1
|
Puig-Blasco L, Piotrowski KB, Michaelsen SR, Bager NS, Areškevičiūtiė A, Thorseth ML, Sun XF, Keller UAD, Kristensen BW, Madsen DH, Gnosa SP, Kveiborg M. Loss of cancer cell-derived ADAM15 alters the tumor microenvironment in colorectal tumors. Int J Cancer 2023; 153:2068-2081. [PMID: 37602921 DOI: 10.1002/ijc.34695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.
Collapse
Affiliation(s)
- Laia Puig-Blasco
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof B Piotrowski
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Signe R Michaelsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai S Bager
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Aušrinė Areškevičiūtiė
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bjarne W Kristensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
| | - Sebastian P Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Minerva Imaging, Ølstykke, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Wang X, Zhang D, Higham A, Wolosianka S, Gai X, Zhou L, Petersen H, Pinto-Plata V, Divo M, Silverman EK, Celli B, Singh D, Sun Y, Owen CA. ADAM15 expression is increased in lung CD8 + T cells, macrophages, and bronchial epithelial cells in patients with COPD and is inversely related to airflow obstruction. Respir Res 2020; 21:188. [PMID: 32677970 PMCID: PMC7364636 DOI: 10.1186/s12931-020-01446-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A disintegrin and metalloproteinase domain-15 (ADAM15) is expressed by activated leukocytes, and fibroblasts in vitro. Whether ADAM15 expression is increased in the lungs of COPD patients is not known. METHODS ADAM15 gene expression and/or protein levels were measured in whole lung and bronchoalveolar lavage (BAL) macrophage samples obtained from COPD patients, smokers, and non-smokers. Soluble ADAM15 protein levels were measured in BAL fluid (BALF) and plasma samples from COPD patients and controls. Cells expressing ADAM15 in the lungs were identified using immunostaining. Staining for ADAM15 in different cells in the lungs was related to forced expiratory volume in 1 s (FEV1), ratio of FEV1 to forced vital capacity (FEV1/FVC), and pack-years of smoking history. RESULTS ADAM15 gene expression and/or protein levels were increased in alveolar macrophages and whole lung samples from COPD patients versus smokers and non-smokers. Soluble ADAM15 protein levels were similar in BALF and plasma samples from COPD patients and controls. ADAM15 immunostaining was increased in macrophages, CD8+ T cells, epithelial cells, and airway α-smooth muscle (α-SMA)-positive cells in the lungs of COPD patients. ADAM15 immunostaining in macrophages, CD8+ T cells and bronchial (but not alveolar) epithelial cells was related inversely to FEV1 and FEV1/FVC, but not to pack-years of smoking history. ADAM15 staining levels in airway α-SMA-positive cells was directly related to FEV1/FVC. Over-expressing ADAM15 in THP-1 cells reduced their release of matrix metalloproteinases and CCL2. CONCLUSIONS These results link increased ADAM15 expression especially in lung leukocytes and bronchial epithelial cells to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Program in Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Andrew Higham
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sophie Wolosianka
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Xiaoyan Gai
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Lu Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Hans Petersen
- The Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Victor Pinto-Plata
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bartolome Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Yongchang Sun
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- The Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA.
| |
Collapse
|
3
|
Miyamae Y, Mochizuki S, Shimoda M, Ohara K, Abe H, Yamashita S, Kazuno S, Ohtsuka T, Ochiai H, Kitagawa Y, Okada Y. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death. FEBS J 2016; 283:1574-94. [PMID: 26918856 DOI: 10.1111/febs.13693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/05/2016] [Accepted: 02/23/2016] [Indexed: 12/28/2022]
Abstract
ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells.
Collapse
Affiliation(s)
- Yuka Miyamae
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Satsuki Mochizuki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hitoshi Abe
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Yamashita
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Department of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Ochiai
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Genetic deletion of Klf4 in the mouse intestinal epithelium ameliorates dextran sodium sulfate-induced colitis by modulating the NF-κB pathway inflammatory response. Inflamm Bowel Dis 2014; 20:811-20. [PMID: 24681655 PMCID: PMC4091934 DOI: 10.1097/mib.0000000000000022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor expressed in the differentiated epithelial cells lining of the intestine. Under physiological conditions, KLF4 inhibits cell proliferation. Conversely, KLF4 mediates proinflammatory signaling in macrophages and its overexpression in the esophageal epithelium activates cytokines, leading to inflammation-mediated esophageal squamous cell cancer formation in mice. Here, we tested whether KLF4 has a proinflammatory activity in experimental colitis in mice. METHODS Villin-Cre;Klf4 mice with intestine-specific Klf4 deletion (Klf4) and control mice with floxed Klf4 gene (Klf4) were treated or not with 3% dextran sodium sulfate (DSS) for 7 days to induce colitis. Additionally, WT mice were administered or not, nanoparticles loaded with scrambled or Klf4-siRNA, and concomitantly given DSS. RESULTS Compared with DSS-treated Klf4 mice, DSS-treated Klf4 mice were significantly less sensitive to DSS-induced colitis. DSS treatment of Klf4 mice induced Klf4 expression in the crypt zone of the colonic epithelium. DSS-treated Klf4 mice had increased proliferation relative to DSS-treated control mice. DSS treatment induced NF-κB signaling pathway in Klf4 mice colon but not Klf4 mice. Additionally, WT mice given DSS and nanoparticle/Klf4-siRNA were less sensitive to colitis and had reduced Klf4 expression and while maintaining the proliferative response in the colonic epithelium. CONCLUSIONS Our results indicate that Klf4 is an important mediator of DSS-induced colonic inflammation by modulating NF-κB signaling pathway and could be involved in the pathogenesis and/or propagation of inflammatory bowel disease. Thus, Klf4 may represent a novel therapeutic target in inflammatory bowel disease.
Collapse
|
5
|
Gu W, Zhao Y. Cellular electrical impedance spectroscopy: an emerging technology of microscale biosensors. Expert Rev Med Devices 2014; 7:767-79. [DOI: 10.1586/erd.10.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles. Mol Ther 2013; 22:69-80. [PMID: 24025751 DOI: 10.1038/mt.2013.214] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/03/2013] [Indexed: 12/27/2022] Open
Abstract
Intestinal CD98 expression plays a crucial role in controlling homeostatic and innate immune responses in the gut. Modulation of CD98 expression in intestinal cells therefore represents a promising therapeutic strategy for the treatment and prevention of inflammatory intestinal diseases, such as inflammatory bowel disease. Here, the advantages of nanoparticles (NPs) are used, including their ability to easily pass through physiological barriers and evade phagocytosis, high loading concentration, rapid kinetics of mixing and resistance to degradation. Using physical chemistry characterizations techniques, CD98 siRNA/polyethyleneimine (PEI)-loaded NPs was characterized (diameter of ~480 nm and a zeta potential of -5.26 mV). Interestingly, CD98 siRNA can be electrostatically complexed by PEI and thus protected from RNase. In addition, CD98 siRNA/PEI-loaded NPs are nontoxic and biocompatible with intestinal cells. Oral administration of CD98/PEI-loaded NPs encapsulated in a hydrogel reduced CD98 expression in mouse colonic tissues and decreased dextran sodium sulfate-induced colitis in a mouse model. Finally, flow cytometry showed that CD98 was effectively downregulated in the intestinal epithelial cells and intestinal macrophages of treated mice. Finally, the results collectively demonstrated the therapeutic effect of "hierarchical nano-micro particles" with colon-homing capabilities and the ability to directly release "molecularly specific" CD98 siRNA in colonic cells, thereby decreasing colitis.
Collapse
|
7
|
Lin YS, Chou WL, Yang CH, Huang KS, Wang EC, Chen CY, Lin YH, Huang HM. A real-time impedance-sensing chip for the detection of emulsion phase separation. Electrophoresis 2013; 34:1743-8. [DOI: 10.1002/elps.201200517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Yung-Sheng Lin
- Department of Applied Cosmetology and Master Program of Cosmetic Science; Hungkuang University; Taichung; Taiwan
| | - Wei-Lung Chou
- Department of Safety, Health and Environmental Engineering; Hungkuang University; Taichung; Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology; I-Shou University; Kaohsiung; Taiwan
| | - Keng-Shiang Huang
- School of Chinese Medicine for Post-Baccalaureate; I-Shou University; Kaohsiung; Taiwan
| | - Eng-Chi Wang
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; Kaohsiung; Taiwan
| | - Cheng-You Chen
- Department of Applied Cosmetology and Master Program of Cosmetic Science; Hungkuang University; Taichung; Taiwan
| | - Yu-Hsin Lin
- Instrument Technology Research Center; National Applied Research Laboratories; Hsinchu; Taiwan
| | - Haw-Ming Huang
- Graduate Institute of Biomedical Materials and Engineering; Taipei Medical University; Taipei; Taiwan
| |
Collapse
|
8
|
Gérard A, Beemiller P, Friedman RS, Jacobelli J, Krummel MF. Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. Immunol Rev 2013; 251:80-96. [PMID: 23278742 PMCID: PMC3539221 DOI: 10.1111/imr.12021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The immune system is made up of a diverse collection of cells, each of which has distinct sets of triggers that elicit unique and overlapping responses. It is correctly described as a 'system' because its overall properties (e.g. 'tolerance', 'allergy') emerge from multiple interactions of its components cells. To mobilize a response where needed, the majority of the cells of the system are obligatorily highly motile and so must communicate with one another over both time and space. Here, we discuss the flexibility of the primary immunological synapse (IS) with respect to motility. We then consider the primary IS as an initiating module that licenses 'immunological circuits': the latter consisting of two or more cell-cell synaptic interactions. We discuss how two or three component immunological circuits interact might with one another in sequence and how the timing, stoichiometry, milieu, and duration of assembly of immunological circuits are likely to be key determinants in the emergent outcome and thus the system-wide immune response. An evolving consideration of immunological circuits, with an emphasis on the cell-cell modules that complement T-antigen-presenting cell interaction, provides a fundamental starting point for systems analysis of the immune response.
Collapse
Affiliation(s)
- Audrey Gérard
- Department of Pathology, University of California, San Francisco, CA 94143-0511, USA
| | | | | | | | | |
Collapse
|
9
|
Sun C, Wu MH, Lee ES, Yuan SY. A disintegrin and metalloproteinase 15 contributes to atherosclerosis by mediating endothelial barrier dysfunction via Src family kinase activity. Arterioscler Thromb Vasc Biol 2012; 32:2444-51. [PMID: 22904271 DOI: 10.1161/atvbaha.112.252205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelium dysfunction is an initiating factor in atherosclerosis. A disintegrin and metalloproteinase 15 (ADAM 15) is a multidomain metalloprotease recently identified as a regulator of endothelial permeability. However, whether and how ADAM15 contributes to atherosclerosis remains unknown. METHODS AND RESULTS Genetic ablation of ADAM15 in apolipoprotein E-deficient mice led to a significant reduction in aortic atherosclerotic lesion size (by 52%), plaque macrophage infiltration (by 69%), and smooth muscle cell deposition (by 82%). In vitro studies implicated endothelial-derived ADAM15 in barrier dysfunction and monocyte transmigration across mouse aortic and human umbilical vein endothelial cell monolayers. This role of ADAM15 depended on intact functioning of the cytoplasmic domain, as evidenced in experiments with site-directed mutagenesis targeting the metalloprotease active site (E349A), the disintegrin domain (Arginine-Glycine-Aspartic acid→Threonine-Aspartic acid-Aspartic acid), or the cytoplasmic tail. Further investigations revealed that ADAM15-induced barrier dysfunction was concomitant with dissociation of endothelial adherens junctions (vascular endothelial [VE]-cadherin/γ-catenin), an effect that was sensitive to Src family kinase inhibition. Through small interfering RNA-mediated knockdown of distinct Src family kinase members, c-Src and c-Yes were identified as important mediators of these junctional effects of ADAM15. CONCLUSIONS These results suggest that endothelial cell-derived ADAM15, signaling through c-Src and c-Yes, contributes to atherosclerotic lesion development by disrupting adherens junction integrity and promoting monocyte transmigration.
Collapse
Affiliation(s)
- Chongxiu Sun
- Departments of Molecular Pharmacology and Physiology and Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
10
|
Hsiao SY, Chen DC, Yang CH, Huang HM, Lu YP, Huang HS, Lin CY, Lin YS. Chemical-Free and Reusable Cellular Analysis. INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION 2012. [DOI: 10.4018/jthi.2012070101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To advance innovative green technology in studying cytology, this study developed an electrochemical impedance spectroscopic (EIS) system with an indium tin oxide (ITO) culture chip module. This paper also demonstrates typical examples of solution effects and B16-F10 cell culture. Results indicate that higher concentrations of saline or albumin had lower impedance. From impedance data, cell proliferation and decline could be elucidated. The impedance soon decreased when Triton X-100 was applied to kill cells. Furthermore, the implemented transparent ITO culture chip module is experiment-friendly to perform optical inspections. The proposed green EIS system which is advantage of chemical-free and reusability can be widely applied to cytology studies in the future.
Collapse
Affiliation(s)
- Sheng-Yi Hsiao
- Instrument Technology Research Center, National Applied Research Laboratories, Taiwan
| | | | | | | | - Yen-Pei Lu
- Instrument Technology Research Center, National Applied Research Laboratories, Taiwan
| | - Hui-Shun Huang
- Instrument Technology Research Center, National Applied Research Laboratories, Taiwan
| | | | | |
Collapse
|
11
|
Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Encapsulation of cell-adhesive RGD peptides into a polymeric physical hydrogel to prevent postoperative tissue adhesion. J Biomed Mater Res B Appl Biomater 2012; 100:1599-609. [DOI: 10.1002/jbm.b.32728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/06/2012] [Accepted: 04/04/2012] [Indexed: 01/22/2023]
|
12
|
Schönefuß A, Abety AN, Zamek J, Mauch C, Zigrino P. Role of ADAM-15 in wound healing and melanoma development. Exp Dermatol 2012; 21:437-42. [DOI: 10.1111/j.1600-0625.2012.01490.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zimmerman NP, Vongsa RA, Faherty SL, Salzman NH, Dwinell MB. Targeted intestinal epithelial deletion of the chemokine receptor CXCR4 reveals important roles for extracellular-regulated kinase-1/2 in restitution. J Transl Med 2011; 91:1040-55. [PMID: 21537329 PMCID: PMC3167207 DOI: 10.1038/labinvest.2011.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Barrier defects and/or alterations in the ability of the gut epithelium to repair itself are critical etiological mechanisms of gastrointestinal disease. Our ongoing studies indicate that the chemokine receptor CXCR4 and its cognate ligand CXCL12 regulate intestinal-epithelial barrier maturation and restitution in cell culture models. Gene-deficient mice lacking CXCR4 expression specifically by the cells of the intestinal epithelium were used to test the hypothesis that CXCR4 regulates mucosal barrier integrity in vivo. Epithelial expression of CXCR4 was assessed by RT-PCR, Southern blot, immunoblot and immunohistochemistry. In vivo wounding assays were performed by addition of 3% dextran sodium sulfate (DSS) in drinking water for 5 days. Intestinal damage and DAI scores were assessed by histological examination. Extracellular-regulated kinase (ERK) phosphorylation was assessed in vivo by immunoblot and immunofluorescence. CXCR4 knockdown cells were established using a lentiviral approach and ERK phosphorylation was assessed. Consistent with targeted roles in restitution, epithelium from patients with inflammatory bowel disease indicated that CXCR4 and CXCL12 expression was stable throughout the human colonic epithelium. Conditional CXCR4-deficient mice developed normally, with little phenotypic differences in epithelial morphology, proliferation or migration. Re-epithelialization was absent in CXCR4 conditional knockout mice following acute DSS-induced inflammation. In contrast, heterozygous CXCR4-depleted mice displayed significant improvement in epithelial ulcer healing in acute and chronic inflammation. Mucosal injury repair was correlated with ERK1/2 activity and localization along the crypt-villus axis, with heterozygous mice characterized by increased ERK1/2 activation. Lentiviral depletion of CXCR4 in IEC-6 cells similarly altered ERK1/2 activity and prevented chemokine-stimulated migration. Taken together, these data indicate that chemokine receptors participate in epithelial barrier responses through coordination of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Noah P. Zimmerman
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Rebecca A. Vongsa
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Sheena L. Faherty
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Nita H. Salzman
- Department of Pediatrics Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Michael B. Dwinell
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Road, Milwaukee, WI 53226,Address Correspondence: Michael B. Dwinell, Ph.D., Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Phone: (414) 955-7427 / FAX: (414) 955-6535,
| |
Collapse
|
14
|
Zigrino P, Nischt R, Mauch C. The disintegrin-like and cysteine-rich domains of ADAM-9 mediate interactions between melanoma cells and fibroblasts. J Biol Chem 2010; 286:6801-7. [PMID: 21135106 DOI: 10.1074/jbc.m110.168617] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A characteristic of malignant cells is their capacity to invade their surrounding and to metastasize to distant organs. During these processes, proteolytic activities of tumor and stromal cells modify the extracellular matrix to produce a microenvironment suitable for their growth and migration. In recent years the family of ADAM proteases has been ascribed important roles in these processes. ADAM-9 is expressed in human melanoma at the tumor-stroma border where direct or indirect interactions between tumor cells and fibroblasts occur. To analyze the role of ADAM-9 for the interaction between melanoma cells and stromal fibroblasts, we produced the recombinant disintegrin-like and cysteine-rich domain of ADAM-9 (DC-9). Melanoma cells and human fibroblasts adhered to immobilized DC-9 in a Mn(2+)-dependent fashion suggesting an integrin-mediated process. Inhibition studies showed that adhesion of fibroblasts was mediated by several β1 integrin receptors independent of the RGD and ECD recognition motif. Furthermore, interaction of fibroblasts and high invasive melanoma cells with soluble recombinant DC-9 resulted in enhanced expression of MMP-1 and MMP-2. Silencing of ADAM-9 in melanoma cells significantly reduced cell adhesion to fibroblasts. Ablation of ADAM-9 in fibroblasts almost completely abolished these cellular interactions and melanoma cell invasion in vitro. In summary, these results suggest that ADAM-9 expression plays an important role in mediating cell-cell contacts between fibroblasts and melanoma cells and that these interactions contribute to proteolytic activities required during invasion of melanoma cells.
Collapse
Affiliation(s)
- Paola Zigrino
- Department of Dermatology and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany.
| | | | | |
Collapse
|
15
|
Lu D, Scully M, Kakkar V, Lu X. ADAM-15 disintegrin-like domain structure and function. Toxins (Basel) 2010; 2:2411-27. [PMID: 22069559 PMCID: PMC3153164 DOI: 10.3390/toxins2102411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 12/23/2022] Open
Abstract
The ADAM (a disintegrin-like and metalloproteinase) proteins are a family of transmembrane cell-surface proteins with important functions in adhesion and proteolytic processing in all animals. Human ADAM-15 is the only member of the ADAM family with the integrin binding motif Arg-Gly-Asp (RGD) in its disintegrin-like domain. This motif is also found in most snake venom disintegrins and other disintegrin-like proteins. This unique RGD motif within ADAM-15 serves as an integrin ligand binding site, through which it plays a pivotal role in interacting with integrin receptors, a large family of heterodimeric transmembrane glycoproteins. This manuscript will present a review of the RGD-containing disintegrin-like domain structures and the structural features responsible for their activity as antagonists of integrin function in relation to the canonical RGD template.
Collapse
Affiliation(s)
- Dong Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
| | - Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
- Author to whom correspondence should be addressed; ; Tel.: +44-0207-351-8312; Fax: +44-0207-351-8324
| |
Collapse
|
16
|
Agle KA, Vongsa RA, Dwinell MB. Calcium mobilization triggered by the chemokine CXCL12 regulates migration in wounded intestinal epithelial monolayers. J Biol Chem 2010; 285:16066-75. [PMID: 20348095 PMCID: PMC2871475 DOI: 10.1074/jbc.m109.061416] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 03/26/2010] [Indexed: 12/26/2022] Open
Abstract
Restitution of intestinal epithelial barrier damage involves the coordinated remodeling of focal adhesions in actively migrating enterocytes. Defining the extracellular mediators and the intracellular signaling pathways regulating those dynamic processes is a key step in developing restitution-targeted therapies. Previously we have determined that activation of the chemokine receptor CXCR4 by the cognate ligand CXCL12 enhances intestinal epithelial restitution through reorganization of the actin cytoskeleton. The aim of these studies was to investigate the role of calcium effectors in CXCL12-mediated restitution. CXCL12 stimulated release of intracellular calcium in a dose-dependent manner. Inhibition of intracellular calcium flux impaired CXCL12-mediated migration of IEC-6 and CaCo2 cells. Pharmacological blockade and specific shRNA depletion of the phospholipase-C (PLCbeta3) isoform attenuated CXCL12-enhanced migration, linking receptor activation with intracellular calcium flux. Immunoblot analyses demonstrated CXCL12 activated the calcium-regulated focal adhesion protein proline-rich tyrosine kinase-2 (Pyk2) and the effector proteins paxillin and p130(Cas). Interruption of Pyk2 signaling potently blocked CXCL12-induced wound closure. CXCL12-stimulated epithelial cell migration was enhanced on laminin and abrogated by intracellular calcium chelation. These results suggest CXCL12 regulates restitution through calcium-activated Pyk2 localized to active focal adhesions. Calcium signaling pathways may therefore provide a novel avenue for enhancing barrier repair.
Collapse
Affiliation(s)
- Kimberle A. Agle
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Rebecca A. Vongsa
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael B. Dwinell
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
17
|
Sun C, Wu MH, Guo M, Day ML, Lee ES, Yuan SY. ADAM15 regulates endothelial permeability and neutrophil migration via Src/ERK1/2 signalling. Cardiovasc Res 2010; 87:348-55. [PMID: 20189953 DOI: 10.1093/cvr/cvq060] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS Endothelial barrier dysfunction is a key event in the pathogenesis of vascular diseases associated with inflammation. ADAM (a disintegrin and metalloprotease) 15 has been shown to contribute to the development of vascular inflammation. However, its role in regulating endothelial barrier function is unknown. The aim of this study was to examine the effect of ADAM15 on endothelial permeability and its underlying mechanisms. METHODS AND RESULTS By measuring albumin transendothelial flux and transendothelial electric resistance in cultured human umbilical vein endothelial cell monolayers, we found that depletion of ADAM15 expression via siRNA decreased endothelial permeability and attenuated thrombin-induced barrier dysfunction. In contrast, endothelial cells overexpressing either wild-type or catalytically dead mutant ADAM15 displayed a higher basal permeability and augmented hyperpermeability in response to thrombin. In addition, ADAM15 knockdown inhibited whereas ADAM15 overexpression promoted neutrophil transendothelial migration. Further molecular assays revealed that ADAM15 did not cleave vascular endothelial-cadherin or cause its degradation. However, overexpression of ADAM15 promoted extracellular signal-regulated kinase (ERK)1/2 phosphorylation in both non-stimulated and thrombin-stimulated endothelial cells in a protease activity-independent manner. Pharmacological inhibition of Src kinase or ERK activation reversed ADAM15-induced hyperpermeability and neutrophil transmigration. CONCLUSION The data provide evidence for a novel function of ADAM15 in regulating endothelial barrier properties. The mechanisms of ADAM15-induced hyperpermeability involve Src/ERK1/2 signalling independent of junction molecule shedding.
Collapse
Affiliation(s)
- Chongxiu Sun
- Division of Research, Department of Surgery, University of California Davis School of Medicine, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lovelady DC, Friedman J, Patel S, Rabson DA, Lo CM. Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion. Biosens Bioelectron 2008; 24:2250-4. [PMID: 19026529 DOI: 10.1016/j.bios.2008.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/13/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
We performed micromotion experiments using electric cell-substrate impedance sensing (ECIS) on a confluent layer of 3T3 fibroblasts exposed to different low levels of the toxin cytochalasin B. This toxin is know to affect actin polymerization and to disrupt cytoskeletal structure and function in cells, changing the morphology of confluent cell cultures and altering the nature of the cellular micromotion, which is measured by ECIS as changes in impedance. By looking at several measures to characterize the long- and short-term correlations in the noise of the impedance time series, we are able to detect the effects of the toxin at concentrations down to 1 microM; there are intriguing hints that the effects may be discernible at levels as low as 0.1 microM. These measures include the power spectrum, the Hurst and detrended-fluctuation-analysis exponents, and the first zero and first 1/e crossings of the autocorrelation function. While most published work with ECIS uses only average impedance values, we demonstrate that noise analysis provides a more sensitive probe.
Collapse
Affiliation(s)
- Douglas C Lovelady
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | |
Collapse
|
19
|
Huxley-Jones J, Foord SM, Barnes MR. Drug discovery in the extracellular matrix. Drug Discov Today 2008; 13:685-94. [PMID: 18583179 DOI: 10.1016/j.drudis.2008.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) is an organised mesh of secreted proteins that provides structure, organisation and orientation to tissues and influences a spectrum of cell behaviours of direct relevance to disease and drug discovery. Many drugs currently in development target components of the ECM, yet most drug discovery teams perceive the ECM as a barrier to efficacious drug action, rather than a therapeutic target. Here we review current therapeutic approaches and consider potentially novel druggable opportunities to target the ECM, taking into account the factors that make it both unique and challenging, including its evolutionary history and innate multi-dimensional complexity.
Collapse
Affiliation(s)
- Julie Huxley-Jones
- Computational Biology, Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | |
Collapse
|
20
|
Choi SM, Park JB, Kim JM, In KM, Park HY. Acanthopanax senticosus Extract Acts as an Important Regulator for Vascular Functions. ACTA ACUST UNITED AC 2008. [DOI: 10.5352/jls.2008.18.5.701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Chen Q, Meng LH, Zhu CH, Lin LP, Lu H, Ding J. ADAM15 suppresses cell motility by driving integrin alpha5beta1 cell surface expression via Erk inactivation. Int J Biochem Cell Biol 2008; 40:2164-73. [PMID: 18387333 DOI: 10.1016/j.biocel.2008.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 01/30/2008] [Accepted: 02/18/2008] [Indexed: 11/17/2022]
Abstract
Human ADAM15 is unique among the A disintegrin and metalloprotease domain (ADAM) family because of the integrin binding motif Arg-Gly-Asp (RGD) within its disintegrin domain. Integrin alpha5beta1 has been reported to bind to ADAM15 in an RGD-dependent manner, but the biological significance of the interaction between ADAM15 and alpha5beta1 is unknown. To characterize the effects of ADAM15 on alpha5beta1-mediated cell adhesion and migration and elucidate the potential mechanism, CHO cells which express endogenous integrin alpha5beta1 were transfected with human ADAM15 cDNA. ADAM15 overexpression led to enhanced cell adhesion and decreased migration on fibronectin, which were suppressed by down-regulation of integrin alpha5. Overexpression of ADAM15 not only increased the cell surface expression of integrin alpha5 but also resulted in a more clustered staining of alpha5 on cell surface, while the beta1 subunit remained unchanged. Unexpectedly, results from immunoprecipitation and immunofluorescence indicated that ADAM15 and alpha5beta1 integrin did not interact directly in CHO cells. We found that ADAM15 expression decreased the phosphorylation of Erk1/2. Consistently, down-regulation of Erk1/2 phosphorylation by MEK inhibitor PD98059 or siRNA against Erk1/2 enhanced the expression of alpha5 on cell surface. By using a B16F10 pulmonary metastasis model, we revealed that overexpression of ADAM15 significantly reduced the number of metastatic nodules on the lung. Taken together, this study reveals for the first time that ADAM15 could drive alpha5 integrin expression on cell surface via down-regulation of phosphorylated Erk1/2. This presents a novel mechanism by which ADAM15 regulates cell-matrix adhesion and migration.
Collapse
Affiliation(s)
- Qin Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Zhong JL, Poghosyan Z, Pennington CJ, Scott X, Handsley MM, Warn A, Gavrilovic J, Honert K, Krüger A, Span PN, Sweep FCGJ, Edwards DR. Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma. Mol Cancer Res 2008; 6:383-94. [PMID: 18296648 DOI: 10.1158/1541-7786.mcr-07-2028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adamalysins [a disintegrin and metalloproteinase (ADAM)] are a family of cell surface transmembrane proteins that have broad biological functions encompassing proteolysis, adhesion, and cell signal regulation. We previously showed that the cytoplasmic domain of ADAM-15 interacts with Src family protein tyrosine kinases and the adaptor protein growth factor receptor binding protein 2 (Grb2). In the present study, we have cloned and characterized four alternatively spliced forms of ADAM-15, which differ only in their cytoplasmic domains. We show that the four ADAM-15 variants were differentially expressed in human mammary carcinoma tissues compared with normal breast. The expression of the individual isoforms did not correlate with age, menopausal status, tumor size or grade, nodal status, Nottingham Prognostic Index, or steroid hormone receptor status. However, higher levels of two isoforms (ADAM-15A and ADAM-5B) were associated with poorer relapse-free survival in node-negative patients, whereas elevated ADAM-15C correlated with better relapse-free survival in node-positive, but not in node-negative, patients. The expression of ADAM-15A and ADAM-15B variants in MDA-MB-435 cells had differential effects on cell morphology, with adhesion, migration, and invasion enhanced by expression of ADAM-15A, whereas ADAM-15B led to reduced adhesion. Using glutathione S-transferase pull-down assays, we showed that the cytoplasmic domains of ADAM-15A, ADAM-15B, and ADAM-15C show equivalent abilities to interact with extracellular signal-regulated kinase and the adaptor molecules Grb2 and Tks5/Fish, but associate in an isoform-specific fashion with Nck and the Src and Brk tyrosine kinases. These data indicate that selective expression of ADAM-15 variants in breast cancers could play an important role in determining tumor aggressiveness by interplay with intracellular signaling pathways.
Collapse
Affiliation(s)
- Julia L Zhong
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The matrix metalloproteinases (MMPs) are important enzymes that regulate developmental processes, maintain normal physiology in adulthood and have reparative roles at specific stages after an insult to the nervous system. Conversely, the concordant presence and significant upregulation of several MMP members in virtually all neurological conditions result in pathology. Thus, the MMPs have diverse functions, capable of mediating repair and recovery on the one hand and being involved in producing injury on the other. Therefore, targeting MMPs in neurological conditions has become a complicated challenge. This article highlights the beneficial roles of MMPs in normal and reparative processes within the nervous system and discusses the detriments of MMPs encountered in pathology. We review the availability of MMP inhibitors for clinical use and propose that an important consideration for these inhibitors is timing and duration of their use. With acute injuries where a massive upregulation of several MMPs are observed in the early periods after the insult, early and short-term use of broad spectrum MMP inhibitors would seem logical. In chronic conditions where recurrent insults to the CNS are accompanied by prolonged upregulation of MMPs, thereby necessitating the chronic use of medications, the beneficial effects of MMPs in repair may be compromised by the long-term application of MMP inhibitors. In this review we have used spinal cord injury and multiple sclerosis as examples of acute and chronic neurological conditions, respectively, and we consider the use of MMP inhibitors in these states.
Collapse
Affiliation(s)
- V. Wee Yong
- Hotchkiss Brain Institute, Department of Clinical Neurosciences and Oncology, University of Calgary, T2N 4N1 Calgary, Alberta Canada
| | - Smriti M. Agrawal
- Hotchkiss Brain Institute, Department of Clinical Neurosciences and Oncology, University of Calgary, T2N 4N1 Calgary, Alberta Canada
| | - David P. Stirling
- Hotchkiss Brain Institute, Department of Clinical Neurosciences and Oncology, University of Calgary, T2N 4N1 Calgary, Alberta Canada
| |
Collapse
|
24
|
Abstract
Cell-cell and cell-matrix interactions are of utmost importance in the pathogenesis of inflammatory diseases. For example, cell-cell and cell-matrix interactions are crucial for leukocyte homing and recruitment to inflammatory sites. The discovery of the disintegrin and metalloprotease (ADAM) proteins, which have both adhesive and proteolytic activities, raised the question of their involvement in inflammatory processes. More interestingly, the presence of the RGD integrin-binding sequence in the disintegrin domain of ADAM-15 (MDC-15; metargidin) highlighted ADAM-15 as a protein particularly involved in cell-cell interactions. These findings therefore prompted authors to investigate the roles of ADAM-15 in inflammatory diseases. Because of the early description of ADAM-15 expression in endothelial cells, work first focused on the roles of ADAM-15 in vascular diseases, and ADAM-15 was found to be associated with atherosclerosis. Other studies also pointed at ADAM-15 as a mediator of rheumatoid arthritis and intestinal inflammation as well as inherent angiogenesis. The roles of ADAM-15 in these diseases appear to involve mechanisms as different as cell-cell interactions, cell-extracellular matrix (ECM) interactions, and shedding activity. Here we review and discuss these recent discoveries pointing to ADAM-15 as a mediator of mechanisms underlying inflammation and as a possible therapeutic target for prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Laetitia Charrier-Hisamuddin
- Deptartment of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|