1
|
Patel JH, Schattinger PA, Takayoshi EE, Wills AE. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. Dev Biol 2022; 483:157-168. [PMID: 35065905 PMCID: PMC8881967 DOI: 10.1016/j.ydbio.2022.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Regeneration of complex tissues is initiated by an injury-induced stress response, eventually leading to activation of developmental signaling pathways such as Wnt signaling. How early injury cues are interpreted and coupled to activation of these developmental signals and their targets is not well understood. Here, we show that Hif1α, a stress induced transcription factor, is required for tail regeneration in Xenopus tropicalis. We find that Hif1α is required for regeneration of differentiated axial tissues, including axons and muscle. Using RNA-sequencing, we find that Hif1α and Wnt converge on a broad set of genes required for posterior specification and differentiation, including the posterior hox genes. We further show that Hif1α is required for transcription via a Wnt-responsive element, a function that is conserved in both regeneration and early neural patterning. Our findings indicate that Hif1α has regulatory roles in Wnt target gene expression across multiple tissue contexts.
Collapse
Affiliation(s)
- Jeet H. Patel
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA
| | | | | | - Andrea E. Wills
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA,To whom correspondence should be addressed:
| |
Collapse
|
2
|
Jiang Y, Duan LJ, Fong GH. Oxygen-sensing mechanisms in development and tissue repair. Development 2021; 148:273632. [PMID: 34874450 DOI: 10.1242/dev.200030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 2021; 131:137557. [PMID: 34623330 DOI: 10.1172/jci137557] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart forms early in development and delivers oxygenated blood to the rest of the embryo. After birth, the heart requires kilograms of ATP each day to support contractility for the circulation. Cardiac metabolism is omnivorous, utilizing multiple substrates and metabolic pathways to produce this energy. Cardiac development, metabolic tuning, and the response to ischemia are all regulated in part by the hypoxia-inducible factors (HIFs), central components of essential signaling pathways that respond to hypoxia. Here we review the actions of HIF1, HIF2, and HIF3 in the heart, from their roles in development and metabolism to their activity in regeneration and preconditioning strategies. We also discuss recent work on the role of HIFs in atherosclerosis, the precipitating cause of myocardial ischemia and the leading cause of death in the developed world.
Collapse
|
4
|
Miyakawa M, Katada T, Numa Y, Kinoshita T. Transcriptional regulatory elements of hif1α in a distal locus of islet1 in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110598. [PMID: 33785414 DOI: 10.1016/j.cbpb.2021.110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022]
Abstract
Adult mammalian hearts are not regenerative. However, recent studies have evidenced that hypoxia enhances their regeneration. Islet1 (isl1) is known as a cardiac progenitor marker, which is quiescent in adult mammal hearts. In Xenopus hearts, transcriptional activation of isl1 was shown during cardiac regeneration of froglets at 3 months after metamorphosis. In this study, we examined transcriptional regulation of isl1 focusing on hypoxia-inducible factor 1α (hif1α) in Xenopus heart. We found that hif1α expression was increased in response to cardiac injury and overexpression of hif1α upregulated mRNA expression of isl1. Multiple conservation analysis including 9 species revealed that 8 multiple conserved regions (MCRs) were present upstream of isl1. DNA sequence analysis using JASPAR showed hif1α binding motifs in MCRs. By luciferase reporter assay and chromatin immunoprecipitation analysis, we found that hif1α directly bound to hif1α motifs in the most distant MCR8 and showed a specific transcriptional activity on the MCR8. In the luciferase assay using constructs carrying MCR8 without a responsive motif of hif1α, the reporter activity was lost. Pharmacologically inhibition of hif1α affected isl1 transcription and downstream events including cardiac phenotypes, suggesting functional defects of islet1. Contrarily in murine hearts, transcription of isl1 was unresponsive even after cryoinjury to adult hearts while hif1α mRNA was induced. In comparative analysis of multiple alignment, hif1α elements present in MCR8 of Xenopus or zebrafish were found to be disrupted as species are evolutionarily distant from Xenopus and zebrafish. Our results suggested an altered switch of isl1 transcription between mammals and Xenopus laevis.
Collapse
Affiliation(s)
- Miho Miyakawa
- Department of Life Science, Faculty of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Tomohisa Katada
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Yunosuke Numa
- Department of Life Science, Faculty of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Tsutomu Kinoshita
- Department of Life Science, Faculty of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
5
|
Cordeiro IR, Tanaka M. Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. Bioessays 2020; 42:e2000025. [DOI: 10.1002/bies.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| |
Collapse
|
6
|
Cai LX, Alkassis FF, Kasahara H. Defective coronary vessel organization and reduction of VEGF-A in mouse embryonic hearts with gestational mild hypoxia. Dev Dyn 2020; 249:636-645. [PMID: 31900966 DOI: 10.1002/dvdy.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vasculature is formed by responding to homeostatic tissue demands including in developing hearts. Hypoxia generally stimulates vascular formation in which vascular endothelial growth factor A (VEGF-A) plays a critical role. Gestational hypoxia increases the risk of low intrauterine growth and low birth weight, both of which are known to increase the risk of the fetus developing cardiovascular defects. In fact, continuous gestational mild hypoxia (14% O2 ) from the mid-embryonic stage causes cardiac anomalies accompanied by a thinning compact layer in mice in vivo. Because coronary vasculature formation is necessary for compact layers to thicken, we hypothesized that defective coronary vessel organization is related to the thinning compact layer under gestational hypoxia conditions. RESULTS Continuous gestational mild hypoxia (14% O2 ) applied from embryonic day 10.5 (E10.5) reduced the expression of VEGF-A mRNA and proteins by over 60% in E12.5 hearts relative to control normoxic hearts. Formation of CD31-positive vascular plexus, blood islands, and microvessels in embryonic ventricles were stunted by gestational hypoxia compared to control E12.5 hearts. CONCLUSIONS Our results suggest that mild hypoxia (14% O2 ) does not induce coronary vessel organization or VEGF-A expression in developing mouse hearts, opposing the general effects of hypoxia-triggering vascular organization and VEGF-A expression.
Collapse
Affiliation(s)
- Lawrence X Cai
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Fariz F Alkassis
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
7
|
Moreau JLM, Kesteven S, Martin EMMA, Lau KS, Yam MX, O'Reilly VC, Del Monte-Nieto G, Baldini A, Feneley MP, Moon AM, Harvey RP, Sparrow DB, Chapman G, Dunwoodie SL. Gene-environment interaction impacts on heart development and embryo survival. Development 2019; 146:146/4/dev172957. [PMID: 30787001 DOI: 10.1242/dev.172957] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.
Collapse
Affiliation(s)
- Julie L M Moreau
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Scott Kesteven
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Ella M M A Martin
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Kin S Lau
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Michelle X Yam
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Victoria C O'Reilly
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Gonzalo Del Monte-Nieto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Antonio Baldini
- Dept. of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, and Institute of Genetics and Biophysics, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Michael P Feneley
- St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Duncan B Sparrow
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gavin Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Sally L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia .,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2033, Australia
| |
Collapse
|
8
|
Evolving approaches to heart regeneration by therapeutic stimulation of resident cardiomyocyte cell cycle. Anatol J Cardiol 2018; 16:881-886. [PMID: 27872447 PMCID: PMC5324893 DOI: 10.14744/anatoljcardiol.2016.7245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart has long been considered a terminally differentiated organ. Recent studies, however, have suggested that there is a modest degree of cardiomyocyte (CM) turnover in adult mammalian heart, albeit not sufficient for replacement of lost CMs following cardiac injuries. Cardiac regeneration studies in various model organisms including zebrafish, newt, and more recently in neonatal mouse, have demonstrated that CM dedifferentiation and concomitant proliferation play important roles in replacement of lost CMs and restoration of cardiac contractility. Further studies with neonatal cardiac regeneration mouse model suggested that major source of new CMs is existing CMs, with the possibility of involvement of cardiac stem cells. Numerous studies have now been conducted on induction of cardiac regeneration and have identified various cardiogenic factors, cardiogenic micro ribonucleic acid and cardiogenic small molecules. This report is a review of studies regarding generation of CM and prospects for application.
Collapse
|
9
|
Ferreira F, Raghunathan V, Luxardi G, Zhu K, Zhao M. Early redox activities modulate Xenopus tail regeneration. Nat Commun 2018; 9:4296. [PMID: 30327466 PMCID: PMC6191437 DOI: 10.1038/s41467-018-06614-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Redox state sustained by reactive oxygen species (ROS) is crucial for regeneration; however, the interplay between oxygen (O2), ROS and hypoxia-inducible factors (HIF) remains elusive. Here we observe, using an optic-based probe (optrode), an elevated and steady O2 influx immediately upon amputation. The spatiotemporal O2 influx profile correlates with the regeneration of Xenopus laevis tadpole tails. Inhibition of ROS production but not ROS scavenging decreases O2 influx. Inhibition of HIF-1α impairs regeneration and stabilization of HIF-1α induces regeneration in the refractory period. In the regeneration bud, hypoxia correlates with O2 influx, ROS production, and HIF-1α stabilization that modulate regeneration. Further analyses reveal that heat shock protein 90 is a putative downstream target of HIF-1α while electric current reversal is a de facto downstream target of HIF-1α. Collectively, the results show a mechanism for regeneration via the orchestration of O2 influx, ROS production, and HIF-1α stabilization.
Collapse
Affiliation(s)
- Fernando Ferreira
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA.
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga, 4704, Portugal.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, 77204, TX, USA
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, 77204, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, 77204, TX, USA
| | - Guillaume Luxardi
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA
| | - Kan Zhu
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 95616, CA, USA.
- Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis, 95817, CA, USA.
| |
Collapse
|
10
|
Moumne O, Chowdhurry R, Doll C, Pereira N, Hashimi M, Grindrod T, Dollar JJ, Riva A, Kasahara H. Mechanism Sharing Between Genetic and Gestational Hypoxia-Induced Cardiac Anomalies. Front Cardiovasc Med 2018; 5:100. [PMID: 30151366 PMCID: PMC6099185 DOI: 10.3389/fcvm.2018.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Background: Cardiac development is a dynamic process both temporally and spatially. These complex processes are often disturbed and lead to congenital cardiac anomalies that affect approximately 1% of live births. Disease-causing variants in several genetic loci lead to cardiac anomalies, with variants in transcription factor NKX2-5 gene being one of the largest variants known. Gestational hypoxia, such as seen in high-altitude pregnancy, has been known to affect cardiac development, yet the incidence and underlying mechanisms are largely unknown. Methods and Results: Normal wild-type female mice mated with heterozygous Nkx2-5 mutant males were housed under moderate hypoxia (14% O2) or normoxia (20.9% O2) conditions from 10.5 days of gestation. Wild-type mice exposed to hypoxia demonstrate excessive trabeculation, ventricular septal defects, irregular morphology of interventricular septum as well as atrial septal abnormalities, which overlap with those seen in heterozygous Nkx2-5 mutant mice. Genome-wide transcriptome done by RNA-seq of a 2-day hypoxic exposure on wild-type embryos revealed abnormal transcriptomes, in which approximately 60% share those from Nkx2-5 mutants without hypoxia. Gestational hypoxia reduced the expression of Nkx2-5 proteins in more than one-half along with a reduction in phosphorylation, suggesting that abnormal Nkx2-5 function is a common mechanism shared between genetic and gestational hypoxia-induced cardiac anomalies, at least at a specific developing stage. Conclusion: The results of our study provide insights into a common molecular mechanism underlying non-genetic and genetic cardiac anomalies.
Collapse
Affiliation(s)
- Olivia Moumne
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rajib Chowdhurry
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Cassandra Doll
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Natalia Pereira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mustafa Hashimi
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Tabor Grindrod
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - James J Dollar
- Department of Pathology, Immunology and Laboratory Medicine and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Alberto Riva
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Evaluation of the toxic effects of celecoxib on Xenopus embryo development. Biochem Biophys Res Commun 2018; 501:329-335. [DOI: 10.1016/j.bbrc.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
|
12
|
Zhang Y, Yan W, Ji X, Yue H, Li G, Sang N. Maternal NO2 exposure induces cardiac hypertrophy in male offspring via ROS-HIF-1α transcriptional regulation and aberrant DNA methylation modification of Csx/Nkx2.5. Arch Toxicol 2018; 92:1563-1579. [DOI: 10.1007/s00204-018-2166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
|
13
|
Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation. Dev Cell 2017; 39:724-739. [PMID: 27997827 DOI: 10.1016/j.devcel.2016.11.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/16/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease.
Collapse
|
14
|
Wang F, Wu Y, Quon MJ, Li X, Yang P. ASK1 mediates the teratogenicity of diabetes in the developing heart by inducing ER stress and inhibiting critical factors essential for cardiac development. Am J Physiol Endocrinol Metab 2015; 309:E487-99. [PMID: 26173459 PMCID: PMC4556884 DOI: 10.1152/ajpendo.00121.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
Maternal diabetes in mice induces heart defects similar to those observed in human diabetic pregnancies. Diabetes enhances apoptosis and suppresses cell proliferation in the developing heart, yet the underlying mechanism remains elusive. Apoptosis signal-regulating kinase 1 (ASK1) activates the proapoptotic c-Jun NH2-terminal kinase 1/2 (JNK1/2) leading to apoptosis, suggesting a possible role of ASK1 in diabetes-induced heart defects. We aimed to investigate whether ASK1 is activated in the heart and whether deleting the Ask1 gene blocks diabetes-induced adverse events and heart defect formation. The ASK1-JNK1/2 pathway was activated by diabetes. Deleting Ask1 gene significantly reduced the rate of heart defects, including ventricular septal defects (VSDs) and persistent truncus arteriosus (PTA). Additionally, Ask1 deletion diminished diabetes-induced JNK1/2 phosphorylation and its downstream transcription factors and endoplasmic reticulum (ER) stress markers. Consistent with this, caspase activation and apoptosis were blunted. Ask1 deletion blocked the increase in cell cycle inhibitors (p21 and p27) and the decrease in cyclin D1 and D3 and reversed diabetes-repressed cell proliferation. Ask1 deletion also restored the expression of BMP4, NKX2.5, and GATA5, Smad1/5/8 phosphorylation, whose mutations or deletion result in reduced cell proliferation, VSD, and PTA formation. We conclude that ASK1 may mediate the teratogenicity of diabetes through activating the JNK1/2-ER stress pathway and inhibiting cell cycle progression, thereby impeding the cardiogenesis pathways essential for ventricular septation and outflow tract development.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Bone Morphogenetic Protein 4/metabolism
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin D3/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Endoplasmic Reticulum Stress/genetics
- Female
- GATA5 Transcription Factor/metabolism
- Heart/embryology
- Heart Defects, Congenital/etiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Septal Defects, Ventricular/etiology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/metabolism
- MAP Kinase Kinase Kinase 5/genetics
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/metabolism
- Mitogen-Activated Protein Kinase 9/metabolism
- Phosphorylation
- Pregnancy
- Pregnancy in Diabetics/genetics
- Pregnancy in Diabetics/metabolism
- Signal Transduction
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
- Smad8 Protein/metabolism
- Teratogenesis/genetics
- Transcription Factors/metabolism
- Truncus Arteriosus, Persistent/etiology
- Truncus Arteriosus, Persistent/genetics
- Truncus Arteriosus, Persistent/metabolism
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Yanqing Wu
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | | - Xuezheng Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Robertson CE, Wright PA, Köblitz L, Bernier NJ. Hypoxia-inducible factor-1 mediates adaptive developmental plasticity of hypoxia tolerance in zebrafish, Danio rerio. Proc Biol Sci 2015; 281:rspb.2014.0637. [PMID: 24850928 DOI: 10.1098/rspb.2014.0637] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, natural and anthropogenic factors have increased aquatic hypoxia the world over. In most organisms, the cellular response to hypoxia is mediated by the master regulator hypoxia-inducible factor-1 (HIF-1). HIF-1 also plays a critical role in the normal development of the cardiovascular system of vertebrates. We tested the hypothesis that hypoxia exposures which resulted in HIF-1 induction during embryogenesis would be associated with enhanced hypoxia tolerance in subsequent developmental stages. We exposed zebrafish (Danio rerio) embryos to just 4 h of severe hypoxia or total anoxia at 18, 24 and 36 h post-fertilization (hpf). Of these, exposure to hypoxia at 24 and 36 hpf as well as anoxia at 36 hpf activated the HIF-1 cellular pathway. Zebrafish embryos that acutely upregulated the HIF-1 pathway had an increased hypoxia tolerance as larvae. The critical window for hypoxia sensitivity and HIF-1 signalling was 24 hpf. Adult male fish had a lower critical oxygen tension (Pcrit) compared with females. Early induction of HIF-1 correlated directly with an increased proportion of males in the population. We conclude that mounting a HIF-1 response during embryogenesis is associated with long-term impacts on the phenotype of later stages which could influence both individual hypoxia tolerance and population dynamics.
Collapse
Affiliation(s)
- Cayleih E Robertson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Louise Köblitz
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Sakata H, Maéno M. Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo. Dev Growth Differ 2014; 56:544-54. [PMID: 25283688 DOI: 10.1111/dgd.12155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Abstract
We have shown previously that two populations of myeloid cells emerge in the anterior and posterior ventral blood islands (aVBI and pVBI) at the different stages in Xenopus laevis embryo. In order to elucidate the regulatory mechanism of myeloid cell differentiation in the aVBI, we examined the role of Nkx2.5, an essential transcription factor for heart differentiation, in regulation of the myeloid cell differentiation in this region. Knockdown of endogenous Nkx2.5 by introducing MO into the dorsal marginal zone (DMZ) suppressed the expression of MHCα as well as that of mpo and spib in the resultant embryos and in DMZ explants made from the injected embryos. Expression of c/ebpα was less affected in the embryos injected with Nkx2.5 MO. The effect of Nkx2.5 MO in myeloid cell differentiation was recovered by coinjection of nkx2.5 or c/ebpα mRNA, indicating that Nkx2.5 functions at the same or the upper level of C/EBPα for the specification of myeloid cells. An attempt to identify transcription factors for myeloid cell differentiation in ventral marginal zone (VMZ) explants demonstrated that coinjection of two transcription factors out of three factors, namely C/EBPα, Nkx2.5 and GATA4, was sufficient to induce a certain amount of mpo expression. We suggest that C/EBPα is an unequivocal factor for myeloid cell differentiation in the aVBI and that Nkx2.5 and GATA4 cooperate with C/EBPα for promotion of myeloid cell differentiation.
Collapse
Affiliation(s)
- Hiroyuki Sakata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
17
|
Sellak H, Zhou C, Liu B, Chen H, Lincoln TM, Wu S. Transcriptional regulation of α1H T-type calcium channel under hypoxia. Am J Physiol Cell Physiol 2014; 307:C648-56. [PMID: 25099734 DOI: 10.1152/ajpcell.00210.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The low-voltage-activated T-type Ca(2+) channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5'-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site -1,173cacgc-1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region.
Collapse
Affiliation(s)
- Hassan Sellak
- Department of Anesthesiology and Perioperative Medicine, Georgia Regents University, Augusta, Georgia
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Pharmacology, University of South Alabama, Mobile, Alabama; and
| | - Bainan Liu
- Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Pharmacology, University of South Alabama, Mobile, Alabama; and
| | - Hairu Chen
- Department of Anesthesiology and Perioperative Medicine, Georgia Regents University, Augusta, Georgia
| | - Thomas M Lincoln
- Department of Physiology, University of South Alabama, Mobile, Alabama
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, Georgia Regents University, Augusta, Georgia;
| |
Collapse
|
18
|
Barriga EH, Maxwell PH, Reyes AE, Mayor R. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol 2013; 201:759-76. [PMID: 23712262 PMCID: PMC3664719 DOI: 10.1083/jcb.201212100] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/03/2013] [Indexed: 02/05/2023] Open
Abstract
One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell-cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells.
Collapse
Affiliation(s)
- Elias H. Barriga
- Department of Cell and Developmental Biology and Division of Medicine, University College London, WC1E 6BT London, England, UK
- Laboratorio de Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Patrick H. Maxwell
- Department of Cell and Developmental Biology and Division of Medicine, University College London, WC1E 6BT London, England, UK
| | - Ariel E. Reyes
- Laboratorio de Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Andrés Bello, 8370146 Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, 3349001 Concepción, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology and Division of Medicine, University College London, WC1E 6BT London, England, UK
| |
Collapse
|
19
|
Crescini E, Gualandi L, Uberti D, Prandelli C, Presta M, Dell'Era P. Ascorbic acid rescues cardiomyocyte development in Fgfr1(-/-) murine embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:140-7. [PMID: 22735182 DOI: 10.1016/j.bbamcr.2012.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Fibroblast growth factor receptor 1 (Fgfr1) gene knockout impairs cardiomyocyte differentiation in murine embryonic stem cells (mESC). Here, various chemical compounds able to enhance cardiomyocyte differentiation in mESC [including dimethylsulfoxide, ascorbic acid (vitC), free radicals and reactive oxygen species] were tested for their ability to rescue the cardiomyogenic potential of Fgfr1(-/-) mESC. Among them, only the reduced form of vitC, l-ascorbic acid, was able to recover beating cell differentiation in Fgfr1(-/-) mESC. The appearance of contracting cells was paralleled by the expression of early and late cardiac gene markers, thus suggesting their identity as cardiomyocytes. In the attempt to elucidate the mechanism of action of vitC on Fgfr1(-/-) mESC, we analyzed several parameters related to the intracellular redox state, such as reactive oxygen species content, Nox4 expression, and superoxide dismutase activity. The results did not show any relationship between the antioxidant capacity of vitC and cardiomyocyte differentiation in Fgfr1(-/-) mESC. No correlation was found also for the ability of vitC to modulate the expression of pluripotency genes. Then, we tested the hypothesis that vitC was acting as a prolyl hydroxylase cofactor by maintaining iron in a reduced state. We first analyze hypoxia inducible factor (HIF)-1α mRNA and protein levels that were found to be slightly upregulated in Fgfr1(-/-) cells. We treated mESC with Fe(2+) or the HIF inhibitor CAY10585 during the first phases of the differentiation process and, similar to vitC, the two compounds were able to rescue cardiomyocyte formation in Fgfr1(-/-) mESC, thus implicating HIF-1α modulation in Fgfr1-dependent cardiomyogenesis.
Collapse
Affiliation(s)
- Elisabetta Crescini
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Synergistic effects of hypoxia and extracellular matrix cues in cardiomyogenesis. Biomaterials 2012; 33:6313-9. [PMID: 22717366 DOI: 10.1016/j.biomaterials.2012.05.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/27/2012] [Indexed: 11/23/2022]
Abstract
Limited characterization of how the stem cell niche evolves has hindered our ability to mimic the physiological environment. In this paper, we hypothesized that hypoxia-induced extracellular matrix (ECM) cues may facilitate cardiomyogenesis. We evaluated the expression of four ECM proteins - fibronectin, collagen I, collagen IV, and laminin - over a period of 20 days in H1 and H9 human embryonic stem cell-derived embryoid bodies (EBs) under hypoxic (5% oxygen) and normoxic (21% oxygen) conditions. Hypoxic EBs exhibited increased collagen I, collagen IV and fibronectin expression relative to normoxic EBs between days 9-13, which coincided with increased expression of mesoderm genes. The effect of ECM cues was confirmed by plating day 9 EBs on collagen IV, gelatin, and fibronectin-rich substrates for 11 days. Hypoxia/gelatin cultures synergistically increased the cardiomyocyte yield by 1.7 and 5.5 fold relative to normoxia/gelatin and normoxia/collagen IV cultures, respectively. Current differentiation protocols may underestimate the contribution of hypoxia and ECM cues that evolve during EB maturation.
Collapse
|
21
|
Abstract
The study of gene function in developmental biology has been significantly furthered by advances in antisense technology made in the early 2000s. This was achieved, in particular, by the introduction of morpholino (MO) oligonucleotides. The introduction of antisense MO oligonucleotides into cells enables researchers to readily reduce the levels of their protein of interest without investing huge financial or temporal resources, in both in vivo and in vitro model systems. Historically, the African clawed frog Xenopus has been used to study vertebrate embryological development, due to its ability to produce vast numbers of offspring that develop rapidly, in synchrony, and can be cultured in buffers with ease. The developmental progress of Xenopus embryos has been extensively characterized and this model organism is very easy to maintain. It is these attributes that enable MO-based knockdown strategies to be so effective in Xenopus. In this chapter, we will detail the methods of microinjecting MO oligonucleotides into early embryos of X. laevis and X. tropicalis. We will discuss how MOs can be used to prevent either pre-mRNA splicing or translation of the specific gene of interest resulting in abrogation of that gene's function and advise on what control experiments should be undertaken to verify their efficacy.
Collapse
Affiliation(s)
- Panna Tandon
- Department of Genetics, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
22
|
Ng KM, Chan YC, Lee YK, Lai WH, Au KW, Fung ML, Siu CW, Li RA, Tse HF. Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level. Cell Reprogram 2011; 13:527-37. [PMID: 22029419 DOI: 10.1089/cell.2011.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Our previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50 μM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.5, vascular endothelial growth factor, and cardiotrophin-1. When pretreated cells were subjected to cardiac differentiation, a notable increase in the occurrence of beating embryoid bodies and sarcomeric actinin-positive cells was observed, along with increased expression of the cardiac-specific markers, MHC-A, MHC-B, and MLC2V. Electrophysiological study revealed increased atrial- and nodal-like cells in the cobalt chloride-pretreated group. Confocal calcium imaging analysis indicated that the maximum upstroke and decay velocities were significantly increased in both noncaffeine and caffeine-induced calcium transient in cardiomyocytes derived from the cobalt chloride-pretreated cells, suggesting these cells were functionally more mature. In conclusion, our study demonstrated that cobalt chloride pretreatment of hES2 human ESCs promotes cardiac differentiation and the maturation of calcium homeostasis of cardiomyocytes derived from ESCs.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, Department of Physiology, University of Hong Kong, and Department of Medicine, Queen Mary Hospital, Hong Kong, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Sun A, Xue J, Jiang Y. Adenovirus-mediated expression of hypoxia-inducible factor 1α double mutant converts neonatal cardiac fibroblasts into (cardio)myocyte phenotype. Cell Biochem Funct 2011; 30:24-32. [PMID: 22006794 DOI: 10.1002/cbf.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/16/2011] [Accepted: 09/05/2011] [Indexed: 02/04/2023]
Abstract
Adenovirus-mediated expression of hypoxia-inducible factor 1α double mutant (pAd-HIF-1α-Ala564-Ala803) can be effectively transfected into bone marrow stem cells (MSCs) in the MSCs and cardiomyocytes co-culture system at normoxia to regulate the expression of downstream target genes of hypoxia-inducible factor 1α (HIF-1α), which in turn can promote MSC differentiation into cardiomyocytes. Fibroblasts share common characteristics with MSCs such as the morphology, phenotype and differentiation potential. Therefore, we further studied whether the pAd-HIF-1α-Ala564-Ala803 also can convert neonatal rat cardiac fibroblasts (NCFs) into (cardio)myocyte phenotype via regulating the downstream target genes of HIF-1α at normoxia. The immunostaining analysis showed that NCFs treated with pAd-HIF-1α-Ala564-Ala803 exhibited higher protein expression levels of smooth muscle α-actin (SMA, myocyte marker) and cardiac troponin T (cTnT, cardiomyocyte marker), compared with phosphate-buffered saline and pAd-LacZ treatments. The reverse transcription-polymerase chain reaction results showed that NCFs transfected with pAd-HIF-1α-Ala564-Ala803 augmented messenger RNA (mRNA) expression of transforming growth factor-β1 (TGF-β1), Smad4, NKx2.5, GATA4, myocardin, SMA and cTnT. The effects of HIF-1α-Ala564-Ala803 on NCFs were attenuated by pre-transfection of TGF-β1 or myocardin small interference RNAs. Adult CFs transfected with pAd-HIF-1α-Ala564-Ala803 showed a lower protein expression of SMA but not cTnT without any change in the mRNA expression level of NKx2.5, myocardin. Therefore, NCFs but not adult CFs possess a similar differentiation potential to MSCs as evidenced by the fact that pAd-HIF-1α-Ala564-Ala803 can convert NCFs into (cardio)myocyte phenotype via regulating its downstream target genes.
Collapse
Affiliation(s)
- Yesong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | |
Collapse
|
24
|
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: An emerging model for studying congenital heart disease. ACTA ACUST UNITED AC 2011; 91:495-510. [PMID: 21538812 DOI: 10.1002/bdra.20793] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
25
|
Zachar V, Duroux M, Emmersen J, Rasmussen JG, Pennisi CP, Yang S, Fink T. Hypoxia and adipose-derived stem cell-based tissue regeneration and engineering. Expert Opin Biol Ther 2011; 11:775-86. [PMID: 21413910 DOI: 10.1517/14712598.2011.570258] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Realization that oxygen is one of the key regulators of development and differentiation has a profound significance on how current cell-based and tissue engineering applications using adipose-derived stem cells (ASCs) can be further improved. AREAS COVERED The article provides an overview of mechanisms of hypoxic responses during physiological adaptations and development. Furthermore, a synopsis of the hypoxic responses of ASCs is provided, and this information is presented in context of their utility as a major source of stem cells across the regenerative applications explored to date. EXPERT OPINION The reader will obtain insight into a highly specific area of stem cell research focusing on ASCs and hypoxia. In order to enhance the level of comprehension, a broader context with other stem cell and experimental systems is provided. It is emphasized that the pericellular oxygen tension is a critical regulatory factor that should be taken into account when devising novel stem cell-based therapeutic applications along with other parameters, such as biochemical soluble factors and the growth substrates.
Collapse
Affiliation(s)
- Vladimir Zachar
- Aalborg University, Laboratory for Stem Cell Research, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
26
|
Exogenous expression of HIF-1α promotes cardiac differentiation of embryonic stem cells. J Mol Cell Cardiol 2010; 48:1129-37. [DOI: 10.1016/j.yjmcc.2010.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 01/05/2010] [Accepted: 01/20/2010] [Indexed: 11/19/2022]
|
27
|
Palpant NJ, Houang EM, Delport W, Hastings KEM, Onufriev AV, Sham YY, Metzger JM. Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations. Physiol Genomics 2010; 42:287-99. [PMID: 20423961 DOI: 10.1152/physiolgenomics.00033.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cardiac muscle, the troponin (cTn) complex is a key regulator of myofilament calcium sensitivity because it serves as a molecular switch required for translating myocyte calcium fluxes into sarcomeric contraction and relaxation. Studies of several species suggest that ectotherm chordates have myofilaments with heightened calcium responsiveness. However, genetic polymorphisms in cTn that cause increased myofilament sensitivity to activating calcium in mammals result in cardiac disease including arrhythmias, diastolic dysfunction, and increased susceptibility to sudden cardiac death. We hypothesized that specific residue modifications in the regulatory arm of troponin I (TnI) were critical in mediating the observed decrease in myofilament calcium sensitivity within the mammalian taxa. We performed large-scale phylogenetic analysis, atomic resolution molecular dynamics simulations and modeling, and computational alanine scanning. This study provides evidence that a His to Ala substitution within mammalian cardiac TnI (cTnI) reduced the thermodynamic potential at the interface between cTnI and cardiac TnC (cTnC) in the calcium-saturated state by disrupting a strong intermolecular electrostatic interaction. This key residue modification reduced myofilament calcium sensitivity by making cTnI molecularly untethered from cTnC. To meet the requirements for refined mammalian adult cardiac performance, we propose that compensatory evolutionary pressures favored mutations that enhanced the relaxation properties of cTn by decreasing its sensitivity to activating calcium.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Integrative Biology and Physiology, University of Minnesota Academic Health Center, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bianco C, Cotten C, Lonardo E, Strizzi L, Baraty C, Mancino M, Gonzales M, Watanabe K, Nagaoka T, Berry C, Arai AE, Minchiotti G, Salomon DS. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2146-58. [PMID: 19834060 DOI: 10.2353/ajpath.2009.090218] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cripto-1 is a membrane-bound protein that is highly expressed in embryonic stem cells and in human tumors. In the present study, we investigated the effect of low levels of oxygen, which occurs naturally in rapidly growing tissues, on Cripto-1 expression in mouse embryonic stem (mES) cells and in human embryonal carcinoma cells. During hypoxia, Cripto-1 expression levels were significantly elevated in mES cells and in Ntera-2 or NCCIT human embryonal carcinoma cells, as compared with cells growing with normal oxygen levels. The transcription factor hypoxia-inducible factor-1alpha directly regulated Cripto-1 expression by binding to hypoxia-responsive elements within the promoter of mouse and human Cripto-1 genes in mES and NCCIT cells, respectively. Furthermore, hypoxia modulated differentiation of mES cells by enhancing formation of beating cardiomyocytes as compared with mES cells that were differentiated under normoxia. However, hypoxia failed to induce differentiation of mES cells into cardiomyocytes in the absence of Cripto-1 expression, demonstrating that Cripto-1 is required for hypoxia to fully differentiate mES cells into cardiomyocytes. Finally, cardiac tissue samples derived from patients who had suffered ischemic heart disease showed a dramatic increase in Cripto-1 expression as compared with nonischemic heart tissue samples, suggesting that hypoxia may also regulate Cripto-1 in vivo.
Collapse
Affiliation(s)
- Caterina Bianco
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Miazga CM, McLaughlin KA. Coordinating the timing of cardiac precursor development during gastrulation: A new role for Notch signaling. Dev Biol 2009; 333:285-96. [DOI: 10.1016/j.ydbio.2009.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/16/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
|
30
|
Coffman JA. Mitochondria and metazoan epigenesis. Semin Cell Dev Biol 2009; 20:321-9. [PMID: 19429498 DOI: 10.1016/j.semcdb.2009.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/30/2009] [Accepted: 02/04/2009] [Indexed: 01/07/2023]
Abstract
In eukaryotes, mitochondrial activity controls ATP production, calcium dynamics, and redox state, thereby establishing physiological parameters governing the transduction of biochemical signals that regulate nuclear gene expression. However, these activities are commonly assumed to fulfill a 'housekeeping' function: necessary for life, but an epiphenomenon devoid of causal agency in the developmental flow of genetic information. Moreover, it is difficult to perturb mitochondrial function without generally affecting cell viability. For these reasons little is known about the extent of mitochondrial influence on gene activity in early development. Recent discoveries pertaining to the redox regulation of key developmental signaling systems together with the fact that mitochondria are often asymmetrically distributed in animal embryos suggests that they may contribute spatial information underlying differential specification of cell fate. In many cases such asymmetries correlate with localization of genetic determinants (i.e., mRNAs or proteins), particularly in embryos that rely heavily on cell-autonomous means of cell fate specification. In such embryos the localized genetic determinants play a dominant role, and any developmental information contributed by the mitochondria themselves is likely to be less obvious and more difficult to isolate experimentally. Hence, 'regulative' embryos that make more extensive use of conditional cell fate specification are better suited to experimental investigation of mitochondrial impacts on developmental gene regulation. Recent studies of the sea urchin embryo, which is a paradigmatic example of such a system, suggest that anisotropic distribution of mitochondria provides a source gradient of spatial information that directs epigenetic specification of the secondary axis via Nodal-Lefty signaling.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| |
Collapse
|