1
|
Bai Y, Li T, Wang Q, You W, Yang H, Xu X, Li Z, Zhang Y, Yan C, Yang L, Qiu J, Liu Y, Chen S, Wang D, Huang B, Liu K, Song BL, Wang Z, Li K, Liu X, Wang G, Yang W, Chen J, Hao P, Zhang Z, Wang Z, Zhu ZJ, Xu C. Shaping immune landscape of colorectal cancer by cholesterol metabolites. EMBO Mol Med 2024; 16:334-360. [PMID: 38177537 PMCID: PMC10897227 DOI: 10.1038/s44321-023-00015-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Cancer immunotherapies have achieved unprecedented success in clinic, but they remain largely ineffective in some major types of cancer, such as colorectal cancer with microsatellite stability (MSS CRC). It is therefore important to study tumor microenvironment of resistant cancers for developing new intervention strategies. In this study, we identify a metabolic cue that determines the unique immune landscape of MSS CRC. Through secretion of distal cholesterol precursors, which directly activate RORγt, MSS CRC cells can polarize T cells toward Th17 cells that have well-characterized pro-tumor functions in colorectal cancer. Analysis of large human cancer cohorts revealed an asynchronous pattern of the cholesterol biosynthesis in MSS CRC, which is responsible for the abnormal accumulation of distal cholesterol precursors. Inhibiting the cholesterol biosynthesis enzyme Cyp51, by pharmacological or genetic interventions, reduced the levels of intratumoral distal cholesterol precursors and suppressed tumor progression through a Th17-modulation mechanism in preclinical MSS CRC models. Our study therefore reveals a novel mechanism of cancer-immune interaction and an intervention strategy for the difficult-to-treat MSS CRC.
Collapse
Affiliation(s)
- Yibing Bai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qinshu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weiqiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haochen Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xintian Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Ziyi Li
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yu Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengsong Yan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Shiyang Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongfang Wang
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Binlu Huang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao- Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuozhong Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Xin Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangchuan Wang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Zemin Zhang
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Chenqi Xu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
3
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
4
|
Teodori L, Sestili P, Madiai V, Coppari S, Fraternale D, Rocchi MBL, Ramakrishna S, Albertini MC. MicroRNAs Bioinformatics Analyses Identifying HDAC Pathway as a Putative Target for Existing Anti-COVID-19 Therapeutics. Front Pharmacol 2020; 11:582003. [PMID: 33363465 PMCID: PMC7753186 DOI: 10.3389/fphar.2020.582003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Over 313,000 SARS-CoV-2 positive cases have been confirmed in Italy as of 30 September 2020, and the number of deaths exceeding thirty-five thousand makes Italy among the list of most significantly affected countries in the world. Such an enormous occurrence of infections and death raises the urgent demand for effective available treatments. Discovering the cellular/molecular mechanisms of SARS-CoV-2 pathogenicity is of paramount importance to understand how the infection becomes a disease and how to plan any therapeutic approach. In this regard, we performed an in silico analysis to predict the putative virus targets and evidence the already available therapeutics. Literature experimental results identified angiotensin-converting enzyme ACE and Spike proteins particularly involved in COVID-19. Consequently, we investigated the signalling pathways modulated by the two proteins through query miRNet, the platform linking miRNAs, targets, and functions. Our bioinformatics analysis predicted microRNAs (miRs), miR-335-5p and miR-26b-5p, as being modulated by Spike and ACE together with histone deacetylate (HDAC) pathway. Notably, our results identified ACE/ACE2-ATR1-Cholesterol-HDAC axis signals that also matched with some available clinical data. We hypothesize that the current and EMA-approved, SARS-CoV-2 off-label HDAC inhibitors (HDACis) drugs may be repurposed to limit or block host-virus interactions. Moreover, a ranked list of compounds is provided for further evaluation for safety, efficacy, and effectiveness.
Collapse
Affiliation(s)
- Laura Teodori
- Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, ENEA Frascati, Roma, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Valeria Madiai
- Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, ENEA Frascati, Roma, Italy
| | - Sofia Coppari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
5
|
Kong L, Liu G, Deng M, Lian Z, Han Y, Sun B, Guo Y, Liu D, Li Y. Growth retardation-responsive analysis of mRNAs and long noncoding RNAs in the liver tissue of Leiqiong cattle. Sci Rep 2020; 10:14254. [PMID: 32868811 PMCID: PMC7459292 DOI: 10.1038/s41598-020-71206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
As an important type of non-coding RNA molecule, long non-coding RNAs (lncRNAs) have varied roles in many biological processes, and have been studied extensively over the past few years. However, little is known about lncRNA-mediated regulation during cattle growth and development. Therefore, in the present study, RNA sequencing was used to determine the expression level of mRNAs and lncRNAs in the liver of adult Leiqiong cattle under the condition of growth retardation and normal growth. We totally detected 1,124 and 24 differentially expressed mRNAs and lncRNAs, respectively. The differentially expressed mRNAs were mainly associated with growth factor binding, protein K63-linked ubiquitination and cellular protein metabolic process; additionally, they were significantly enriched in the growth and development related pathways, including PPAR signaling pathway, vitamin B6 metabolism, glyoxylate and dicarboxylate metabolism. Combined analysis showed that the co-located differentially expressed lncRNA Lnc_002583 might positively influence the expression of the corresponding genes IFI44 and IFI44L, exerting co-regulative effects on Leiqiong cattle growth and development. Thus, we made the hypothesis that Lnc_002583, IFI44 and IFI44L might function synergistically to regulate the growth of Leiqiong cattle. This study provides a catalog of Leiqiong cattle liver mRNAs and lncRNAs, and will contribute to a better understanding of the molecular mechanism underlying growth regulataion.
Collapse
Affiliation(s)
- Lingxuan Kong
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yinru Han
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| |
Collapse
|
6
|
Saxena N, Chandra NC. Cholesterol: A Prelate in Cell Nucleus and its Serendipity. Curr Mol Med 2020; 20:692-707. [PMID: 32282300 DOI: 10.2174/1566524020666200413112030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/22/2022]
Abstract
Cholesterol is a chameleon bio-molecule in cellular multiplex. It acts as a prelate in almost every cellular compartment with its site specific characteristics viz. regulation of structural veracity and scaffold fluidity of bio-membranes, insulation of electrical transmission in nerves, controlling of genes by making steroid endocrines, acting as precursors of metabolic regulators and many more with its emerging prophecy in the cell nucleus to drive new cell formation. Besides the crucial legacy in cellular functionality, cholesterol is ostracized as a member of LDL particle, which has been proved responsible to clog blood vessels. LDL particles get deposited in the blood vessels because of their poor clearance owing to the non-functioning LDL receptor on the vessel wall and surrounding tissues. Blocking of blood vessel promotes heart attack and stroke. On the other hand, cholesterol has been targeted as pro-cancerous molecule. At this phase again cholesterol is biphasic. Although cholesterol is essential to construct nuclear membrane and its lipid-rafts; in cancer tumour cells, cholesterol is not under the control of intracellular feedback regulation and gets accumulated within cell nucleus by crossing nuclear membrane and promoting cell proliferation. In precancerous stage, the immune cells also die because of the lack of requisite concentration of intracellular and intranuclear cholesterol pool. The existence of cholesterol within the cell nucleus has been found in the nuclear membrane, epichromosomal location and nucleoplasm. The existence of cholesterol in the microdomain of nuclear raft has been reported to be linked with gene transcription, cell proliferation and apoptosis. Hydrolysis of cholesterol esters in chromosomal domain is linked with new cell generation. Apparently, Cholesterol is now a prelate in cell nucleus too ------ A serendipity in cellular haven.
Collapse
Affiliation(s)
- Nimisha Saxena
- Department of Biochemistry, KDMCH & Research Center, Akbarpur, Mathura - 281406, India
| | - Nimai Chand Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Phulwarisharif, Patna - 801507, India
| |
Collapse
|
7
|
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019; 20:102-115. [PMID: 30390028 DOI: 10.1038/s41580-018-0076-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-type-specific gene expression is physiologically modulated by the binding of transcription factors to genomic enhancer sequences, to which chromatin modifiers such as histone deacetylases (HDACs) are recruited. Drugs that inhibit HDACs are in clinical use but lack specificity. HDAC3 is a stoichiometric component of nuclear receptor co-repressor complexes whose enzymatic activity depends on this interaction. HDAC3 is required for many aspects of mammalian development and physiology, for example, for controlling metabolism and circadian rhythms. In this Review, we discuss the mechanisms by which HDAC3 regulates cell type-specific enhancers, the structure of HDAC3 and its function as part of nuclear receptor co-repressors, its enzymatic activity and its post-translational modifications. We then discuss the plethora of tissue-specific physiological functions of HDAC3.
Collapse
Affiliation(s)
- Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B, Norman TM, Lander ES, Weissman JS, Friedman N, Regev A. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 2016; 167:1853-1866.e17. [PMID: 27984732 PMCID: PMC5181115 DOI: 10.1016/j.cell.2016.11.038] [Citation(s) in RCA: 1007] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/14/2016] [Accepted: 11/19/2016] [Indexed: 01/12/2023]
Abstract
Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes-such as transcriptional profiles-at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays.
Collapse
Affiliation(s)
- Atray Dixit
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Oren Parnas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Biyu Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nemanja D Marjanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Danielle Dionne
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Burks
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Britt Adamson
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas M Norman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Nir Friedman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; School of Engineering and Computer Science and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
9
|
Long B, Yin C, Fan Q, Yan G, Wang Z, Li X, Chen C, Yang X, Liu L, Zheng Z, Shi M, Yan X. Global Liver Proteome Analysis Using iTRAQ Reveals AMPK–mTOR–Autophagy Signaling Is Altered by Intrauterine Growth Restriction in Newborn Piglets. J Proteome Res 2016; 15:1262-73. [DOI: 10.1021/acs.jproteome.6b00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Baisheng Long
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Cong Yin
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Qiwen Fan
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Guokai Yan
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Zhichang Wang
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Xiuzhi Li
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Changqing Chen
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Xingya Yang
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Lu Liu
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Zilong Zheng
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Min Shi
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| | - Xianghua Yan
- College
of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China
| |
Collapse
|
10
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015. [PMID: 26620375 DOI: 10.1007/s11745‐015‐4096‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada
- Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015; 51:519-36. [PMID: 26620375 DOI: 10.1007/s11745-015-4096-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.,Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Histone Deacetylase 10 Regulates the Cell Cycle G2/M Phase Transition via a Novel Let-7-HMGA2-Cyclin A2 Pathway. Mol Cell Biol 2015; 35:3547-65. [PMID: 26240284 DOI: 10.1128/mcb.00400-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition leads to cell cycle arrest in G1 and G2, suggesting HDACs as therapeutic targets for cancer and diseases linked to abnormal cell growth and proliferation. Many HDACs are transcriptional repressors. Some may alter cell cycle progression by deacetylating histones and repressing transcription of key cell cycle regulatory genes. Here, we report that HDAC10 regulates the cell cycle via modulation of cyclin A2 expression, and cyclin A2 overexpression rescues HDAC10 knockdown-induced G2/M transition arrest. HDAC10 regulates cyclin A2 expression by deacetylating histones near the let-7 promoter, thereby repressing transcription. In HDAC10 knockdown cells, let-7f and microRNA 98 (miR-98) were upregulated and the let-7 family target, HMGA2, was downregulated. HMGA2 loss resulted in enrichment of the transcriptional repressor E4F at the cyclin A2 promoter. These findings support a role for HDACs in cell cycle regulation, reveal a novel mechanism of HDAC10 action, and extend the potential of HDACs as targets in diseases of cell cycle dysregulation.
Collapse
|
13
|
Meaney S. Epigenetic regulation of cholesterol homeostasis. Front Genet 2014; 5:311. [PMID: 25309573 PMCID: PMC4174035 DOI: 10.3389/fgene.2014.00311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023] Open
Abstract
Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology Dublin, Ireland ; Environmental Sustainability and Health Institute, Dublin Institute of Technology Dublin, Ireland
| |
Collapse
|
14
|
Wang J, Elahi A, Ajidahun A, Clark W, Hernandez J, Achille A, Hao JH, Seto E, Shibata D. The interplay between histone deacetylases and c-Myc in the transcriptional suppression of HPP1 in colon cancer. Cancer Biol Ther 2014; 15:1198-207. [PMID: 24919179 DOI: 10.4161/cbt.29500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
HPP1 (hyperplastic polyposis protein 1), a tumor suppressor gene, is downregulated by promoter hypermethylation in a number of tumor types including colon cancer. c-Myc is also known to play a role in the suppression of HPP1 expression via binding to a promoter region cognate E-box site. The contribution of histone deacetylation as an additional epigenetic mechanism and its potential interplay with c-Myc in the transcriptional regulation of HPP1 are unknown. We have shown that the treatment of the HPP1-non-expressing colon cancer cell lines, HCT116 and DLD-1 with HDAC inhibitors results in re-expression of HPP1. RNAi-mediated knockdown of c-Myc as well as of HDAC2 and HDAC3 in HCT116 and of HDAC1 and HDAC3 in DLD-1 also resulted in significant re-expression of HPP1. Co-immunoprecipitation (IP), chromatin IP (ChIP), and sequential ChIP experiments demonstrated binding of c-Myc to the HPP1 promoter with recruitment of and direct interaction with HDAC3. In summary, we have demonstrated that c-Myc contributes to the epigenetic regulation of HPP1 via the dominant recruitment of HDAC3. Our findings may lead to a greater biologic understanding for the application of targeted use of HDAC inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA; Department of Pancreatic Oncology; Cancer Institute and Hospital of Tianjin Medical University; Tianjin, PR China
| | - Abul Elahi
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Abidemi Ajidahun
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Whalen Clark
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Jonathan Hernandez
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Alex Achille
- Department of Molecular Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Ji-hui Hao
- Department of Pancreatic Oncology; Cancer Institute and Hospital of Tianjin Medical University; Tianjin, PR China
| | - Edward Seto
- Department of Molecular Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - David Shibata
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| |
Collapse
|
15
|
Zhu J, Jiang X, Chehab FF. FoxO4 interacts with the sterol regulatory factor SREBP2 and the hypoxia inducible factor HIF2α at the CYP51 promoter. J Lipid Res 2013; 55:431-42. [PMID: 24353279 DOI: 10.1194/jlr.m043521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The late steps of cholesterol biosynthesis are oxygen demanding, requiring eleven oxygen molecules per synthesized cholesterol molecule. A key enzymatic reaction, which occurs at the top of the Bloch and Kandutsch-Russell pathways, is the demethylation of lanosterol and dihydrolanosterol (DHL). This reaction is catalyzed by lanosterol 14α demethylase (CYP51) and requires three oxygen molecules. Thus, it is the first step in the distal pathway to be susceptible to oxygen deprivation. Having previously identified that the forkhead transcription factor 4 (FoxO4) represses CYP51 expression, we aimed to characterize its role at the CYP51 promoter. Hypoxia-treated 3T3L1 cells showed decreased cholesterol biosynthesis, accumulation of lanosterol/DHL, and stimulation of FoxO4 expression and its cytoplasmic translocation to the nucleus. Transfection assays with a CYP51 promoter reporter gene revealed that FoxO4 and sterol regulatory element binding protein (SREBP)2 exert a stimulatory effect, whereas FoxO4 and the hypoxia inducible factor (HIF)2α repress CYP51 promoter activity. Electromobility shift, chromatin immunoprecipitation, pull-down, and coimmunoprecipitation assays show that FoxO4 interacts with SREBP2 and HIF2α to modulate CYP51 promoter activity. We also show an inverse correlation between FoxO4 and CYP51 in adipose tissue of ob/ob mice and mouse fetal cortical neurons exposed to hypoxia. Overall, these studies demonstrate a role for FoxO4 in the regulation of CYP51 expression.
Collapse
Affiliation(s)
- Jun Zhu
- Departments of Laboratory Medicine University of California, San Francisco, CA 94143
| | | | | |
Collapse
|
16
|
Ma X, Pietsch J, Wehland M, Schulz H, Saar K, Hübner N, Bauer J, Braun M, Schwarzwälder A, Segerer J, Birlem M, Horn A, Hemmersbach R, Waβer K, Grosse J, Infanger M, Grimm D. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J 2013; 28:813-35. [DOI: 10.1096/fj.13-243287] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao Ma
- Institute of BiomedicineDepartment of PharmacologyAarhus UniversityAarhusDenmark
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic, and Hand Surgery, Otto von Guericke University MagdeburgMagdeburgGermany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic, and Hand Surgery, Otto von Guericke University MagdeburgMagdeburgGermany
| | - Herbert Schulz
- Max Delbrück Center for Molecular MedicineBerlin‐BuchGermany
| | - Katrin Saar
- Max Delbrück Center for Molecular MedicineBerlin‐BuchGermany
| | - Norbert Hübner
- Max Delbrück Center for Molecular MedicineBerlin‐BuchGermany
| | - Johann Bauer
- Max Planck Institute for BiochemistryMartinsriedGermany
| | - Markus Braun
- Institute for Molecular Physiology and Biotechnology of Plants (IMBIO)Gravitational Biology GroupUniversity of BonnBonnGermany
| | - Achim Schwarzwälder
- Life Science, Orbital Systems, and Space Exploration, Astrium/European Aeronautic Defense and Space (EADS)ImmenstaadGermany
| | - Jürgen Segerer
- Life Science, Orbital Systems, and Space Exploration, Astrium/European Aeronautic Defense and Space (EADS)ImmenstaadGermany
| | - Maria Birlem
- Life Science, Orbital Systems, and Space Exploration, Astrium/European Aeronautic Defense and Space (EADS)ImmenstaadGermany
| | - Astrid Horn
- Life Science, Orbital Systems, and Space Exploration, Astrium/European Aeronautic Defense and Space (EADS)ImmenstaadGermany
| | - Ruth Hemmersbach
- Institute of Aerospace MedicineDeutsches Zentrum für Luft‐ und Raumfahrt (DLR)CologneGermany
| | - Kai Waβer
- Institute of Aerospace MedicineDeutsches Zentrum für Luft‐ und Raumfahrt (DLR)CologneGermany
| | - Jirka Grosse
- Department of Nuclear MedicineUniversity of RegensburgRegensburgGermany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic, and Hand Surgery, Otto von Guericke University MagdeburgMagdeburgGermany
| | - Daniela Grimm
- Institute of BiomedicineDepartment of PharmacologyAarhus UniversityAarhusDenmark
- Clinic for Plastic, Aesthetic, and Hand Surgery, Otto von Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
17
|
Nunes MJ, Moutinho M, Gama MJ, Rodrigues CMP, Rodrigues E. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux. PLoS One 2013; 8:e53394. [PMID: 23326422 PMCID: PMC3542332 DOI: 10.1371/journal.pone.0053394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines and Pharmaceutical Sciences iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
18
|
Park D, Kim Y, Kim H, Kim K, Lee YS, Choe J, Hahn JH, Lee H, Jeon J, Choi C, Kim YM, Jeoung D. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol Cells 2012; 33:563-74. [PMID: 22610405 PMCID: PMC3887750 DOI: 10.1007/s10059-012-2294-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/06/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) has been shown to promote angiogenesis. However, the mechanism behind this effect remains largely unknown. Therefore, in this study, the mechanism of HA-induced angiogenesis was examined. CD44 and PKCδ were shown to be necessary for induction of the receptor for HA-mediated cell motility (RHAMM), a HA-binding protein. RHAMM was necessary for HA-promoted cellular invasion and endothelial cell tube formation. Cytokine arrays showed that HA induced the expression of plasminogen activator-inhibitor-1 (PAI), a downstream target of TGFβ receptor signaling. The induction of PAI-1 was dependent on CD44 and PKCδ. HA also induced an interaction between RHAMM and TGFβ receptor I, and induction of PAI-1 was dependent on RHAMM and TGFβ receptor I. Histone deacetylase 3 (HDAC3), which is decreased by HA via rac1, reduced induction of plasminogen activator inhibitor-1 (PAI-1) by HA. ERK, which interacts with RHAMM, was necessary for induction of PAI-1 by HA. Snail, a downstream target of TGFβ signaling, was also necessary for induction of PAI-1. The down regulation of PAI-1 prevented HA from enhancing endothelial cell tube formation and from inducing expression of angiogenic factors, such as ICAM-1, VCAM-1 and MMP-2. HDAC3 also exerted reduced expression of MMP-2. In this study, we provide a novel mechanism of HA-promoted angiogenesis, which involved RHAMM-TGFβRI signaling necessary for induction of PAI-1.
Collapse
Affiliation(s)
- Deokbum Park
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701,
Korea
| | - Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701,
Korea
| | - Hyunah Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701,
Korea
| | - kyungjong Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701,
Korea
| | - Yun-Sil Lee
- College of Pharmacy, Ewha Womans University, Seoul 120-750,
Korea
| | - Jongseon Choe
- School of Medicine, Kangwon National University, Chunchon 200-701,
Korea
| | - Jang-Hee Hahn
- School of Medicine, Kangwon National University, Chunchon 200-701,
Korea
| | - Hansoo Lee
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701,
Korea
| | - Jongwook Jeon
- Cell Signaling and BioImaging Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Chulhee Choi
- Cell Signaling and BioImaging Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Young-Myeong Kim
- School of Medicine, Kangwon National University, Chunchon 200-701,
Korea
| | - Dooil Jeoung
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701,
Korea
| |
Collapse
|
19
|
Driver AM, Peñagaricano F, Huang W, Ahmad KR, Hackbart KS, Wiltbank MC, Khatib H. RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics 2012; 13:118. [PMID: 22452724 PMCID: PMC3368723 DOI: 10.1186/1471-2164-13-118] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 03/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background A valuable tool for both research and industry, in vitro fertilization (IVF) has applications range from gamete selection and preservation of traits to cloning. Although IVF has achieved worldwide use, with approximately 339,685 bovine embryos transferred in 2010 alone, there are still continuing difficulties with efficiency. It is rare to have more than 40% of fertilized in vitro cattle oocytes reach blastocyst stage by day 8 of culture, and pregnancy rates are reported as less than 45% for in vitro produced embryos. To investigate potential influences in-vitro fertilization (IVF) has on embryonic development, this study compares in vivo- and in vitro-derived bovine blastocysts at a similar stage and quality grade (expanded, excellent quality) to determine the degree of transcriptomic variation beyond morphology using RNA-Seq. Results A total of 26,906,451 and 38,184,547 fragments were sequenced for in vitro and in vivo embryo pools, respectively. We detected expression for a total of 17,634 genes, with 793 genes showing differential expression between the two embryo populations with false discovery rate (FDR) < 0.05. There were also 395 novel transcribed units found, of which 45 were differentially expressed (FDR < 0.05). In addition, 4,800 genes showed evidence of alternative splicing, with 873 genes displaying differential alternative splicing between the two pools (FDR < 0.05). Using GO enrichment analysis, multiple biological pathways were found to be significantly enriched for differentially expressed genes (FDR < 0.01), including cholesterol and sterol synthesis, system development, and cell differentiation. Conclusions Thus, our results support that IVF may influence at the transcriptomic level and that morphology is limited in full characterization of bovine preimplantation embryos.
Collapse
Affiliation(s)
- Ashley M Driver
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mejia-Pous C, Damiola F, Gandrillon O. Cholesterol synthesis-related enzyme oxidosqualene cyclase is required to maintain self-renewal in primary erythroid progenitors. Cell Prolif 2011; 44:441-52. [PMID: 21951287 DOI: 10.1111/j.1365-2184.2011.00771.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Molecular mechanisms controlling cell fate decision making in self-renewing cells are poorly understood. A previous transcriptomic study, carried out in primary avian erythroid progenitor cells (T2ECs), revealed that the gene encoding oxidosqualene cyclase (OSC/LSS), an enzyme involved in cholesterol biosynthesis, is significantly up-regulated in self-renewing cells. The aim of the present work is to understand whether this up-regulation is required for self-renewal maintenance and what are the mechanisms involved. MATERIALS AND METHODS To investigate OSC function, we studied effects of its enzymatic activity inhibition using Ro48-8071, a specific OSC inhibitor. In addition, we completed this pharmacological approach by RNAi-mediated OSC/LSS knockdown. The study of OSC inhibition was carried out on both self-renewing and differentiating cells to observe any state-dependent effect. RESULTS Our data show that OSC acts both by protecting self-renewing T2EC cells from apoptosis and by blocking their differentiation program, as OSC inhibition is sufficient to trigger spontaneous commitment of self-renewing cells towards an early differentiation state. This is self-renewal specific, as OSC inhibition has no effect on erythroid progenitors that have already differentiated. CONCLUSIONS Taken together, our results suggest that OSC/LSS expression and activity are required to maintain cell self-renewal and may be involved in the self-renewal versus differentiation/apoptosis decision making, by keeping cells in a self-renewal state.
Collapse
Affiliation(s)
- C Mejia-Pous
- Bases Moléculaires de l'Autorenouvellement et de ses Altérations" Group, Université de Lyon, Université Lyon 1, Villeurbanne, Centre de Génétique Moléculaire et Cellulaire, Lyon, France
| | | | | |
Collapse
|
21
|
Delgado-Coello B, Briones-Orta MA, Macías-Silva M, Mas-Oliva J. Cholesterol: recapitulation of its active role during liver regeneration. Liver Int 2011; 31:1271-84. [PMID: 21745289 DOI: 10.1111/j.1478-3231.2011.02542.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver regeneration is a compensatory hyperplasia produced by several stimuli that promotes proliferation in order to provide recovery of the liver mass and architecture. This process involves complex signalling cascades that receive feedback from autocrine and paracrine pathways, recognized by parenchymal as well as non-parenchymal cells. Nowadays the dynamic role of lipids in biological processes is widely recognized; however, a systematic analysis of their importance during liver regeneration is still missing. Therefore, in this review we address the role of lipids including the bioactive ones such as sphingolipids, but with special emphasis on cholesterol. Cholesterol is not only considered as a structural component but also as a relevant lipid involved in the control of the intermediate metabolism of different liver cell types such as hepatocytes, hepatic stellate cells and Kupffer cells. Cholesterol plays a significant role at the level of specific membrane domains, as well as modulating the expression of sterol-dependent proteins. Moreover, several enzymes related to the catabolism of cholesterol and whose activity is down regulated are related to the protection of liver tissue from toxicity during the process of regeneration. This review puts in perspective the necessity to study and understand the basic mechanisms involving lipids during the process of liver regeneration. On the other hand, the knowledge acquired in this area in the past years, can be considered invaluable in order to provide further insights into processes such as general organogenesis and several liver-related pathologies, including steatosis and fibrosis.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF Mexico
| | | | | | | |
Collapse
|
22
|
Lanzani C, Citterio L, Glorioso N, Manunta P, Tripodi G, Salvi E, Carpini SD, Ferrandi M, Messaggio E, Staessen JA, Cusi D, Macciardi F, Argiolas G, Valentini G, Ferrari P, Bianchi G. Adducin- and ouabain-related gene variants predict the antihypertensive activity of rostafuroxin, part 2: clinical studies. Sci Transl Med 2011; 2:59ra87. [PMID: 21106941 DOI: 10.1126/scitranslmed.3001814] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Twenty years of genetic studies have not contributed to improvement in the clinical management of primary arterial hypertension. Genetic heterogeneity, epistatic-environmental-biological interactions, and the pathophysiological complexity of hypertension have hampered the clinical application of genetic findings. In the companion article, we furnished data from rodents and human cells demonstrating two hypertension-triggering mechanisms--variants of adducin and elevated concentrations of endogenous ouabain (within a particular range)--and their selective inhibition by the drug rostafuroxin. Here, we have investigated the relationship between variants of genes encoding enzymes for ouabain synthesis [LSS (lanosterol synthase) and HSD3B1 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 1)], ouabain transport {MDR1/ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1]}, and adducin activity [ADD1 (adducin 1) and ADD3], and the responses to antihypertensive medications. We determined the presence of these variants in newly recruited, never-treated patients. The genetic profile defined by these variants predicted the antihypertensive effect of rostafuroxin (a mean placebo-corrected systolic blood pressure fall of 14 millimeters of mercury) but not that of losartan or hydrochlorothiazide. The magnitude of the rostafuroxin antihypertensive effect was twice that of antihypertensive drugs recently tested in phase 2 clinical trials. One-quarter of patients with primary hypertension display these variants of adducin or concentrations of endogenous ouabain and would be expected to respond to therapy with rostafuroxin. Because the mechanisms that are inhibited by rostafuroxin also underlie hypertension-related organ damage, this drug may also reduce the cardiovascular risk in these patients beyond that expected by the reduction in systolic blood pressure alone.
Collapse
Affiliation(s)
- Chiara Lanzani
- Division of Nephrology and Dialysis, Chair of Nephrology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele Hospital, Milan 20132, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Inflammation, HIF-1, and the epigenetics that follows. Mediators Inflamm 2010; 2010:263914. [PMID: 21197398 PMCID: PMC3010677 DOI: 10.1155/2010/263914] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/07/2010] [Accepted: 11/15/2010] [Indexed: 02/07/2023] Open
Abstract
We summarize recent findings linking inflammatory hypoxia to chromatin modifications, in particular to repressive histone signatures. We focus on the role of Hypoxia-Induced Factor-1 in promoting the activity of specific histone demethylases thus deeply modifying chromatin configuration. The consequences of these changes are depicted in terms of gene expression and cellular phenotypes. We finally integrate available data to introduce novel speculations on the relationship between inflammation, histones, and DNA function and integrity.
Collapse
|
24
|
The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol Cell Biol 2010; 30:3004-15. [PMID: 20368352 DOI: 10.1128/mcb.01023-09] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ataxia telangiectasia group D-complementing (ATDC) gene product, also known as TRIM29, is a member of the tripartite motif (TRIM) protein family. ATDC has been proposed to form homo- or heterodimers and to bind nucleic acids. In cell cultures, ATDC expression leads to rapid growth and resistance to ionizing radiation (IR), whereas silencing of ATDC expression decreases growth rates and increases sensitivity to IR. Although ATDC is overexpressed in many human cancers, the biological significance of ATDC overexpression remains obscure. We report here that ATDC increases cell proliferation via inhibition of p53 nuclear activities. ATDC represses the expression of p53-regulated genes, including p21 and NOXA. Mechanistically, ATDC binds p53, and this interaction is potentially fine-tuned by posttranslational acetylation of lysine 116 on ATDC. The association of p53 and ATDC results in p53 sequestration outside of the nucleus. Together, these results provide novel mechanistic insights into the function of ATDC and offer an explanation for how ATDC promotes cancer cell proliferation.
Collapse
|
25
|
Liu Z, Rudd MD, Hernandez-Gonzalez I, Gonzalez-Robayna I, Fan HY, Zeleznik AJ, Richards JS. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol Endocrinol 2009; 23:649-61. [PMID: 19196834 DOI: 10.1210/me.2008-0412] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The forkhead box transcription factor FOXO1 is highly expressed in granulosa cells of growing follicles but is down-regulated by FSH in culture or by LH-induced luteinization in vivo. To analyze the function of FOXO1, we infected rat and mouse granulosa cells with adenoviral vectors expressing two FOXO1 mutants: a gain-of-function mutant FOXOA3 that has two serine residues and one threonine residue mutated to alanines rendering this protein constitutively active and nuclear and FOXOA3-mutant DNA-binding domain (mDBD) in which the DBD is mutated. The infected cells were then treated with vehicle or FSH for specific time intervals. Infection of the granulosa cells was highly efficient, caused only minimal apoptosis, and maintained FOXO1 protein at levels of the endogenous protein observed in cells before exposure to FSH. RNA was prepared from control and adenoviral infected cells exposed to vehicle or FSH for 12 and 24 h. Affymetrix microarray and database analyses identified, and real time RT-PCR verified, that genes within the lipid, sterol, and steroidogenic biosynthetic pathways (Hmgcs1, Hmgcr, Mvk, Sqle, Lss, Cyp51, Tm7sf2, Dhcr24 and Star, Cyp11a1, and Cyp19), including two key transcriptional regulators Srebf1 and Srebf2 of cholesterol biosynthesis and steroidogenesis (Nr5a1, Nr5a2), were major targets induced by FSH and suppressed by FOXOA3 and FOXOA3-mDBD in the cultured granulosa cells. By contrast, FOXOA3 and FOXOA3-mDBD induced expression of Cyp27a1 mRNA that encodes an enzyme involved in cholesterol catabolism to oxysterols. The genes up-regulated by FSH in cultured granulosa cells were also induced in granulosa cells of preovulatory follicles and corpora lutea collected from immature mice primed with FSH (equine choriogonadotropin) and LH (human choriogonadotropin), respectively. Conversely, Foxo1 and Cyp27a1 mRNAs were reduced by these same treatments. Collectively, these data provide novel evidence that FOXO1 may play a key role in granulosa cells to modulate lipid and sterol biosynthesis, thereby preventing elevated steroidogenesis during early stages of follicle development.
Collapse
Affiliation(s)
- Zhilin Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Shafaati M, O'Driscoll R, Björkhem I, Meaney S. Transcriptional regulation of cholesterol 24-hydroxylase by histone deacetylase inhibitors. Biochem Biophys Res Commun 2008; 378:689-94. [PMID: 19059217 DOI: 10.1016/j.bbrc.2008.11.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The mechanistic basis for the tissue specific expression of cholesterol elimination pathways is poorly understood. To gain additional insight into this phenomenon we considered it of interest to investigate if epigenetic mechanisms are involved in the regulation of the brain-specific enzyme cholesterol 24-hydroxylase (CYP46A1), a key regulator of brain cholesterol elimination. We demonstrated a marked time-dependent derepression of the expression of CYP46A1, in response to treatment with the potent histone deacetylase (HDAC) inhibitor Trichostatin A. The pattern of expression of the genes in the genomic region surrounding CYP46A1 was found to be diametrically opposite in brain and liver. Intraperitoneal injection of HDAC inhibitors in mice led to a significant derepression of hepatic Cyp46a1 mRNA expression and tissue specific changes in Hmgcr and Cyp39a1 mRNA expression. These results are discussed in the context of the phenomenology of tissue specific cholesterol balance.
Collapse
Affiliation(s)
- Marjan Shafaati
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
27
|
Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 2008; 10:92-100. [PMID: 19011628 DOI: 10.1038/ni.1673] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/07/2008] [Indexed: 12/12/2022]
Abstract
Antigen-presenting cells (APCs) induce T cell activation as well as T cell tolerance. The molecular basis of the regulation of this critical 'decision' is not well understood. Here we show that HDAC11, a member of the HDAC histone deacetylase family with no prior defined physiological function, negatively regulated expression of the gene encoding interleukin 10 (IL-10) in APCs. Overexpression of HDAC11 inhibited IL-10 expression and induced inflammatory APCs that were able to prime naive T cells and restore the responsiveness of tolerant CD4+ T cells. Conversely, disruption of HDAC11 in APCs led to upregulation of expression of the gene encoding IL-10 and impairment of antigen-specific T cell responses. Thus, HDAC11 represents a molecular target that influences immune activation versus immune tolerance, a critical 'decision' with substantial implications in autoimmunity, transplantation and cancer immunotherapy.
Collapse
Affiliation(s)
- Alejandro Villagra
- Division of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 2008; 118:3588-97. [PMID: 18830415 DOI: 10.1172/jci35847] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 08/19/2008] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors show remarkable therapeutic potential for a variety of disorders, including cancer, neurological disease, and cardiac hypertrophy. However, the specific HDAC isoforms that mediate their actions are unclear, as are the physiological and pathological functions of individual HDACs in vivo. To explore the role of Hdac3 in the heart, we generated mice with a conditional Hdac3 null allele. Although global deletion of Hdac3 resulted in lethality by E9.5, mice with a cardiac-specific deletion of Hdac3 survived until 3-4 months of age. At this time, they showed massive cardiac hypertrophy and upregulation of genes associated with fatty acid uptake, fatty acid oxidation, and electron transport/oxidative phosphorylation accompanied by fatty acid-induced myocardial lipid accumulation and elevated triglyceride levels. These abnormalities in cardiac metabolism can be attributed to excessive activity of the nuclear receptor PPARalpha. The phenotype associated with cardiac-specific Hdac3 gene deletion differs from that of all other Hdac gene mutations. These findings reveal a unique role for Hdac3 in maintenance of cardiac function and regulation of myocardial energy metabolism.
Collapse
Affiliation(s)
- Rusty L Montgomery
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|