1
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
3
|
Zmorzynski S, Popek-Marciniec S, Biernacka B, Szudy-Szczyrek A, Chocholska S, Styk W, Czerwik-Marcinkowska J, Swiderska-Kolacz G. In Vitro Low-Bortezomib Doses Induce Apoptosis and Independently Decrease the Activities of Glutathione S-Transferase and Glutathione Peroxidase in Multiple Myeloma, Taking into Account the GSTT1 and GSTM1 Gene Variants. Genes (Basel) 2024; 15:387. [PMID: 38540446 PMCID: PMC10970692 DOI: 10.3390/genes15030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.
Collapse
Affiliation(s)
| | | | - Beata Biernacka
- Institute of Nursing and Obstetrics, Academy of Zamosc, 22-400 Zamosc, Poland
| | - Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.-S.); (S.C.)
| | - Sylwia Chocholska
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.-S.); (S.C.)
| | - Wojciech Styk
- Academic Laboratory of Psychological Tests, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | | |
Collapse
|
4
|
Hu Y, Wang ZG, Fu H, Zhou C, Cai W, Shao X, Liu SL, Pang DW. In-situ synthesis of quantum dots in the nucleus of live cells. Natl Sci Rev 2024; 11:nwae021. [PMID: 38410827 PMCID: PMC10896589 DOI: 10.1093/nsr/nwae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/28/2024] Open
Abstract
The cell nucleus is the main site for the storage and replication of genetic material, and the synthesis of substances in the nucleus is rhythmic, regular and strictly regulated by physiological processes. However, whether exogenous substances, such as nanoparticles, can be synthesized in situ in the nucleus of live cells has not been reported. Here, we have achieved in-situ synthesis of CdSxSe1-x quantum dots (QDs) in the nucleus by regulation of the glutathione (GSH) metabolic pathway. High enrichment of GSH in the nucleus can be accomplished by the addition of GSH with the help of the Bcl-2 protein. Then, high-valence Se is reduced to low-valence Se by glutathione-reductase-catalyzed GSH, and interacts with the Cd precursor formed through Cd and thiol-rich proteins, eventually generating QDs in the nucleus. Our work contributes to a new understanding of the syntheses of substances in the cell nucleus and will pave the way for the development of advanced 'supercells'.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Chuanzheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
5
|
Guo Z, Chen Y, Du X, Li Y, Niu D. Ammonia-induced oxidative stress triggered apoptosis in the razor clam (Sinonovacula constricta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22380-22394. [PMID: 38407712 DOI: 10.1007/s11356-024-32635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As one of the most significant contaminants and stressors in aquaculture systems, ammonia adversely jeopardizes the health of aquatic animals. Ammonia exposure affects the development, metabolism, and survival of shellfish. However, the responses of the innate immune and antioxidant systems and apoptosis in shellfish under ammonia stress have rarely been reported. In this study, razor clams (Sinonovacula constricta) were exposed to different concentrations of non-ion ammonia (0.25 mg/L, 2.5 mg/L) for 72 h and then placed in ammonia-free seawater for 72 h for recovery. The immune responses induced by ammonia stress on razor clams were investigated by antioxidant enzyme activities and degree of apoptosis in digestive gland and gill tissues at different time points. The results showed that exposure to a high concentration of ammonia greatly disrupted the antioxidant system of the razor clam by exacerbating the accumulation of reactive oxygen species ( O 2 - , H2O2) and disordering the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and the level of activity remained at a significantly high level after recovering for 72 h (P < 0.05). In addition, there were significant differences (P < 0.05) in the expression of key genes (Caspase 7, Cyt-c, Bcl-2, and Bax) in the mitochondrial apoptotic pathway in the digestive glands and gills of razor clams as a result of ammonia stress and were unable to return to normal levels after 72 h of recovery. TUNEL staining indicated that apoptosis was more pronounced in gills, showing a dose and time-dependent pattern. As to the results, ammonia exposure leads to the activation of innate immunity in razor clams, disrupts the antioxidant system, and activates the mitochondrial pathway of apoptosis. This is important for comprehending the mechanism underlying the aquatic toxicity resulting from ammonia in shellfish.
Collapse
Affiliation(s)
- Ziqi Guo
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yukuan Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xinxin Du
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
6
|
Lambrecht R, Rudolf F, Ückert AK, Sladky VC, Phan TS, Jansen J, Naim S, Kaufmann T, Keogh A, Kirschnek S, Mangerich A, Stengel F, Leist M, Villunger A, Brunner T. Non-canonical BIM-regulated energy metabolism determines drug-induced liver necrosis. Cell Death Differ 2024; 31:119-131. [PMID: 38001256 PMCID: PMC10781779 DOI: 10.1038/s41418-023-01245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Adrian Keogh
- Visceral and Transplantation Surgery, Department of Clinical Research, Inselspital, Bern University Hospital, 3008, Bern, Switzerland
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Aswin Mangerich
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Ludwig Boltzman Institute for Rare and Undiagnosed Diseases (LBI-RUD), Lazarettgasse 14, 1090, Vienna, Austria
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
7
|
Korkmaz IN, Güller U, Kalın R, Özdemir H, Küfrevioğlu Öİ. Structure-Activity Relationship of Methyl 4-Aminobenzoate Derivatives as Being Drug Candidate Targeting Glutathione Related Enzymes: in Vitro and in Silico Approaches. Chem Biodivers 2023; 20:e202201220. [PMID: 37043708 DOI: 10.1002/cbdv.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, 76100, Türkiye
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, 25700, Türkiye
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| |
Collapse
|
8
|
Wang L, Liu C, Wang X, Ma S, Liu F, Zhang Y, Wang Y, Shen M, Wu X, Wu Q, Gong C. Tumor-specific activated nano-domino-CRISPR to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Biomaterials 2023; 295:122056. [PMID: 36805243 DOI: 10.1016/j.biomaterials.2023.122056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
As a non-invasive modality with unique spatiotemporal selectivity, photodynamic therapy (PDT) is emerging as a candidate in cancer treatment. Nevertheless, intrinsic anti-oxidative stress factors represented by the up-regulated B cell lymphoma/leukemia-2 (Bcl-2) and the attenuated-PDT activity along the light path are still the major concerns, therefore exploring the PDT-based synergistic and augmented strategies is challenging but imperative. Here, a tumor-specific activated nano-domino-CRISPR (TAN) is fabricated and coloaded with chlorins e6 (Ce6) and CRISPR/Cas9 plasmid targeting Bcl-2 gene to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Inert TAN acting as the first domino is activated in enzyme-abundant intracellular environment to strip the shell. The activated TAN pushes the subsequent dominos, encompassing orderly efficient lysosomal escape, gene delivery, precise disruption of Bcl-2 protein and PDT effect induced by the shell containing Ce6 with light to trigger further domino effects. For tumor cells located superficial sites, down-regulated Bcl-2 reduces cellular GSH content and potentiates oxidative stress of PDT. Cells located deep sites are triggered endogenous apoptosis by disruption of Bcl-2. The high anti-tumor efficacy of TAN is demonstrated both in vitro and in vivo. Overall, our work offers a valuable emerging approach for conquering the therapeutical deficiency of PDT.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xinxin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Furong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xinyue Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
9
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
10
|
Ali FEM, Hassanein EHM, Abd El-Ghafar OAM, Rashwan EK, Saleh FM, Atwa AM. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J Biochem Mol Toxicol 2023; 37:e23309. [PMID: 36645100 DOI: 10.1002/jbt.23309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit, Egypt
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
11
|
Linseman DA, Winter AN, Wilkins HM. The 2-Oxoglutarate Carrier Is S-Nitrosylated in the Spinal Cord of G93A Mutant hSOD1 Mice Resulting in Disruption of Mitochondrial Glutathione Transport. Biomedicines 2022; 11:61. [PMID: 36672568 PMCID: PMC9855976 DOI: 10.3390/biomedicines11010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial oxidative stress and dysfunction are strongly implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Glutathione (GSH) is an endogenous antioxidant that exists as distinct cytosolic and mitochondrial pools. The status of the mitochondrial GSH pool is reliant on transport from the cytosol through the 2-oxoglutarate carrier (OGC), an inner membrane anion carrier. We have previously reported that the outer mitochondrial membrane protein, Bcl-2, directly binds GSH and is a key regulator of OGC-dependent mitochondrial GSH transport. Here, we show that G93A mutant SOD1 (Cu, Zn-superoxide dismutase) reduces the binding of GSH to Bcl-2 and disrupts mitochondrial GSH uptake in vitro. In the G93A mutant hSOD1 mouse model of ALS, mitochondrial GSH is significantly depleted in spinal cord of end-stage mice. Finally, we show that OGC is heavily S-nitrosylated in the spinal cord of end-stage mice and consequently, the GSH uptake capacity of spinal cord mitochondria isolated from these mutant mice is significantly diminished. Collectively, these findings suggest that spinal cord GSH depletion, particularly at the level of the mitochondria, plays a significant role in ALS pathogenesis induced by mutant SOD1. Furthermore, the depletion of mitochondrial GSH in the G93A mutant hSOD1 mouse model may be caused by the S-nitrosylation of OGC and the capacity of mutant SOD1 to disrupt the Bcl-2/GSH interaction, resulting in a disruption of mitochondrial GSH transport.
Collapse
Affiliation(s)
- Daniel A. Linseman
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | | | - Heather M. Wilkins
- Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
12
|
Korkmaz IN, Özdemir H. Synthesis and Anticancer Potential of New Hydroxamic Acid Derivatives as Chemotherapeutic Agents. Appl Biochem Biotechnol 2022; 194:6349-6366. [PMID: 35917102 DOI: 10.1007/s12010-022-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been shown to induce differentiation, cell cycle arrest, and apoptosis due to their low toxicity, inhibiting migration, invasion, and angiogenesis in many cancer cells. Studies show that hydroxamic acids are generally used as anticancers. For this reason, it is aimed to synthesize new derivatives of hydroxamic acids, to examine the anticancer properties of these candidate inhibitors, and to investigate the inhibition effects on some enzymes that cause multidrug resistance in cancer cells. For this reason, new (4-amino-2-methoxy benzohydroxamic acid (a), 4-amino-3-methyl benzohydroxamic acid (b), 3-amino-5-methyl benzohydroxamic acid (c)) amino benzohydroxamic acid derivatives were synthesized in this study. The effects on healthy fibroblast, lung (A549), and cervical (HeLa) cancer cells were investigated. In addition, their effects on TRXR1, GST, and GR activities, which are important for the development of chemotherapeutic strategies, were also examined. It was determined that molecule b was the most effective molecule in HeLa cancer cells with the lowest IC50 value of 0.54. It was determined that molecule c was the most effective molecules for A549 and HeLa cancer cells, with the lowest IC50 values of 0.78 mM and 0.25 mM, respectively. It was determined that b and c molecules directed cancer cells to necrosis rather than apoptosis. c molecule showed anticancer effect in A549 and HeLa cancer cells. It was found that molecule c significantly suppressed both GR and TRXR1 activities. In GST activities, however, inhibitors did not have a significant effect on cancer cells.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey
| | - Hasan Özdemir
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey.
| |
Collapse
|
13
|
Expanding the armory for treating lymphoma: Targeting redox cellular status through thioredoxin reductase inhibition. Pharmacol Res 2022; 177:106134. [DOI: 10.1016/j.phrs.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
|
14
|
Zhang H, Liu Y, Li M, Peng G, Zhu T, Sun X. The Long Non-coding RNA SNHG12 Functions as a Competing Endogenous RNA to Modulate the Progression of Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2022; 59:1073-1087. [PMID: 34839459 DOI: 10.1007/s12035-021-02648-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
Increasing research has proved that long non-coding RNAs (lncRNAs) play a critical role in a variety of biological processes. However, their functions in cerebral ischemia are still unclear. We found that the small nucleolar RNA host gene 12 (SNHG12) is a new type of lncRNA induced by ischemia/reperfusion. Here, we show that the expression of SNHG12 was upregulated in the brain tissue of mice exposed to middle cerebral artery occlusion/reperfusion (MCAO/R) and primary mouse cerebral cortex neurons treated with oxygen-glucose deprivation/reoxygenation (OGD/R). Mechanistically, SNHG12 knockdown resulted in larger infarct sizes and worse neurological scores in MCAO/R mice. Consistent with the in vivo results, SNHG12 upregulation significantly increased the viability and prevented apoptosis of neurons cultured under OGD/R conditions. In addition, we found that SNHG12 acts as a competing endogenous RNA (ceRNA) with microRNA (miR)-136-5p, thereby regulating the inhibition of its endogenous target Bcl-2. Moreover, SNHG12 was proven to target miR-136-5p, increasing Bcl-2 expression, which finally led to the activation of PI3K/AKT signaling. In conclusion, we demonstrated that SNHG12 acts as a ceRNA of miR-136-5p, thereby targets and regulates the expression of Bcl-2, which attenuates cerebral ischemia/reperfusion injury via activation of the PI3K/AKT pathway. This knowledge helps to better understand the pathophysiology of cerebral ischemic stroke and may provide new treatment options for this disease.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Liu
- Department of Pharmacy, The Third People's Hospital of Kunming, Kunming, 650000, China
| | - Meng Li
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Gongfeng Peng
- Department of Pharmacy, The Third People's Hospital of Kunming, Kunming, 650000, China
| | - Tao Zhu
- School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan, 467000, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Abbas NAT, Awad MM, Nafea OE. Silymarin in combination with chlorogenic acid protects against hepatotoxicity induced by doxorubicin in rats: possible role of adenosine monophosphate-activated protein kinase pathway. Toxicol Res (Camb) 2020; 9:771-777. [PMID: 33447361 DOI: 10.1093/toxres/tfaa080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Many xenobiotics are known to cause hepatic damage with subsequent significant morbidity and mortality. Doxorubicin (DOX) is a broad-spectrum antineoplastic agent. DOX is reported to cause hepatocellular damage. Previous studies verified the promising role of many natural antioxidant products against various models of hepatic dysfunction. We conducted this study to evaluate the possible hepatoprotective effect of silymarin (SILY) and/or chlorogenic acid (CGA) in a rat model of DOX-induced hepatotoxicity. For this purpose, we randomly divided 30 adult male rats into five equal groups as control, DOX, co-treated DOX with SILY, co-treated DOX with GCA and co-treated DOX with SILY and CGA groups. All treatments were administered every second day for 4 weeks. Our results showed that simultaneous SILY and CGA administration caused a significant decrease in hepatic apoptosis biomarkers (hepatic caspase-3 and nuclear factor-κB levels), a significant improvement in hepatic oxidant/antioxidant status (malondialdehyde and superoxide dismutase) and significant decrease in hepatic pro-inflammatory biomarkers (tumor necrosis factor-alpha and interlukin-1β) compared with DOX treatment. We concluded that adding CGA to SILY acts as a hepatoprotective agent against DOX-induced liver injury through inhibiting apoptosis biomarkers, maintaining antioxidant enzyme levels, decreasing pro-inflammatory cytokines as well as regulating liver adenosine monophosphate-activated protein kinase signaling.
Collapse
Affiliation(s)
- Noha A T Abbas
- Faculty of Medicine, Department of Clinical Pharmacology, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed M Awad
- Endocrinology Division, Faculty of Medicine, Department of Internal Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola E Nafea
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Darwiche W, Gomila C, Ouled-Haddou H, Naudot M, Doualle C, Morel P, Nguyen-Khac F, Garçon L, Marolleau JP, Ghamlouch H. Ascorbic acid (vitamin C) synergistically enhances the therapeutic effect of targeted therapy in chronic lymphocytic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:228. [PMID: 33115525 PMCID: PMC7594454 DOI: 10.1186/s13046-020-01738-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 02/17/2023]
Abstract
Background Novel, less toxic, cost-effective and safe therapeutic strategies are needed to improve treatment of chronic lymphocytic leukemia (CLL). Ascorbic acid (AA, vitamin C) has shown a potential anti-cancer therapeutic activity in several cancers. However, the anti-cancer effects of ascorbic acid on CLL B-cells have not been extensively studied. We aimed in this study to evaluate the in vitro therapeutic activity using clinically relevant conditions. Methods Primary CLL B-cells and two CLL cell lines were exposed to a dose that is clinically achievable by AA oral administration (250 μM), and cell death and potential mechanisms were assessed. The role of the protective CLL microenvironment was studied. Synergistic interaction between AA and CLL approved drugs (Ibrutinib, Idelalisib and Venetoclax) was also evaluated. Results Ascorbic acid is cytotoxic for CLL B-cells at low dose (250 μM) but spares healthy B-cells. Ascorbic-acid-induced cytotoxicity involved pro-oxidant damage through the generation of reactive oxygen species in the extracellular media and in CLL cells, and induced caspase-dependent apoptosis. We also found that AA treatment overcame the supportive survival effect provided by microenvironment including bone marrow mesenchymal stem cells, T-cell cues (CD40L + IL-4), cytokines and hypoxia. Our data suggest that resistance to AA could be mediated by the expression of the enzyme catalase in some CLL samples and by the glucose metabolite pyruvate. We also demonstrated that AA synergistically potentiates the cytotoxicity of targeted therapies used in or being developed for CLL. Conclusion These preclinical results point to AA as an adjuvant therapy with potential to further improve CLL treatments in combination with targeted therapies. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01738-0.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Cathy Gomila
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Hakim Ouled-Haddou
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Marie Naudot
- EA 7516, CHIMERE, Université de Picardie Jules Verne, Amiens, France
| | - Cécile Doualle
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France
| | - Florence Nguyen-Khac
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Sorbonne Université, APHP, Service d'Hématologie Biologique, Paris, France
| | - Loïc Garçon
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France.,Service d'hématologie Biologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Hussein Ghamlouch
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,INSERM U1170, équipe labélisée Ligue Nationale Contre le Cancer, Gustave Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex, France.
| |
Collapse
|
17
|
Oh Y, Jung HR, Min S, Kang J, Jang D, Shin S, Kim J, Lee SE, Sung CO, Lee WS, Lee C, Jeong EM, Cho SY. Targeting antioxidant enzymes enhances the therapeutic efficacy of the BCL-X L inhibitor ABT-263 in KRAS-mutant colorectal cancers. Cancer Lett 2020; 497:123-136. [PMID: 33068701 DOI: 10.1016/j.canlet.2020.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
Cancer chemotherapeutic drugs exert cytotoxic effects by modulating intracellular reactive oxygen species (ROS) levels. However, whether ROS modulates the efficacy of targeted therapeutics remains poorly understood. Previously, we reported that upregulation of the anti-apoptotic protein, BCL-XL, by KRAS activating mutations was a potential target for KRAS-mutant colorectal cancer (CRC) treatment. Here, we demonstrated that the BCL-XL targeting agent, ABT-263, increased intracellular ROS levels and targeting antioxidant pathways augmented the therapeutic efficacy of this BH3 mimetic. ABT-263 induced expression of genes associated with ROS response and increased intracellular ROS levels by enhancing mitochondrial superoxide generation. The superoxide dismutase inhibitor, 2-methoxyestradiol (2-ME), exhibited synergism with ABT-263 in KRAS-mutant CRC cell lines. This synergistic effect was attributed to the inhibition of mTOR-dependent translation of the anti-apoptotic MCL-1 protein via caspase 3-mediated cleavage of AKT and S6K. In addition, combination treatment of ABT-263 and 2-ME demonstrated a synergistic effect in in vivo patient-derived xenografts harboring KRAS mutations. Our data suggest a novel role for ROS in BH3 mimetic-based targeted therapy and provide a novel strategy for treatment of CRC patients with KRAS mutations.
Collapse
Affiliation(s)
- Yumi Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hae Rim Jung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyeon Min
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinjoo Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Won-Suk Lee
- Department of Surgery, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea; The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea.
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
18
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
19
|
Dalle-Donne I, Garavaglia ML, Colombo G, Astori E, Lionetti MC, La Porta CAM, Santucci A, Rossi R, Giustarini D, Milzani A. Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicol In Vitro 2020; 65:104818. [PMID: 32135238 DOI: 10.1016/j.tiv.2020.104818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Maria C Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| |
Collapse
|
20
|
Transporter-Mediated Mitochondrial GSH Depletion Leading to Mitochondrial Dysfunction and Rescue with αB Crystallin Peptide in RPE Cells. Antioxidants (Basel) 2020; 9:antiox9050411. [PMID: 32408520 PMCID: PMC7278883 DOI: 10.3390/antiox9050411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial glutathione (mGSH) is critical for cell survival. We recently reported the localization of OGC (SLC25A11) and DIC (SLC25A10) in hRPE. Herein, we investigated the suppression of OGC and DIC and the effect of αB crystallin chaperone peptide co-treatment on RPE cell death and mitochondrial function. Non-polarized and polarized human RPE were co-treated for 24 h with phenyl succinic acid (PS, 5 mM) or butyl malonic acid (BM, 5 mM) with or without αB cry peptide (75 µg/mL). mGSH levels, mitochondrial bioenergetics, and ETC proteins were analyzed. The effect of mGSH depletion on cell death and barrier function was determined in polarized RPE co-treated with PS, OGC siRNA or BM and αB cry peptide. Inhibition of OGC and DIC resulted in a significant decrease in mGSH and increased apoptosis. mGSH depletion significantly decreased mitochondrial respiration, ATP production, and altered ETC protein expression. αB cry peptide restored mGSH, attenuated apoptosis, upregulated ETC proteins, and improved mitochondrial bioenergetics and biogenesis. mGSH transporters exhibited differential polarized localization: DIC (apical) and OGC (apical and basal). Inhibition of mGSH transport compromised barrier function which was partially restored by αB cry peptide. Our findings suggest mGSH augmentation by its transporters may be a valuable approach in AMD therapy.
Collapse
|
21
|
Chong SJF, Marchi S, Petroni G, Kroemer G, Galluzzi L, Pervaiz S. Noncanonical Cell Fate Regulation by Bcl-2 Proteins. Trends Cell Biol 2020; 30:537-555. [PMID: 32307222 DOI: 10.1016/j.tcb.2020.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Bcl-2 proteins are widely known as key controllers of mitochondrial outer membrane permeabilization, arguably the most important step of intrinsic apoptosis. Accumulating evidence indicate that most, if not all, members of the Bcl-2 protein family also mediate a number of apoptosis-unrelated functions. Intriguingly, many of these functions ultimately impinge on cell fate decisions via apoptosis-dependent or -independent mechanisms, delineating a complex network through which Bcl-2 family members regulate cell survival and death. Here, we critically discuss the mechanisms through which Bcl-2 proteins influence cell fate as they regulate autophagy, cellular senescence, inflammation, bioenergetic metabolism, Ca2+ fluxes, and redox homeostasis.
Collapse
Affiliation(s)
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Université de Paris, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Université de Paris, Paris, France; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Shazib Pervaiz
- Université de Paris, Paris, France; Department of Physiology, YLL School of Medicine and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
22
|
Güller P, Karaman M, Güller U, Aksoy M, Küfrevioğlu Öİ. A study on the effects of inhibition mechanism of curcumin, quercetin, and resveratrol on human glutathione reductase through in vitro and in silico approaches. J Biomol Struct Dyn 2020; 39:1744-1753. [DOI: 10.1080/07391102.2020.1738962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pınar Güller
- Chemistry Department, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Muhammet Karaman
- Molecular Biology and Genetics Department, Faculty of Arts and Science, Kilis 7 Aralık University, Kilis, Turkey
| | - Uğur Güller
- Food Engineering Department, Faculty of Engineering, Iğdır University, IĞDIR, Turkey
| | - Mine Aksoy
- Chemistry Department, Faculty of Science, Atatürk University, Erzurum, Turkey
| | | |
Collapse
|
23
|
Giuliani A, Cirilli I, Prattichizzo F, Mensà E, Fulgenzi G, Sabbatinelli J, Graciotti L, Olivieri F, Procopio AD, Tiano L, Rippo MR. The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging (Albany NY) 2019; 10:2855-2873. [PMID: 30348904 PMCID: PMC6224225 DOI: 10.18632/aging.101591] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Abstract
During senescence, cells undergo distinctive biochemical and morphological changes and become dysfunctional. MiRNAs are involved in the senescence process and specific miRNAs can localize to mitochondria (mitomiRs). We hypothesized that part of the typical alterations of senescence may depends on mitomiRs deregulation. Therefore, we thoroughly explored the phenotype of human endothelial cells undergoing replicative senescence (sHUVECs) and observed elongated/branched mitochondria, accumulation of autophagic vacuoles (AVs), increased ROS and IL-1β production and reduced expression of Bcl-2 compared to younger cells (yHUVECs). Despite these pro-apoptotic features, sHUVECs are more resistant to serum deprivation, conceivably due to development of pro-survival strategies such as upregulation of Bcl-xL and Survivin. We demonstrate that mitomiR-181a, -34a, and -146a, are overexpressed and localize to mitochondria in sHUVECs compared with yHUVECs and that they: i) down-regulate Bcl-2, ii) induce permeability transition pore opening and activation of caspase-1 and 3, iii) affect sensitivity to apoptosis and iv) promote the conversion of LC3-I to LC3-II. Overall, we document for the first time that some mitomiRs can act as mediators of the multiple but functionally linked biochemical and morphological changes that characterize aging cells and that they can promote different cellular outcomes according to the senescence status of the cell.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Emanuela Mensà
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD 21702, USA
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Mattes K, Vellenga E, Schepers H. Differential redox-regulation and mitochondrial dynamics in normal and leukemic hematopoietic stem cells: A potential window for leukemia therapy. Crit Rev Oncol Hematol 2019; 144:102814. [PMID: 31593878 DOI: 10.1016/j.critrevonc.2019.102814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The prognosis for many patients with acute myeloid leukemia (AML) is poor, mainly due to disease relapse driven by leukemia stem cells (LSCs). Recent studies have highlighted the unique metabolic properties of LSCs, which might represent opportunities for LSC-selective targeting. LSCs characteristically have low levels of reactive oxygen species (ROS), which apparently result from a combination of low mitochondrial activity and high activity of ROS-removing pathways such as autophagy. Due to this low activity, LSCs are highly dependent on mitochondrial regulatory mechanisms. These include the anti-apoptotic protein BCL-2, which also has crucial roles in regulating the mitochondrial membrane potential, and proteins involved in mitophagy. Here we review the different pathways that impact mitochondrial activity and redox-regulation, and highlight their relevance for the functionality of both HSCs and LSCs. Additionally, novel AML therapy strategies that are based on interference with those pathways, including the promising BCL-2 inhibitor Venetoclax, are summarized.
Collapse
Affiliation(s)
- Katharina Mattes
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hein Schepers
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
25
|
Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia 2019; 34:115-127. [PMID: 31300746 DOI: 10.1038/s41375-019-0513-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/15/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental non-malignant cells for survival. We compared the transcriptomes of primary CLL cells cocultured or not with protective bone marrow stromal cells (BMSCs) and found that oxidative phosphorylation, mitochondrial function, and hypoxic signaling undergo most significant dysregulation in non-protected CLL cells, with the changes peaking at 6-8 h, directly before induction of apoptosis. A subset of CLL patients displayed a gene expression signature resembling that of cocultured CLL cells and had significantly worse progression-free and overall survival. To identify drugs blocking BMSC-mediated support, we compared the relevant transcriptomic changes to the Connectivity Map database. Correlation was found with the transcriptomic signatures of the cardiac glycoside ouabain and of the ipecac alkaloids emetine and cephaeline. These compounds were highly active against protected primary CLL cells (relative IC50's 287, 190, and 35 nM, respectively) and acted by repressing HIF-1α and disturbing intracellular redox homeostasis. We tested emetine in a murine model of CLL and observed decreased CLL cells in peripheral blood, spleen, and bone marrow, recovery of hematological parameters and doubling of median survival (31.5 vs. 15 days, P = 0.0001). Pathways regulating redox homeostasis are thus therapeutically targetable mediators of microenvironmental support in CLL cells.
Collapse
|
26
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
27
|
Liraglutide and its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer's Disease and Cerebral Ischemic Events. Int J Mol Sci 2019; 20:ijms20051050. [PMID: 30823403 PMCID: PMC6429395 DOI: 10.3390/ijms20051050] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Liraglutide is a GLP-1 analog (glucagon like peptide-1) used primarily in the treatment of diabetes mellitus type 2 (DM2) and obesity. The literature starts to suggest that liraglutide may reduce the effects of ischemic stroke by activating anti-apoptotic pathways, as well as limiting the harmful effects of free radicals. The GLP-1R expression has been reported in the cerebral cortex, especially occipital and frontal lobes, the hypothalamus, and the thalamus. Liraglutide reduced the area of ischemia caused by MCAO (middle cerebral artery occlusion), limited neurological deficits, decreased hyperglycemia caused by stress, and presented anti-apoptotic effects by increasing the expression of Bcl-2 and Bcl-xl proteins and reduction of Bax and Bad protein expression. The pharmaceutical managed to decrease concentrations of proapoptotic factors, such as NF-κB (Nuclear Factor-kappa β), ICAM-1 (Intercellular Adhesion Molecule 1), caspase-3, and reduced the level of TUNEL-positive cells. Liraglutide was able to reduce the level of free radicals by decreasing the level of malondialdehyde (MDA), and increasing the superoxide dismutase level (SOD), glutathione (GSH), and catalase. Liraglutide may affect the neurovascular unit causing its remodeling, which seems to be crucial for recovery after stroke. Liraglutide may stabilize atherosclerotic plaque, as well as counteract its early formation and further development. Liraglutide, through its binding to GLP-1R (glucagon like peptide-1 receptor) and consequent activation of PI3K/MAPK (Phosphoinositide 3-kinase/mitogen associated protein kinase) dependent pathways, may have a positive impact on Aβ (amyloid beta) trafficking and clearance by increasing the presence of Aβ transporters in cerebrospinal fluid. Liraglutide seems to affect tau pathology. It is possible that liraglutide may have some stem cell stimulating properties. The effects may be connected with PKA (phosphorylase kinase A) activation. This paper presents potential mechanisms of liraglutide activity in conditions connected with neuronal damage, with special emphasis on Alzheimer's disease and cerebral ischemia.
Collapse
|
28
|
Wu Y, Gu W, Xu ZP. Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform. Nanomedicine (Lond) 2019; 14:77-92. [DOI: 10.2217/nnm-2018-0252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Melanoma, the most life-threatening skin cancer, requires more effective therapies. Methodology: A new folic acid (FA) receptor-targeted lipid-coated calcium carbonate/phosphate (LCCP) nanoparticle was synthesized, incorporating two often-used therapeutics, cell death siRNA and α-tocopheryl succinate. Results: The nanoparticles were spherical, with an average size of 40 nm. The nanoparticles exhibited a high gene/drug loading efficiency (60%), with folic acid-enhanced cellular uptake. The nanoparticles with both therapeutics enhanced inhibition of B16F0 melanoma cell growth, showing a moderate synergistic effect. The mechanism of the inhibition is associated with induction of cell apoptosis and cell cycle arrest at G1 phase. Conclusion: Our data indicate that lipid-coated calcium carbonate/phosphate nanoparticles are a potential platform for targeted therapy for melanoma.
Collapse
Affiliation(s)
- Yilun Wu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
29
|
Lau YT, Santos B, Barbosa M, Pales Espinosa E, Allam B. Regulation of apoptosis-related genes during interactions between oyster hemocytes and the alveolate parasite Perkinsus marinus. FISH & SHELLFISH IMMUNOLOGY 2018; 83:180-189. [PMID: 30195907 DOI: 10.1016/j.fsi.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
The alveolate Perkinsus marinus is the most devastating parasite of the eastern oyster Crassostrea virginica. The parasite is readily phagocytosed by oyster hemocytes, but instead of intracellular killing and digestion, P. marinus can survive phagocytosis and divide in host cells. This intracellular parasitism is accompanied by a regulation of host cell apoptosis. This study was designed to gain a better understanding of the molecular mechanisms of apoptosis regulation in oyster hemocytes following exposure to P. marinus. Regulation of apoptosis-related genes in C. virginica, and apoptosis-regulatory genes in P. marinus, were investigated via qPCR to assess the possible pathways involved during these interactions. In vitro experiments were also carried out to evaluate the effect of chemical inhibitors of P. marinus antioxidant processes on hemocyte apoptosis. Results indicate the involvement of the mitochondrial pathway (Bcl-2, anamorsin) of apoptosis in C. virginica exposed to P. marinus. In parallel, the antioxidants peroxiredoxin and superoxide dismutase were regulated in P. marinus exposed to C. virginica hemocytes suggesting that apoptosis regulation in infected oysters may be mediated by anti-oxidative processes. Chemical inhibition of P. marinus superoxide dismutase resulted in a marked increase of reactive oxygen species production and apoptosis in infected hemocytes. The implication of oxygen-dependent apoptosis during P. marinus infection and disease development in C. virginica is discussed.
Collapse
Affiliation(s)
- Yuk-Ting Lau
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bianca Santos
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
30
|
Pohl SÖG, Agostino M, Dharmarajan A, Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal 2018; 29:1215-1236. [PMID: 29304561 DOI: 10.1089/ars.2017.7414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Mark Agostino
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,3 Curtin Institute for Computation, Curtin University , Perth, Western Australia
| | - Arun Dharmarajan
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Shazib Pervaiz
- 2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore
| |
Collapse
|
31
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
32
|
Rodríguez-González J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Role of glutathione, ROS, and Bcl-xL in the inhibition of apoptosis of monocyte-derived dendritic cells by Leishmania mexicana promastigotes. Parasitol Res 2018; 117:1225-1235. [PMID: 29476339 DOI: 10.1007/s00436-018-5804-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are one of the principal host cells of the obligate intracellular parasite Leishmania that can survive and reproduce within cells due to the ability to regulate different cellular events, including apoptosis. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously reported that Leishmania mexicana promastigotes and amastigotes inhibit camptothecin-induced apoptosis of monocyte-derived dendritic cells (moDCs) through the downregulation of p38 and JNK phosphorylation. The upregulation of glutathione (GSH), the most important regulator of reactive oxygen species (ROS) concentration, has proven to protect cells from apoptosis through the inhibition of JNK1. Another mechanism employed by cells for the protection of apoptosis is the expression of anti-apoptotic proteins of the Bcl-2 family. The aim of this study was to determine if GSH, ROS, and Bcl-xL participate in the inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes. GSH quantification assays showed that camptothecin and BSO (an inhibitor of glutathione synthesis) strongly decreased intracellular GSH concentration in moDC, while infection with L. mexicana promastigotes had no effect in the level of GSH. On the other hand, infection with L. mexicana promastigotes of BSO- and camptothecin-treated moDC diminished the concentration of ROS and induced the expression of the anti-apoptotic protein Bcl-xL. Our findings suggest that inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes is preferentially regulated by the expression of anti-apoptotic proteins of the Bcl-2 family rather than by the redox status of the cell.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P, 14080, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Facultad de Medicina, Unidad de Posgrado, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Arturo A Wilkins-Rodríguez
- Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P, 14080, Ciudad de México, México
| | - Laila Gutiérrez-Kobeh
- Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P, 14080, Ciudad de México, México.
| |
Collapse
|
33
|
Hatem E, El Banna N, Huang ME. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxid Redox Signal 2017; 27:1217-1234. [PMID: 28537430 DOI: 10.1089/ars.2017.7134] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Glutathione is the most abundant antioxidant molecule in living organisms and has multiple functions. Intracellular glutathione homeostasis, through its synthesis, consumption, and degradation, is an intricately balanced process. Glutathione levels are often high in tumor cells before treatment, and there is a strong correlation between elevated levels of intracellular glutathione/sustained glutathione-mediated redox activity and resistance to pro-oxidant anticancer therapy. Recent Advances: Ample evidence demonstrates that glutathione and glutathione-based systems are particularly relevant in cancer initiation, progression, and the development of anticancer drug resistance. CRITICAL ISSUES This review highlights the multifaceted roles of glutathione and glutathione-based systems in carcinogenesis, anticancer drug resistance, and clinical applications. FUTURE DIRECTIONS The evidence summarized here underscores the important role played by glutathione and the glutathione-based systems in carcinogenesis and anticancer drug resistance. Future studies should address mechanistic questions regarding the distinct roles of glutathione in different stages of cancer development and cancer cell death. It will be important to study how metabolic alterations in cancer cells can influence glutathione homeostasis. Sensitive approaches to monitor glutathione dynamics in subcellular compartments will be an indispensible step. Therapeutic perspectives should focus on mechanism-based rational drug combinations that are directed against multiple redox targets using effective, specific, and clinically safe inhibitors. This new strategy is expected to produce a synergistic effect, prevent drug resistance, and diminish doses of single drugs. Antioxid. Redox Signal. 27, 1217-1234.
Collapse
Affiliation(s)
- Elie Hatem
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Nadine El Banna
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Meng-Er Huang
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
34
|
Pan Y, Wang N, Xia P, Wang E, Guo Q, Ye Z. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway. Exp Neurol 2017; 300:149-166. [PMID: 29129468 DOI: 10.1016/j.expneurol.2017.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Although the neuroprotective effects of Rac1 inhibition have been reported in various cerebral ischemic models, the molecular mechanisms of action have not yet been fully elucidated. In this study, we investigated whether the inhibition of Rac1 provided neuroprotection in a diabetic rat model of focal cerebral ischemia and hyperglycemia-exposed PC-12 cells. Intracerebroventricular administration of lentivirus expressing the Rac1 small hairpin RNA (shRNA) and specific Rac1 inhibitor NSC23766 not only decreased the infarct volumes and improved neurologic deficits with a correlated significant activation of mitochondrial DNA specific proteins, such as OGG1 and POLG, but also elevated Bcl-2 S70 phosphorylation in mitochondria. Furthermore, the levels of p-PI3K, p-Akt and p-mTOR increased, while 8-OHdG, ROS production and Bcl-2/Rac1 complex formation in mitochondria reduced in both Rac1-shRNA- and NSC23766-treated rats. Moreover, to confirm our in vivo observations, inhibition of Rac1 activity by NSC23766 suppressed the interactions between Bcl-2 and Rac1 in the mitochondria of PC-12 cells cultured in high glucose conditions and protected PC-12 cells from high glucose-induced neurotoxicity. More importantly, these beneficial effects of Rac1 inhibition were abolished by PI3K inhibitor LY294002. In contrast to NSC23766 treatment, LY294002 had little effect on the decrement of p-PTEN level. Taken together, these findings revealed novel neuroprotective roles of Rac1 inhibition against cerebral ischemic reperfusion injury in vivo and high glucose-induced neurotoxicity in PC-12 cells in vitro, by reducing Bcl-2/Rac1 complex formation in mitochondria through the activation of PI3K/Akt/mTOR survival pathway.
Collapse
Affiliation(s)
- Yundan Pan
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Na Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Pingping Xia
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - E Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China.
| |
Collapse
|
35
|
Sutcliffe TC, Winter AN, Punessen NC, Linseman DA. Procyanidin B2 Protects Neurons from Oxidative, Nitrosative, and Excitotoxic Stress. Antioxidants (Basel) 2017; 6:E77. [PMID: 29027929 PMCID: PMC5745487 DOI: 10.3390/antiox6040077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
The aberrant generation of oxygen and nitrogen free radicals can cause severe damage to key cellular components, resulting in cell apoptosis. Similarly, excitotoxicity leads to protease activation and mitochondrial dysfunction, which subsequently causes cell death. Each of these factors play critical roles in the neuronal cell death underlying various neurodegenerative diseases. Procyanidin B2 (PB2) is a naturally occurring polyphenolic compound found in high concentrations in cocoa, apples, and grapes. Here, we examine the neuroprotective effects of PB2 in primary cultures of rat cerebellar granule neurons (CGNs) exposed to various stressors. CGNs were pre-incubated with PB2 and then neuronal stress was induced as described below. Mitochondrial oxidative stress was triggered with HA14-1, an inhibitor of the pro-survival Bcl-2 protein which induces glutathione-sensitive apoptosis. Glutamate and glycine were used to induce excitotoxicity. Sodium nitroprusside, a nitric oxide generating compound, was used to induce nitrosative stress. We observed significant dose-dependent protection of CGNs with PB2 for all of the above insults, with the greatest neuroprotective effect being observed under conditions of nitrosative stress. Intriguingly, the neuroprotective effect of PB2 against nitric oxide was superoxide-dependent, as we have recently shown for other catechol antioxidants. Finally, we induced neuronal stress through the removal of depolarizing extracellular potassium and serum (5K conditions), which is a classical model of intrinsic apoptosis in CGNs. PB2 did not display any significant protection against 5K-induced apoptosis at any concentration tested. We conclude that PB2 offers neuronal protection principally as an antioxidant by scavenging reactive oxygen and nitrogen species instead of through modulation of pro-survival cell signaling pathways. These findings suggest that PB2 may be an effective neuroprotective agent for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Taylor C Sutcliffe
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Aimee N Winter
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Noelle C Punessen
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
36
|
Othman AI, El-Sawi MR, El-Missiry MA, Abukhalil MH. Epigallocatechin-3-gallate protects against diabetic cardiomyopathy through modulating the cardiometabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother 2017; 94:362-373. [DOI: 10.1016/j.biopha.2017.07.129] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
|
37
|
A Cystine-Rich Whey Supplement (Immunocal®) Provides Neuroprotection from Diverse Oxidative Stress-Inducing Agents In Vitro by Preserving Cellular Glutathione. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3103272. [PMID: 28894506 PMCID: PMC5574309 DOI: 10.1155/2017/3103272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022]
Abstract
Oxidative stress is a principal mechanism underlying the pathophysiology of neurodegeneration. Therefore, nutritional enhancement of endogenous antioxidant defenses may represent a viable treatment option. We investigated the neuroprotective properties of a unique whey protein supplement (Immunocal®) that provides an essential precursor (cystine) for synthesis of the endogenous antioxidant, glutathione (GSH). Primary cultures of rat cerebellar granule neurons (CGNs), NSC34 motor neuronal cells, or HT22 hippocampal cells were preincubated in medium containing Immunocal and then subsequently treated with agents known to induce oxidative stress. Immunocal protected CGNs against neurotoxicity induced by the Bcl-2 inhibitor, HA14-1, the nitric oxide donor, sodium nitroprusside, CuCl2, and AlCl3. Immunocal also significantly reduced NSC34 cell death due to either H2O2 or glutamate and mitigated toxicity in HT22 cells overexpressing β-amyloid1-42. The neuroprotective effects of Immunocal were blocked by inhibition of γ-glutamyl-cysteine ligase, demonstrating dependence on de novo GSH synthesis. These findings indicate that sustaining GSH with Immunocal significantly protects neurons against diverse inducers of oxidative stress. Thus, Immunocal is a nutritional supplement worthy of testing in preclinical animal models of neurodegeneration and in future clinical trials of patients afflicted by these diseases.
Collapse
|
38
|
Wang Y, Zhang X, Xu C, Zhang G, Zhang Z, Yu P, Shan L, Sun Y, Wang Y. Synthesis and Biological Evaluation of Danshensu and Tetramethylpyrazine Conjugates as Cardioprotective Agents. Chem Pharm Bull (Tokyo) 2017; 65:381-388. [PMID: 28381679 DOI: 10.1248/cpb.c16-00839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia is a primary cause of sudden death worldwide. Numerous active ingredients of traditional Chinese medicines including danshensu (DSS) and tetramethylpyrazine (TMP) have been widely used for the treatment of myocardial ischemia. To enhance their therapeutic efficacy and improve their drugability, in this work, we designed new DSS and TMP conjugates. Their water solubility and protective effects were studied in vitro and in experimental animal models. The new compounds demonstrated higher activities than the positive control agents acetylated danshensu and tetramethylpyrazine conjugate (ADTM) and salvianolic acid B (SAB) in preventing cells from oxidative insult. Among the new compounds, 14, bearing two glycine moieties, was more water soluble. In addition, compound 14 was much more potent in preventing cells from oxidative injury, at least 10- and 20-fold as potent as ADTM and SAB, respectively. The protective effects of compound 14 may be attributed to its anti-radical activity and anti-apoptotic activity. These results suggest that compound 14 is a promising candidate for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Yingfei Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
N-Adamantyl-4-Methylthiazol-2-Amine Attenuates Glutamate-Induced Oxidative Stress and Inflammation in the Brain. Neurotox Res 2017; 32:107-120. [PMID: 28285348 DOI: 10.1007/s12640-017-9717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
In this study, we explored the possible mechanisms underlying the neuroprotective and anti-oxidative effects of N-adamantyl-4-methylthiazol-2-amine (KHG26693) against in vivo glutamate-induced toxicity in the rat cerebral cortex. Our results showed that pretreatment with KHG26693 significantly attenuated glutamate-induced elevation of lipid peroxidation, tumor necrosis factor-α, interferon gamma, IFN-γ, interleukin-1β, nitric oxide, reactive oxygen species, NADPH oxidase, caspase-3, calpain activity, and Bax. Furthermore, KHG26693 pretreatment attenuated key antioxidant parameters such as levels of superoxide dismutase, catalase, glutathione, and glutathione reductase. KHG26693 also attenuated the protein levels of inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate cysteine ligase catalytic subunit caused by glutamate toxicity. Finally, KHG26693 mitigated glutamate-induced changes in mitochondrial ATP level and cytochrome oxidase c. Thus, KHG26693 functions as neuroprotective and anti-oxidative agent against glutamate-induced toxicity through its antioxidant and anti-inflammatory activities in rat brain at least in part.
Collapse
|
40
|
Banerjee K, Das S, Majumder S, Majumdar S, Biswas J, Choudhuri SK. Modulation of cell death in human colorectal and breast cancer cells through a manganese chelate by involving GSH with intracellular p53 status. Mol Cell Biochem 2016; 427:35-58. [PMID: 28012015 DOI: 10.1007/s11010-016-2896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Chemotherapy is central to current treatment modality especially for advanced and metastatic colorectal and breast cancers. Targeting the key molecular events of the neoplastic cells may open a possibility to treat cancer. Although some improvements in understanding of colorectal and breast cancer treatment have been recorded, the involvement of glutathione (GSH) and dependency of p53 status on the modulation of GSH-mediated treatment efficacy have been largely overlooked. Herein, we tried to decipher the underlying mechanism of the action of Mn-N-(2-hydroxyacetophenone) glycinate (MnNG) against differential p53 status bearing Hct116, MCF-7, and MDA-MB-468 cells on the backdrop of intracellular GSH level and reveal the role of p53 status in modulating GSH-dependant abrogation of MnNG-induced apoptosis in these cancer cells. Present study discloses that MnNG targets specifically wild-type-p53 expressing Hct116 and MCF-7 cells by significantly depleting both cytosolic, mitochondrial GSH, and modulating nuclear GSH through Glutathione reductase and Glutamate-cysteine ligase depletion that may in turn induce p53-mediated intrinsic apoptosis in them. Thus GSH addition abrogates p53-mediated apoptosis in wild-type-p53 expressing cells. GSH addition also overrides MnNG-induced modulation of phase II detoxifying parameters in them. However, GSH addition partially replenishes the down-regulated or modulated GSH pool in cytosol, mitochondria, and nucleus, and relatively abrogates MnNG-induced intrinsic apoptosis in p53-mutated MDA-MB-468 cells. On the contrary, although MnNG induces significant cell death in p53-null Hct116 cells, GSH addition fails to negate MnNG-induced cell death. Thus p53 status with intracellular GSH is critical for the modulation of MnNG-induced apoptosis.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Satyajit Das
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Jaydip Biswas
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Soumitra Kumar Choudhuri
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
41
|
Yee YH, Chong SJF, Pervaiz S. The anti-oxidant and pro-oxidant dichotomy of Bcl-2. Biol Chem 2016; 397:585-93. [DOI: 10.1515/hsz-2016-0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Across a wide spectrum of cellular redox status, there emerges a dichotomy of responses in terms of cell survival/proliferation and cell death. Of note, there is emerging evidence that the anti-apoptotic protein, Bcl-2, in addition to its conventional activity of titrating the pro-apoptotic effects of proteins such as Bax and Bak at the mitochondria, also impacts cell fate decisions via modulating cellular redox metabolism. In this regard, both pro- and anti-oxidant effects of Bcl-2 overexpression have been described under different conditions and cellular contexts. In this short review, we attempt to analyze existing observations and present a probable explanation for the seemingly conflicting redox regulating activity of Bcl-2 from the standpoint of its pro-survival function. The consequential effect(s) of the dual redox functions of Bcl-2 are also discussed, particularly from the viewpoint of developing novel therapeutic strategies against cancers rendered refractory due to the aberrant expression of Bcl-2.
Collapse
|
42
|
The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci Rep 2016; 6:26859. [PMID: 27240461 PMCID: PMC4886514 DOI: 10.1038/srep26859] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia.
Collapse
|
43
|
Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH. Glutathione--linking cell proliferation to oxidative stress. Free Radic Biol Med 2015; 89:1154-64. [PMID: 26546102 DOI: 10.1016/j.freeradbiomed.2015.09.023] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. RECENT ADVANCES The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. CRITICAL ISSUES The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. FUTURE DIRECTIONS The nuclear GSH pool provides an appropriate redox environment for essential nuclear functions. Future work will focus on how this essential thiol interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus are keep steps to unravelling the complexities of nuclear redox controls.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- CEBAS-CSIC, Department of Plant Breeding, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain
| | - Ambra de Simone
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Guy Kiddle
- Lumora Ltd, Bartholomews Walk, Cambridge Business Park, Cambridge CB7 4EA, UK
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
44
|
Protective Mechanisms of Flavonoids in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:314560. [PMID: 26576219 PMCID: PMC4630416 DOI: 10.1155/2015/314560] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is a chronic, debilitating neurodegenerative movement disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta region in human midbrain. To date, oxidative stress is the well accepted concept in the etiology and progression of Parkinson's disease. Hence, the therapeutic agent is targeted against suppressing and alleviating the oxidative stress-induced cellular damage. Within the past decades, an explosion of research discoveries has reported on the protective mechanisms of flavonoids, which are plant-based polyphenols, in the treatment of neurodegenerative disease using both in vitro and in vivo models. In this paper, we have reviewed the literature on the neuroprotective mechanisms of flavonoids in protecting the dopaminergic neurons hence reducing the symptoms of this movement disorder. The mechanism reviewed includes effect of flavonoids in activation of endogenous antioxidant enzymes, suppressing the lipid peroxidation, inhibition of inflammatory mediators, flavonoids as a mitochondrial target therapy, and modulation of gene expression in neuronal cells.
Collapse
|
45
|
Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2015; 79:1562-83. [PMID: 25749165 DOI: 10.1134/s0006297914130082] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia, Moscow, 117198, Russia.
| | | | | |
Collapse
|
46
|
Joniova J, Misuth M, Sureau F, Miskovsky P, Nadova Z. Effect of PKCα expression on Bcl-2 phosphorylation and cell death by hypericin. Apoptosis 2015; 19:1779-92. [PMID: 25300800 DOI: 10.1007/s10495-014-1043-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to explain the contribution of the protein kinase Cα (PKCα) in apoptosis induced by photo-activation of hypericin (Hyp), a small interfering RNA was used for post-transcriptional silencing of pkcα gene expression. We have evaluated the influence of Hyp photo-activation on cell death in non-transfected and transfected (PKCα(-)) human glioma cells (U-87 MG). No significant differences were detected in cell survival between non-transfected and transfected PKCα(-) cells. However, the type of cell death was notably affected by silencing the pkcα gene. Photo-activation of Hyp strongly induced apoptosis in non-transfected cells, but the level of necrotic cells in transfected PKCα(-) cells increased significantly. The differences in cell death after Hyp photo-activation are demonstrated by changes in: (i) reactive oxygen species production, (ii) Bcl-2 phosphorylation on Ser70 (pBcl-2(Ser70)), (iii) cellular distributions of pBcl-2(Ser70) and (iv) cellular distribution of endogenous anti-oxidant glutathione and its co-localization with mitochondria. In summary, we suggest that post-transcriptional silencing of the pkcα gene and the related decrease of PKCα level considerably affects the anti-apoptotic function and the anti-oxidant function of Bcl-2. This implies that PKCα, as Bcl-2 kinase, indirectly protects U-87 MG cells against oxidative stress and subsequent cell death.
Collapse
Affiliation(s)
- Jaroslava Joniova
- Department of Biophysics, Faculty of Science, University of Pavol Jozef Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | | | | | | | | |
Collapse
|
47
|
Hua K, Sheng X, Li TT, Wang LN, Zhang YH, Huang ZJ, Ji H. The edaravone and 3-n-butylphthalide ring-opening derivative 10b effectively attenuates cerebral ischemia injury in rats. Acta Pharmacol Sin 2015; 36:917-27. [PMID: 26073328 DOI: 10.1038/aps.2015.31] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
Abstract
AIM Compound 10b is a hybrid molecule of edaravone and a ring-opening derivative of 3-n-butylphthalide (NBP). The aim of this study was to examine the effects of compound 10b on brain damage in rats after focal cerebral ischemia. METHODS SD rats were subjected to 2-h-middle cerebral artery occlusion (MCAO). At the onset of reperfusion, the rats were orally treated with NBP (60 mg/kg), edaravone (3 mg/kg), NBP (60 mg/kg)+edaravone (3 mg/kg), or compound 10b (70, 140 mg/kg). The infarct volume, motor behavior deficits, brain water content, histopathological alterations, and activity of GSH, SOD, and MDA were analyzed 24 h after reperfusion. The levels of relevant proteins in the ipsilateral striatum were examined using immunoblotting. RESULTS Administration of compound 10b (70 or 140 mg/kg) significantly reduced the infarct volume and neurological deficits in MCAO rats. The neuroprotective effects of compound 10b were more pronounced compared to NBP, edaravone or NBP+edaravone. Furthermore, compound 10b significantly upregulated the protein levels of the cytoprotective molecules Bcl-2, HO-1, Nrf2, Trx, P-NF-κB p65, and IκB-α, while decreasing the expression of Bax, caspase 3, caspase 9, Txnip, NF-κB p65, and P-IκB-α. CONCLUSION Oral administration of compound 10b effectively attenuates rat cerebral ischemia injury.
Collapse
|
48
|
Abstract
It is becoming increasingly clear that neurological diseases are multi-factorial involving disruptions in multiple cellular systems. Thus, while each disease has its own initiating mechanisms and pathologies, certain common pathways appear to be involved in most, if not all, neurological diseases. Thus, it is unlikely that modulating only a single factor will be effective at either preventing disease development or slowing disease progression. A better approach is to identify small (< 900 daltons) molecules that have multiple biological activities relevant to the maintenance of brain function. We have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. This wide range of actions suggests that fisetin has the ability to reduce the impact of age-related neurological diseases on brain function.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037,
| |
Collapse
|
49
|
Hegazy HG, Ali EHA, Elgoly AHM. Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 2014; 71:173-80. [PMID: 25461396 DOI: 10.1016/j.cyto.2014.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/28/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023]
Abstract
Butyl paraben is a preservative used in food, drugs and cosmetics. Neurotoxic effect was reported recently beside the potential estrogenic activity of parabens. There is controversy as to the potential harmful effects of butyl parabens, which are suspected to contribute to autism and learning disabilities. The purpose of this study was to examine the similarities between paraben intoxication signs in the rat brain and brain markers in an autistic like rat model. This study provides evidence of many parallels between the two, including (1) oxidative stress, (2) decreased reduced glutathione levels and elevated oxidised glutathione, (3) mitochondrial dysfunction, and (4) neuroinflammation and increased pro-inflammatory cytokine levels in the brain (tumour necrosis factor-alpha, interleukin-1-beta, and interleukin-6). (5) Increased protein oxidation reported by a significant increase in 3-nitrotyrosine (3-NT)/tyrosine ratio. (6) A marked disturbance was found in the production of energy carriers (AMP, ATP and AMP/ATP ratio) in comparison with the control. The evidence suggests that paraben may, to some extent, either cause or contribute to the brain physiopathology in ASDs or pathogens that produce the brain pathology observed in the diagnosed rat model of ASD.
Collapse
Affiliation(s)
- Hoda G Hegazy
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Amany H Mahmoud Elgoly
- Hormone Evaluation Department, National Organization for Drug Control And Research (NODCAR), Giza, Egypt
| |
Collapse
|
50
|
Subramanian M, Thorp E, Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ Res 2014; 116:e13-24. [PMID: 25348165 DOI: 10.1161/circresaha.116.304794] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Granulocyte macrophage colony-stimulating factor (GM-CSF, Csf2) is a growth factor for myeloid-lineage cells that has been implicated in the pathogenesis of atherosclerosis and other chronic inflammatory diseases. However, the role of GM-CSF in advanced atherosclerotic plaque progression, the process that gives rise to clinically dangerous plaques, is unknown. OBJECTIVE To understand the role of GM-CSF in advanced atherosclerotic plaque progression. METHODS AND RESULTS Ldlr(-/-) mice and Csf2(-/-)Ldlr(-/-) mice were fed a Western-type diet for 12 weeks, and then parameters of advanced plaque progression in the aortic root were quantified. Lesions from the GM-CSF-deficient mice showed a substantial decrease in 2 key hallmarks of advanced atherosclerosis, lesional macrophage apoptosis and plaque necrosis, which indicates that GM-CSF promotes plaque progression. Based on a combination of in vitro and in vivo studies, we show that the mechanism involves GM-CSF-mediated production of interleukin-23, which increases apoptosis susceptibility in macrophages by promoting proteasomal degradation of the cell survival protein Bcl-2 (B-cell lymphoma 2) and by increasing oxidative stress. CONCLUSIONS In low-density lipoprotein-driven atherosclerosis in mice, GM-CSF promotes advanced plaque progression by increasing macrophage apoptosis susceptibility. This action of GM-CSF is mediated by its interleukin-23-inducing activity rather than its role as a growth factor.
Collapse
Affiliation(s)
- Manikandan Subramanian
- From the Departments of Medicine (M.S., I.T.), Pathology and Cell Biology (I.T.), and Physiology and Cellular Biophysics (I.T.), Columbia University, New York, NY; and Department of Pathology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (E.T.)
| | - Edward Thorp
- From the Departments of Medicine (M.S., I.T.), Pathology and Cell Biology (I.T.), and Physiology and Cellular Biophysics (I.T.), Columbia University, New York, NY; and Department of Pathology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (E.T.)
| | - Ira Tabas
- From the Departments of Medicine (M.S., I.T.), Pathology and Cell Biology (I.T.), and Physiology and Cellular Biophysics (I.T.), Columbia University, New York, NY; and Department of Pathology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (E.T.).
| |
Collapse
|