1
|
Yu AS, Curry JN. Paracellular Transport and Renal Tubule Calcium Handling: Emerging Roles in Kidney Stone Disease. J Am Soc Nephrol 2024; 35:1758-1767. [PMID: 39207856 PMCID: PMC11617488 DOI: 10.1681/asn.0000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The kidney plays a major role in maintenance of serum calcium concentration, which must be kept within a narrow range to avoid disruption of numerous physiologic processes that depend critically on the level of extracellular calcium, including cell signaling, bone structure, and muscle and nerve function. This defense of systemic calcium homeostasis comes, however, at the expense of the dumping of calcium into the kidney tissue and urine. Because of the large size and multivalency of the calcium ion, its salts are the least soluble among all the major cations in the body. The potential pathologic consequences of this are nephrocalcinosis and kidney stone disease. In this review, we discuss recent advances that have highlighted critical roles for the proximal tubule and thick ascending limb in renal calcium reabsorption, elucidated the molecular mechanisms for paracellular transport in these segments, and implicated disturbances in these processes in human disease.
Collapse
Affiliation(s)
- Alan S.L. Yu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Joshua N. Curry
- Division of Nephrology, Oregon Health Sciences University, Portland, Oregon
| |
Collapse
|
2
|
Kröse JL, de Baaij JHF. Magnesium biology. Nephrol Dial Transplant 2024; 39:1965-1975. [PMID: 38871680 PMCID: PMC11648962 DOI: 10.1093/ndt/gfae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Magnesium (Mg2+) is essential for energy metabolism, muscle contraction and neurotransmission. As part of the Mg-ATP complex, it is involved in over 600 enzymatic reactions. Serum Mg2+ levels are tightly regulated between 0.7 and 1.1 mmol/L by interplay of intestinal absorption and renal excretion. In the small intestine, Mg2+ is absorbed paracellularly via claudin-2 and -12. In the colon, transcellular absorption of Mg2+ is facilitated by TRPM6/7 and CNNM4. In the kidney, the proximal tubule reabsorbs only 20% of the filtered Mg2+. The majority of the filtered Mg2+ is reabsorbed in the thick ascending limb, where the lumen-positive transepithelial voltage drives paracellular transport via claudin-16/-19. Fine-tuning of Mg2+ reabsorption is achieved in the distal convoluted tubule (DCT). Here, TRPM6/7 tetramers facilitate apical Mg2+ uptake, which is hormonally regulated by insulin and epidermal growth factor. Basolateral Mg2+ extrusion is Na+ dependent and achieved by CNNM2 and/or SLC41A3. Hypomagnesemia (serum Mg2+ <0.7 mmol/L) develops when intestinal and/or renal Mg2+ (re)absorption is disturbed. Common causes include alcoholism, type 2 diabetes mellitus and the use of pharmacological drugs, such as proton-pump inhibitors, calcineurin inhibitors and thiazide diuretics. Over the last decade, research on rare genetic and acquired Mg2+ disorders have identified Mg2+ channel and transporter activity, DCT length, mitochondrial function and autoimmunity as mechanisms explaining hypomagnesemia. Classically, treatment of hypomagnesemia depended on oral or intravenous Mg2+ supplementation. Recently, prebiotic dietary fibers and sodium-glucose cotransporter 2 inhibitors have been proposed as promising new therapeutic pathways to treat hypomagnesemia.
Collapse
Affiliation(s)
- Jana L Kröse
- Department of Medical BioSciences,
Radboudumc, Nijmegen, The
Netherlands
| | | |
Collapse
|
3
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
4
|
Dutta P, Hakimi S, Layton AT. How the kidney regulates magnesium: a modelling study. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231484. [PMID: 38511086 PMCID: PMC10951724 DOI: 10.1098/rsos.231484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The kidneys are crucial for maintaining Mg2+ homeostasis. Along the proximal tubule and thick ascending limb, Mg2+ is reabsorbed paracellularly, while along the distal convoluted tubule (DCT), Mg2+ is reabsorbed transcellularly via transient receptor potential melastatin 6 (TRPM6). TRPM6 and other renal transporter expressions are regulated by sex hormones. To investigate renal Mg2 handling, we have developed sex-specific computational models of electrolyte transport along rat superficial nephron. Model simulations indicated that along the proximal tubule and thick ascending limb, Mg2+ and Na+ transport occur parallelly, but they are dissociated along the DCT. In addition, our models predicted higher paracellular Mg2+ permeability in females to attain similar cortical thick ascending limb fractional Mg2+ reabsorption in both sexes. Furthermore, DCT fractional Mg2+ reabsorption is higher in females than in males, allowing females to better fine-tune Mg2+ excretion. We validated our models by simulating the administration of three classes of diuretics. The model predicted significantly increased, marginally increased and significantly decreased Mg2+ excretions for loop, thiazide and K-sparing diuretics, respectively, aligning with experimental findings. The models can be used to conduct in silico studies on kidney adaptations to Mg2+ homeostasis alterations during conditions such as pregnancy, diabetes and chronic kidney disease.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- School of Pharmacology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
5
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
6
|
Abstract
Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.
Collapse
Affiliation(s)
- Luca Meoli
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Dimke H, Griveau C, Ling WME, Brideau G, Cheval L, Muthan P, Müller D, Al-Shebel A, Houillier P, Prot-Bertoye C. Claudin-19 localizes to the thick ascending limb where its expression is required for junctional claudin-16 localization. Ann N Y Acad Sci 2023; 1526:126-137. [PMID: 37344378 DOI: 10.1111/nyas.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The kidney is critical for mineral homeostasis. Calcium and magnesium reabsorption in the renal thick ascending limb (TAL) involves claudin-16 (CLDN16) and claudin-19 (CLDN19) and pathogenic variants in either gene lead to familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) with severe calcium and magnesium wasting. While both CLDN16 and CLDN19 localize to the TAL, varying expression patterns in the renal tubule have been reported using different antibodies. We, therefore, studied the localization of CLDN19 in the kidneys of wild-type and Cldn19-deleted mice using three anti-CLDN19 antibodies and examined the role of Cldn19 deletion on CLDN16 and CLDN10 localization. We find that CLDN19 localizes to basolateral membrane domains of the medullary and cortical TAL but only to the tight junction of TALs in the outer stripe of outer medulla and cortex, where it colocalizes with CLDN16. Furthermore, in TALs from Cldn19-deleted mice, CLDN16 is expressed in basolateral membrane domains but not at the tight junction. In contrast, Cldn19 ablation does not change CLDN10 localization. These findings directly implicate CLDN19 in regulating permeability in the TAL by allowing junctional insertion of CLDN16 and may explain the shared renal phenotypic characteristics in FHHNC patients.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Camille Griveau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Wung-Man Evelyne Ling
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Pravina Muthan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominik Müller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amr Al-Shebel
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
8
|
Morrison AR. Magnesium Homeostasis: Lessons from Human Genetics. Clin J Am Soc Nephrol 2023; 18:969-978. [PMID: 36723340 PMCID: PMC10356123 DOI: 10.2215/cjn.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
Mg 2+ , the fourth most abundant cation in the body, serves as a cofactor for about 600 cellular enzymes. One third of ingested Mg 2+ is absorbed from the gut through a saturable transcellular process and a concentration-dependent paracellular process. Absorbed Mg 2+ is excreted by the kidney and maintains serum Mg 2+ within a narrow range of 0.7-1.25 mmol/L. The reabsorption of Mg 2+ by the nephron is characterized by paracellular transport in the proximal tubule and thick ascending limb. The nature of the transport pathways in the gut epithelia and thick ascending limb has emerged from an understanding of the molecular mechanisms responsible for rare monogenetic disorders presenting with clinical hypomagnesemia. These human disorders due to loss-of-function mutations, in concert with mouse models, have led to a deeper understanding of Mg 2+ transport in the gut and renal tubule. This review focuses on the nature of the transporters and channels revealed by human and mouse genetics and how they are integrated into an understanding of human Mg 2+ physiology.
Collapse
Affiliation(s)
- Aubrey R Morrison
- Division of Nephrology, Department of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
10
|
Abstract
Mg2+ is essential for many cellular and physiological processes, including muscle contraction, neuronal activity, and metabolism. Consequently, the blood Mg2+ concentration is tightly regulated by balanced intestinal Mg2+ absorption, renal Mg2+ excretion, and Mg2+ storage in bone and soft tissues. In recent years, the development of novel transgenic animal models and identification of Mendelian disorders has advanced our current insight in the molecular mechanisms of Mg2+ reabsorption in the kidney. In the proximal tubule, Mg2+ reabsorption is dependent on paracellular permeability by claudin-2/12. In the thick ascending limb of Henle's loop, the claudin-16/19 complex provides a cation-selective pore for paracellular Mg2+ reabsorption. The paracellular Mg2+ reabsorption in this segment is regulated by the Ca2+-sensing receptor, parathyroid hormone, and mechanistic target of rapamycin (mTOR) signaling. In the distal convoluted tubule, the fine tuning of Mg2+ reabsorption takes place by transcellular Mg2+ reabsorption via transient receptor potential melastatin-like types 6 and 7 (TRPM6/TRPM7) divalent cation channels. Activity of TRPM6/TRPM7 is dependent on hormonal regulation, metabolic activity, and interacting proteins. Basolateral Mg2+ extrusion is still poorly understood but is probably dependent on the Na+ gradient. Cyclin M2 and SLC41A3 are the main candidates to act as Na+/Mg2+ exchangers. Consequently, disturbances of basolateral Na+/K+ transport indirectly result in impaired renal Mg2+ reabsorption in the distal convoluted tubule. Altogether, this review aims to provide an overview of the molecular mechanisms of Mg2+ reabsorption in the kidney, specifically focusing on transgenic mouse models and human hereditary diseases.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
The importance of kidney calcium handling in the homeostasis of extracellular fluid calcium. Pflugers Arch 2022; 474:885-900. [PMID: 35842482 DOI: 10.1007/s00424-022-02725-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.
Collapse
|
13
|
Eltan M, Yavas Abali Z, Turkyilmaz A, Gokce I, Abali S, Alavanda C, Arman A, Kirkgoz T, Guran T, Hatun S, Bereket A, Turan S. Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis Due to CLDN16 Gene Mutations: Novel Findings in Two Cases with Diverse Clinical Features. Calcif Tissue Int 2022; 110:441-450. [PMID: 34761296 DOI: 10.1007/s00223-021-00928-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Biallelic loss of function mutations in the CLDN16 gene cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), and chronic kidney disease. Here we report two cases of FHHNC with diverse clinical presentations and hypercalcemia in one as a novel finding. Pt#1 initially presented with urinary tract infection and failure to thrive at 5.5 months of age to another center. Bilateral nephrocalcinosis, hypercalcemia (Ca: 12.2 mg/dl), elevated parathyroid hormone (PTH) level, and hypercalciuria were detected. Persistently elevated PTH with high/normal Ca levels led to subtotal-parathyroidectomy at the age of 2.5. However, PTH levels remained elevated with progressive deterioration in renal function. At 9-year-old, she was referred to us for evaluation of hyperparathyroidism and, hypomagnesemia together with hypercalciuria, elevated PTH with normal Ca levels, and medullary nephrocalcinosis were detected. Compound heterozygosity of CLDN16 variants (c.715G>A, p.G239R; and novel c.360C>A, p.C120*) confirmed the diagnosis. Pt#2 was a 10-month-old boy, admitted with irritability and urinary crystals. Hypocalcemia, hypophosphatemia, elevated PTH and ALP, low 25(OH)D levels, and radiographic findings of rickets were detected. However, additional findings of hypercalciuria and bilateral nephrocalcinosis were inconsistent with the nutritional rickets. Low/normal serum Mg levels suggested the diagnosis of FHHNC which was confirmed genetically as a homozygous missense (c.602G > A; p.G201E) variant in CLDN16. Yet, hypocalcemia and hypomagnesemia persisted in spite of treatment. In conclusion, FHHNC may present with diverse clinical features with mild hypomagnesemia leading to secondary hyperparathyroidism with changing Ca levels from low to high. Early and accurate clinical and molecular genetic diagnosis is important for proper management.
Collapse
Affiliation(s)
- Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey
| | - Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ibrahim Gokce
- Department of Pediatric Nephrology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Saygın Abali
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Arman
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey
| | - Sukru Hatun
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Koc University, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Fevzi Çakmak Mahallesi, Muhsin Yazıcıoglu Caddesi, No:10, 34899, Pendik Istanbul, Turkey.
| |
Collapse
|
14
|
Abstract
Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- R T Alexander
- Departments of Physiology and Pediatrics, University of Alberta, Edmonton, Canada; .,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - D G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
15
|
Ellison DH, Maeoka Y, McCormick JA. Molecular Mechanisms of Renal Magnesium Reabsorption. J Am Soc Nephrol 2021; 32:2125-2136. [PMID: 34045316 PMCID: PMC8729834 DOI: 10.1681/asn.2021010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023] Open
Abstract
Magnesium is an essential cofactor in many cellular processes, and aberrations in magnesium homeostasis can have life-threatening consequences. The kidney plays a central role in maintaining serum magnesium within a narrow range (0.70-1.10 mmol/L). Along the proximal tubule and thick ascending limb, magnesium reabsorption occurs via paracellular pathways. Members of the claudin family form the magnesium pores in these segments, and also regulate magnesium reabsorption by adjusting the transepithelial voltage that drives it. Along the distal convoluted tubule transcellular reabsorption via heteromeric TRPM6/7 channels predominates, although paracellular reabsorption may also occur. In this segment, the NaCl cotransporter plays a critical role in determining transcellular magnesium reabsorption. Although the general machinery involved in renal magnesium reabsorption has been identified by studying genetic forms of magnesium imbalance, the mechanisms regulating it are poorly understood. This review discusses pathways of renal magnesium reabsorption by different segments of the nephron, emphasizing newer findings that provide insight into regulatory process, and outlining critical unanswered questions.
Collapse
Affiliation(s)
- David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon,Veterans Affairs Portland Healthcare System, Portland, Oregon
| | - Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A. McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
16
|
Magnesium and Calcium Homeostasis Depend on KCTD1 Function in the Distal Nephron. Cell Rep 2021; 34:108616. [PMID: 33440155 PMCID: PMC7869691 DOI: 10.1016/j.celrep.2020.108616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Magnesium (Mg2+) homeostasis depends on active transcellular Mg2+ reuptake from urine in distal convoluted tubules (DCTs) via the Mg2+ channel TRPM6, whose activity has been proposed to be regulated by EGF. Calcium (Ca2+) homeostasis depends on paracellular reabsorption in the thick ascending limbs of Henle (TALs). KCTD1 promotes terminal differentiation of TALs/DCTs, but how its deficiency affects urinary Mg2+ and Ca2+ reabsorption is unknown. Here, this study shows that DCT1-specific KCTD1 inactivation leads to hypomagnesemia despite normal TRPM6 levels because of reduced levels of the sodium chloride co-transporter NCC, whereas Mg2+ homeostasis does not depend on EGF. Moreover, KCTD1 deficiency impairs paracellular urinary Ca2+ and Mg2+ reabsorption in TALs because of reduced NKCC2/claudin-16/-19 and increased claudin-14 expression, leading to hypocalcemia and consequently to secondary hyperparathyroidism and progressive metabolic bone disease. Thus, KCTD1 regulates urinary reabsorption of Mg2+ and Ca2+ by inducing expression of NCC in DCTs and NKCC2/claudin-16/-19 in TALs.
Collapse
|
17
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
18
|
Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020; 11:genes11030290. [PMID: 32164158 PMCID: PMC7140793 DOI: 10.3390/genes11030290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins are integral proteins expressed at the tight junctions of epithelial and endothelial cells. In the mammalian kidney, every tubular segment express a specific set of claudins that give to that segment unique properties regarding permeability and selectivity of the paracellular pathway. So far, 3 claudins (10b, 16 and 19) have been causally traced to rare human syndromes: variants of CLDN10b cause HELIX syndrome and variants of CLDN16 or CLDN19 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The review summarizes our current knowledge on the physiology of mammalian tight junctions and paracellular ion transport, as well as on the role of the 3 above-mentioned claudins in health and disease. Claudin 14, although not having been causally linked to any rare renal disease, is also considered, because available evidence suggests that it may interact with claudin 16. Some single-nucleotide polymorphisms of CLDN14 are associated with urinary calcium excretion and/or kidney stones. For each claudin considered, the pattern of expression, the function and the human syndrome caused by pathogenic variants are described.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
19
|
Seker M, Fernández-Rodríguez C, Martínez-Cruz LA, Müller D. Mouse Models of Human Claudin-Associated Disorders: Benefits and Limitations. Int J Mol Sci 2019; 20:ijms20215504. [PMID: 31694170 PMCID: PMC6862546 DOI: 10.3390/ijms20215504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
In higher organisms, epithelia separate compartments in order to guarantee their proper function. Such structures are able to seal but also to allow substances to pass. Within the paracellular pathway, a supramolecular structure, the tight junction transport is largely controlled by the temporospatial regulation of its major protein family called claudins. Besides the fact that the expression of claudins has been identified in different forms of human diseases like cancer, clearly defined mutations in the corresponding claudin genes have been shown to cause distinct human disorders. Such disorders comprise the skin and its adjacent structures, liver, kidney, the inner ear, and the eye. From the phenotype analysis, it has also become clear that different claudins can cause a complex phenotype when expressed in different organs. To gain deeper insights into the physiology and pathophysiology of claudin-associated disorders, several mouse models have been generated. In order to model human disorders in detail, they have been designed either as full knockouts, knock-downs or knock-ins by a variety of techniques. Here, we review human disorders caused by CLDN mutations and their corresponding mouse models that have been generated thus far and assess their usefulness as a model for the corresponding human disorder.
Collapse
Affiliation(s)
- Murat Seker
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
| | | | | | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
- Correspondence:
| |
Collapse
|
20
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A 2019; 116:19619-19625. [PMID: 31506348 PMCID: PMC6765272 DOI: 10.1073/pnas.1908706116] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-nucleus RNA sequencing revealed gene expression changes in early diabetic nephropathy that promote urinary potassium secretion and decreased calcium and magnesium reabsorption. Multiple cell types exhibited angiogenic signatures, which may represent early signs of aberrant angiogenesis. These alterations may help to identify biomarkers for disease progression or signaling pathways amenable to early intervention. Diabetic nephropathy is characterized by damage to both the glomerulus and tubulointerstitium, but relatively little is known about accompanying cell-specific changes in gene expression. We performed unbiased single-nucleus RNA sequencing (snRNA-seq) on cryopreserved human diabetic kidney samples to generate 23,980 single-nucleus transcriptomes from 3 control and 3 early diabetic nephropathy samples. All major cell types of the kidney were represented in the final dataset. Side-by-side comparison demonstrated cell-type–specific changes in gene expression that are important for ion transport, angiogenesis, and immune cell activation. In particular, we show that the diabetic thick ascending limb, late distal convoluted tubule, and principal cells all adopt a gene expression signature consistent with increased potassium secretion, including alterations in Na+/K+-ATPase, WNK1, mineralocorticoid receptor, and NEDD4L expression, as well as decreased paracellular calcium and magnesium reabsorption. We also identify strong angiogenic signatures in glomerular cell types, proximal convoluted tubule, distal convoluted tubule, and principal cells. Taken together, these results suggest that increased potassium secretion and angiogenic signaling represent early kidney responses in human diabetic nephropathy.
Collapse
|
22
|
Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney. Proc Natl Acad Sci U S A 2019; 116:19176-19186. [PMID: 31488724 DOI: 10.1073/pnas.1902042116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) was previously considered to be a paracellular channelopathy caused by mutations in the claudin-16 and claudin-19 genes. Here, we provide evidence that a missense FHHNC mutation c.908C>G (p.T303R) in the claudin-16 gene interferes with the phosphorylation in the claudin-16 protein. The claudin-16 protein carrying phosphorylation at residue T303 is localized in the distal convoluted tubule (DCT) but not in the thick ascending limb (TAL) of the mouse kidney. The phosphomimetic claudin-16 protein carrying the T303E mutation but not the wildtype claudin-16 or the T303R mutant protein increases the Trpv5 channel conductance and membrane abundance in human kidney cells. Phosphorylated claudin-16 and Trpv5 are colocalized in the luminal membrane of the mouse DCT tubule; phosphomimetic claudin-16 and Trpv5 interact in the yeast and mammalian cell membranes. Knockdown of claudin-16 gene expression in transgenic mouse kidney delocalizes Trpv5 from the luminal membrane in the DCT. Unlike wildtype claudin-16, phosphomimetic claudin-16 is delocalized from the tight junction but relocated to the apical membrane in renal epithelial cells because of diminished binding affinity to ZO-1. High-Ca2+ diet reduces the phosphorylation of claudin-16 protein at T303 in the DCT of mouse kidney via the PTH signaling cascade. Knockout of the PTH receptor, PTH1R, from the mouse kidney abrogates the claudin-16 phosphorylation at T303. Together, these results suggest a pathogenic mechanism for FHHNC involving transcellular Ca2+ pathway in the DCT and identify a molecular component in renal Ca2+ homeostasis under direct regulation of PTH.
Collapse
|
23
|
Fan J, Tatum R, Hoggard J, Chen YH. Claudin-7 Modulates Cl - and Na + Homeostasis and WNK4 Expression in Renal Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20153798. [PMID: 31382627 PMCID: PMC6696617 DOI: 10.3390/ijms20153798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Claudin-7 knockout (CLDN7-/-) mice display renal salt wasting and dehydration phenotypes. To address the role of CLDN7 in kidneys, we established collecting duct (CD) cell lines from CLDN7+/+ and CLDN7-/- mouse kidneys. We found that deletion of CLDN7 increased the transepithelial resistance (TER) and decreased the paracellular permeability for Cl- and Na+ in CLDN7-/- CD cells. Inhibition of transcellular Cl- and Na+ channels has no significant effect on TER or dilution potentials. Current-voltage curves were linear in both CLDN7+/+ and CLDN7-/- CD cells, indicating that the ion flux was through the paracellular pathway. The impairment of Cl- and Na+ permeability phenotype can be rescued by CLDN7 re-expression. We also found that WNK4 (its mutations lead to hypertension) expression, but not WNK1, was significantly increased in CLDN7-/- CD cell lines as well as in primary CLDN7-/- CD cells, suggesting that the expression of WNK4 was modulated by CLDN7. In addition, deletion of CLDN7 upregulated the expression level of the apical epithelial sodium channel (ENaC), indicating a potential cross-talk between paracellular and transcellular transport systems. This study demonstrates that CLDN7 plays an important role in salt balance in renal CD cells and modulating WNK4 and ENaC expression levels that are vital in controlling salt-sensitive hypertension.
Collapse
Affiliation(s)
- Junming Fan
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John Hoggard
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
24
|
Rescue of tight junctional localization of a claudin-16 mutant D97S by antimalarial medicine primaquine in Madin-Darby canine kidney cells. Sci Rep 2019; 9:9647. [PMID: 31273276 PMCID: PMC6609605 DOI: 10.1038/s41598-019-46250-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Magnesium ion (Mg2+) is paracellularly reabsorbed through claudin-16 (CLDN16) in the thick ascending limb (TAL) of Henle's loop in the kidney. Genetic disorders of CLDN16 cause mislocalization of CLDN16, resulting in hypomagnesemia. There is no effective treatment for hypomagnesemia except for magnesium administration. Here, we searched for a novel drug to restore tight junctional localization of a CLDN16 mutant. A D97S mutant, which has a mutation in the first extracellular loop (ECL) of CLDN16, was mainly colocalized with endosome marker, whereas wild-type (WT) CLDN16 was colocalized with ZO-1, an adaptor protein of tight junctions. The protein stability of the D97S mutant was lower than that of WT. The expression level of the D97S mutant was increased by lactacystin, a proteasomal inhibitor. Endocytosis inhibitors increased the tight junctional localization of the D97S mutant. We found that primaquine, an antimalarial agent, increased the protein stability and cell surface localization of the D97S mutant, but the localization of other mutants, which have mutations in the cytosolic domain or second ECL, was not affected. Transepithelial Mg2+ flux was increased by primaquine in D97S mutant-expressing cells. The expression of chaperon proteins, proteasome activity, and lactate dehydrogenase release were decreased by primaquine, and the proportion of viable cells increased. In contrast, these effects were not observed in WT CLDN16-expressing cells. These results suggested that primaquine increases the tight junctional localization of the D97S mutant, resulting in a reduction in ER stress and cellular injury. Primaquine may become an effective treatment drug for selected patients with mutant CLDN16.
Collapse
|
25
|
Meurer M, Höcherl K. Deregulated renal magnesium transport during lipopolysaccharide-induced acute kidney injury in mice. Pflugers Arch 2019; 471:619-631. [PMID: 30726531 DOI: 10.1007/s00424-019-02261-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg2+) abnormalities during sepsis have been reported, but the underlying mechanisms during acute inflammation are poorly understood. We hypothesized that a decrease in GFR and/or changes in transporters or channels for Mg2+ could be responsible for the observed Mg2+ abnormalities. Therefore, we studied the metabolism of Mg2+ in a murine model of endotoxemia. LPS-induced hypermagnesemia was paralleled by a decrease in creatinine clearance and an increase in the fractional excretion of Mg2+. In agreement with an altered renal Mg2+ handling, endotoxemia decreased the renal expression of claudin (Cldn) 10b, Cldn16, Cldn19, parvalbumin, and of the solute carrier family (Slc) 41a3. Further, LPS increased the renal expression of Cldn14 and Slc41a1. The renal expression of the transient receptor potential melastin (Trpm) 6, Trpm7, and of cyclin M (Cnnm) 2 was unaltered in response to LPS. In vitro studies support a direct effect on the expression of Cldn10b, Cldn14, Cldn16, and Cldn19. Further, endotoxemia increased the fractional excretion of sodium, which was paralleled by a decrease of important renal sodium transporters. In the large intestine, the expression of Trpm7 was increased in response to LPS, whereas the expression of Trpm6 was decreased. Cnnm4 mRNA levels were unchanged in the large intestine. Further, Cldn12 and Na+-H+ exchanger 3 (Slc9a3) expressions were decreased in the small intestine in response to LPS. Our findings indicate that endotoxemia is associated with hypermagnesemia and a disturbed Mg2+ handling. It seems likely that LPS-induced hypermagnesemia is due to the decrease in renal function in response to LPS.
Collapse
Affiliation(s)
- Manuel Meurer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstr. 17, 91054, Erlangen, Germany
| | - Klaus Höcherl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
26
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
27
|
Nephrolithiasis secondary to inherited defects in the thick ascending loop of henle and connecting tubules. Urolithiasis 2018; 47:43-56. [PMID: 30460527 DOI: 10.1007/s00240-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Twin and genealogy studies suggest a strong genetic component of nephrolithiasis. Likewise, urinary traits associated with renal stone formation were found to be highly heritable, even after adjustment for demographic, anthropometric and dietary covariates. Recent high-throughput sequencing projects of phenotypically well-defined cohorts of stone formers and large genome-wide association studies led to the discovery of many new genes associated with kidney stones. The spectrum ranges from infrequent but highly penetrant variants (mutations) causing mendelian forms of nephrolithiasis (monogenic traits) to common but phenotypically mild variants associated with nephrolithiasis (polygenic traits). About two-thirds of the genes currently known to be associated with nephrolithiasis code for membrane proteins or enzymes involved in renal tubular transport. The thick ascending limb of Henle and connecting tubules are of paramount importance for renal water and electrolyte handling, urinary concentration and maintenance of acid-base homeostasis. In most instances, pathogenic variants in genes involved in thick ascending limb of Henle and connecting tubule function result in phenotypically severe disease, frequently accompanied by nephrocalcinosis with progressive CKD and to a variable degree by nephrolithiasis. The aim of this article is to review the current knowledge on kidney stone disease associated with inherited defects in the thick ascending loop of Henle and the connecting tubules. We also highlight recent advances in the field of kidney stone genetics that have implications beyond rare disease, offering new insights into the most common type of kidney stone disease, i.e., idiopathic calcium stone disease.
Collapse
|
28
|
Curry JN, Yu AS. Magnesium Handling in the Kidney. Adv Chronic Kidney Dis 2018; 25:236-243. [PMID: 29793662 DOI: 10.1053/j.ackd.2018.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Magnesium is a divalent cation that fills essential roles as regulator and cofactor in a variety of biological pathways, and maintenance of magnesium balance is vital to human health. The kidney, in concert with the intestine, has an important role in maintaining magnesium homeostasis. Although micropuncture and microperfusion studies in the mammalian nephron have shone a light on magnesium handling in the various nephron segments, much of what we know about the protein mediators of magnesium handling in the kidney have come from more recent genetic studies. In the proximal tubule and thick ascending limb, magnesium reabsorption is believed to occur primarily through the paracellular shunt pathway, which ultimately depends on the electrochemical gradient setup by active sodium reabsorption. In the distal convoluted tubule, magnesium transport is transcellular, although magnesium reabsorption also appears to be related to active sodium reabsorption in this segment. In addition, evidence suggests that magnesium transport is highly regulated, although a specific hormonal regulator of extracellular magnesium has yet to be identified.
Collapse
|
29
|
Khalil R, Kim NR, Jardi F, Vanderschueren D, Claessens F, Decallonne B. Sex steroids and the kidney: role in renal calcium and phosphate handling. Mol Cell Endocrinol 2018; 465:61-72. [PMID: 29155307 DOI: 10.1016/j.mce.2017.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Calcium and phosphate are vital for the organism and constitute essential components of the skeleton. Serum levels are tightly hormonally regulated and maintained by exchange with three major sources: the intestines, the kidney and the bone. The effects of sex steroids on the bone have been extensively studied and it is well known that sex steroid deficiency induces bone loss, indirectly influencing renal calcium and phosphate homeostasis. However, it is unknown whether sex steroids also directly regulate renal calcium and phosphate handling, hereby potentially indirectly impacting on bone. The presence of androgen receptors (AR) and estrogen receptors (ER) in both human and rodent kidney, although their exact localization within the kidney remains debated, supports direct effects. Estrogens stimulate renal calcium reabsorption as well as phosphate excretion, while the effects of androgens are less clear. Many of the studies performed with regard to renal calcium and/or phosphate homeostasis do not correct for the calcium and phosphate fluxes from the bone and intestines, which complicates the differentiation between the direct effects of sex steroids on renal calcium and phosphate handling and the indirect effects via the bone and intestines. The objective of this study is to review the literature and current insight of the role of sex steroids in calcium and phosphate handling in the kidney.
Collapse
Affiliation(s)
- Rougin Khalil
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium.
| | - Na Ri Kim
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| | - Ferran Jardi
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| | - Frank Claessens
- Molecular Endocrinology, KU Leuven, Herestraat 49 Box 901, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The tight junction conductance made of the claudin-based paracellular channel is important in the regulation of calcium and magnesium reabsorption in the kidney. This review describes recent findings of the structure, the function, and the physiologic regulation of claudin-14, claudin-16, and claudin-19 channels that through protein interactions confer calcium and magnesium permeability to the tight junction. RECENT FINDINGS Mutations in two tight junction genes - claudin-16 and claudin-19 - cause the inherited renal disorder familial hypomagnesemia with hypercalciuria and nephrocalcinosis. A recent genome-wide association study has identified claudin-14 as a major risk gene of hypercalciuric nephrolithiasis. The crystal structure of claudin-19 has recently been resolved allowing the reconstruction of a claudin assembly model from cis-dimers made of claudin-16 and claudin-19 interaction. MicroRNAs have been identified as novel regulators of the claudin-14 gene. The microRNA-claudin-14 operon is directly regulated by the Ca sensing receptor gene in response to hypercalcemia. SUMMARY The paracellular pathway in the kidney is particularly important for mineral metabolism. Three claudin proteins - claudin-14, claudin-16, and claudin-19 - contribute to the structure and function of this paracellular pathway. Genetic mutations and gene expression changes in these claudins may lead to alteration of the paracellular permeability to calcium and magnesium, ultimately affecting renal mineral metabolism.
Collapse
|
31
|
Abstract
The claudin family of tetraspan transmembrane proteins is essential for tight junction formation and regulation of paracellular transport between epithelial cells. Claudins also play a role in apical-basal cell polarity, cell adhesion and link the tight junction to the actin cytoskeleton to exert effects on cell shape. The function of claudins in paracellular transport has been extensively studied through loss-of-function and gain-of-function studies in cell lines and in animal models, however, their role in morphogenesis has been less appreciated. In this review, we will highlight the importance of claudins during morphogenesis by specifically focusing on their critical functions in generating epithelial tubes, lumens, and tubular networks during organ formation.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| | - Indra R Gupta
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| | - Aimee K Ryan
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| |
Collapse
|
32
|
Bleich M, Wulfmeyer VC, Himmerkus N, Milatz S. Heterogeneity of tight junctions in the thick ascending limb. Ann N Y Acad Sci 2017. [DOI: 10.1111/nyas.13400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Markus Bleich
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
| | - Vera C. Wulfmeyer
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
- Department of Nephrology and Hypertension; Hannover Medical School; Hannover Germany
| | - Nina Himmerkus
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
| | - Susanne Milatz
- Institute of Physiology; Christian-Albrechts-University; Kiel Germany
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. RECENT FINDINGS Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. SUMMARY Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.
Collapse
|
34
|
Marunaka K, Furukawa C, Fujii N, Kimura T, Furuta T, Matsunaga T, Endo S, Hasegawa H, Anzai N, Yamazaki Y, Yamaguchi M, Ikari A. The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg 2+ regulator claudin-16 in renal tube epithelial cells. J Biol Chem 2017. [PMID: 28623232 DOI: 10.1074/jbc.m117.779405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion exchange in the renal tubules is fundamental to the maintenance of physiological ion levels. Claudin-16 (CLDN16) regulates the paracellular reabsorption of Mg2+ in the thick ascending limb of Henle's loop in the kidney, with dephosphorylation of CLDN16 increasing its intracellular distribution and decreasing paracellular Mg2+ permeability. CLDN16 is located in the tight junctions, but the mechanism regulating its localization is unclear. Using yeast two-hybrid systems, we found that CLDN16 binds to PDZRN3, a protein containing both RING-finger and PDZ domains. We also observed that the carboxyl terminus of the cytoplasmic CLDN16 region was required for PDZRN3 binding. PZDRN3 was mainly distributed in the cytosol of rat kidney cells and upon cell treatment with the protein kinase A inhibitor H-89, colocalized with CLDN16. H-89 also increased mono-ubiquitination and the association of CLDN16 with PDZRN3. Mono-ubiquitination levels of a K275A mutant were lower, and its association with PDZRN3 was reduced compared with wild-type (WT) CLDN16 and a K261A mutant, indicating that Lys-275 is the major ubiquitination site. An S217A mutant, a dephosphorylated form of CLDN16, localized to the cytosol along with PDZRN3 and the endosomal marker Rab7. PDZRN3 siRNA increased cell-surface localization of WT CLDN16 in H-89-treated cells or containing the S217A mutant and also suppressed CLDN16 endocytosis. Of note, H-89 decreased paracellular Mg2+ flux in WT CLDN16 cells, and PDZRN3 siRNA increased Mg2+ flux in the H-89-treated WT CLDN16 and S217A mutant cells. These results suggest that PDZRN3 mediates endocytosis of dephosphorylated CLDN16 and represents an important component of the CLDN16-trafficking machinery in the kidney.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Chisa Furukawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Naoko Fujii
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-8611
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Hajime Hasegawa
- Saitama Medical Center, Saitama Medical University, Saitama 350-8550
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 321-0293
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196.
| |
Collapse
|
35
|
ILDR1 is important for paracellular water transport and urine concentration mechanism. Proc Natl Acad Sci U S A 2017; 114:5271-5276. [PMID: 28461473 DOI: 10.1073/pnas.1701006114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Whether the tight junction is permeable to water remains highly controversial. Here, we provide evidence that the tricellular tight junction is important for paracellular water permeation and that Ig-like domain containing receptor 1 (ILDR1) regulates its permeability. In the mouse kidney, ILDR1 is localized to tricellular tight junctions of the distal tubules. Genetic knockout of Ildr1 in the mouse kidney causes polyuria and polydipsia due to renal concentrating defects. Microperfusion of live renal distal tubules reveals that they are impermeable to water in normal animals but become highly permeable to water in Ildr1 knockout animals whereas paracellular ionic permeabilities in the Ildr1 knockout mouse renal tubules are not affected. Vasopressin cannot correct paracellular water loss in Ildr1 knockout animals despite normal effects on the transcellular aquaporin-2-dependent pathway. In cultured renal epithelial cells normally lacking the expression of Ildr1, overexpression of Ildr1 significantly reduces the paracellular water permeability. Together, our study provides a mechanism of how cells transport water and shows how such a mechanism may be exploited as a therapeutic approach to maintain water homeostasis.
Collapse
|
36
|
Muto S. Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 2017; 312:F9-F24. [DOI: 10.1152/ajprenal.00204.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022] Open
Abstract
The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport.
Collapse
Affiliation(s)
- Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
37
|
Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Proc Natl Acad Sci U S A 2016; 114:E219-E227. [PMID: 28028216 DOI: 10.1073/pnas.1611684114] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The thick ascending limb (TAL) of Henle's loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2.
Collapse
|
38
|
Milatz S, Breiderhoff T. One gene, two paracellular ion channels—claudin-10 in the kidney. Pflugers Arch 2016; 469:115-121. [DOI: 10.1007/s00424-016-1921-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
|
39
|
Corre T, Olinger E, Harris SE, Traglia M, Ulivi S, Lenarduzzi S, Belge H, Youhanna S, Tokonami N, Bonny O, Houillier P, Polasek O, Deary IJ, Starr JM, Toniolo D, Gasparini P, Vollenweider P, Hayward C, Bochud M, Devuyst O. Common variants in CLDN14 are associated with differential excretion of magnesium over calcium in urine. Pflugers Arch 2016; 469:91-103. [DOI: 10.1007/s00424-016-1913-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
|
40
|
Günzel D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch 2016; 469:35-44. [DOI: 10.1007/s00424-016-1909-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022]
|
41
|
Claudins in barrier and transport function-the kidney. Pflugers Arch 2016; 469:105-113. [PMID: 27878608 DOI: 10.1007/s00424-016-1906-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/12/2023]
Abstract
Claudins are discovered to be key players in renal epithelial physiology. They are involved in developmental, physiological, and pathophysiological differentiation. In the glomerular podocytes, claudin-1 is an important determinant of cell junction fate. In the proximal tubule, claudin-2 plays important roles in paracellular salt reabsorption. In the thick ascending limb, claudin-14, -16, and -19 regulate the paracellular reabsorption of calcium and magnesium. Recessive mutations in claudin-16 or -19 cause an inherited calcium and magnesium losing disease. Synonymous variants in claudin-14 have been associated with hypercalciuric nephrolithiasis by genome-wide association studies (GWASs). More importantly, claudin-14 gene expression can be regulated by extracellular calcium levels via the calcium sensing receptor. In the distal tubules, claudin-4 and -8 form paracellular chloride pathway to facilitate electrogenic sodium reabsorption. Aldosterone, WNK4, Cap1, and KLHL3 are powerful regulators of claudin and the paracellular chloride permeability. The lessons learned on claudins from the kidney will have a broader impact on tight junction biology in other epithelia and endothelia.
Collapse
|
42
|
Lv F, Xu XJ, Wang JY, Liu Y, Jiang Y, Wang O, Xia WB, Xing XP, Li M. A novel mutation in CLDN16 results in rare familial hypomagnesaemia with hypercalciuria and nephrocalcinosis in a Chinese family. Clin Chim Acta 2016; 457:69-74. [PMID: 27067446 DOI: 10.1016/j.cca.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare autosomal recessively inherited disease characterized by excessive wasting of renal tubular magnesium and calcium. FHHNC is associated with various mutations in CLDN16 and CLDN19. CASES Two children from a consanguineous family of Chinese Han origin demonstrated manifestations of rickets, polyuria, polydipsia, hematuria and failure to thrive. Hypomagnesaemia (0.49-0.50mmol/L), hypercalciuria or a trend to hypercalciuria (24hour urine calcium: 3.8-5.1mg/kg/day), and secondary hyperparathyroidism (serum PTH level: 94.7-200pg/mL) were revealed upon laboratory examination. Using targeted next-generation sequencing and subsequent confirmation by Sanger sequencing, a novel homozygous mutation was identified in the CLDN16 gene of both FHHNC patients. This specific mutation, a 16bp deletion followed by a 23bp insertion in exon 3, led to the generation of a premature termination codon. The parents and an unaffected sister were all heterozygous carriers of this mutation. CONCLUSIONS We detected a novel mutation in CLDN16 for the first time. The clinical and genetic findings from this study will help to expand the understanding of this rare disease, FHHNC.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao-Jie Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian-Yi Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
43
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
44
|
Plain A, Wulfmeyer VC, Milatz S, Klietz A, Hou J, Bleich M, Himmerkus N. Corticomedullary difference in the effects of dietary Ca²⁺ on tight junction properties in thick ascending limbs of Henle's loop. Pflugers Arch 2015; 468:293-303. [PMID: 26497703 DOI: 10.1007/s00424-015-1748-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022]
Abstract
The thick ascending limb of Henle's loop (TAL) drives an important part of the reabsorption of divalent cations. This reabsorption occurs via the paracellular pathway formed by the tight junction (TJ), which in the TAL shows cation selectivity. Claudins, a family of TJ proteins, determine the permeability and selectivity of this pathway. Mice were fed with normal or high-Ca(2+) diet, and effects on the reabsorptive properties of cortical and medullary TAL segments were analysed by tubule microdissection and microperfusion. Claudin expression was investigated by immunostaining and quantitative PCR. We show that the TAL adapted to high Ca(2+) load in a sub-segment-specific manner. In medullary TAL, transcellular NaCl transport was attenuated. The transepithelial voltage decreased from 10.9 ± 0.6 mV at control diet to 8.3 ± 0.5 mV at high Ca(2+) load, thereby reducing the driving force for Ca(2+) and Mg(2+) uptake. Cortical TAL showed a reduction in paracellular Ca(2+) and Mg(2+) permeabilities from 8.2 ± 0.7 to 6.2 ± 0.5 ∙ 10(-4) cm/s and from 4.8 ± 0.5 to 3.0 ± 0.2 · 10(-4) cm/s at control and high-Ca(2+) diet, respectively. Expression, localisation and regulation of claudins 10, 14, 16 and 19 differed along the corticomedullary axis: Towards the cortex, the main site of divalent cation reabsorption in TAL, high-Ca(2+) intake led to a strong upregulation of claudin-14 within TAL TJs while claudin-16 and -19 were unaltered. Towards the inner medulla, only claudin-10 was present in TAL TJ strands. In summary, high-Ca(2+) diet induced a reduction of divalent cation reabsorption via a diminution of NaCl transport and driving force in mTAL and via decreased paracellular permeabilities in cTAL. We reveal an important regulatory pattern along the corticomedullary axis and improve the understanding how the kidney disposes of detrimental excess Ca(2+).
Collapse
Affiliation(s)
- Allein Plain
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Vera C Wulfmeyer
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Susanne Milatz
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Adrian Klietz
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Jianghui Hou
- Washington University Renal Division, St. Louis, MO, USA
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany.
| |
Collapse
|
45
|
Claverie-Martin F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin Kidney J 2015; 8:656-64. [PMID: 26613020 PMCID: PMC4655790 DOI: 10.1093/ckj/sfv081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023] Open
Abstract
Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal-recessive renal tubular disorder characterized by excessive urinary losses of magnesium and calcium, bilateral nephrocalcinosis and progressive chronic renal failure. Presentation with FHHNC symptoms generally occurs early in childhood or before adolescence. At present, the only therapeutic option is supportive and consists of oral magnesium supplementation and thiazide diuretics. However, neither treatment seems to have a significant effect on the levels of serum magnesium or urine calcium or on the decline of renal function. In end-stage renal disease patients, renal transplantation is the only effective approach. This rare disease is caused by mutations in the CLDN16 or CLDN19 genes. Patients with mutations in CLDN19 also present severe ocular abnormalities such as myopia, nystagmus and macular colobamata. CLDN16 and CLDN19 encode the tight-junction proteins claudin-16 and claudin-19, respectively, which are expressed in the thick ascending limb of Henle's loop and form an essential complex for the paracellular reabsorption of magnesium and calcium. Claudin-19 is also expressed in retinal epithelium and peripheral neurons. Research studies using mouse and cell models have generated significant advances on the understanding of the pathophysiology of FHHNC. A recent finding has established that another member of the claudin family, claudin-14, plays a key regulatory role in paracellular cation reabsorption by inhibiting the claudin-16-claudin-19 complex. Furthermore, several studies on the molecular and cellular consequences of disease-causing CLDN16 and CLDN19 mutations have provided critical information for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Felix Claverie-Martin
- Unidad de Investigación, Hospital Nuestra Señora de Candelaria , Santa Cruz de Tenerife , Spain
| |
Collapse
|
46
|
Yamaguti PM, dos Santos PAC, Leal BS, Santana VBBDM, Mazzeu JF, Acevedo AC, Neves FDAR. Identification of the first large deletion in the CLDN16 gene in a patient with FHHNC and late-onset of chronic kidney disease: case report. BMC Nephrol 2015; 16:92. [PMID: 26136118 PMCID: PMC4487846 DOI: 10.1186/s12882-015-0079-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022] Open
Abstract
Background Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is a rare autosomal recessive renal disease characterized by tubular disorders at the thick ascending limb of Henle’s loop. It is caused by mutations in the tight junction structural proteins claudin-16 or claudin-19, which are encoded by the CLDN16 and CLDN19 genes, respectively. Patients exhibit excessive wasting of calcium and magnesium, nephrocalcinosis, chronic kidney disease, and early progression to end-stage renal failure during infancy. Case presentation We here report the phenotype and molecular analysis of a female Brazilian patient with a novel large homozygous deletion in the CLDN16 gene. The proband, born from consanguineous parents, presented the first symptoms at age 20. Clinical examination revealed hypocalcemia, hypomagnesemia, nephrocalcinosis, mild myopia, high serum levels of uric acid and intact parathyroid hormone, and moderate chronic kidney disease (stage 3). She and her mother were subjected to CLDN16 and CLDN19 mutational analysis. In addition, the multiplex ligation-dependent probe amplification method was used to confirm a CLDN16 multi-exon deletion. Direct sequencing revealed a normal CLDN19 sequence and suggested a large deletion in the CLDN16 gene. Multiplex ligation-dependent probe amplification showed a homozygous CLDN16 multi-exon deletion (E2_E5del). The patient initiated conventional treatment for familial hypomagnesemia with hypercalciuria and nephrocalcinosis and progressed to end-stage kidney disease after five years. Conclusions This study provides the first report of a large homozygous deletion in the CLDN16 gene causing familial hypomagnesemia with hypercalciuria and nephrocalcinosis with late onset of the first symptoms. This description expands the phenotypic and genotypic characterization of the disease. The late-onset chronic kidney disease in the presence of a homozygous deletion in the CLDN16 gene reinforces the great variability of genotype-phenotype manifestation in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis.
Collapse
Affiliation(s)
| | | | | | | | - Juliana Forte Mazzeu
- Laboratory of Genetics, Faculty of Medicine, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil.
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil.
| | - Francisco de Assis Rocha Neves
- Soclimed Nephrology and Dialysis Unit, Brasilia, Brazil. .,Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil.
| |
Collapse
|
47
|
Takayanagi K, Shimizu T, Tayama Y, Ikari A, Anzai N, Iwashita T, Asakura J, Hayashi K, Mitarai T, Hasegawa H. Downregulation of transient receptor potential M6 channels as a cause of hypermagnesiuric hypomagnesemia in obese type 2 diabetic rats. Am J Physiol Renal Physiol 2015; 308:F1386-97. [DOI: 10.1152/ajprenal.00593.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Abstract
We assessed the expression profile of Mg2+-transporting molecules in obese diabetic rats as a cause of hypermagnesiuric hypomagnesemia, which is involved in the development of insulin resistance, hypertension, and coronary diseases. Kidneys were obtained from male Otsuka Long-Evans Tokushima fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) obese diabetic rats at the ages of 16, 24, and 34 wk. Expression profiles were studied by real-time PCR and immunohistochemistry together with measurements of urine Mg2+excretion. Urine Mg2+excretion was increased in 24-wk-old OLETF rats and hypomagnesemia was apparent in 34-wk-old OLETF rats but not in LETO rats (urine Mg2+excretion: 0.16 ± 0.01 μg·min−1·g body wt−1in 24-wk-old LETO rats and 0.28 ± 0.01 μg·min−1·g body wt−1in 24-wk-old OLETF rats). Gene expression of transient receptor potential (TRP)M6 was downregulated (85.5 ± 5.6% in 34-wk-old LETO rats and 63.0 ± 3.5% in 34-wk-old OLETF rats) concomitant with Na+-Cl−cotransporter downregulation, whereas the expression of claudin-16 in tight junctions of the thick ascending limb of Henle was not different. The results of the semiquantitative analysis of immunohistochemistry were consistent with these findings (TRPM6: 0.49 ± 0.04% in 16-wk-old LETO rats, 0.10 ± 0.01% in 16-wk-old OLETF rats, 0.52 ± 0.03% in 24-wk-old LETO rats, 0.10 ± 0.01% in 24-wk-old OLETF rats, 0.48 ± 0.02% in 34-wk-old LETO rats, and 0.12 ± 0.02% in 34-wk-old OLETF rats). Gene expression of fibrosis-related proinflammatory cytokines as well as histological changes showed that the hypermagnesiuria-related molecular changes and tubulointerstitial nephropathy developed independently. TRPM6, located principally in distal convoluted tubules, appears to be a susceptible molecule that causes hypermagnesiuric hypomagnesemia as a tubulointerstitial nephropathy-independent altered tubular function in diabetic nephropathy.
Collapse
Affiliation(s)
- Kaori Takayanagi
- Ishikawa Kinenkai Kawagoe Ekimae Clinic, Kawagoe, Saitama, Japan
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Taisuke Shimizu
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Yosuke Tayama
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan; and
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Takatsugu Iwashita
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Juko Asakura
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Tetsuya Mitarai
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hajime Hasegawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| |
Collapse
|
48
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Regulation of magnesium balance: lessons learned from human genetic disease. Clin Kidney J 2015; 5:i15-i24. [PMID: 26069817 PMCID: PMC4455826 DOI: 10.1093/ndtplus/sfr164] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Magnesium (Mg(2+)) is the fourth most abundant cation in the body. Thus, magnesium homeostasis needs to be tightly regulated, and this is facilitated by intestinal absorption and renal excretion. Magnesium absorption is dependent on two concomitant pathways found in both in the intestine and the kidneys: passive paracellular transport via claudins facilitates bulk magnesium absorption, whereas active transcellular pathways mediate the fine-tuning of magnesium absorption. The identification of genes responsible for diseases associated with hypomagnesaemia resulted in the discovery of several magnesiotropic proteins. Claudins 16 and 19 form the tight junction pore necessary for mass magnesium transport. However, most of the causes of genetic hypomagnesaemia can be tracked down to transcellular magnesium transport in the distal convoluted tubule. Within the distal convoluted tubule, magnesium reabsorption is a tightly regulated process that determines the final urine magnesium concentration. Therefore, insufficient magnesium transport in the distal convoluted tubule owing to mutated magnesiotropic proteins inevitably leads to magnesium loss, which cannot be compensated for in downstream tubule segments. Better understanding of the molecular mechanism regulating magnesium reabsorption will give new opportunities for better therapies, perhaps including therapies for patients with chronic renal failure.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Papadopoulos T, Belliere J, Bascands JL, Neau E, Klein J, Schanstra JP. miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 2015; 15:361-74. [PMID: 25660955 DOI: 10.1586/14737159.2015.1009449] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are short non-coding RNAs that control post-transcriptional regulation of gene expression. They are found ubiquitously in tissue and body fluids and participate in the pathogenesis of many diseases. Due to these characteristics and their stability, miRNAs could serve as biomarkers of different pathologies of the kidney. Urine is a non-invasive reservoir of molecules, especially indicative of the urinary system. In this review, we focus on urinary miRNAs and their potential to serve as biomarkers in kidney disease. Past studies show that urinary miRNAs correlate with renal dysfunctions and with processes involved in the pathophysiology. However, these studies also stress the need for future research focusing on large-scale studies to confirm the usability of urinary miRNAs as diagnostic and/or prognostic markers of different kidney diseases in clinical practice.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulhès, B.P. 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Claudins are tight-junction membrane proteins that function as both pores and barriers in the paracellular pathway in epithelial cells. In the kidney, claudins determine the permeability and selectivity of different nephron segments along the renal tubule. In the proximal tubule, claudins have a role in the bulk reabsorption of salt and water. In the thick ascending limb, claudins are important for the reabsorption of calcium and magnesium and are tightly regulated by the calcium-sensing receptor. In the distal nephron, claudins need to form cation barriers and chloride pores to facilitate electrogenic sodium reabsorption and potassium and acid secretion. Aldosterone and the with-no-lysine (WNK) proteins likely regulate claudins to fine-tune distal nephron salt transport. Genetic mutations in claudin-16 and -19 cause familial hypomagnesemic hypercalciuria with nephrocalcinosis, whereas polymorphisms in claudin-14 are associated with kidney stone risk. It is likely that additional roles for claudins in the pathogenesis of other types of kidney diseases have yet to be uncovered.
Collapse
Affiliation(s)
- Alan S L Yu
- Division of Nephrology and Hypertension, and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|