1
|
Bess SN, Igoe MJ, Muldoon TJ. The Physiological and Therapeutic Role of CD47 in Macrophage Function and Cancer. Immunol Invest 2025; 54:112-146. [PMID: 39415597 PMCID: PMC11774679 DOI: 10.1080/08820139.2024.2415409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Immunotherapy is an emerging strategy in cancer therapeutics aimed at modulating the immune system to inhibit pro-tumor pathways and increase a tumor's sensitivity to chemotherapy. Several clinically approved immunotherapy treatments, such as monoclonal antibody treatments, have been successful in solid tumors such as breast, colorectal, and pancreatic. However, an outstanding challenge of these strategies is tumor cell resistance. One target of interest for immune cell modulation is targeting macrophages that enter the tumor microenvironment. More specifically, an immune checkpoint of interest is CD47. CD47 is a transmembrane protein that inhibits phagocytic activity by acting as a "don't eat me" signal. In both mice and humans, healthy cells can express CD47, while solid malignancies like colorectal and breast cancer express it most strongly. METHODS Analysis of literature data on the physiological and functional roles of tissue-resident macrophages, along with the structure and mechanisms of action of the CD47 pathway was explored. We also explored how CD47 can influence different aspects of the tumor microenvironment (i.e. cellular metabolism and hypoxia) in addition to current clinical strategies and challenges associated with targeting CD47. RESULTS Overall, it was discovered that CD47 is overexpressed in a variety of cancer types in addition to normal tissue, making it a promising treatment regimen to enhance the capability of macrophages to phagocytose tumor cells. However, treatment efficacy is varied in pre-clinical and clinical models due to various challenges such as off-target effects. CONCLUSION This review emphasizes the diverse functionality of macrophages in normal and cancerous tissue, while also emphasizing the importance of macrophage targeting and their clinical significance.
Collapse
Affiliation(s)
- Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Matthew J. Igoe
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
2
|
Niu X, Wang C, Jiang H, Gao R, Lu Y, Guo X, Zhou H, Cui X, Sun J, Qiu Q, Sun D, Lu H. A pan-allelic human SIRPα-blocking antibody, ES004-B5, promotes tumor killing by enhancing macrophage phagocytosis and subsequently inducing an effective T-cell response. Antib Ther 2024; 7:266-280. [PMID: 39257438 PMCID: PMC11384143 DOI: 10.1093/abt/tbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/14/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
As a major immune cell type in the tumor microenvironment, tumor-associated macrophages secrete suppressive factors that can inhibit antitumor immunity and promote tumor progression. One approach trying to utilize macrophages for immunotherapy has been to block the CD47-SIRPα axis, which mediates inhibitory signaling, to promote phagocytosis of tumor cells. Many CD47-targeted agents, namely, anti-CD47 antibodies and SIRPα fusion proteins, were associated with a diverse spectrum of toxicities that limit their use in clinical settings. Universal expression of CD47 also leads to a severe "antigen sink" effect of CD47-targeted agents. Given that the CD47 receptor, SIRPα, has a more restricted expression profile and may have CD47-independent functions, targeting SIRPα is considered to have distinct advantages in improving clinical efficacy with a better safety profile. We have developed ES004-B5, a potentially best-in-class pan-allelic human SIRPα-blocking antibody using hybridoma technology. ES004-B5 binds to major human SIRPα variants through a unique epitope with high affinity. By blocking CD47-induced inhibitory "don't-eat-me" signaling, ES004-B5 exerts superior antitumor activity in combination with anti-tumor-associated antigen antibodies in vitro and in vivo. Unlike CD47-targeted agents, ES004-B5 exhibits an excellent safety profile in nonhuman primates. ES004-B5 has potential to be an important backbone for SIRPα-based combination therapy and/or bispecific antibodies, which will likely overcome the limitations of CD47-targeted agents encountered in clinical settings.
Collapse
Affiliation(s)
- Xiaofeng Niu
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Chunnian Wang
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Haixia Jiang
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Rui Gao
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Yefeng Lu
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Xiaoli Guo
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Hongping Zhou
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Xue Cui
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Jun Sun
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Quan Qiu
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Dawei Sun
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| | - Hongtao Lu
- Elpiscience Biopharma, BLDG. 3, 998 Halei RD, Pudong, Shanghai 201203, P.R. China
| |
Collapse
|
3
|
Wang T, Wang SQ, Du YX, Sun DD, Liu C, Liu S, Sun YY, Wang HL, Zhang CS, Liu HL, Jin L, Chen XP. Gentulizumab, a novel anti-CD47 antibody with potent antitumor activity and demonstrates a favorable safety profile. J Transl Med 2024; 22:220. [PMID: 38429732 PMCID: PMC10905820 DOI: 10.1186/s12967-023-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Targeting CD47/SIRPα axis has emerged as a promising strategy in cancer immunotherapy. Despite the encouraging clinical efficacy observed in hematologic malignancies through CD47-SIRPα blockade, there are safety concerns related to the binding of anti-CD47 antibodies to CD47 on the membrane of peripheral blood cells. METHODS In order to enhance the selectivity and therapeutic efficacy of the antibody, we developed a humanized anti-CD47 monoclonal antibody called Gentulizumab (GenSci059). The binding capacity of GenSci059 to CD47 was evaluated using flow cytometry and surface plasmon resonance (SPR) methods, the inhibitory effect of GenSci059 on the CD47-SIRPα interaction was evaluated through competitive ELISA assays. The anti-tumor activity of GenSci059 was assessed using in vitro macrophage models and in vivo patient-derived xenograft (PDX) models. To evaluate the safety profile of GenSci059, binding assays were conducted using blood cells. Additionally, we investigated the underlying mechanisms contributing to the weaker binding of GenSci059 to erythrocytes. Finally, toxicity studies were performed in non-human primates to assess the potential risks associated with GenSci059. RESULTS GenSci059 displayed strong binding to CD47 in both human and monkey, and effectively inhibited the CD47-SIRPα interaction. With doses ranging from 5 to 20 mg/kg, GenSci059 demonstrated potent inhibition of the growth of subcutaneous tumor with the inhibition rates ranged from 30.3% to complete regression. Combination of GenSci059 with 2.5 mg/kg Rituximab at a dose of 2.5 mg/kg showed enhanced tumor inhibition compared to monotherapy, exhibiting synergistic effects. GenSci059 exhibited minimal binding to hRBCs compared to Hu5F9-G4. The binding of GenSci059 to CD47 depended on the cyclization of N-terminal pyroglutamic acid and the spatial conformation of CD47, but was not affected by its glycosylation modifications. A maximum tolerated dose (MTD) of 450 mg/kg was observed for GenSci059, and no significant adverse effects were observed in repeated dosages up to 10 + 300 mg/kg, indicating a favorable safety profile. CONCLUSION GenSci059 selectively binds to CD47, effectively blocks the CD47/SIRPα axis signaling pathway and enhances the phagocytosis effects of macrophages toward tumor cells. This monoclonal antibody demonstrates potent antitumor activity and exhibits a favorable safety profile, positioning it as a promising and effective therapeutic option for cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Si-Qin Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Dan-Dan Sun
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Chang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Shuang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Ying-Ying Sun
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Hai-Long Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Chun-Sheng Zhang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Hai-Long Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Lei Jin
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Feng Y, Huang C, Wang Y, Chen J. SIRPα: A key player in innate immunity. Eur J Immunol 2023; 53:e2350375. [PMID: 37672390 DOI: 10.1002/eji.202350375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signal regulatory protein alpha (SIRPα) is a crucial inhibitory regulator expressed on the surface of myeloid cells, including macrophages, dendritic cells, monocytes, neutrophils, and microglia. SIRPα plays an indispensable role in innate immune and adoptive immune responses in cancer immunology, tissue homeostasis, and other physiological or phycological conditions. This review provides an overview of the research history, ligands, signal transduction pathways, and functional mechanisms associated with SIRPα. Additionally, we summarize the therapeutic implications of targeting SIRPα as a promising novel strategy in immuno-oncology.
Collapse
Affiliation(s)
- Yongyi Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunliu Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
5
|
Jalil AR, Tobin MP, Discher DE. Suppressing or Enhancing Macrophage Engulfment through the Use of CD47 and Related Peptides. Bioconjug Chem 2022; 33:1989-1995. [PMID: 35316023 PMCID: PMC9990087 DOI: 10.1021/acs.bioconjchem.2c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Foreign particles and microbes are rapidly cleared by macrophages in vivo, although many key aspects of uptake mechanisms remain unclear. "Self" cells express CD47 which functions as an anti-phagocytic ligand for SIRPα on macrophages, particularly when pro-phagocytic ligands such as antibodies are displayed in parallel. Here, we review CD47 and related "Self" peptides as modulators of macrophage uptake. Nanoparticles conjugated with either CD47 or peptides derived from its SIRPα binding site can suppress phagocytic uptake by macrophages in vitro and in vivo, with similar findings for CD47-displaying viruses. Drugs, dyes, and genes as payloads thus show increased delivery to targeted cells. On the other hand, CD47 expression by cancer cells enables such cells to evade macrophages and immune surveillance. This has motivated development of soluble antagonists to CD47-SIRPα, ranging from blocking antibodies in the clinic to synthetic peptides in preclinical models. CD47 and peptides are thus emerging as dual-use phagocytosis modulators against diseases.
Collapse
|
6
|
Yue Y, Cao Y, Wang F, Zhang N, Qi Z, Mao X, Guo S, Li F, Guo Y, Lin Y, Dong W, Huang Y, Gu W. Bortezomib-resistant multiple myeloma patient-derived xenograft is sensitive to anti-CD47 therapy. Leuk Res 2022; 122:106949. [PMID: 36113267 DOI: 10.1016/j.leukres.2022.106949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy due to its frequent drug resistance and relapse. Cluster of Differentiation 47 (CD47) is reported to be highly expressed on MM cells, suggesting that the blockade of CD47 signaling pathway could be a potential therapeutic candidate for MM. In this study, we developed a bortezomib-resistant myeloma patient-derived xenograft (PDX) from an extramedullary pleural effusion myeloma patient sample. Notably, anti-CD47 antibody treatments significantly inhibited tumor growth not only in MM cell line-derived models, including MM.1S and NCI-H929, but also in the bortezomib-resistant MM PDX model. Flow cytometric data showed that anti-CD47 therapy promoted the polarization of tumor-associated macrophages from an M2- to an M1-like phenotype. In addition, anti-CD47 therapy decreased the expression of pro-angiogenic factors, increased the expression of anti-angiogenic factors, and improved tumor vascular function, suggesting that anti-CD47 therapy induces tumor vascular normalization. Taken together, these data show that anti-CD47 antibody therapy reconditions the tumor immune microenvironment and inhibits the tumor growth of bortezomib-resistant myeloma PDX. Our findings suggest that CD47 is a potential new target to treat bortezomib-resistant MM.
Collapse
Affiliation(s)
- Yanhua Yue
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Yang Cao
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China
| | - Fei Wang
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China
| | - Naidong Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Ziwei Qi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Xunyuan Mao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Shuxin Guo
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Feng Li
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China
| | - Yanting Guo
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China
| | - Yan Lin
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China
| | - Weimin Dong
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, PR China.
| | - Weiying Gu
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Cara-Fuentes G, Andres-Hernando A, Bauer C, Banks M, Garcia GE, Cicerchi C, Kuwabara M, Shimada M, Johnson RJ, Lanaspa MA. Pulmonary surfactants and the respiratory-renal connection in steroid-sensitive nephrotic syndrome of childhood. iScience 2022; 25:104694. [PMID: 35847557 PMCID: PMC9284382 DOI: 10.1016/j.isci.2022.104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) in childhood is usually due to minimal change disease (MCD). Unlike many glomerular conditions, SSNS/MCD is commonly precipitated by respiratory infections. Of interest, pulmonary inflammation releases surfactants in circulation which are soluble agonists of SIRPα, a podocyte receptor that regulates integrin signaling. Here, we characterized this pulmonary-renal connection in MCD and performed studies to determine its importance. Children with SSNS/MCD in relapse but not remission had elevated plasma surfactants and urinary SIRPα. Sera from relapsing subjects triggered podocyte SIRPα signaling via tyrosine phosphatase SHP-2 and nephrin dephosphorylation, a marker of podocyte activation. Further, addition of surfactants to MCD sera from patients in remission replicated these findings. Similarly, nasal instillation of toll-like receptor 3 and 4 agonists in mice resulted in elevated serum surfactants and their binding to glomeruli triggering proteinuria. Together, our data document a critical pulmonary-podocyte signaling pathway involving surfactants and SIRPα signaling in SSNS/MCD.
Collapse
Affiliation(s)
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA
| | - Colin Bauer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Mindy Banks
- Rocky Mountain Pediatric Kidney Center, Denver, CO, USA
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Christina Cicerchi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA,Corresponding author
| |
Collapse
|
8
|
Wang H, Newton G, Wu L, Lin LL, Miracco AS, Natesan S, Luscinskas FW. CD47 antibody blockade suppresses microglia-dependent phagocytosis and monocyte transition to macrophages, impairing recovery in EAE. JCI Insight 2021; 6:148719. [PMID: 34591795 PMCID: PMC8663579 DOI: 10.1172/jci.insight.148719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a well-characterized animal model of multiple sclerosis. During the early phase of EAE, infiltrating monocytes and monocyte-derived macrophages contribute to T cell recruitment, especially CD4+ T cells, into the CNS, resulting in neuronal demyelination; however, in later stages, they promote remyelination and recovery by removal of myelin debris by phagocytosis. Signal regulatory protein α and CD47 are abundantly expressed in the CNS, and deletion of either molecule is protective in myelin oligodendrocyte glycoprotein–induced EAE because of failed effector T cell expansion and trafficking. Here we report that treatment with the function blocking CD47 Ab Miap410 substantially reduced the infiltration of pathogenic immune cells but impaired recovery from paresis. The underlying mechanism was by blocking the emergence of CD11chiMHCIIhi microglia at peak disease that expressed receptors for phagocytosis, scavenging, and lipid catabolism, which mediated clearance of myelin debris and the transition of monocytes to macrophages in the CNS. In the recovery phase of EAE, Miap410 Ab–treated mice had worsening paresis with sustained inflammation and limited remyelination as compared with control Ab–treated mice. In summary, Ab blockade of CD47 impaired resolution of CNS inflammation, thus worsening EAE.
Collapse
Affiliation(s)
- Huan Wang
- Center for Excellence in Vascular Biology, Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| | - Gail Newton
- Center for Excellence in Vascular Biology, Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| | - Liguo Wu
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Lih-Ling Lin
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Amy S Miracco
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Sridaran Natesan
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Francis W Luscinskas
- Center for Excellence in Vascular Biology, Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol 2021; 14:180. [PMID: 34717705 PMCID: PMC8557524 DOI: 10.1186/s13045-021-01197-w] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Much progress has been made in targeting CD47 for cancer immunotherapy in solid tumors (ST) and hematological malignancies. We summarized the CD47-related clinical research and analyzed the research trend both in the USA and in China. As of August 28, 2021, there are a total 23 related therapeutic agents with 46 clinical trials in the NCT registry platform. Among these trials, 29 are in ST, 14 in hematological malignancies and 3 in both solid tumor and hematological malignancy. The ST include gastric cancer, head and neck squamous cell carcinoma and leiomyosarcoma, while the hematological malignancies include non-Hodgkin's lymphoma, acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and chronic myeloid leukemia. Majority of the CD47-related clinical trials are at the early phases, such as 31 at phase I, 14 at phase II and 1 at phase III in the USA and 9, 6, 1, in China, respectively. The targets and spectrums of mechanism of action include 26 with mono-specific and 20 with bi-specific targets in the USA and 13 with mono-specific and 3 with bi-specific targets in China. The new generation CD47 antibodies have demonstrated promising results, and it is highly hopeful that some candidate agents will emerge and make into clinical application to meet the urgent needs of patients.
Collapse
Affiliation(s)
- Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hao Sun
- Department of Radiation Therapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201203, China.
| | - Yongping Song
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
10
|
Kelley SM, Ravichandran KS. Putting the brakes on phagocytosis: "don't-eat-me" signaling in physiology and disease. EMBO Rep 2021; 22:e52564. [PMID: 34041845 DOI: 10.15252/embr.202152564] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of "eat-me" and "don't-eat-me" signals expressed on the surface of host cells. Upon contact, eat-me signals activate "pro-phagocytic" receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don't-eat-me signals engage "anti-phagocytic" receptors to suppress phagocytosis. We review the current knowledge of don't-eat-me signaling in normal physiology and disease contexts where aberrant don't-eat-me signaling contributes to pathology.
Collapse
Affiliation(s)
- Shannon M Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Jalil AR, Hayes BH, Andrechak JC, Xia Y, Chenoweth DM, Discher DE. Multivalent, Soluble Nano-Self Peptides Increase Phagocytosis of Antibody-Opsonized Targets while Suppressing "Self" Signaling. ACS NANO 2020; 14:15083-15093. [PMID: 33186026 PMCID: PMC8489566 DOI: 10.1021/acsnano.0c05091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Macrophages engulf "foreign" cells and particles, but phagocytosis of healthy cells and cancer cells is inhibited by expression of the ubiquitous membrane protein CD47 which binds SIRPα on macrophages to signal "self". Motivated by some clinical efficacy of anti-CD47 against liquid tumors and based on past studies of CD47-derived polypeptides on particles that inhibited phagocytosis of the particles, here we design soluble, multivalent peptides to bind and block SIRPα. Bivalent and tetravalent nano-Self peptides prove more potent (Keff ∼ 10 nM) than monovalent 8-mers as agonists for phagocytosis of antibody opsonized cells, including cancer cells. Multivalent peptides also outcompete soluble CD47 binding to human macrophages, consistent with SIRPα binding, and the peptides suppress phosphotyrosine in macrophages, consistent with inhibition of SIRPα's "self" signaling. Peptides exhibit minimal folding, but functionality suggests an induced fit into SIRPα's binding pocket. Pre-clinical studies in mice indicate safety, with no anemia that typifies clinical infusions of anti-CD47. Multivalent nano-Self peptides thus constitute an alternative approach to promoting phagocytosis of "self", including cancer cells targeted clinically.
Collapse
|
12
|
Christofi M, Le Sommer S, Mölzer C, Klaska IP, Kuffova L, Forrester JV. Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cell Mol Life Sci 2020; 78:2857-2876. [PMID: 33074350 PMCID: PMC8004500 DOI: 10.1007/s00018-020-03672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Cell therapies for autoimmune diseases using tolerogenic dendritic cells (tolDC) have been promisingly explored. A major stumbling block has been generating stable tolDC, with low risk of converting to mature immunogenic DC (mDC), exacerbating disease. mDC induction involves a metabolic shift to lactate production from oxidative phosphorylation (OXPHOS) and β-oxidation, the homeostatic energy source for resting DC. Inhibition of glycolysis through the administration of 2-deoxy glucose (2-DG) has been shown to prevent autoimmune disease experimentally but is not clinically feasible. We show here that treatment of mouse bone marrow-derived tolDC ex vivo with low-dose 2-DG (2.5 mM) (2-DGtolDC) induces a stable tolerogenic phenotype demonstrated by their failure to engage lactate production when challenged with mycobacterial antigen (Mtb). ~ 15% of 2-DGtolDC express low levels of MHC class II and 30% express CD86, while they are negative for CD40. 2-DGtolDC also express increased immune checkpoint molecules PDL-1 and SIRP-1α. Antigen-specific T cell proliferation is reduced in response to 2-DGtolDC in vitro. Mtb-stimulated 2-DGtolDC do not engage aerobic glycolysis but respond to challenge via increased OXPHOS. They also have decreased levels of p65 phosphorylation, with increased phosphorylation of the non-canonical p100 pathway. A stable tolDC phenotype is associated with sustained SIRP-1α phosphorylation and p85-AKT and PI3K signalling inhibition. Further, 2-DGtolDC preferentially secrete IL-10 rather than IL-12 upon Mtb-stimulation. Importantly, a single subcutaneous administration of 2-DGtolDC prevented experimental autoimmune uveoretinitis (EAU) in vivo. Inhibiting glycolysis of autologous tolDC prior to transfer may be a useful approach to providing stable tolDC therapy for autoimmune/immune-mediated diseases.
Collapse
Affiliation(s)
- M Christofi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - S Le Sommer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - C Mölzer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - I P Klaska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - L Kuffova
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - J V Forrester
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
13
|
Jalil AR, Andrechak JC, Discher DE. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure-function. Antib Ther 2020; 3:80-94. [PMID: 32421049 PMCID: PMC7206415 DOI: 10.1093/abt/tbaa006] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The macrophage checkpoint is an anti-phagocytic interaction between signal regulatory protein alpha (SIRPα) on a macrophage and CD47 on all types of cells - ranging from blood cells to cancer cells. This interaction has emerged over the last decade as a potential co-target in cancer when combined with other anti-cancer agents, with antibodies against CD47 and SIRPα currently in preclinical and clinical development for a variety of hematological and solid malignancies. Monotherapy with CD47 blockade is ineffective in human clinical trials against many tumor types tested to date, except for rare cutaneous and peripheral lymphomas. In contrast, pre-clinical results show efficacy in multiple syngeneic mouse models of cancer, suggesting that many of these tumor models are more immunogenic and likely artificial compared to human tumors. However, combination therapies in humans of anti-CD47 with agents such as the anti-tumor antibody rituximab do show efficacy against liquid tumors (lymphoma) and are promising. Here, we review such trials as well as key interaction and structural features of CD47-SIRPα.
Collapse
Affiliation(s)
- AbdelAziz R Jalil
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C Andrechak
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Kauder SE, Kuo TC, Harrabi O, Chen A, Sangalang E, Doyle L, Rocha SS, Bollini S, Han B, Sim J, Pons J, Wan HI. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS One 2018; 13:e0201832. [PMID: 30133535 PMCID: PMC6104973 DOI: 10.1371/journal.pone.0201832] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
CD47 is a widely expressed cell surface protein that functions as an immune checkpoint in cancer. When expressed by tumor cells, CD47 can bind SIRPα on myeloid cells, leading to suppression of tumor cell phagocytosis and other innate immune functions. CD47-SIRPα signaling has also been implicated in the suppression of adaptive antitumor responses, but the relevant cellular functions have yet to be elucidated. Therapeutic blockade of the CD47 pathway may stimulate antitumor immunity and improve cancer therapy. To this end, a novel CD47-blocking molecule, ALX148, was generated by fusing a modified SIRPα D1 domain to an inactive human IgG1 Fc. ALX148 binds CD47 from multiple species with high affinity, inhibits wild type SIRPα binding, and enhances phagocytosis of tumor cells by macrophages. ALX148 has no effect on normal human blood cells in vitro or on blood cell parameters in rodent and non-human primate studies. Across several murine tumor xenograft models, ALX148 enhanced the antitumor activity of different targeted antitumor antibodies. Additionally, ALX148 enhanced the antitumor activity of multiple immunotherapeutic antibodies in syngeneic tumor models. These studies revealed that CD47 blockade with ALX148 induces multiple responses that bridge innate and adaptive immunity. ALX148 stimulates antitumor properties of innate immune cells by promoting dendritic cell activation, macrophage phagocytosis, and a shift of tumor-associated macrophages toward an inflammatory phenotype. ALX148 also stimulated the antitumor properties of adaptive immune cells, causing increased T cell effector function, pro-inflammatory cytokine production, and a reduction in the number of suppressive cells within the tumor microenvironment. Taken together, these results show that ALX148 binds and blocks CD47 with high affinity, induces a broad antitumor immune response, and has a favorable safety profile.
Collapse
Affiliation(s)
| | - Tracy C. Kuo
- ALX Oncology, Burlingame, CA, United States of America
| | - Ons Harrabi
- ALX Oncology, Burlingame, CA, United States of America
| | - Amy Chen
- ALX Oncology, Burlingame, CA, United States of America
| | | | - Laura Doyle
- ALX Oncology, Burlingame, CA, United States of America
| | - Sony S. Rocha
- ALX Oncology, Burlingame, CA, United States of America
| | | | - Bora Han
- ALX Oncology, Burlingame, CA, United States of America
| | - Janet Sim
- ALX Oncology, Burlingame, CA, United States of America
| | - Jaume Pons
- ALX Oncology, Burlingame, CA, United States of America
| | - Hong I. Wan
- ALX Oncology, Burlingame, CA, United States of America
| |
Collapse
|
15
|
Sun J, Lei L, Tsai CM, Wang Y, Shi Y, Ouyang M, Lu S, Seong J, Kim TJ, Wang P, Huang M, Xu X, Nizet V, Chien S, Wang Y. Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Nat Commun 2017; 8:477. [PMID: 28883531 PMCID: PMC5589908 DOI: 10.1038/s41467-017-00569-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Protein-based biosensors or activators have been engineered to visualize molecular signals or manipulate cellular functions. Here we integrate these two functionalities into one protein molecule, an integrated sensing and activating protein (iSNAP). A prototype that can detect tyrosine phosphorylation and immediately activate auto-inhibited Shp2 phosphatase, Shp2-iSNAP, is designed through modular assembly. When Shp2-iSNAP is fused to the SIRPα receptor which typically transduces anti-phagocytic signals from the 'don't eat me' CD47 ligand through negative Shp1 signaling, the engineered macrophages not only allow visualization of SIRPα phosphorylation upon CD47 engagement but also rewire the CD47-SIRPα axis into the positive Shp2 signaling, which enhances phagocytosis of opsonized tumor cells. A second SIRPα Syk-iSNAP with redesigned sensor and activator modules can likewise rewire the CD47-SIRPα axis to the pro-phagocytic Syk kinase activation. Thus, our approach can be extended to execute a broad range of sensing and automated reprogramming actions for directed therapeutics.Protein-based biosensors have been engineered to interrogate cellular signaling and manipulate function. Here the authors demonstrate iSNAP, a tool to detect tyrosine phosphorylation and activate desired protein enzymes allowing the control of phagocytosis in macrophages.
Collapse
Affiliation(s)
- Jie Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yiwen Shi
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mingxing Ouyang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shaoying Lu
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jihye Seong
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tae-Jin Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Pengzhi Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Min Huang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangdong Xu
- Department of Pathology, Veterans Affairs San Diego Healthcare System, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Yingxiao Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Ratnikova NM, Lezhnin YN, Frolova EI, Kravchenko JE, Chumakov SP. CD47 receptor as a primary target for cancer therapy. Mol Biol 2017. [DOI: 10.1134/s0026893317010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 2016; 92:173-186. [PMID: 26910209 DOI: 10.1007/s12565-016-0334-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Collapse
|
18
|
Yun EJ, Lorizio W, Seedorf G, Abman SH, Vu TH. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development. Am J Physiol Lung Cell Mol Physiol 2015; 310:L287-98. [PMID: 26566904 DOI: 10.1152/ajplung.00229.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Prevention or treatment of lung diseases caused by the failure to form, or destruction of, existing alveoli, as observed in infants with bronchopulmonary dysplasia and adults with emphysema, requires understanding of the molecular mechanisms of alveolar development. In addition to its critical role in gas exchange, the pulmonary circulation also contributes to alveolar morphogenesis and maintenance by the production of paracrine factors, termed "angiocrines," that impact the development of surrounding tissue. To identify lung angiocrines that contribute to alveolar formation, we disrupted pulmonary vascular development by conditional inactivation of the Vegf-A gene during alveologenesis. This resulted in decreased pulmonary capillary and alveolar development and altered lung elastin and retinoic acid (RA) expression. We determined that RA is produced by pulmonary endothelial cells and regulates pulmonary angiogenesis and elastin synthesis by induction of VEGF-A and fibroblast growth factor (FGF)-18, respectively. Inhibition of RA synthesis in newborn mice decreased FGF-18 and elastin expression and impaired alveolarization. Treatment with RA and vitamin A partially reversed the impaired vascular and alveolar development induced by VEGF inhibition. Thus we identified RA as a lung angiocrine that regulates alveolarization through autocrine regulation of endothelial development and paracrine regulation of elastin synthesis via induction of FGF-18 in mesenchymal cells.
Collapse
Affiliation(s)
- Eun Jun Yun
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Walter Lorizio
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Gregory Seedorf
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Thiennu H Vu
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| |
Collapse
|
19
|
Londino JD, Gulick D, Isenberg JS, Mallampalli RK. Cleavage of Signal Regulatory Protein α (SIRPα) Enhances Inflammatory Signaling. J Biol Chem 2015; 290:31113-25. [PMID: 26534964 DOI: 10.1074/jbc.m115.682914] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/06/2022] Open
Abstract
Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling.
Collapse
Affiliation(s)
- James D Londino
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and
| | - Dexter Gulick
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and
| | - Jeffrey S Isenberg
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Vascular Medicine Institute, Starzl Transplantation Institute, Department of Pharmacology and Chemical Biology, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rama K Mallampalli
- From the Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15213, Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
20
|
Kolan SS, Boman A, Matozaki T, Lejon K, Oldenborg PA. Lack of non-hematopoietic SIRPα signaling disturbs the splenic marginal zone architecture resulting in accumulation and displacement of marginal zone B cells. Biochem Biophys Res Commun 2015; 460:645-50. [PMID: 25817792 DOI: 10.1016/j.bbrc.2015.03.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 11/15/2022]
Abstract
Signal regulatory protein α (SIRPα) is an immunoglobulin super family protein predominantly expressed by myeloid but not lymphoid cells, and its role in lymphocyte homeostasis and function is still to be revealed. We demonstrate that mice bearing a mutant SIRPα lacking the cytoplasmic signaling domain (SIRPα MT) had an increased amount of splenic marginal zone (MZ) B cells compared to wild-type controls. Immunohistochemical analysis revealed an increased localization of MZB cells into B cell follicular areas of the white pulp in SIRPα MT spleens. However, we found no signs of an increased MZB cell activation level in MT mice. The immune response to T-independent antigens in vivo was slightly increased in SIRPα MT mice while sorted MZB from these mice responded normally to LPS in vitro. Bone marrow reconstitution experiments demonstrated that the MZB cell phenotype of SIRPα MT mice was due to lack of SIRPα signaling in non-hematopoietic cells. In contrast, MZ retention of MZ macrophages required hematopoietic SIRPα, while normal distribution of metallophilic macrophages required non-hematopoietic SIRPα signaling. In summary, these data identified SIRPα signaling in non-hematopoietic cells to play an important role in regulating the numbers and positioning MZB cell in the spleen.
Collapse
Affiliation(s)
- Shrikant S Kolan
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Andreas Boman
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kristina Lejon
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
21
|
Qin C, Chen L, Xiao YB. rs10263935 and rs6045676 identified by genome-wide association study were associated with aortic dissection in a Chinese population. ACTA ACUST UNITED AC 2014; 85:10-4. [PMID: 25417718 DOI: 10.1111/tan.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/18/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022]
Abstract
Aortic dissection (AD) is a disease characterized by a tear in the aortic intimal layer and separation of the arterial wall. Some risk factors, such as hypertension and Marfan syndrome, are well known in AD, but the role of genetic factor is largely unknown. In this study, we investigated the relation between two single nucleotide polymorphisms (SNPs) identified by genome-wide association study and AD. Approximately 177 patients diagnosed with AD through clinical evaluation and imaging techniques and 183 age- and sex-matched control subjects who were suffering from chest pain but without AD were included in the study. Genotyping of rs10263935 and rs6045676 was performed in both patients and control subjects using the TaqMan(®) method [Life Technologies (AB & Invitrogen), Carlsbad, CA]. The frequency of the AA and AG genotype in rs10263935 was significantly higher in the AD patients (0.085 and 0.435, respectively) than in the control subjects (0.033 and 0.355, respectively). The rs10263935 A allele frequency in the AD patients was higher than that in the control subjects [0.302 vs 0.210, odds ratio (OR) = 1.62, 95% confidence interval (CI): 1.26-2.28, P = 0.005]. Similarly, the frequency of the GG genotype in rs6045676 was significantly higher in the AD patients than in the control subjects (0.107 vs 0.038, P = 0.015). The rs6045676 G allele frequency in the AD patients was higher than that in the control subjects (0.282 vs 0.191, OR = 1.67, 95% CI: 1.18-2.50, P = 0.004). After adjustment of the confounding factors, such as smoking, sex, and age, the differences remain significant in several models (rs10263935: GG vs AA: OR = 3.13, 95% CI: 1.15-8.33, P = 0.025; GG vs AG: OR = 1.57, 95% CI: 1.01-2.44, P = 0.045; rs6045676: GG vs CC: OR = 3.30, 95% CI: 1.32-8.25, P = 0.011). rs10263935 on chromosome 7 and rs6045676 on chromosome 20 are associated with AD. Further studies are warranted to elucidate the functional role of these two variants.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
22
|
Wong ASL, Mortin-Toth S, Sung M, Canty AJ, Gulban O, Greaves DR, Danska JS. Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2014; 193:4833-44. [PMID: 25305319 DOI: 10.4049/jimmunol.1401984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The signal regulatory protein (SIRP) locus encodes a family of paired receptors that mediate both activating and inhibitory signals and is associated with type 1 diabetes (T1D) risk. The NOD mouse model recapitulates multiple features of human T1D and enables mechanistic analysis of the impact of genetic variations on disease. In this study, we identify Sirpa encoding an inhibitory receptor on myeloid cells as a gene in the insulin-dependent diabetes locus 13.2 (Idd13.2) that drives islet inflammation and T1D. Compared to T1D-resistant strains, the NOD variant of SIRPα displayed greater binding to its ligand CD47, as well as enhanced T cell proliferation and diabetogenic potency. Myeloid cell-restricted expression of a Sirpa transgene accelerated disease in a dose-dependent manner and displayed genetic and functional interaction with the Idd5 locus to potentiate insulitis progression. Our study demonstrates that variations in both SIRPα sequence and expression level modulate T1D immunopathogenesis. Thus, we identify Sirpa as a T1D risk gene and provide insight into the complex mechanisms by which disease-associated variants act in concert to drive defined stages in disease progression.
Collapse
Affiliation(s)
- Andrea Sut Ling Wong
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Michael Sung
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Angelo J Canty
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Omid Gulban
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, United Kingdom; and
| | - Jayne S Danska
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| |
Collapse
|
23
|
Gautam PK, Acharya A. Suppressed expression of homotypic multinucleation, extracellular domains of CD172α (SIRP-α) and CD47 (IAP) receptors in TAMs upregulated by Hsp70-peptide complex in Dalton's lymphoma. Scand J Immunol 2014; 80:22-35. [PMID: 24684700 DOI: 10.1111/sji.12180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/26/2014] [Indexed: 01/26/2023]
Abstract
CD172α and CD47 are members of glycoprotein expressed on macrophages and various immune cells, promote immune recognition and T cell stimulation that priming phagocytosis of pathogens and apoptotic bodies and malignant cell. Tumour-releasing immunosuppressive factor promotes tumour growth and transforms the tumour resident M1 phenotype of macrophage to M2 phenotype (TAMs) that promotes tumour progression by downregulating the expression of different surface receptor including CD172α and CD47. Recent studies have reported that CD172α and CD47 are involved in the pathogenesis and promote malignancies such as lymphoma, leukaemia, melanoma, lung cancer and multiple myeloma, and their expression varies during infection and malignancies. Autologous Hsp70 is well recognized for its role in activating macrophages leading to enhance production of inflammatory cytokines. It has been observed that Hsp70 derived from normal tissues do not elicit tumour immunity, while Hsp70 preparation from tumour cell was able to elicit tumour immunity. However, the role of exogenous autologous hsp70 on the formation of giant cells is completely unknown. Therefore, in the present study, we sought to investigate the effect of Hsp70-peptide complex on the expression of CD172α and CD47 receptors in normal peritoneal macrophages (NMO) and TAMs. Finding shows that the expression of CD172α and CD47 enhances in TAMs and it reverts back the suppressed function of TAMs into M1 state of immunoregulatory phenotype that promotes tumour regression by enhanced multinucleation and phagocytosis of malignant cells and significantly enhances the homotypic fusion of macrophages and polykaryon formation in vitro by enhancing the expression of SIRPα and IAP.
Collapse
Affiliation(s)
- P K Gautam
- Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
24
|
Yao M, Rogers NM, Csányi G, Rodriguez AI, Ross MA, St Croix C, Knupp H, Novelli EM, Thomson AW, Pagano PJ, Isenberg JS. Thrombospondin-1 activation of signal-regulatory protein-α stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J Am Soc Nephrol 2014; 25:1171-86. [PMID: 24511121 PMCID: PMC4033366 DOI: 10.1681/asn.2013040433] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023] Open
Abstract
Ischemia reperfusion injury (IRI) causes tissue and organ injury, in part, through alterations in tissue blood flow and the production of reactive oxygen species. The cell surface receptor signal-regulatory protein-α (SIRP-α) is expressed on inflammatory cells and suppresses phagocytosis, but the function of SIRP-α in IRI has not been determined. We reported previously that the matricellular protein thrombospondin-1 is upregulated in IRI. Here, we report a novel interaction between thrombospondin-1 and SIRP-α on nonphagocytic cells. In cell-free experiments, thrombospondin-1 bound SIRP-α. In vascular smooth muscle cells and renal tubular epithelial cells, treatment with thrombospondin-1 led to phosphorylation of SIRP-α and downstream activation of Src homology domain 2-containing phosphatase-1. Thrombospondin-1 also stimulated phosphorylation of p47(phox) (an organizer subunit for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1/2) and increased production of superoxide, both of which were abrogated by knockdown or antibody blockade of SIRP-α. In rodent aortic rings, treatment with thrombospondin-1 increased the production of superoxide and inhibited nitric oxide-mediated vasodilation in a SIRP-α-dependent manner. Renal IRI upregulated the thrombospondin-1-SIRP-α signaling axis and was associated with increased superoxide production and cell death. A SIRP-α antibody that blocks thrombospondin-1 activation of SIRP-α mitigated the effects of renal IRI, increasing blood flow, suppressing production of reactive oxygen species, and preserving cellular architecture. A role for CD47 in SIRP-α activation in these pathways is also described. Overall, these results suggest that thrombospondin-1 binding to SIRP-α on nonphagocytic cells activates NADPH oxidase, limits vasodilation, and promotes renal IRI.
Collapse
Affiliation(s)
| | | | - Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | - Andres I Rodriguez
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | | | | | | | | | | | - Patrick J Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | - Jeffrey S Isenberg
- Vascular Medicine Institute, Starzl Transplantation Institute, Department of Pharmacology and Chemical Biology, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Barclay AN, van den Berg TK. The Interaction Between Signal Regulatory Protein Alpha (SIRPα) and CD47: Structure, Function, and Therapeutic Target. Annu Rev Immunol 2014; 32:25-50. [DOI: 10.1146/annurev-immunol-032713-120142] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
26
|
Xu M, Qin Y, Qu J, Lu C, Wang Y, Wu W, Song L, Wang S, Chen F, Shen H, Sha J, Hu Z, Xia Y, Wang X. Evaluation of five candidate genes from GWAS for association with oligozoospermia in a Han Chinese population. PLoS One 2013; 8:e80374. [PMID: 24303009 PMCID: PMC3841155 DOI: 10.1371/journal.pone.0080374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/01/2013] [Indexed: 12/05/2022] Open
Abstract
Background Oligozoospermia is one of the severe forms of idiopathic male infertility. However, its pathology is largely unknown, and few genetic factors have been defined. Our previous genome-wide association study (GWAS) has identified four risk loci for non-obstructive azoospermia (NOA). Objective To investigate the potentially functional genetic variants (including not only common variants, but also less-common and rare variants) of these loci on spermatogenic impairment, especially oligozoospermia. Design, Setting, and Participants A total of 784 individuals with oligozoospermia and 592 healthy controls were recruited to this study from March 2004 and January 2011. Measurements We conducted a two-stage study to explore the association between oligozoospermia and new makers near NOA risk loci. In the first stage, we used next generation sequencing (NGS) in 96 oligozoospermia cases and 96 healthy controls to screen oligozoospermia-susceptible genetic variants. Next, we validated these variants in a large cohort containing 688 cases and 496 controls by SNPscan for high-throughput Single Nucleotide Polymorphism (SNP) genotyping. Results and Limitations Totally, we observed seven oligozoospermia associated variants (rs3791185 and rs2232015 in PRMT6, rs146039840 and rs11046992 in Sox5, rs1129332 in PEX10, rs3197744 in SIRPA, rs1048055 in SIRPG) in the first stage. In the validation stage, rs3197744 in SIRPA and rs11046992 in Sox5 were associated with increased risk of oligozoospermia with an odds ratio (OR) of 4.62 (P = 0.005, 95%CI 1.58-13.4) and 1.82 (P = 0.005, 95%CI 1.01-1.64), respectively. Further investigation in larger populations and functional characterizations are needed to validate our findings. Conclusions Our study provides evidence of independent oligozoospermia risk alleles driven by variants in the potentially functional regions of genes discovered by GWAS. Our findings suggest that integrating sequence data with large-scale genotyping will serve as an effective strategy for discovering risk alleles in the future.
Collapse
Affiliation(s)
- Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianhua Qu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Nantong University, Nantong, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (CL); (XW); (YX)
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shoulin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (CL); (XW); (YX)
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (CL); (XW); (YX)
| |
Collapse
|
27
|
Ha B, Lv Z, Bian Z, Zhang X, Mishra A, Liu Y. 'Clustering' SIRPα into the plasma membrane lipid microdomains is required for activated monocytes and macrophages to mediate effective cell surface interactions with CD47. PLoS One 2013; 8:e77615. [PMID: 24143245 PMCID: PMC3797048 DOI: 10.1371/journal.pone.0077615] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023] Open
Abstract
SIRPα, an ITIMs-containing signaling receptor, negatively regulates leukocyte responses through extracellular interactions with CD47. However, the dynamics of SIRPα-CD47 interactions on the cell surface and the governing mechanisms remain unclear. Here we report that while the purified SIRPα binds to CD47 and that SIRPα is expressed on monocytes and monocytic THP-1 or U937, these SIRPα are ineffective to mediate cell binding to immobilized CD47. However, cell binding to CD47 is significantly enhanced when monocytes transmigrating across endothelia, or being differentiated into macrophages. Cell surface labeling reveals SIRPα to be diffused on naïve monocytes but highly clustered on transmigrated monocytes and macrophages. Protein crosslink and equilibrium centrifugation confirm that SIRPα in the latter cells forms oligomerized complexes resulting in increased avidity for CD47 binding. Furthermore, formation of SIRPα complexes/clusters requires the plasma membrane ‘lipid rafts’ and the activity of Src family kinase during macrophage differentiation. These results together suggest that ‘clustering’ SIRPα into plasma membrane microdomains is essential for activated monocytes and macrophages to effectively interact with CD47 and initiate intracellular signaling.
Collapse
Affiliation(s)
- Binh Ha
- Program of Cellular Biology and Immunology, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia, United States of America
| | - Zhiyuan Lv
- Program of Cellular Biology and Immunology, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia, United States of America
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Bian
- Program of Cellular Biology and Immunology, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia, United States of America
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiugen Zhang
- Program of Cellular Biology and Immunology, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia, United States of America
| | - Aarti Mishra
- Program of Cellular Biology and Immunology, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia, United States of America
| | - Yuan Liu
- Program of Cellular Biology and Immunology, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Koskinen C, Persson E, Baldock P, Stenberg Å, Boström I, Matozaki T, Oldenborg PA, Lundberg P. Lack of CD47 impairs bone cell differentiation and results in an osteopenic phenotype in vivo due to impaired signal regulatory protein α (SIRPα) signaling. J Biol Chem 2013; 288:29333-44. [PMID: 23990469 DOI: 10.1074/jbc.m113.494591] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47(-/-) mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)(+) osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47(-/-) BMC, as compared with CD47(+/+) BMC. The stromal cell phenotype in CD47(-/-) BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47(+/+) BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47(-/-) bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47(-/-) and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47(-/-) mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts.
Collapse
Affiliation(s)
- Cecilia Koskinen
- From the Departments of Odontology, Section for Molecular Periodontology, Umeå University, 901 87 Umea, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Martinelli R, Newton G, Carman CV, Greenwood J, Luscinskas FW. Novel role of CD47 in rat microvascular endothelium: signaling and regulation of T-cell transendothelial migration. Arterioscler Thromb Vasc Biol 2013; 33:2566-76. [PMID: 23990210 DOI: 10.1161/atvbaha.113.301903] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Although endothelial CD47, a member of the immunoglobulin superfamily, has been implicated in leukocyte diapedesis, its capacity for intracellular signaling and physical localization during this process has not been addressed in detail. This study examined endothelial CD47 spatiotemporal behavior and signaling pathways involved in regulating T-cell transendothelial migration. APPROACH AND RESULTS By biochemical methods, transmigration assays, and live-cell microscopy techniques, we show that endothelial CD47 engagement results in intracellular calcium mobilization, increased permeability, and activation of Src and AKT1/phosphoinositide 3-kinase in brain microvascular endothelial cells. These signaling pathways converge to induce cytoskeleton remodeling and vascular endothelial cadherin phosphorylation, which are necessary steps during T-cell transendothelial migration. In addition, during T-cell migration, transmigratory cups and podo-prints enriched in CD47 appear on the surface of the endothelium, indicating that the spatial distribution of CD47 changes after its engagement. Consistent with previous findings of intercellular adhesion molecule 1, blockade of CD47 results in decreased T-cell transmigration across microvascular endothelium. The overlapping effect of intercellular adhesion molecule 1 and CD47 suggests their involvement in different steps of the diapedesis process. CONCLUSIONS These data reveal a novel role for CD47-mediated signaling in the control of the molecular network governing endothelial-dependent T-cell diapedesis.
Collapse
Affiliation(s)
- Roberta Martinelli
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (R.M., G.N., F.W.L.); Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (R.M., C.V.C.); and Department of Cell Biology, Institute of Ophthalmology, UCL, London, United Kingdom (R.M., J.G.)
| | | | | | | | | |
Collapse
|
30
|
Per-Arne O. Role of CD47 and Signal Regulatory Protein Alpha (SIRPα) in Regulating the Clearance of Viable or Aged Blood Cells. ACTA ACUST UNITED AC 2012; 39:315-20. [PMID: 23801922 DOI: 10.1159/000342537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/14/2012] [Indexed: 01/11/2023]
Abstract
SUMMARY The ubiquitously expressed cell surface glycoprotein CD47 is expressed by virtually all cells in the host, where it can function to regulate integrin-mediated responses, or constitute an important part of the erythrocyte band 3/Rh multi-protein complex. In addition, CD47 can protect viable cells from being phagocytosed by macrophages or dendritic cells. The latter mechanism is dependent on the interaction between target cell CD47 and SIRPα on the phagocyte. In this context, SIRPα functions to inhibit prophagocytic signaling from Fcγ receptors, complement receptors, and LDL receptor-related protein-1 (LRP-1), but not scavenger receptors. The expression level and/or distribution of CD47 may be altered on the surface of apoptotic/senescent cells, rendering the phagocytosis inhibitory function of the CD47/SIRPα interaction reduced or eliminated. Instead, the interaction between these 2 proteins may serve to enhance the binding of apoptotic/senescent target cells to the phagocyte to promote phagocytosis.
Collapse
Affiliation(s)
- Oldenborg Per-Arne
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T, Lowell CA, Golan DE, Neel BG, Swanson KD. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J Cell Sci 2012; 125:5535-45. [PMID: 22976304 DOI: 10.1242/jcs.111260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement. Binding of phosphatidylinositol [3,4,5]-triphosphate to the Skap2 pleckstrin-homology (PH) domain, which relieves its conformational auto-inhibition, is critical for this integrin-driven cytoskeletal response. Skap2 enables integrin-induced tyrosyl phosphorylation of Src-family kinases (SFKs), Adap, and Sirpα, establishing their roles as signaling partners in this process. Furthermore, macrophages lacking functional Sirpα unexpectedly have impaired local integrin-induced responses identical to those of Skap2(-/-) macrophages, and Skap2 requires Sirpα for its recruitment to engaged integrins and for coordinating downstream actin rearrangement. By revealing the positive-regulatory role of Sirpα in a Skap2-mediated mechanism connecting integrin engagement with cytoskeletal rearrangement, these data demonstrate that Sirpα is not exclusively immunoinhibitory, and illuminate previously unexplained observations implicating Skap2 and Sirpα in mouse models of inflammatory disease.
Collapse
Affiliation(s)
- Francis J Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin Y, Yan XQ, Yang F, Yang XW, Jiang X, Zhao XC, Zhu BK, Liu L, Qin HY, Liang YM, Han H. Soluble extracellular domains of human SIRPα and CD47 expressed in Escherichia coli enhances the phagocytosis of leukemia cells by macrophages in vitro. Protein Expr Purif 2012; 85:109-16. [DOI: 10.1016/j.pep.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 02/04/2023]
|
33
|
Azcutia V, Stefanidakis M, Tsuboi N, Mayadas T, Croce KJ, Fukuda D, Aikawa M, Newton G, Luscinskas FW. Endothelial CD47 promotes vascular endothelial-cadherin tyrosine phosphorylation and participates in T cell recruitment at sites of inflammation in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:2553-62. [PMID: 22815286 DOI: 10.4049/jimmunol.1103606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At sites of inflammation, endothelial adhesion molecules bind leukocytes and transmit signals required for transendothelial migration (TEM). We previously reported that adhesive interactions between endothelial cell CD47 and leukocyte signal regulatory protein γ (SIRPγ) regulate human T cell TEM. The role of endothelial CD47 in T cell TEM in vivo, however, has not been explored. In this study, CD47⁻/⁻ mice showed reduced recruitment of blood T cells as well as neutrophils and monocytes in a dermal air pouch model of TNF-α-induced inflammation. Reconstitution of CD47⁻/⁻ mice with wild-type bone marrow cells did not restore leukocyte recruitment to the air pouch, indicating a role for endothelial CD47. The defect in leukocyte TEM in the CD47⁻/⁻ endothelium was corroborated by intravital microscopy of inflamed cremaster muscle microcirculation in bone marrow chimera mice. In an in vitro human system, CD47 on both HUVEC and T cells was required for TEM. Although previous studies showed CD47-dependent signaling required G(αi)-coupled pathways, this was not the case for endothelial CD47 because pertussis toxin, which inactivates G(αi), had no inhibitory effect, whereas G(αi) was required by the T cell for TEM. We next investigated the endothelial CD47-dependent signaling events that accompany leukocyte TEM. Ab-induced cross-linking of CD47 revealed robust actin cytoskeleton reorganization and Src- and Pyk-2-kinase dependent tyrosine phosphorylation of the vascular endothelial-cadherin cytoplasmic tail. This signaling was pertussis toxin insensitive, suggesting that endothelial CD47 signaling is independent of G(αi). These findings suggest that engagement of endothelial CD47 by its ligands triggers outside-in signals in endothelium that facilitate leukocyte TEM.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, Center for Excellence in Vascular Biology, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Conant K, Lim ST, Randall B, Maguire-Zeiss KA. Matrix metalloproteinase dependent cleavage of cell adhesion molecules in the pathogenesis of CNS dysfunction with HIV and methamphetamine. Curr HIV Res 2012; 10:384-91. [PMID: 22591362 PMCID: PMC6035363 DOI: 10.2174/157016212802138733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/15/2023]
Abstract
Physiologically appropriate levels of matrix metalloproteinases (MMPs) are likely important to varied aspects of CNS function. In particular, these enzymes may contribute to neuronal activity dependent synaptic plasticity and to cell mobility in processes including stem cell migration and immune surveillance. Levels of MMPs may, however, be substantially increased in the setting of HIV infection with methamphetamine abuse. Elevated MMP levels might in turn influence integrity of the blood brain barrier, as has been demonstrated in published work. Herein we suggest that elevated levels of MMPs can also contribute to microglial activation as well as neuronal and synaptic injury through a mechanism that involves cleavage of specific cell and synaptic adhesion molecules.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Research Building EP-16, 3970 Reservoir Rd, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
35
|
Westlund J, Livingston M, Fahlén-Yrlid L, Oldenborg PA, Yrlid U. CD47-deficient mice have decreased production of intestinal IgA following oral immunization but a maintained capacity to induce oral tolerance. Immunology 2012; 135:236-44. [PMID: 22070457 DOI: 10.1111/j.1365-2567.2011.03536.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Signal regulatory protein α (SIRPα/CD172a), expressed by myeloid cells including CD11b(+) dendritic cells, interacts with ubiquitously expressed CD47 to mediate cell-cell signalling and therefore, may be pivotal in the development of tolerance or immunity. We show that in mice deficient in CD47 (CD47(-/-) ) the cellularity in gut-associated lymphoid tissues is reduced by 50%. In addition, the frequency of CD11b(+) CD172a(+) dendritic cells is significantly reduced in the gut and mesenteric lymph nodes, but not in Peyer's patches. Activation of ovalbumin (OVA)-specific CD4(+) T cells in the mesenteric lymph nodes after feeding OVA is reduced in CD47(-/-) mice compared with wild-type however, induction of oral tolerance is maintained. The addition of cholera toxin generated normal serum anti-OVA IgG and IgA titres but resulted in reduced intestinal anti-OVA IgA in CD47(-/-) mice. Replacing the haematopoietic compartment in CD47(-/-) mice with wild-type cells restored neither the cellularity in gut-associated lymphoid tissues nor the capacity to produce intestinal anti-OVA IgA following immunization. This study demonstrates that CD47 signalling is dispensable for oral tolerance induction, whereas the expression of CD47 by non-haematopoietic cells is required for intestinal IgA B-cell responses. This suggests that differential CD4 T cell functions control tolerance and enterotoxin-induced IgA immunity in the gut.
Collapse
Affiliation(s)
- Jessica Westlund
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
36
|
Sato-Hashimoto M, Saito Y, Ohnishi H, Iwamura H, Kanazawa Y, Kaneko T, Kusakari S, Kotani T, Mori M, Murata Y, Okazawa H, Ware CF, Oldenborg PA, Nojima Y, Matozaki T. Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:291-7. [PMID: 21632712 PMCID: PMC3492956 DOI: 10.4049/jimmunol.1100528] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular basis for formation of lymphoid follicle and its homeostasis in the secondary lymphoid organs remains unclear. Signal regulatory protein α (SIRPα), an Ig superfamily protein that is predominantly expressed in dendritic cells or macrophages, mediates cell-cell signaling by interacting with CD47, another Ig superfamily protein. In this study, we show that the size of the T cell zone as well as the number of CD4(+) T cells were markedly reduced in the spleen of mice bearing a mutant (MT) SIRPα that lacks the cytoplasmic region compared with those of wild-type mice. In addition, the expression of CCL19 and CCL21, as well as of IL-7, which are thought to be important for development or homeostasis of the T cell zone, was markedly decreased in the spleen of SIRPα MT mice. By the use of bone marrow chimera, we found that hematopoietic SIRPα is important for development of the T cell zone as well as the expression of CCL19 and CCL21 in the spleen. The expression of lymphotoxin and its receptor, lymphotoxin β receptor, as well as the in vivo response to lymphotoxin β receptor stimulation were also decreased in the spleen of SIRPα MT mice. CD47-deficient mice also manifested phenotypes similar to SIRPα MT mice. These data suggest that SIRPα as well as its ligand CD47 are thus essential for steady-state homeostasis of T cells in the spleen.
Collapse
Affiliation(s)
- Miho Sato-Hashimoto
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Yasuyuki Saito
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Hiroshi Ohnishi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Hiroko Iwamura
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Yoshitake Kanazawa
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Tetsuya Kaneko
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shinya Kusakari
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Takenori Kotani
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Munemasa Mori
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hideki Okazawa
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Yoshihisa Nojima
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
37
|
Inhibitory C-type lectin receptors in myeloid cells. Immunol Lett 2010; 136:1-12. [PMID: 20934454 PMCID: PMC3061320 DOI: 10.1016/j.imlet.2010.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors encoded by the natural killer gene complex play critical roles in enabling NK cell discrimination between self and non-self. In recent years, additional genes at this locus have been identified with patterns of expression that extend to cells of the myeloid lineage where many of the encoded inhibitory receptors have equally important functions as regulators of immune homeostasis. In the present review we highlight the roles of some of these receptors including recent insights gained with regard to the identification of exogenous and endogenous ligands, mechanisms of cellular inhibition and activation, regulated expression within different cellular and immune contexts, as well as functions that include the regulation of bone homeostasis and involvement in autoimmunity.
Collapse
|
38
|
Kurihara H, Harita Y, Ichimura K, Hattori S, Sakai T. SIRP-alpha-CD47 system functions as an intercellular signal in the renal glomerulus. Am J Physiol Renal Physiol 2010; 299:F517-27. [PMID: 20554646 DOI: 10.1152/ajprenal.00571.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The renal glomerulus consists of endothelial cells, podocytes, and mesangial cells. These cells cooperate with each other for glomerular filtration; however, the intercellular signaling molecules between glomerular cells are not fully determined. Tyrosine phosphorylation of slit diaphragm molecules is a key to the detection of the signal to podocytes from other cells. Although src kinase is involved in this event, the molecules working for dephosphorylation remain unclear. We demonstrate that signal-inhibitory regulatory protein (SIRP)-alpha, which recruits a broadly distributed tyrosine dephosphorylase SHP-2 to the plasma membrane, is located in podocytes. SIRP-alpha is a type I transmembrane glycoprotein, which has three immunoglobulin-like domains in the extracellular region and two SH2 binding motifs in the cytoplasm. This molecule functions as a scaffold for many proteins, especially the SHP-2 molecule. SIRP-alpha is concentrated in the slit diaphragm region of normal podocytes. CD47, a ligand for SIRP-alpha, is also expressed in the glomerulus. CD47 is located along the plasma membrane of mesangial cells, but not on podocytes. CD47 is markedly decreased during mesangiolysis, but increased in mesangial cells in the restoration stage. SIRP-alpha is heavily tyrosine phosphorylated under normal conditions; however, tyrosine phosphorylation of SIRP-alpha was markedly decreased during mesangiolysis induced by Thy1.1 monoclonal antibody injection. It is known that the cytoplasmic domain of SIPR-alpha is dephosphorylated when CD47 binds to the extracellular domain of SIRP-alpha. The data suggest that the CD47-SIRP-alpha interaction may be functionally important in cell-cell communication in the diseased glomerulus.
Collapse
Affiliation(s)
- Hidetake Kurihara
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
39
|
Zhang Y, Yoshida Y, Nameta M, Xu B, Taguchi I, Ikeda T, Fujinaka H, Magdeldin S, Mohamed SM, Tsukaguchi H, Harita Y, Yaoita E, Yamamoto T. Glomerular proteins related to slit diaphragm and matrix adhesion in the foot processes are highly tyrosine phosphorylated in the normal rat kidney. Nephrol Dial Transplant 2010; 25:1785-95. [PMID: 20067908 DOI: 10.1093/ndt/gfp697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tyrosine phosphorylation of proteins has been a focus of extensive studies since it plays crucial roles in regulation of diverse biological reactions. To understand the involvement of tyrosine phosphorylation in kidney functions, a comprehensive proteomic study for tyrosine-phosphorylated proteins was performed in the normal rat kidney. METHODS Two-dimensional gel electrophoresis and immunoprecipitation using anti-phosphotyrosine antibodies were employed to detect tyrosine-phosphorylated proteins. The proteins were analysed by mass spectrometry and validated by immunological analyses using specific antibodies. RESULTS Most of tyrosine-phosphorylated proteins were confined to the glomerulus and predominantly localized along the glomerular capillary wall, especially in the foot processes of podocytes. Our systematic proteomic analysis identified nephrin, SHPS-1 (tyrosine-protein phosphatase non-receptor-type substrate 1), FAK1 and paxillin as major tyrosine-phosphorylated proteins and Neph1, talin and vinculin as minor tyrosine-phosphorylated proteins. In the present study, SHPS-1 was identified as a novel tyrosine-phosphorylated protein in the glomerulus and was also predominantly localized at the foot processes. Mass spectrometric analysis identified in vivo phosphorylation sites of SHPS-1 on Y460, Y477 and Y501. CONCLUSION This study identified tyrosine-phosphorylated proteins in normal rat kidney, which were prominently rich in the glomerulus and localized at the podocyte foot processes. These proteins were categorized as cell-to-cell or cell-to-matrix adhesion complex-related molecules, suggesting their pivotal roles in the glomerular ultrafiltration.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barclay AN. Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function. Curr Opin Immunol 2009; 21:47-52. [PMID: 19223164 PMCID: PMC3128989 DOI: 10.1016/j.coi.2009.01.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/20/2009] [Indexed: 12/12/2022]
Abstract
SIRPalpha is an inhibitory receptor present on myeloid cells that interacts with a widely distributed membrane protein CD47. The activating member SIRPbeta, despite extensive sequence similarity to SIRPalpha in the extracellular region, shows negligible binding to CD47. The SIRPalpha/CD47 interaction is unusual in that it can lead to bidirectional signalling through both SIRPalpha and CD47. This review concentrates on the interactions of SIRPalpha with CD47 where recent data have shed light on the structure of the proteins including determining why the activating SIRPbeta does not bind CD47, evidence of extensive polymorphisms and implication for the evolution and function of this protein and paired receptors in general. The interaction may be modified by endocytosis of the receptors, cleavage by proteolysis and through interactions of surfactant proteins.
Collapse
Affiliation(s)
- A Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom.
| |
Collapse
|
41
|
Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 2009; 19:72-80. [PMID: 19144521 DOI: 10.1016/j.tcb.2008.12.001] [Citation(s) in RCA: 340] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 12/30/2022]
Abstract
Signal regulatory protein (SIRP)alpha, also known as SHPS-1 or SIRPA, is a transmembrane protein that binds to the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is predominantly expressed in neurons, dendritic cells and macrophages. CD47, a widely expressed transmembrane protein, is a ligand for SIRPalpha, with the two proteins constituting a cell-cell communication system. The interaction of SIRPalpha with CD47 is important for the regulation of migration and phagocytosis. Recent studies have implicated the CD47-SIRPalpha signalling pathway in immune homeostasis and in regulation of neuronal networks. Advances in the structural and functional analyses of the CD47-SIRPalpha signalling pathway now provide exciting hints of the therapeutic benefits of manipulating this signalling system in autoimmune diseases and neurological disorders.
Collapse
Affiliation(s)
- Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
42
|
Umemori H, Sanes JR. Signal regulatory proteins (SIRPS) are secreted presynaptic organizing molecules. J Biol Chem 2008; 283:34053-61. [PMID: 18819922 DOI: 10.1074/jbc.m805729200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Formation of chemical synapses requires exchange of organizing signals between the synaptic partners. Using synaptic vesicle aggregation in cultured neurons as a marker of presynaptic differentiation, we purified candidate presynaptic organizers from mouse brain. A major bioactive species was the extracellular domain of signal regulatory protein alpha (SIRP-alpha), a transmembrane immunoglobulin superfamily member concentrated at synapses. The extracellular domain of SIRP-alpha is cleaved and shed in a developmentally regulated manner. The presynaptic organizing activity of SIRP-alpha is mediated in part by CD47. SIRP-alpha homologues, SIRP-beta and -gamma also have synaptic vesicle clustering activity. The effects of SIRP-alpha are distinct from those of another presynaptic organizer, FGF22: the two proteins induced vesicle clusters of different sizes, differed in their ability to promote neurite branching, and acted through different receptors and signaling pathways. SIRP family proteins may act together with other organizing molecules to pattern synapses.
Collapse
Affiliation(s)
- Hisashi Umemori
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
43
|
Endothelial CD47 interaction with SIRPgamma is required for human T-cell transendothelial migration under shear flow conditions in vitro. Blood 2008; 112:1280-9. [PMID: 18524990 DOI: 10.1182/blood-2008-01-134429] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Leukocyte transendothelial migration (TEM) is a critical event during inflammation. CD47 has been implicated in myeloid cell migration across endothelium and epithelium. CD47 binds to signal regulatory protein (SIRP), SIRPalpha and SIRPgamma. So far, little is known about the role of endothelial CD47 in T-cell TEM in vivo or under flow conditions in vitro. Fluorescence-activated cell sorting and biochemical analysis show that CD3(+) T cells express SIRPgamma but not SIRPalpha, and fluorescence microscopy showed that CD47 was enriched at endothelial junctions. These expression patterns suggested that CD47 plays a role in T-cell TEM through binding interactions with SIRPgamma. We tested, therefore, whether CD47-SIRPgamma interactions affect T-cell transmigration using blocking mAb against CD47 or SIRPgamma in an in vitro flow model. These antibodies inhibited T-cell TEM by 70% plus or minus 6% and 82% plus or minus 1%, respectively, but had no effect on adhesion. In agreement with human mAb studies, transmigration of murine wild-type T helper type 1 cells across TNF-alpha-activated murine CD47(-/-) endothelium was reduced by 75% plus or minus 2% even though murine T cells appear to lack SIRPgamma. Nonetheless, these findings suggest endothelial cell CD47 interacting with T-cell ligands, such as SIRPgamma, play an important role in T-cell transendothelial migration.
Collapse
|
44
|
Nix RN, Altschuler SE, Henson PM, Detweiler CS. Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathog 2008; 3:e193. [PMID: 18085823 PMCID: PMC2134957 DOI: 10.1371/journal.ppat.0030193] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/30/2007] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subspecies can establish persistent, systemic infections in mammals, including human typhoid fever. Persistent S. enterica disease is characterized by an initial acute infection that develops into an asymptomatic chronic infection. During both the acute and persistent stages, the bacteria generally reside within professional phagocytes, usually macrophages. It is unclear how salmonellae can survive within macrophages, cells that evolved, in part, to destroy pathogens. Evidence is presented that during the establishment of persistent murine infection, macrophages that contain S. enterica serotype Typhimurium are hemophagocytic. Hemophagocytic macrophages are characterized by the ingestion of non-apoptotic cells of the hematopoietic lineage and are a clinical marker of typhoid fever as well as certain other infectious and genetic diseases. Cell culture assays were developed to evaluate bacterial survival in hemophagocytic macrophages. S. Typhimurium preferentially replicated in macrophages that pre-phagocytosed viable cells, but the bacteria were killed in macrophages that pre-phagocytosed beads or dead cells. These data suggest that during persistent infection hemophagocytic macrophages may provide S. Typhimurium with a survival niche.
Collapse
Affiliation(s)
- Rebecca N Nix
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Sarah E Altschuler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Peter M Henson
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado, United States of America
- Department of Immunology, National Jewish Medical and Research Center, Denver, Colorado, United States of America
| | - Corrella S Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Maile LA, Capps BE, Miller EC, Allen LB, Veluvolu U, Aday AW, Clemmons DR. Glucose regulation of integrin-associated protein cleavage controls the response of vascular smooth muscle cells to insulin-like growth factor-I. Mol Endocrinol 2008; 22:1226-37. [PMID: 18292237 PMCID: PMC2366182 DOI: 10.1210/me.2007-0552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 02/12/2008] [Indexed: 11/19/2022] Open
Abstract
Vascular smooth muscle cells (SMC) maintained in high glucose are more responsive to IGF-I than SMC maintained in normal glucose due to a difference in the Shc phosphorylation response. In this study we aimed to determine the mechanism by which glucose regulates the sensitivity of SMC to IGF-I. For Shc to be phosphorylated in response to IGF-I it must be recruited to tyrosine-phosphorylated sites on Src homology 2 domain-containing phosphatase (SHP) substrate-1 (SHPS-1). The association of integrin-associated protein (IAP) with SHPS-1 is required for SHPS-1 tyrosine phosphorylation. When SMC were grown in 5 mm glucose, the amount of intact IAP was reduced, compared with SMC grown in 25 mm glucose. This reduction was due to proteolytic cleavage of IAP. Proteolysis of IAP resulted in loss of its SHPS-1 binding site, which led to loss of SHPS-1 phosphorylation. Analysis of the conditioned medium showed that there was more protease activity in the medium from SMC cultured in 5 mm glucose as compared with 25 mm. Inhibition of matrix metalloprotease-2 synthesis using RNA interference or its activity using a specific protease inhibitor protected IAP from cleavage. This protection was associated with an increase in IAP-SHPS-1 association, increased recruitment and phosphorylation of Shc, and increased cell growth in response to IGF-I. Our results show that the enhanced response of SMC in 25 mm glucose to IGF-I is due to the protection of IAP from proteolytic degradation, thereby increasing its association with SHPS-1 and allowing the formation of the SHPS-1-Shc signaling complex.
Collapse
MESH Headings
- Animals
- CD47 Antigen/metabolism
- Cell Proliferation/drug effects
- Glucose/pharmacology
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Binding/drug effects
- RNA Interference
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
- Swine
Collapse
Affiliation(s)
- Laura A Maile
- Division of Endocrinology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7170, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Adams JC, Bentley AA, Kvansakul M, Hatherley D, Hohenester E. Extracellular matrix retention of thrombospondin 1 is controlled by its conserved C-terminal region. J Cell Sci 2008; 121:784-95. [PMID: 18285447 DOI: 10.1242/jcs.021006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombospondins (TSPs) are an evolutionarily ancient family of extracellular calcium-binding glycoproteins. The five mammalian TSPs collectively have important roles in angiogenesis and vascular biology, synaptogenesis, wound repair and connective tissue organisation. Their complex functions relate to the multiple postsecretion fates of TSPs that can involve endocytic uptake, proteolysis or retention within the extracellular matrix (ECM). Surprisingly, the molecular and cellular mechanisms by which TSPs become retained within the ECM are poorly understood. We hypothesised that the highly conserved TSP C-terminal domain mediates ECM retention. We report that ECM incorporation as insoluble punctate deposits is an evolutionarily conserved property of TSPs. ECM retention of TSP1 is mediated by the C-terminal region in trimeric form, and not by C-terminal monomer or trimers of the N-terminal domain or type 1 repeats. Using a novel mRFP-tagged TSP1 C-terminal trimer, we demonstrate that ECM retention involves the RGD site and a novel site in the L-lectin domain with structural similarity to the ligand-binding site of cargo transport proteins. CD47 and beta1 integrins are dispensable for ECM retention, but beta1 integrins enhance activity. These novel data advance concepts of the molecular processes that lead to ECM retention of TSP1.
Collapse
Affiliation(s)
- Josephine C Adams
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|