the former name “bilobe” to describe the complex.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
22
|
Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre C, Conti F, Ben Amara A, Lepolard C, Djian B, Hamaoui D, Mettouchi A, Kumar A, Pagnotta S, Bonatti S, Lepidi H, Salvetti A, Abi-Rached L, Lemichez E, Mege JL, Ghigo E. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2015; 16:338-50. [PMID: 25211076 DOI: 10.1016/j.chom.2014.08.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/13/2014] [Accepted: 07/10/2014] [Indexed: 01/21/2023]
Abstract
Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors.
Collapse
Affiliation(s)
- Prasad Abnave
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France; INSERM, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée ligue contre le cancer, 06204 Nice Cedex 3, France
| | - Giovanna Mottola
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Via S. Pansini 5, 80131 Naples, Italy
| | - Gregory Gimenez
- Otago Genomics & Bioinformatics Facility, Department of Biochemistry, University of Otago, PO Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Nicolas Boucherit
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Virginie Trouplin
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Cedric Torre
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Filippo Conti
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France; INSERM, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée ligue contre le cancer, 06204 Nice Cedex 3, France
| | - Amira Ben Amara
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Catherine Lepolard
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Benjamin Djian
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Daniel Hamaoui
- INSERM, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée ligue contre le cancer, 06204 Nice Cedex 3, France
| | - Amel Mettouchi
- INSERM, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée ligue contre le cancer, 06204 Nice Cedex 3, France
| | - Atul Kumar
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France; INSERM, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée ligue contre le cancer, 06204 Nice Cedex 3, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA) Université de Nice Sophia Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice Cedex 2, France
| | - Stefano Bonatti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Via S. Pansini 5, 80131 Naples, Italy
| | - Hubert Lepidi
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unity of Experimental Biology and Genetics, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Laurent Abi-Rached
- Centre National de la Recherche Scientifique, Laboratoire d'Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, 13331 Marseille, France
| | - Emmanuel Lemichez
- INSERM, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée ligue contre le cancer, 06204 Nice Cedex 3, France
| | - Jean-Louis Mege
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | - Eric Ghigo
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France.
| |
Collapse
|
23
|
Habicht J, Woehle C, Gould SB. Tetrahymena Expresses More than a Hundred Proteins with Lipid-binding MORN Motifs that can Differ in their Subcellular Localisations. J Eukaryot Microbiol 2015; 62:694-700. [PMID: 25847055 DOI: 10.1111/jeu.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Proteins with membrane occupation and recognition nexus (MORN) motifs are associated with cell fission in apicomplexan parasites, chloroplast division in Arabidopsis and the motility of sperm cells. We found that ciliates are among those that encode the largest variety of MORN proteins. Tetrahymena thermophila expresses 129 MORN protein-encoding genes, some of which are specifically up-regulated during conjugation. A lipid-binding assay underpins the assumption that the predominant function of MORN motifs themselves is to confer the ability of lipid binding. The localisation of four MORN candidate proteins with similar characteristics highlights the functional diversity of this group especially in ciliates.
Collapse
Affiliation(s)
- Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christian Woehle
- Institute for Microbiology, Christian-Albrecht-University, 24118, Kiel, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
24
|
Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:759-69. [PMID: 25280638 DOI: 10.1016/j.bbalip.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
Plants differ in many ways from mammals or yeast. However, plants employ phosphoinositides for the regulation of essential cellular functions as do all other eukaryotes. In recent years the plant phosphoinositide system has been linked to the control of cell polarity. Phosphoinositides are also implicated in plant adaptive responses to changing environmental conditions. The current understanding is that plant phosphoinositides control membrane trafficking, ion channels and the cytoskeleton in similar ways as in other eukaryotic systems, but adapted to meet plant cellular requirements and with some plant-specific features. In addition, the formation of soluble inositol polyphosphates from phosphoinositides is important for the perception of important phytohormones, as the relevant receptor proteins contain such molecules as structural cofactors. Overall, the essential nature of phosphoinositides in plants has been established. Still, the complexity of the phosphoinositide networks in plant cells is only emerging and invites further study of its molecular details. This article is part of a special issue entitled Phosphoinositides.
Collapse
|
25
|
Mikami K. Structural divergence and loss of phosphoinositide-specific phospholipase C signaling components during the evolution of the green plant lineage: implications from structural characteristics of algal components. FRONTIERS IN PLANT SCIENCE 2014; 5:380. [PMID: 25140171 PMCID: PMC4122161 DOI: 10.3389/fpls.2014.00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 05/03/2023]
Affiliation(s)
- Koji Mikami
- Division of Marine Life Science, Genetics and Genomics, Faculty of Fisheries Sciences, Hokkaido UniversityHakodate, Japan
| |
Collapse
|
26
|
Landstrom AP, Beavers DL, Wehrens XHT. The junctophilin family of proteins: from bench to bedside. Trends Mol Med 2014; 20:353-62. [PMID: 24636942 PMCID: PMC4041816 DOI: 10.1016/j.molmed.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Onoufriadis A, Shoemark A, Schmidts M, Patel M, Jimenez G, Liu H, Thomas B, Dixon M, Hirst RA, Rutman A, Burgoyne T, Williams C, Scully J, Bolard F, Lafitte JJ, Beales PL, Hogg C, Yang P, Chung EMK, Emes RD, O'Callaghan C, Bouvagnet P, Mitchison HM. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 2014; 23:3362-74. [PMID: 24518672 PMCID: PMC4049301 DOI: 10.1093/hmg/ddu046] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the ‘empty’ CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the ‘head’ structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering.
Collapse
Affiliation(s)
- Alexandros Onoufriadis
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK Present address: Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Amelia Shoemark
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK
| | - Miriam Schmidts
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mitali Patel
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gina Jimenez
- Laboratoire Cardiogénétique, Equipe d'Accueil 4173, Université Lyon 1, Hôpital Nord-Ouest, Villefranche sur Saône, Lyon, France Laboratoire Cardiogénétique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France
| | - Hui Liu
- Laboratoire Cardiogénétique, Equipe d'Accueil 4173, Université Lyon 1, Hôpital Nord-Ouest, Villefranche sur Saône, Lyon, France Laboratoire Cardiogénétique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France
| | - Biju Thomas
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Mellisa Dixon
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK
| | - Robert A Hirst
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Andrew Rutman
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Christopher Williams
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Juliet Scully
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Florence Bolard
- Service de Pneumologie, Centre Hospitalier Régional de Roubaix, Hôpital Victor Provo, Roubaix, France
| | - Jean-Jacques Lafitte
- Département de Pneumologie, Centre Hospitalier Régional Universitaire de Lille, Hôpital Albert Calmette, Université Lille 2, Lille, France
| | - Philip L Beales
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claire Hogg
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK
| | - Pinfen Yang
- Department of Biology, Marquette University, Milwaukee, WI 53233, USA
| | - Eddie M K Chung
- General and Adolescent Paediatric Unit, Institute of Child Health, University College London, London, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Christopher O'Callaghan
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK Department of Respiratory Medicine, Portex Unit, Institute of Child Health, University College London and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Patrice Bouvagnet
- Laboratoire Cardiogénétique, Equipe d'Accueil 4173, Université Lyon 1, Hôpital Nord-Ouest, Villefranche sur Saône, Lyon, France Laboratoire Cardiogénétique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France Service de Cardiologie Pédiatrique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France
| | - Hannah M Mitchison
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
28
|
Human junctophilin-2 undergoes a structural rearrangement upon binding PtdIns(3,4,5)P3 and the S101R mutation identified in hypertrophic cardiomyopathy obviates this response. Biochem J 2014; 456:205-17. [PMID: 24001019 PMCID: PMC3898329 DOI: 10.1042/bj20130591] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JP2 (junctophilin-2) is believed to hold the transverse tubular and jSR (junctional sarcoplasmic reticulum) membranes in a precise geometry that facilitates excitation–contraction coupling in cardiomyocytes. We have expressed and purified human JP2 and shown using electron microscopy that the protein forms elongated structures ~15 nm long and 2 nm wide. Employing lipid-binding assays and quartz crystal microbalance with dissipation we have determined that JP2 is selective for PS (phosphatidylserine), with a Kd value of ~0.5 μM, with the N-terminal domain mediating this interaction. JP2 also binds PtdIns(3,4,5)P3 at a different site than PS, resulting in the protein adopting a more flexible conformation; this interaction is modulated by both Ca2+ and Mg2+ ions. We show that the S101R mutation identified in patients with hypertrophic cardiomyopathy leads to modification of the protein secondary structure, forming a more flexible molecule with an increased affinity for PS, but does not undergo a structural transition in response to binding PtdIns(3,4,5)P3. In conclusion, the present study provides new insights into the structural and lipid-binding properties of JP2 and how the S101R mutation may have an effect upon the stability of the dyad organization with the potential to alter JP2–protein interactions regulating Ca2+ cycling. We have purified human JP2 (junctophilin-2) and the S101R hypertrophic cardiomyopathy mutant. JP2 interacts with phosphatidylserine, Kd ~0.5 μM, and PtdIns(3,4,5)P3 at different sites; divalent cations perturb the association. S101R has a modified structure and phospholipid-binding properties.
Collapse
|
29
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
30
|
Im YJ, Brglez I, Dieck C, Perera IY, Boss WF. Phosphatidylinositol 4-kinase and phosphatidylinositol 4-phosphate 5-kinase assays. Methods Mol Biol 2013; 1009:163-74. [PMID: 23681532 DOI: 10.1007/978-1-62703-401-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Inositol lipid kinases are perhaps the easiest and most straightforward enzymes in the phosphoinositide pathway to analyze. In addition to monitoring lipid kinase-specific activity, lipid kinase assays can be used to quantify the inositol lipids present in isolated membranes (Jones et al., Methods Mol Biol 462:75-88, 2009). The lipid kinase assays are based on the fact that the more negatively charged phosphorylated lipid products are readily separated from their lipid substrates by thin layer chromatography. We have summarized our current protocols and identified important considerations for working with inositol lipids including different methods for substrate delivery when using recombinant proteins.
Collapse
Affiliation(s)
- Yang Ju Im
- Department of Plant Biology, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
31
|
Saavedra L, Mikami K, Malhó R, Sommarin M. PIP kinases and their role in plant tip growing cells. PLANT SIGNALING & BEHAVIOR 2012; 7:1302-5. [PMID: 22902694 PMCID: PMC3493418 DOI: 10.4161/psb.21547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phosphatidylinositol (4,5) bisphosphate, [PtdIns(4,5)P 2], is a signaling lipid involved in many important processes in animal cells such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels, and nuclear signaling pathways. In the last years PtdIns(4,5)P 2 and its synthesizing enzyme, phosphatidylinositol phosphate kinase (PIPK), has been intensively studied in plant cells, revealing a key role in the control of polar tip growth. Analysis of the PIPK members from Arabidopsis thaliana, Oryza sativa and Physcomitrella patens showed that they share some regulatory features with animal PIPKs but also exert plant-specific modes of regulation. This review aims at giving an overview on the PIPK family from Arabidopsis thaliana and Physcomitrella patens. Even though their basic structure, modes of activation and physiological role is evolutionary conserved, modules responsible for plasma membrane localization are distinct for different PIPKs, depending on differences in physiological and/or developmental status of cells, such as polarized and non-polarized.
Collapse
Affiliation(s)
- Laura Saavedra
- Faculdade de Ciências de Lisboa; Universidade de Lisboa; BioFIG; Lisboa, Portugal.
| | | | | | | |
Collapse
|
32
|
Abstract
"All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.
Collapse
Affiliation(s)
- Wendy F Boss
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7649, USA.
| | | |
Collapse
|
33
|
Valluru R, Van den Ende W. Myo-inositol and beyond--emerging networks under stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:387-400. [PMID: 21889044 DOI: 10.1016/j.plantsci.2011.07.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 05/18/2023]
Abstract
Myo-inositol is a versatile compound that generates diversified derivatives upon phosphorylation by lipid-dependent and -independent pathways. Phosphatidylinositols form one such group of myo-inositol derivatives that act both as membrane structural lipid molecules and as signals. The significance of these compounds lies in their dual functions as signals as well as key metabolites under stress. Several stress- and non-stress related pathways regulated by phosphatidylinositol isoforms and associated enzymes, kinases and phosphatases, appear to function in parallel to coordinatively adapt growth and stress responses in plants. Recent evidence also postulates their crucial roles in nuclear functions as they interact with the key players of chromatin structure, yet other nuclear functions remain largely unknown. Phosphatidylinositol monophosphate 5-kinase interacts with and represses a cytosolic neutral invertase, a key enzyme of sugar metabolism suggesting a crosstalk between lipid and sugar signaling. Besides phosphatidylinositol, myo-inositol derived galactinol and associated raffinose-family oligosaccharides are emerging as antioxidants and putative signaling compounds too. Importantly, myo-inositol polyphosphate 5-phosphatase (5PTase) acts, depending on sugar status, as a positive or negative regulator of a global energy sensor, SnRK1. This implies that both myo-inositol- and sugar-derived (e.g. trehalose 6-phosphate) molecules form part of a broad regulatory network with SnRK1 as the central regulator. Recently, it was shown that the transcription factor bZIP11 also takes part in this network. Moreover, a functional coordination between neutral invertase and hexokinase is emerging as a sweet network that contributes to oxidative stress homeostasis in plants. In this review, we focus on myo-inositol, its direct and more downstream derivatives (galactinol, raffinose), and the contribution of their associated networks to plant stress tolerance.
Collapse
Affiliation(s)
- Ravi Valluru
- Ecophysiology of Plants Under Environmental Stress, INRA-SUPAGRO, Institute of Integrative Plant Biology, 2 Place Viala, Montpellier, France
| | | |
Collapse
|
34
|
PI3Ks maintain the structural integrity of T-tubules in cardiac myocytes. PLoS One 2011; 6:e24404. [PMID: 21912691 PMCID: PMC3166327 DOI: 10.1371/journal.pone.0024404] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/09/2011] [Indexed: 02/06/2023] Open
Abstract
Background Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently. Methods and Results Genetic ablation of both p110α and p110β in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca2+ channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca2+ transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level. Conclusions PI3K p110α and p110β are required to maintain the organized network of T-tubules that is vital for efficient Ca2+-induced Ca2+ release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials.
Collapse
|
35
|
Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:453-68. [PMID: 21265898 DOI: 10.1111/j.1365-313x.2010.04435.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Stenzel I, Ischebeck T, Quint M, Heilmann I. Variable Regions of PI4P 5-Kinases Direct PtdIns(4,5)P(2) Toward Alternative Regulatory Functions in Tobacco Pollen Tubes. FRONTIERS IN PLANT SCIENCE 2011; 2:114. [PMID: 22639629 PMCID: PMC3355713 DOI: 10.3389/fpls.2011.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/23/2011] [Indexed: 05/03/2023]
Abstract
The apical plasma membrane of pollen tubes contains different PI4P 5-kinases that all produce phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] but exert distinct cellular effects. In the present example, overexpression of Arabidopsis AtPIP5K5 or tobacco NtPIP5K6-1 caused growth defects previously attributed to increased pectin secretion. In contrast, overexpression of Arabidopsis AtPIP5K2 caused apical tip swelling implicated in altering actin fine structure in the pollen tube apex. AtPIP5K5, NtPIP5K6-1, and AtPIP5K2 share identical domain structures. Domains required for correct membrane association of the enzymes were identified by systematic deletion of N-terminal domains and subsequent expression of fluorescence-tagged enzyme truncations in tobacco pollen tubes. A variable linker region (Lin) contained in all PI4P 5-kinase isoforms of subfamily B, but not conserved in sequence, was recognized to be necessary for correct subcellular localization of AtPIP5K5, NtPIP5K6-1, and AtPIP5K2. Deletion of N-terminal domains including the Lin domain did not impair catalytic activity of recombinant AtPIP5K5, NtPIP5K6-1, or AtPIP5K2 in vitro; however, the presence of the Lin domain was necessary for in vivo effects on pollen tube growth upon overexpression of truncated enzymes. Overexpression of catalytically inactive variants of AtPIP5K5, NtPIP5K6-1, or AtPIP5K2 did not influence pollen tube growth, indicating that PtdIns(4,5)P(2) production rather than structural properties of PI4P 5-kinases was relevant for the manifestation of growth phenotypes. When Lin domains were swapped between NtPIP5K6-1 and AtPIP5K2 and the chimeric enzymes overexpressed in pollen tubes, the chimeras reciprocally gained the capabilities to invoke tip swelling or secretion phenotypes, respectively. The data indicate that the Lin domain directed the enzymes into different regulatory contexts, possibly contributing to channeling of PtdIns(4,5)P(2) at the interface of secretion and actin cytoskeleton.
Collapse
Affiliation(s)
- Irene Stenzel
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University GöttingenGöttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University GöttingenGöttingen, Germany
| | - Marcel Quint
- Department of Molecular Signal Processing, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University GöttingenGöttingen, Germany
- *Correspondence: Ingo Heilmann, Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle–Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany. e-mail:
| |
Collapse
|
37
|
Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. THE PLANT CELL 2010; 22:4031-44. [PMID: 21189293 PMCID: PMC3027160 DOI: 10.1105/tpc.110.076760] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/23/2010] [Accepted: 12/06/2010] [Indexed: 05/18/2023]
Abstract
Using the tip-growing pollen tube of Arabidopsis thaliana and Nicotiana tabacum as a model to investigate endocytosis mechanisms, we show that phosphatidylinositol-4-phosphate 5-kinase 6 (PIP5K6) regulates clathrin-dependent endocytosis in pollen tubes. Green fluorescent protein-tagged PIP5K6 was preferentially localized to the subapical plasma membrane (PM) in pollen tubes where it apparently converts phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. RNA interference-induced suppression of PIP5K6 expression impaired tip growth and inhibited clathrin-dependent endocytosis in pollen tubes. By contrast, PIP5K6 overexpression induced massive aggregation of the PM in pollen tube tips. This PM abnormality was apparently due to excessive clathrin-dependent membrane invagination because this defect was suppressed by the expression of a dominant-negative mutant of clathrin heavy chain. These results support a role for PI(4,5)P(2) in promoting early stages of clathrin-dependent endocytosis (i.e., membrane invagination). Interestingly, the PIP5K6 overexpression-induced PM abnormality was partially suppressed not only by the overexpression of PLC2, which breaks down PI(4,5)P(2), but also by that of PI4Kβ1, which increases the pool of PI4P. Based on these observations, we propose that a proper balance between PI4P and PI(4,5)P(2) is required for clathrin-dependent endocytosis in the tip of pollen tubes.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University–University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - An Yan
- Center for Plant Cell Biology, Department of Botany and Sciences, University of California, Riverside, California 92521
| | - José A. Feijó
- Seccao de Biologia Vegetal, Faculdade de Ciencias, Universidade de Lisboa 1700, Lisbon P-1749-016, Portugal
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Masahiro Furutani
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenbiao Yang
- China Agricultural University–University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Plant Cell Biology, Department of Botany and Sciences, University of California, Riverside, California 92521
| |
Collapse
|
38
|
Liang Q, Lu X, Jiang L, Wang C, Fan Y, Zhang C. EMB1211 is required for normal embryo development and influences chloroplast biogenesis in Arabidopsis. PHYSIOLOGIA PLANTARUM 2010; 140:380-394. [PMID: 20738804 DOI: 10.1111/j.1399-3054.2010.01407.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chloroplast biogenesis is tightly linked with embryogenesis and seedling development. A growing body of work has been done on the molecular mechanisms underlying chloroplast development; however, the molecular components involved in chloroplast biogenesis during embryogenesis remain largely uncharacterized. In this paper, we show that an Arabidopsis mutant carrying a T-DNA insertion in a gene encoding a multiple membrane occupation and recognition nexus (MORN)-containing protein exhibits severe defects during embryogenesis, producing abnormal embryos and thereby leading to a lethality of young seedlings. Genetic and microscopic studies reveal that the mutation is allelic to a previously designated Arabidopsis embryo-defective 1211 mutant (emb1211). The emb1211 +/- mutant plants produce approximately 25% of white-colored ovules with abnormal embryos since late globular stage when primary chloroplast biogenesis takes place, while the wild-type plants produce all green ovules. Transmission electron microscopic analysis reveals the absence of normal chloroplast development, both in the mutant embryos and in the mutant seedlings, that contributes to the albinism. The EMB1211 gene is preferentially expressed in developing embryos as revealed in the EMB1211::GUS transgenic plants. Taken together, the data indicate that EMB1211 has an important role during embryogenesis and chloroplast biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Plant Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
39
|
Mikami K, Saavedra L, Sommarin M. Is membrane occupation and recognition nexus domain functional in plant phosphatidylinositol phosphate kinases? PLANT SIGNALING & BEHAVIOR 2010; 5:1241-4. [PMID: 20855959 PMCID: PMC3115357 DOI: 10.4161/psb.5.10.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phosphatidylinositol phosphate kinase (PIPK) catalyzes a key step controlling cellular contents of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], a critical intracellular messenger involved in vesicle trafficking and modulation of actin cytoskeleton and also a substrate of phospholipase C to produce the two intracellular messengers, diacylglycerol and inositol-1,4,5-trisphosphate. In addition to the conserved C-terminal PIPK catalytic domain, plant PIPKs contain a unique structural feature consisting of a repeat of membrane occupation and recognition nexus (MORN) motifs, called the MORN domain, in the N-terminal half. The MORN domain has previously been proposed to regulate plasma membrane localization and phosphatidic acid (PA)-inducible activation. Recently, the importance of the catalytic domain, but not the MORN domain, in these aspects was demonstrated. These conflicting data raise the question about the function of the MORN domain in plant PIPKs. We therefore performed analyses of PpPIPK1 from the moss Physcomitrella patens to elucidate the importance of the MORN domain in the control of enzymatic activity; however, we found no effect on either enzymatic activity or activation by PA. Taken together with our previous findings of lack of function in plasma membrane localization, there is no positive evidence indicating roles of the MORN domain in enzymatic and functional regulations of PpPIPK1. Therefore, further biochemical and reverse genetic analyses are necessary to understand the biological significance of the MORN domain in plant PIPKs.
Collapse
Affiliation(s)
- Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | | | | |
Collapse
|
40
|
Emerging role of junctophilin-2 as a regulator of calcium handling in the heart. Acta Pharmacol Sin 2010; 31:1019-21. [PMID: 20694023 DOI: 10.1038/aps.2010.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Junctophilin-2 (JPH2) is a membrane-binding protein that plays a key role in the organization of the junctional membrane complex (JMC) in cardiac myocytes. JPH2 is believed to keep the plasma membrane and sarcoplasmic reticulum at a fixed distance within the JMC, which is essential for proper Ca(2+)-induced Ca(2+) release during the excitation-contraction process. Recent studies have revealed that mutations in the JPH2 gene are associated with hypertrophic cardiomyopathy, highlighting the importance of this protein for normal cardiac physiology. In this paper, we review current knowledge about the structure and function of junctophilin-2 in the heart.
Collapse
|
41
|
Abstract
Plastids are vital organelles, fulfilling important metabolic functions that greatly influence plant growth and productivity. In order to both regulate and harness the metabolic output of plastids, it is vital that the process of plastid division is carefully controlled. This is essential, not only to ensure persistence in dividing plant cells and that optimal numbers of plastids are obtained in specialized cell types, but also to allow the cell to act in response to developmental signals and environmental changes. How this control is exerted by the host nucleus has remained elusive. Plastids evolved by endosymbiosis and during the establishment of a permanent endosymbiosis they retained elements of the bacterial cell-division machinery. Through evolution the photosynthetic eukaryotes have increased dramatically in complexity, from single-cell green algae to multicellular non-vascular and vascular plants. Reflected with this is an increasing complexity of the division machinery and recent findings also suggest increasing complexity in the molecular mechanisms used by the host cell to control the process of plastid division. In the present paper, we explore the current understanding of the process of plastid division at the molecular and cellular level, with particular respect to the evolution of the division machinery and levels of control exerted on the process.
Collapse
|
42
|
Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila. J Neurosci 2010; 30:1238-49. [PMID: 20107052 DOI: 10.1523/jneurosci.4464-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP) (CG10233) in Drosophila photoreceptors and establish its involvement in dark-noise suppression. RTP possesses membrane occupation and recognition nexus (MORN) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light-gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking neither inactivation nor afterpotential C (NINAC) myosin III, a motor protein/kinase, also display a similar dark-noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is attributable to lack of RTP and, furthermore, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors.
Collapse
|
43
|
Mikami K, Saavedra L, Hiwatashi Y, Uji T, Hasebe M, Sommarin M. A dibasic amino acid pair conserved in the activation loop directs plasma membrane localization and is necessary for activity of plant type I/II phosphatidylinositol phosphate kinase. PLANT PHYSIOLOGY 2010; 153:1004-15. [PMID: 20427464 PMCID: PMC2899925 DOI: 10.1104/pp.109.152686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phosphatidylinositol phosphate kinase (PIPK) is an enzyme involved in the regulation of cellular levels of phosphoinositides involved in various physiological processes, such as cytoskeletal organization, ion channel activation, and vesicle trafficking. In animals, research has focused on the modes of activation and function of PIPKs, providing an understanding of the importance of plasma membrane localization. However, it still remains unclear how this issue is regulated in plant PIPKs. Here, we demonstrate that the carboxyl-terminal catalytic domain, which contains the activation loop, is sufficient for plasma membrane localization of PpPIPK1, a type I/II B PIPK from the moss Physcomitrella patens. The importance of the carboxyl-terminal catalytic domain for plasma membrane localization was confirmed with Arabidopsis (Arabidopsis thaliana) AtPIP5K1. Our findings, in which substitution of a conserved dibasic amino acid pair in the activation loop of PpPIPK1 completely prevented plasma membrane targeting and abolished enzymatic activity, demonstrate its critical role in these processes. Placing our results in the context of studies of eukaryotic PIPKs led us to conclude that the function of the dibasic amino acid pair in the activation loop in type I/II PIPKs is plant specific.
Collapse
Affiliation(s)
- Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Ischebeck T, Seiler S, Heilmann I. At the poles across kingdoms: phosphoinositides and polar tip growth. PROTOPLASMA 2010; 240:13-31. [PMID: 20091065 PMCID: PMC2841259 DOI: 10.1007/s00709-009-0093-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/20/2023]
Abstract
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Seiler
- Department of Microbiology and Genetics; and DFG Research Center Molecular Physiology of the Brain (CMPB), Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Gagne JM, Clark SE. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. THE PLANT CELL 2010; 22:729-43. [PMID: 20348433 PMCID: PMC2861466 DOI: 10.1105/tpc.109.068734] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 03/03/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Abstract
Stem cell maintenance and differentiation are tightly regulated in multicellular organisms. In plants, proper control of the stem cell populations is critical for extensive postembryonic organogenesis. The Arabidopsis thaliana protein phosphatase type 2C proteins POLTERGEIST (POL) and PLL1 are essential for maintenance of both the root and shoot stem cells. Specifically, POL and PLL1 are required for proper specification of key asymmetric cell divisions during stem cell initiation and maintenance. POL and PLL1 are known to be integral components of the CLE/WOX signaling pathways, but the location and mechanisms by which POL and PLL1 are regulated within these pathways are unclear. Here, we show that POL and PLL1 are dual-acylated plasma membrane proteins whose membrane localization is required for proper function. Furthermore, this localization places POL and PLL1 in proximity of the upstream plasma membrane receptors that regulate their activity. Additionally, we find that POL and PLL1 directly bind to multiple lipids and that POL is catalytically activated by phosphatidylinositol (4) phosphate [PI(4)P] in vitro. Based on these results, we propose that the upstream receptors in the CLE/WOX signaling pathways may function to either limit PI(4)P availability or antagonize PI(4)P stimulation of POL/PLL1. Significantly, the findings presented here suggest that phospholipids play an important role in promoting stem cell specification.
Collapse
Affiliation(s)
| | - Steven E. Clark
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
46
|
Lee J, Han CT, Hur Y. Overexpression of BrMORN, a novel 'membrane occupation and recognition nexus' motif protein gene from Chinese cabbage, promotes vegetative growth and seed production in Arabidopsis. Mol Cells 2010; 29:113-22. [PMID: 20016940 DOI: 10.1007/s10059-010-0006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 10/14/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022] Open
Abstract
Proteins that contain membrane occupation and recognition nexus (MORN) motifs regulate various aspects of cellular metabolism by localizing proteins in different cellular organelles. The full-length Brassica rapa MORN motif protein (BrMORN) cDNA consists of 1,510 bp encoding 502 deduced amino acids with a predicted molecular mass of 55.8 kDa and an isoelectric point of 9.72. BrMORN is a novel protein composed of two N-terminal transmembrane helices and seven C-terminal MORN motifs and it appears to be localized on the plastid envelope. BrMORN expression was relatively high in actively-growing tissues, but low in mature tissues and under some abiotic stresses. Arabidopsis thaliana plants overexpressing BrMORN showed an enhanced rate of growth, hypocotyl elongation, and increases in the size of vegetative organs and seed productivity under normal growth conditions. In addition, cell size in Arabidopsis plants overexpressing BrMORN was 24% larger than that of wild-type plants, implying that the increase in the size of vegetative organs is due to cell enlargement. The increased size of the vegetative organs also led to increased seed production. Our data suggest that the MORN motif of BrMORN may act at the plastid envelope and facilitate plant growth via cell enlargement.
Collapse
Affiliation(s)
- Jeongyeo Lee
- Plant Genomics Institute, College of Biosystems Science, Chungnam National University, Daejeon, 305-764, Korea
| | | | | |
Collapse
|
47
|
TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS Pathog 2010; 6:e1000754. [PMID: 20140195 PMCID: PMC2816694 DOI: 10.1371/journal.ppat.1000754] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/06/2010] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is a leading cause of congenital birth defects, as well as a cause for ocular and neurological diseases in humans. Its cytoskeleton is essential for parasite replication and invasion and contains many unique structures that are potential drug targets. Therefore, the biogenesis of the cytoskeletal structure of T. gondii is not only important for its pathogenesis, but also of interest to cell biology in general. Previously, we and others identified a new T. gondii cytoskeletal protein, TgMORN1, which is recruited to the basal complex at the very beginning of daughter formation. However, its function remained largely unknown. In this study, we generated a knock-out mutant of TgMORN1 (ΔTgMORN1) using a Cre-LoxP based approach. We found that the structure of the basal complex was grossly affected in ΔTgMORN1 parasites, which also displayed defects in cytokinesis. Moreover, ΔTgMORN1 parasites showed significant growth impairment in vitro, and this translated into greatly attenuated virulence in mice. Therefore, our results demonstrate that TgMORN1 is required for maintaining the structural integrity of the parasite posterior end, and provide direct evidence that cytoskeleton integrity is essential for parasite virulence and pathogenesis. The disease toxoplasmosis is the result of uncontrolled growth and proliferation of the intracellular parasite Toxoplasma gondii, which is pathogenic for most warm-blooded animals. If growth of the parasite is blocked, then it does not cause disease, even though it may persist in the host as a chronic infection. Proper assembly of the cytoskeleton of T. gondii is known to be essential for its growth, and consequently required for virulence. In this study, we investigated the function of a novel cytoskeletal protein, TgMORN1, in T. gondii. TgMORN1 is a major component of the basal complex, a novel cytoskeletal assembly located at the posterior end of the parasite. We found that TgMORN1 is required for maintaining the structural integrity of the parasite posterior end and is important for ensuring successful separation of daughters at late stage of parasite replication. In addition, infection with parasites deficient in TgMORN1 not only failed to kill mice but also provided protective immunity against a lethal challenge infection, indicating the importance of TgMORN1 in T. gondii growth both in vitro and in vivo.
Collapse
|
48
|
Camacho L, Smertenko AP, Pérez-Gómez J, Hussey PJ, Moore I. Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 2009; 122:4383-92. [PMID: 19903693 DOI: 10.1242/jcs.053488] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.
Collapse
Affiliation(s)
- Luísa Camacho
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | | | | | | |
Collapse
|
49
|
Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol Cell Physiol 2009; 298:C365-76. [PMID: 19940065 DOI: 10.1152/ajpcell.00365.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Junctophilins (JP1 and JP2) are expressed in skeletal muscle and are the primary proteins involved in transverse (T)-tubule and sarcoplasmic reticulum (SR) membrane apposition. During the performance of eccentric contractions, the apposition of T-tubule and SR membranes may be disrupted, resulting in excitation-contraction (EC) coupling failure and thus reduced force-producing capacity. In this study, we made three primary observations: 1) through the first 3 days after the performance of 50 eccentric contractions in vivo by the left hindlimb anterior crural muscles of female mice, both JP1 and JP2 were significantly reduced by approximately 50% and 35%, respectively, while no reductions were observed after the performance of nonfatiguing concentric contractions; 2) following the performance of a repeated bout of 50 eccentric contractions in vivo, only JP1 was immediately reduced ( approximately 30%) but recovered by 3-day postinjury in tandem with the recovery of strength and EC coupling; and 3) following the performance of 10 eccentric contractions at either 15 degrees or 35 degrees C by isolated mouse extensor digitorum longus (EDL) muscle, isometric force, EC coupling, and JP1 and JP2 were only reduced after the eccentric contractions performed at 35 degrees C. Regression analysis of JP1 and JP2 content in tibialis anterior and EDL muscles from each set of experiments indicated that JP damage is significantly associated with early (0-3 days) strength deficits after performance of eccentric contractions (R = 0.49; P < 0.001). As a whole, the results of this study indicate that JP damage plays a role in early force deficits due to EC coupling failure following the performance of eccentric contractions.
Collapse
Affiliation(s)
- B T Corona
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
50
|
|