1
|
Pays E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024; 13:1738. [PMID: 39451256 PMCID: PMC11506758 DOI: 10.3390/cells13201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Apolipoprotein-L1 (APOL1) is a membrane-interacting protein induced by inflammation, which confers human resistance to infection by African trypanosomes. APOL1 kills Trypanosoma brucei through induction of apoptotic-like parasite death, but two T. brucei clones acquired resistance to APOL1, allowing them to cause sleeping sickness. An APOL1 C-terminal sequence alteration, such as occurs in natural West African variants G1 and G2, restored human resistance to these clones. However, APOL1 unfolding induced by G1 or G2 mutations enhances protein hydrophobicity, resulting in kidney podocyte dysfunctions affecting renal filtration. The mechanism involved in these dysfunctions is debated. The ability of APOL1 to generate ion pores in trypanosome intracellular membranes or in synthetic membranes was provided as an explanation. However, transmembrane insertion of APOL1 strictly depends on acidic conditions, and podocyte cytopathology mainly results from secreted APOL1 activity on the plasma membrane, which occurs under non-acidic conditions. In this review, I argue that besides inactivation of APOL3 functions in membrane dynamics (fission and fusion), APOL1 variants induce inflammation-linked podocyte toxicity not through pore formation, but through plasma membrane disturbance resulting from increased interaction with cholesterol, which enhances cation channels activity. A natural mutation in the membrane-interacting domain (N264K) abrogates variant APOL1 toxicity at the expense of slightly increased sensitivity to trypanosomes, further illustrating the continuous mutual adaptation between host and parasite.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
2
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
3
|
Courjaret R, Prakriya M, Machaca K. SOCE as a regulator of neuronal activity. J Physiol 2024; 602:1449-1462. [PMID: 37029630 DOI: 10.1113/jp283826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
Collapse
Affiliation(s)
- Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Michelucci A, Sforna L, Di Battista A, Franciolini F, Catacuzzeno L. Ca 2+ -activated K + channels regulate cell volume in human glioblastoma cells. J Cell Physiol 2023; 238:2120-2134. [PMID: 37431808 DOI: 10.1002/jcp.31072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Glioblastoma (GBM), the most lethal form of brain tumors, bases its malignancy on the strong ability of its cells to migrate and invade the narrow spaces of healthy brain parenchyma. Cell migration and invasion are both critically dependent on changes in cell volume and shape driven by the transmembrane transport of osmotically important ions such as K+ and Cl- . However, while the Cl- channels participating in cell volume regulation have been clearly identified, the precise nature of the K+ channels involved is still uncertain. Using a combination of electrophysiological and imaging approaches in GBM U87-MG cells, we found that hypotonic-induced cell swelling triggered the opening of Ca2+ -activated K+ (KCa ) channels of large and intermediate conductance (BKCa and IKCa , respectively), both highly expressed in GBM cells. The influx of Ca2+ mediated by the hypotonic-induced activation of mechanosensitive channels was found to be a key step for opening both the BKCa and the IKCa channels. Finally, the activation of both KCa channels mediated by mechanosensitive channels was found to be essential for the development of the regulatory volume decrease following hypotonic shock. Taken together, these data indicate that KCa channels are the main K+ channels responsible for the volume regulation in U87-MG cells.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Angela Di Battista
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Vaithianathan T, Schneider EH, Bukiya AN, Dopico AM. Cholesterol and PIP 2 Modulation of BK Ca Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:217-243. [PMID: 36988883 PMCID: PMC10683925 DOI: 10.1007/978-3-031-21547-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+/voltage-gated, large conductance K+ channels (BKCa) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (β and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP2 and cholesterol can modulate BKCa activity independently of downstream signaling, yet activating Ca2+i levels and regulatory subunits control ligand action. At physiological Ca2+i and voltages, cholesterol and PIP2 reduce and increase slo1 channel activity, respectively. Moreover, slo1 proteins provide sites that seem to recognize cholesterol and PIP2: seven CRAC motifs in the slo1 cytosolic tail and a string of positively charged residues (Arg329, Lys330, Lys331) immediately after S6, respectively. A model that could explain the modulation of BKCa activity by cholesterol and/or PIP2 is hypothesized. The roles of additional sites, whether in slo1 or BKCa regulatory subunits, for PIP2 and/or cholesterol to modulate BKCa function are also discussed.
Collapse
Affiliation(s)
- Thirumalini Vaithianathan
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth H Schneider
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
A novel role of BK potassium channel activity in preventing the development of kidney fibrosis. Kidney Int 2022; 101:945-962. [PMID: 34968553 DOI: 10.1016/j.kint.2021.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Kidney fibrosis is a common characteristic of chronic kidney disease and while the large conductance voltage and calcium-activated potassium channel (BK) is widely expressed in kidneys, its role in kidney fibrosis is unknown. To evaluate this, we found that BK protein expression was decreased in the fibrotic kidneys. Accompanying this was increased fibrotic marker protein expression of fibronectin, vimentin and α-smooth muscle actin and increased mRNA expressions of fibronectin, α-smooth muscle actin, collagen III and collagen I. These changes occurred in the unilateral ureteral obstruction and folic acid models of fibrosis and were more pronounced in BK knockout than in wild-type mice. Activation of BK activity by chemical NS1619 or BMS191011 channel openers attenuated kidney fibrosis in these two models while protecting kidney function in wild-type mice. BK deficiency up-regulated transforming growth factor-β (TGF-β)/transcription factor Smad2/3 signaling in the fibrotic kidney, whereas activation of BK activity inhibited this signaling pathway both in vivo and in vitro. BK channel activation increased the degradation of TGF-β receptors induced by TGF-β1 in vivo and in vitro. Furthermore, in cell lines HK-2, NRK49, and NRK-52E, BK channel activation by NS1619 led to increased caveolae formation and facilitated localization of TGF-β receptors in the microdomains of lipid rafts. Thus, our data demonstrated that BK activation has an anti-fibrotic effect on kidney fibrosis by inhibiting the TGF-β signaling pathway through accelerating TGF-β receptor degradation via the caveolae route. Hence, our study provides innovative insight into BK as a potential therapeutic target for the treatment of kidney fibrosis.
Collapse
|
8
|
Shah KR, Guan X, Yan J. Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels Within Nanodomain Signaling Complexes. Front Physiol 2022; 12:796540. [PMID: 35095560 PMCID: PMC8795833 DOI: 10.3389/fphys.2021.796540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical and functional studies of ion channels have shown that many of these integral membrane proteins form macromolecular signaling complexes by physically associating with many other proteins. These macromolecular signaling complexes ensure specificity and proper rates of signal transduction. The large-conductance, Ca2+-activated K+ (BK) channel is dually activated by membrane depolarization and increases in intracellular free Ca2+ ([Ca2+]i). The activation of BK channels results in a large K+ efflux and, consequently, rapid membrane repolarization and closing of the voltage-dependent Ca2+-permeable channels to limit further increases in [Ca2+]i. Therefore, BK channel-mediated K+ signaling is a negative feedback regulator of both membrane potential and [Ca2+]i and plays important roles in many physiological processes and diseases. However, the BK channel formed by the pore-forming and voltage- and Ca2+-sensing α subunit alone requires high [Ca2+]i levels for channel activation under physiological voltage conditions. Thus, most native BK channels are believed to co-localize with Ca2+-permeable channels within nanodomains (a few tens of nanometers in distance) to detect high levels of [Ca2+]i around the open pores of Ca2+-permeable channels. Over the last two decades, advancement in research on the BK channel’s coupling with Ca2+-permeable channels including recent reports involving NMDA receptors demonstrate exemplary models of nanodomain structural and functional coupling among ion channels for efficient signal transduction and negative feedback regulation. We hereby review our current understanding regarding the structural and functional coupling of BK channels with different Ca2+-permeable channels.
Collapse
Affiliation(s)
- Kunal R. Shah
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xin Guan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiusheng Yan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Neuroscience Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jiusheng Yan,
| |
Collapse
|
9
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
10
|
Wang X, Xiao Q, Zhu Y, Qi H, Qu D, Yao Y, Jia Y, Guo J, Cheng J, Ji Y, Li G, Tao J. Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200182. [PMID: 34149831 PMCID: PMC8183112 DOI: 10.1590/1678-9199-jvatitd-2020-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: The accessory β1 subunits, regulating the pharmacological and biophysical properties of BK channels, always undergo post-translational modifications, especially glycosylation. To date, it remains elusive whether the glycosylation contributes to the regulation of BK channels by β1 subunits. Methods: Herein, we combined the electrophysiological approach with molecular mutations and biochemical manipulation to investigate the function roles of N-glycosylation in β1 subunits. Results: The results show that deglycosylation of β1 subunits through double-site mutations (β1 N80A/N142A or β1 N80Q/N142Q) could significantly increase the inhibitory potency of iberiotoxin, a specific BK channel blocker. The deglycosylated channels also have a different sensitivity to martentoxin, another BK channel modulator with some remarkable effects as reported before. On the contrary to enhancing effects of martentoxin on glycosylated BK channels under the presence of cytoplasmic Ca2+, deglycosylated channels were not affected by the toxin. However, the deglycosylated channels were surprisingly inhibited by martentoxin under the absence of cytoplasmic Ca2+, while the glycosylated channels were not inhibited under this same condition. In addition, wild type BK (α+β1) channels treated with PNGase F also showed the same trend of pharmacological results to the mutants. Similar to this modulation of glycosylation on BK channel pharmacology, the deglycosylated forms of the channels were activated at a faster speed than the glycosylated ones. However, the V1/2 and slope were not changed by the glycosylation. Conclusion: The present study reveals that glycosylation is an indispensable determinant of the modulation of β1-subunit on BK channel pharmacology and its activation. The loss of glycosylation of β1 subunits could lead to the dysfunction of BK channel, resulting in a pathological state.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Qian Xiao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Qi
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Yao
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Yuxiang Jia
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Jingkan Guo
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China.,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China.,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| |
Collapse
|
11
|
Muscarinic Receptors and BK Channels Are Affected by Lipid Raft Disruption of Salivary Gland Cells. Int J Mol Sci 2021; 22:ijms22094780. [PMID: 33946369 PMCID: PMC8125525 DOI: 10.3390/ijms22094780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/31/2023] Open
Abstract
Activity-dependent fluid secretion is the most important physiological function of salivary glands and is regulated via muscarinic receptor signaling. Lipid rafts are important for G-protein coupled receptor (GPCR) signaling and ion channels in plasma membranes. However, it is not well understood whether lipid raft disruption affects all membrane events or only specific functions in muscarinic receptor-mediated water secretion in salivary gland cells. We investigated the effects of lipid raft disruption on the major membrane events of muscarinic transcellular water movement in human salivary gland (HSG) cells. We found that incubation with methyl-β-cyclodextrin (MβCD), which depletes lipid rafts, inhibited muscarinic receptor-mediated Ca2+ signaling in HSG cells and isolated mouse submandibular acinar cells. However, MβCD did not inhibit a Ca2+ increase induced by thapsigargin, which activates store-operated Ca2+ entry (SOCE). Interestingly, MβCD increased the activity of the large-conductance Ca2+-activated K+ channel (BK channel). Finally, we found that MβCD did not directly affect the translocation of aquaporin-5 (AQP5) into the plasma membrane. Our results suggest that lipid rafts maintain muscarinic Ca2+ signaling at the receptor level without directly affecting the activation of SOCE induced by intracellular Ca2+ pool depletion or the translocation of AQP5 into the plasma membrane.
Collapse
|
12
|
Bukiya AN, Leo MD, Jaggar JH, Dopico AM. Cholesterol activates BK channels by increasing KCNMB1 protein levels in the plasmalemma. J Biol Chem 2021; 296:100381. [PMID: 33556372 PMCID: PMC7950327 DOI: 10.1016/j.jbc.2021.100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Calcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (β1) subunits, which enable BK activation at physiological intracellular calcium. Here, we studied the effect of CLR enrichment on BK currents from rat cerebral artery myocytes. Using inside-out patches from middle cerebral artery (MCA) myocytes at [Ca2+]free=30 μM, we detected BK activation in response to in vivo and in vitro CLR enrichment of myocytes. While a significant increase in myocyte CLR was achieved within 5 min of CLR in vitro loading, this brief CLR enrichment of membrane patches decreased BK currents, indicating that BK activation by CLR requires a protracted cellular process. Indeed, blocking intracellular protein trafficking with brefeldin A (BFA) not only prevented BK activation but led to channel inhibition upon CLR enrichment. Surface protein biotinylation followed by Western blotting showed that BFA blocked the increase in plasmalemmal KCNMB1 levels achieved via CLR enrichment. Moreover, CLR enrichment of arteries with naturally high KCNMB1 levels, such as basilar and coronary arteries, failed to activate BK currents. Finally, CLR enrichment failed to activate BK channels in MCA myocytes from KCNMB1-/- mouse while activation was detected in their wild-type (C57BL/6) counterparts. In conclusion, the switch in CLR regulation of BK from inhibition to activation is determined by a trafficking-dependent increase in membrane levels of KCNMB1 subunits.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | - M Dennis Leo
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
13
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
14
|
Catacuzzeno L, Sforna L, Esposito V, Limatola C, Franciolini F. Ion Channels in Glioma Malignancy. Rev Physiol Biochem Pharmacol 2020; 181:223-267. [DOI: 10.1007/112_2020_44] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Yang L, Pierce S, Chatterjee I, Craviso GL, Leblanc N. Paradoxical effects on voltage-gated Na+ conductance in adrenal chromaffin cells by twin vs single high intensity nanosecond electric pulses. PLoS One 2020; 15:e0234114. [PMID: 32516325 PMCID: PMC7282663 DOI: 10.1371/journal.pone.0234114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
We previously reported that a single 5 ns high intensity electric pulse (NEP) caused an E-field-dependent decrease in peak inward voltage-gated Na+ current (INa) in isolated bovine adrenal chromaffin cells. This study explored the effects of a pair of 5 ns pulses on INa recorded in the same cell type, and how varying the E-field amplitude and interval between the pulses altered its response. Regardless of the E-field strength (5 to 10 MV/m), twin NEPs having interpulse intervals ≥ than 5 s caused the inhibition of TTX-sensitive INa to approximately double relative to that produced by a single pulse. However, reducing the interval from 1 s to 10 ms between twin NEPs at E-fields of 5 and 8 MV/m but not 10 MV/m decreased the magnitude of the additive inhibitory effect by the second pulse in a pair on INa. The enhanced inhibitory effects of twin vs single NEPs on INa were not due to a shift in the voltage-dependence of steady-state activation and inactivation but were associated with a reduction in maximal Na+ conductance. Paradoxically, reducing the interval between twin NEPs at 5 or 8 MV/m but not 10 MV/m led to a progressive interval-dependent recovery of INa, which after 9 min exceeded the level of INa reached following the application of a single NEP. Disrupting lipid rafts by depleting membrane cholesterol with methyl-β-cyclodextrin enhanced the inhibitory effects of twin NEPs on INa and ablated the progressive recovery of this current at short twin pulse intervals, suggesting a complete dissociation of the inhibitory effects of twin NEPs on this current from their ability to stimulate its recovery. Our results suggest that in contrast to a single NEP, twin NEPs may influence membrane lipid rafts in a manner that enhances the trafficking of newly synthesized and/or recycling of endocytosed voltage-gated Na+ channels, thereby pointing to novel means to regulate ion channels in excitable cells.
Collapse
Affiliation(s)
- Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Sophia Pierce
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Indira Chatterjee
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, NV, United States of America
| | - Gale L. Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| |
Collapse
|
16
|
BK channel clustering is required for normal behavioral alcohol sensitivity in C. elegans. Sci Rep 2019; 9:10224. [PMID: 31308408 PMCID: PMC6629859 DOI: 10.1038/s41598-019-46615-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
Abstract
The large conductance, calcium- and voltage-activated potassium channel, known as the BK channel, is one of the central proteins that mediate alcohol intoxication and tolerance across species. Although ethanol targets BK channels through direct interaction, how ethanol-mediated BK channel activation causes behavioral intoxication is poorly understood. In. C. elegans, loss of function in SLO-1, the BK channel ortholog, confers profound ethanol resistance in movement and egg-laying behaviors. Here, we show that depletion of SLO-1 channels clustered at the active zones with no change in the overall channel expression level results in locomotory resistance to the intoxicating effect of ethanol, equivalent to that of slo-1 loss-of-function mutants. Likewise, depletion of clustered SLO-1 channels in the sarcolemma and neurons leads to ethanol-resistant egg-laying behavior. By contrast, reduction in the overall SLO-1 channel level by over 70% causes only moderate ethanol resistance in movement, and minimal, if any, resistance in egg laying. Our findings strongly suggest that behavioral ethanol sensitivity is conferred by local, but not global, depression of excitability via clustered BK channels. Given that clustered BK channels are functionally coupled to, and localize near, calcium channels, ethanol may mediate its behavioral effects by targeting BK channels and their coupled calcium channels.
Collapse
|
17
|
Abstract
Pregnancy can be accompanied by serious health risks to mother and child, such as pre-eclampsia, premature birth and postpartum haemorrhage. Understanding of the normal physiology of uterine function is essential to an improved management of such risks. Here we focus on the physiology of the smooth muscle fibres which make up the bulk of the uterine wall and which generate the forceful contractions that accompany parturition. We survey computational methods that integrate mathematical modelling with data analysis and thereby aid the discovery of new therapeutic targets that, according to clinical needs, can be manipulated to either stop contractions or cause the uterine wall muscle to become active.
Collapse
Affiliation(s)
- Joseph R Dunford
- Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - E Josiah Lutton
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Jolene Atia
- Health Informatics Research, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Andrew M Blanks
- Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | |
Collapse
|
18
|
Ashhad S, Narayanan R. Stores, Channels, Glue, and Trees: Active Glial and Active Dendritic Physiology. Mol Neurobiol 2019; 56:2278-2299. [PMID: 30014322 PMCID: PMC6394607 DOI: 10.1007/s12035-018-1223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Glial cells and neuronal dendrites were historically assumed to be passive structures that play only supportive physiological roles, with no active contribution to information processing in the central nervous system. Research spanning the past few decades has clearly established this assumption to be far from physiological realities. Whereas the discovery of active channel conductances and their localized plasticity was the turning point for dendritic structures, the demonstration that glial cells release transmitter molecules and communicate across the neuroglia syncytium through calcium wave propagation constituted path-breaking discoveries for glial cell physiology. An additional commonality between these two structures is the ability of calcium stores within their endoplasmic reticulum (ER) to support active propagation of calcium waves, which play crucial roles in the spatiotemporal integration of information within and across cells. Although there have been several demonstrations of regulatory roles of glial cells and dendritic structures in achieving common physiological goals such as information propagation and adaptability through plasticity, studies assessing physiological interactions between these two active structures have been few and far. This lacuna is especially striking given the strong connectivity that is known to exist between these two structures through several complex and tightly intercoupled mechanisms that also recruit their respective ER structures. In this review, we present brief overviews of the parallel literatures on active dendrites and active glial physiology and make a strong case for future studies to directly assess the strong interactions between these two structures in regulating physiology and pathophysiology of the brain.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
19
|
Peretti M, Badaoui M, Girault A, Van Gulick L, Mabille MP, Tebbakha R, Sevestre H, Morjani H, Ouadid-Ahidouch H. Original association of ion transporters mediates the ECM-induced breast cancer cell survival: Kv10.1-Orai1-SPCA2 partnership. Sci Rep 2019; 9:1175. [PMID: 30718673 PMCID: PMC6362254 DOI: 10.1038/s41598-018-37602-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023] Open
Abstract
In the last years it has been shown that many components of tumor microenvironment (TM) can induce cell signaling that permit to breast cancer cells (BC) to maintain their aggressiveness. Ion channels have a role in mediating TM signal; recently we have demonstrated a functional collaboration between Kv10.1 and Orai1 channels in mediating the pro-survival effect of collagen 1 on BC cells. Here we show how SPCA2 (Secretory Pathway Ca2+ ATPase) has a role in this process and is able to support survival and proliferation induced by collagen 1. By participating to an auto-sustaining loop, SPCA2 enhances membrane expression of Kv10.1 and Orai1; the activity of every component of this trio is necessary to mediate a store independent calcium entry (SICE). This SICE is fundamental to maintain both the activation of the pro-survival pathway and the membrane localization and consequently the activity of the two channels. Moreover, the three proteins and the collagen receptor DDR1 are overexpressed only in aggressive tumors tissues. In this work, we propose a novel association between SPCA2, Kv10.1 and Orai1 involved in mediating transduction signals from TM to the BC cells that can be potentially exploited in the search of novel therapeutic targets specific to tumor tissues.
Collapse
Affiliation(s)
- Marta Peretti
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France
| | - Mehdi Badaoui
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France
| | - Alban Girault
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France
| | | | - Marie-Pierre Mabille
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France.,Service d'Anatomie et Cytologie Pathologiques and Tumor Bank of Picardie, CHU d'Amiens, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Riad Tebbakha
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France.,Service d'Anatomie et Cytologie Pathologiques and Tumor Bank of Picardie, CHU d'Amiens, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Henri Sevestre
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France.,Service d'Anatomie et Cytologie Pathologiques and Tumor Bank of Picardie, CHU d'Amiens, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Hamid Morjani
- BioSpecT EA7506, Faculty of Pharmacy, Reims University, Reims, France
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, EA4667, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
20
|
Bukiya AN, Dopico AM. Regulation of BK Channel Activity by Cholesterol and Its Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:53-75. [DOI: 10.1007/978-3-030-04278-3_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
22
|
Quintero MC, Putnam RW, Cordovez JM. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus. PLoS Comput Biol 2017; 13:e1005853. [PMID: 29267284 PMCID: PMC5755939 DOI: 10.1371/journal.pcbi.1005853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 01/05/2018] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC). We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes), in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously thought. This highlights the importance of considering electrical synaptic transmission in studies of intrinsic chemosensitivity. The sensory mechanism by which changes in CO2 and H+ levels are detected in the brain is known as central chemoreception. Altered chemoreception is common to a wide variety of clinical conditions, including sleep apnea, sudden infant death syndrome, hyperventilation, depression, anxiety and asthma. In addition, CO2/H+-sensitive neurons are present in some regions of the brain that have been identified as drug targets for the treatment of anxiety and panic disorders. We are interested in understanding the cellular mechanisms that determine and modulate the behavior of these neurons. We previously investigated possible mechanisms underlying their behavior in rats to elucidate whether they respond to changes in intracellular or extracellular pH, CO2, or a combination of these stimuli. To study the roles that signals and ion channel targets play in individual neurons we develop mathematical models that simulate their electrochemical behavior and their responses to hypercapnic and/or acidotic stimuli. Nowadays, we are focused on using computational tools to explore the firing pattern of such neurons in response to chemical (CO2/H+) and electrical (synaptic) stimulation. Our results reveal significant effects of electrical stimulation on the responses of brainstem neurons and highlight the importance of considering synaptic transmission in experimental studies of chemosensitivity.
Collapse
Affiliation(s)
- Maria C. Quintero
- Biomedical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- * E-mail: (MQ); (JC)
| | - Robert W. Putnam
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Juan M. Cordovez
- Biomedical Engineering Department, Universidad de Los Andes, Bogotá, Colombia
- * E-mail: (MQ); (JC)
| |
Collapse
|
23
|
BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget 2017; 7:14259-78. [PMID: 26893360 PMCID: PMC4924713 DOI: 10.18632/oncotarget.7423] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy.
Collapse
|
24
|
Whitt JP, McNally BA, Meredith AL. Differential contribution of Ca 2+ sources to day and night BK current activation in the circadian clock. J Gen Physiol 2017; 150:259-275. [PMID: 29237755 PMCID: PMC5806683 DOI: 10.1085/jgp.201711945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/16/2023] Open
Abstract
Large conductance K+ (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca2+ (Ca2+i). To enable this regulation, BK channels functionally couple to both voltage-gated Ca2+ channels (VGCCs) and channels mediating Ca2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca2+i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca2+i are reduced. Here, to determine whether diurnal regulation of Ca2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca2+ channels (LTCCs) are the primary daytime Ca2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca2+i release. The N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca2+ sources in the SCN, contributing to diurnal regulation of SCN excitability.
Collapse
Affiliation(s)
- Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Beth A McNally
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Dopico AM, Bukiya AN. Regulation of Ca 2+-Sensitive K + Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. CURRENT TOPICS IN MEMBRANES 2017; 80:53-93. [PMID: 28863822 DOI: 10.1016/bs.ctm.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cholesterol (CLR) conversion into bile acids (BAs) in the liver constitutes the major pathway for CLR elimination from the body. Moreover, these steroids regulate each other's metabolism. While the roles of CLR and BAs in regulating metabolism and tissue function are well known, research of the last two decades revealed the existence of specific protein receptors for CLR or BAs in tissues with minor contribution to lipid metabolism, raising the possibility that these lipids serve as signaling molecules throughout the body. Among other lipids, CLR and BAs regulate ionic current mediated by the activity of voltage- and Ca2+-gated, K+ channels of large conductance (BK channels) and, thus, modulate cell physiology and participate in tissue pathophysiology. Initial work attributed modification of BK channel function by CLR or BAs to the capability of these steroids to directly interact with bilayer lipids and thus alter the physicochemical properties of the bilayer with eventual modification of BK channel function. Based on our own work and that of others, we now review evidence that supports direct interactions between CLR or BA and specific BK protein subunits, and the consequence of such interactions on channel activity and organ function, with a particular emphasis on arterial smooth muscle. For each steroid type, we will also briefly discuss several mechanisms that may underlie modification of channel steady-state activity. Finally, we will present novel computational data that provide a chemical basis for differential recognition of CLR vs lithocholic acid by distinct BK channel subunits and recognition sites.
Collapse
Affiliation(s)
- Alex M Dopico
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Anna N Bukiya
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
Son K, Nguyen TTT, Choi JW, Pham LV, Luong TTD, Lim YS, Hwang SB. Rad51 Interacts with Non-structural 3 Protein of Hepatitis C Virus and Regulates Viral Production. Front Microbiol 2017; 8:1249. [PMID: 28729862 PMCID: PMC5498509 DOI: 10.3389/fmicb.2017.01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV.
Collapse
Affiliation(s)
- Kidong Son
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea.,Environmental Health Research Department, National Institute of Environmental ResearchIncheon, South Korea
| | - Tram T T Nguyen
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Jae-Woong Choi
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Long V Pham
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Trang T D Luong
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| | - Soon B Hwang
- Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.,National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym UniversityAnyang, South Korea
| |
Collapse
|
27
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
28
|
Cholesterol influences potassium currents in inner hair cells isolated from guinea pig cochlea. Auris Nasus Larynx 2016; 44:46-51. [PMID: 27210104 DOI: 10.1016/j.anl.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/16/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE There is a correlation between serum hyperlipidemia and hearing loss. Cholesterol is an integral component of the cell membrane and regulates the activity of ion channels in the lipid bilayer. The aim of this study was to investigate the effects of cholesterol on the potassium currents in IHCs by using the cholesterol-depleting drug, MβCD, and water-soluble cholesterol. METHODS IHCs were acutely isolated from a mature guinea-pig cochlea and potassium currents were recorded. MβCD and water-soluble cholesterol were applied to IHCs under pressure puff pipettes. RESULTS IHCs showed outwardly rectifying currents (IK,f and IK,s) in response to depolarizing voltage pulses, with only a slight inward current (IK,n) when hyperpolarized. In 10mM MβCD solutions, the amplitude of outward K currents reversely decreased; however, fast activation kinetics was preserved. In contrast, in solution of 1mM water-soluble cholesterol, the amplitude of outward K currents reversely increased. At the membrane potential of +110mV, relative conductances were 0.87±0.07 and 1.18±0.11 in MβCD solutions and cholesterol solutions, respectively. CONCLUSION The amplitude of K currents in isolated IHCs was reversely changed by cholesterol-depleting drug and water-soluble cholesterol. These results demonstrated the possibility of the involvement of IHC function in hyperlipidemia-induced inner ear disorders.
Collapse
|
29
|
Stegen B, Klumpp L, Misovic M, Edalat L, Eckert M, Klumpp D, Ruth P, Huber SM. K + channel signaling in irradiated tumor cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:585-598. [PMID: 27165704 DOI: 10.1007/s00249-016-1136-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
K+ channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K+ concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca2+ signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K+ channels. The upregulation of highly "oncogenic" K+ channels such as the Ca2+-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells. In particular, ionizing radiation in doses used for fractionated radiotherapy in the clinic has been shown to activate K+ channels. Radiogenic K+ channel activity, in turn, contributes to the DNA damage response and promotes survival of the irradiated tumor cells. Tumor-specific overexpression of certain K+ channel types together with the fact that pharmacological K+ channel modulators are already in clinical use or well tolerated in clinical trials suggests that K+ channel targeting alone or in combination with radiotherapy might become a promising new strategy of anti-cancer therapy. The present article aims to review our current knowledge on K+ channel signaling in irradiated tumor cells. Moreover, it provides new data on molecular mechanisms of radiogenic K+ channel activation and downstream signaling events.
Collapse
Affiliation(s)
- Benjamin Stegen
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Milan Misovic
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lena Edalat
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marita Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Dominik Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Protein Network Interacting with BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:127-61. [DOI: 10.1016/bs.irn.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F. Role of ion channels in ionizing radiation-induced cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2657-64. [DOI: 10.1016/j.bbamem.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
32
|
Wan XJ, Zhao HC, Zhang P, Huo B, Shen BR, Yan ZQ, Qi YX, Jiang ZL. Involvement of BK channel in differentiation of vascular smooth muscle cells induced by mechanical stretch. Int J Biochem Cell Biol 2015; 59:21-9. [DOI: 10.1016/j.biocel.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022]
|
33
|
Brown SA, Loew LM. Integration of modeling with experimental and clinical findings synthesizes and refines the central role of inositol 1,4,5-trisphosphate receptor 1 in spinocerebellar ataxia. Front Neurosci 2015; 8:453. [PMID: 25653583 PMCID: PMC4300941 DOI: 10.3389/fnins.2014.00453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 12/22/2022] Open
Abstract
A suite of models was developed to study the role of inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in spinocerebellar ataxias (SCAs). Several SCAs are linked to reduced abundance of IP3R1 or to supranormal sensitivity of the receptor to activation by its ligand inositol 1,4,5-trisphosphate (IP3). Detailed multidimensional models have been created to simulate biochemical calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons. In these models, IP3R1-mediated calcium release is allowed to interact with ion channel response on the cell membrane. Experimental findings in mice and clinical observations in humans provide data input for the models. The SCA modeling suite helps interpret experimental results and provides suggestions to guide experiments. The models predict IP3R1 supersensitivity in SCA1 and compensatory mechanisms in SCA1, SCA2, and SCA3. Simulations explain the impact of calcium buffer proteins. Results show that IP3R1-mediated calcium release activates voltage-gated calcium-activated potassium channels in the plasma membrane. The SCA modeling suite unifies observations from experiments in a number of SCAs. The cadre of simulations demonstrates the central role of IP3R1.
Collapse
Affiliation(s)
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
34
|
Dopico AM, Bukiya AN, Martin GE. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. Front Physiol 2014; 5:466. [PMID: 25538625 PMCID: PMC4256990 DOI: 10.3389/fphys.2014.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/13/2014] [Indexed: 11/30/2022] Open
Abstract
In most tissues, the function of Ca2+- and voltage-gated K+ (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (Ca2+i), BK subunit composition and post-translational modifications, and the channel's lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Gilles E Martin
- Department of Psychiatry, The University of Massachusetts Medical School Worcester, MA, USA
| |
Collapse
|
35
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
36
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
37
|
Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication. J Virol 2014; 88:12311-25. [PMID: 25122791 DOI: 10.1128/jvi.01678-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The hepatitis C virus (HCV) life cycle is tightly regulated by lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have recently screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet formation using cell culture-grown HCV (HCVcc)-infected cells. We selected and characterized the gene encoding stearoyl coenzyme A (CoA) desaturase 1 (SCD1). siRNA-mediated knockdown or pharmacological inhibition of SCD1 abrogated HCV replication in both subgenomic replicon and Jc1-infected cells, while exogenous supplementation of either oleate or palmitoleate, products of SCD1 activity, resurrected HCV replication in SCD1 knockdown cells. SCD1 was coimmunoprecipitated with HCV nonstructural proteins and colocalized with both double-stranded RNA (dsRNA) and HCV nonstructural proteins, indicating that SCD1 is associated with HCV replication complex. Moreover, SCD1 was fractionated and enriched with HCV nonstructural proteins at detergent-resistant membrane. Electron microscopy data showed that SCD1 is required for NS4B-mediated intracellular membrane rearrangement. These data further support the idea that SCD1 is associated with HCV replication complex and that its products may contribute to the proper formation and maintenance of membranous web structures in HCV replication complex. Collectively, these data suggest that manipulation of SCD1 activity may represent a novel host-targeted antiviral strategy for the treatment of HCV infection. IMPORTANCE Stearoyl coenzyme A (CoA) desaturase 1 (SCD1), a liver-specific enzyme, regulates hepatitis C virus (HCV) replication through its enzyme activity. HCV nonstructural proteins are associated with SCD1 at detergent-resistant membranes, and SCD1 is enriched on the lipid raft by HCV infection. Therein, SCD1 supports NS4B-mediated membrane rearrangement to provide a suitable microenvironment for HCV replication. We demonstrated that either genetic or chemical knockdown of SCD1 abrogated HCV replication in both replicon cells and HCV-infected cells. These findings provide novel mechanistic insights into the roles of SCD1 in HCV replication.
Collapse
|
38
|
|
39
|
WANG HONGLIANG, PERRY JEFFREYW, LAURING ADAMS, NEDDERMANN PETRA, DE FRANCESCO RAFFAELE, TAI ANDREWW. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology 2014; 146:1373-85.e1-11. [PMID: 24512803 PMCID: PMC3992183 DOI: 10.1053/j.gastro.2014.02.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/15/2014] [Accepted: 02/03/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Positive-sense RNA viruses remodel intracellular membranes to generate specialized membrane compartments for viral replication. Several RNA viruses, including poliovirus and hepatitis C virus (HCV), require phosphatidylinositol (PI) 4-kinases for their replication. However, it is not known how PI 4-kinases and their product, PI(4)P, facilitate host membrane reorganization and viral replication. In addition, although the HCV replication compartment, known as the membranous web, is believed to be cholesterol enriched, the mechanisms by which this occurs have not been elucidated. We aimed to identify and characterize a PI 4-kinase effector in HCV replication. METHODS We used a combination of microscopic and biochemical methods to study HCV replication, web morphology, the distribution of intracellular protein and PI(4)P, along with cholesterol trafficking in HCV-infected cells. PI 4-kinase and oxysterol-binding protein (OSBP) were inhibited using RNA interference or small molecules in cells expressing a full-length genotype 1b replicon or infected with the JFH-1 strain of HCV. RESULTS OSBP was required for HCV replication and membranous web integrity. OSBP was recruited to membranous webs in a PI 4-kinase-dependent manner, and both these factors were found to regulate cholesterol trafficking to the web. We also found OSBP to be required for poliovirus infection but dispensable for dengue virus. CONCLUSIONS OSBP is a PI 4-kinase effector in HCV infection, and contributes to the integrity and cholesterol enrichment of the membranous web. OSBP might also be a PI 4-kinase effector in poliovirus infection and could be involved in replication of other viruses that require PI 4-kinases.
Collapse
Affiliation(s)
- HONGLIANG WANG
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - JEFFREY W. PERRY
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - ADAM S. LAURING
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - PETRA NEDDERMANN
- Virology Program, Istituto Nazionale di Genetica Molecolare (INGM), Milano, Italy
| | | | - ANDREW W. TAI
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI,Division of Gastroenterology, Department of Internal Medicine, Ann Arbor Veterans Administration Health System, Ann Arbor, MI
| |
Collapse
|
40
|
Jiménez-Garduño AM, Mitkovski M, Alexopoulos IK, Sánchez A, Stühmer W, Pardo LA, Ortega A. KV10.1 K+-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:921-31. [DOI: 10.1016/j.bbamem.2013.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
|
41
|
Kim S, Lee BC, Lee AR, Won S, Park CS. Effects of palmitoylation on the diffusional movement of BKCa channels in live cells. FEBS Lett 2014; 588:713-9. [PMID: 24462688 DOI: 10.1016/j.febslet.2014.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/21/2013] [Accepted: 01/08/2014] [Indexed: 01/10/2023]
Abstract
BKCa channels are palmitoylated at a cluster of cysteine residues within the cytosolic linker connecting the 1st and 2nd transmembrane domains, and this lipid modification affects their surface expression. To verify the effects of palmitoylation on the diffusional dynamics of BKCa channels, we investigated their lateral movement. Compared to wild-type channels, the movement of mutant palmitoylation-deficient channels was much less confined and close to random. The diffusion of the mutant channel was also much faster than that of the wild type. Thus, the lateral movement of BKCa channels is greatly influenced by palmitoylation.
Collapse
Affiliation(s)
- Sulgi Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Byoung-Cheol Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - A-Ram Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sehoon Won
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
42
|
Wu W, Wang Y, Deng XL, Sun HY, Li GR. Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 2013; 8:e79952. [PMID: 24260325 PMCID: PMC3832390 DOI: 10.1371/journal.pone.0079952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| |
Collapse
|
43
|
Mound A, Rodat-Despoix L, Bougarn S, Ouadid-Ahidouch H, Matifat F. Molecular interaction and functional coupling between type 3 inositol 1,4,5-trisphosphate receptor and BKCa channel stimulate breast cancer cell proliferation. Eur J Cancer 2013; 49:3738-51. [PMID: 23992640 DOI: 10.1016/j.ejca.2013.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The implication of ion channels and inositol 1,4,5-trisphosphate (IP3)-induced Ca(2+) signalling (IICS) in the carcinogenesis processes, including deregulation of cell proliferation, migration and invasion, is increasingly studied. Studies from our laboratory have shown that type 3 IP3 receptor (IP3R3) and voltage- and Ca(2+)-dependent K(+) channels BKCa channels are involved in human breast cancer cell proliferation. In this context, we investigated the probable interaction between these two proteins (IP3R3 and BKCa channel) in normal and in breast cancer cells. METHODS MCF-7 and MCF-10A cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-assay in the presence or absence of adenosine triphosphate (ATP). Furthermore, cell-cycle analysis was carried out and cell cycle protein expression was examined by Western blotting. Immunocytochemistry and co-immunoprecipitation assays were used to check co-localisation of BKCa and IP3R3 and their molecular interaction. Finally, whole cell patch-clamp and Ca(2+) imaging were performed to assess the functional interaction. RESULTS Our results are in favour of a functional and a molecular coupling between IP3R3 and BKCa channel that is involved in MCF-7 proliferation. Indeed, ATP increased MCF-7 cell proliferation and this effect was impaired when the expression of BKCa and/or IP3R3 has been reduced by specific small interfering RNAs (siRNAs). Flow cytometry experiments showed that both siRNAs led to cell cycle arrest in the G0/G1 phase and these results were confirmed by the analysis of cell cycle protein expression. Specifically, BKCa and IP3R3 silencing decreased both cyclin-D1 and cyclin-dependent kinase 4 (CDK4) expression levels. Furthermore, ATP elicited a phospholipase C (PLC)-dependent elevation of internal Ca(2+) that triggered in turn an iberiotoxin (IbTx)- and a tetra-ethyl-ammonium (TEA)-sensitive membrane hyperpolarisation that was strongly reduced in the cells with silenced IP3R3 or BKCa. In the same way, intracellular application of Ins(2,4,5)P3 triggered an IbTx-sensitive membrane hyperpolarisation. Moreover, intracellular Ca(2+) chelation with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) prevented ATP-induced BKCa activation. BKCa and IP3R3 also co-immunoprecipitated and this interaction seemed to occur in cholesterol-enriched microdomains. Conversely, in the normal breast cell line MCF-10A, neither ATP application nor BKCa silencing affected cell proliferation. Furthermore, IP3R3 and BKCa did not co-immunoprecipitate, suggesting the absence of a molecular coupling between BKCa and IP3R3 in the MCF-10A normal cell line. CONCLUSION Altogether, our results suggest a molecular and functional link between BKCa channel and IP3R3 in cancer cells. Our findings led us to propose this coupling between BKCa and IP3R3 as an important mechanism for tumour cell proliferation.
Collapse
Affiliation(s)
- Abdallah Mound
- Laboratory of Cellular and Molecular Physiology (EA-4667), 'Ion Channels in Breast Cancer', SFR CAP-SANTE (FED-4231), University of Amiens, UFR Sciences, 33 Rue Saint-Leu, 80039 Amiens, France
| | | | | | | | | |
Collapse
|
44
|
Ashhad S, Narayanan R. Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 2013; 591:1645-69. [PMID: 23283761 DOI: 10.1113/jphysiol.2012.245688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density of A-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role of A-type potassium channels in regulating spike latency, we found that an increase in the density of A-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate that the presence of mGluRs induced a leftward shift in a Bienenstock-Cooper-Munro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
45
|
McFerrin MB, Turner KL, Cuddapah VA, Sontheimer H. Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Am J Physiol Cell Physiol 2012; 303:C1070-8. [PMID: 22992678 DOI: 10.1152/ajpcell.00040.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important event during apoptosis is regulated cell condensation known as apoptotic volume decrease (AVD). Ion channels have emerged as essential regulators of this process mediating the release of K(+) and Cl(-), which together with osmotically obliged water, results in the condensation of cell volume. Using a Grade IV human glioblastoma cell line, we examined the contribution of calcium-activated K(+) channels (K(Ca) channels) to AVD after the addition of either staurosporine (Stsp) or TNF-α-related apoptosis-inducing ligand (TRAIL) to activate the intrinsic or extrinsic pathway of apoptosis, respectively. We show that AVD can be inhibited in both pathways by high extracellular K(+) or the removal of calcium. However, BAPTA-AM was only able to inhibit Stsp-initiated AVD, whereas TRAIL-induced AVD was unaffected. Specific K(Ca) channel inhibitors revealed that Stsp-induced AVD was dependent on K(+) efflux through intermediate-conductance calcium-activated potassium (IK) channels, while TRAIL-induced AVD was mediated by large-conductance calcium-activated potassium (BK) channels. Fura-2 imaging demonstrated that Stsp induced a rapid and modest rise in calcium that was sustained over the course of AVD, while TRAIL produced no detectable rise in global intracellular calcium. Inhibition of IK channels with clotrimazole or 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) blocked downstream caspase-3 activation after Stsp addition, while paxilline, a specific BK channel inhibitor, had no effect. Treatment with ionomycin also induced an IK-dependent cell volume decrease. Together these results show that calcium is both necessary and sufficient to achieve volume decrease and that the two major pathways of apoptosis use unique calcium signaling to efflux K(+) through different K(Ca) channels.
Collapse
Affiliation(s)
- Michael B McFerrin
- Deptartment of Neurobiology and Center for Glial Biology in Medicine, Universtiy of Alabama at Birmingham, 1719 6th Ave. South, CIRC 410, Birmingham, AL, 35294, USA
| | | | | | | |
Collapse
|
46
|
Brown SA, Loew LM. Computational analysis of calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons associated with ataxia. BMC SYSTEMS BIOLOGY 2012; 6:70. [PMID: 22703638 PMCID: PMC3468360 DOI: 10.1186/1752-0509-6-70] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022]
Abstract
Background Mutations in the smooth endoplasmic reticulum (sER) calcium channel Inositol Trisphosphate Receptor type 1 (IP3R1) in humans with the motor function coordination disorders Spinocerebellar Ataxia Types 15 and 16 (SCA15/16) and in a corresponding mouse model, the IP3R1delta18/delta18 mice, lead to reduced IP3R1 levels. We posit that increasing IP3R1 sensitivity to IP3 in ataxias with reduced IP3R1 could restore normal calcium response. On the other hand, in mouse models of the human polyglutamine (polyQ) ataxias, SCA2, and SCA3, the primary finding appears to be hyperactive IP3R1-mediated calcium release. It has been suggested that the polyQ SCA1 mice may also show hyperactive IP3R1. Yet, SCA1 mice show downregulated gene expression of IP3R1, Homer, metabotropic glutamate receptor (mGluR), smooth endoplasmic reticulum Ca-ATP-ase (SERCA), calbindin, parvalbumin, and other calcium signaling proteins. Results We create a computational model of pathological alterations in calcium signaling in cerebellar Purkinje neurons to investigate several forms of spinocerebellar ataxia associated with changes in the abundance, sensitivity, or activity of the calcium channel IP3R1. We find that increasing IP3R1 sensitivity to IP3 in computational models of SCA15/16 can restore normal calcium response if IP3R1 abundance is not too low. The studied range in IP3R1 levels reflects variability found in human and mouse ataxic models. Further, the required fold increases in sensitivity are within experimental ranges from experiments that use IP3R1 phosphorylation status to adjust its sensitivity to IP3. Results from our simulations of polyglutamine SCAs suggest that downregulation of some calcium signaling proteins may be partially compensatory. However, the downregulation of calcium buffer proteins observed in the SCA1 mice may contribute to pathology. Finally, our model suggests that the calcium-activated voltage-gated potassium channels may provide an important link between calcium metabolism and membrane potential in Purkinje cell function. Conclusion Thus, we have established an initial platform for computational evaluation and prediction of ataxia pathophysiology. Specifically, the model has been used to investigate SCA15/16, SCA1, SCA2, and SCA3. Results suggest that experimental studies treating mouse models of any of these ataxias with appropriately chosen peptides resembling the C-terminal of IP3R1 could adjust receptor sensitivity, and thereby modulate calcium release and normalize IP3 response. In addition, the model supports the hypothesis of IP3R1 supersensitivity in SCA1.
Collapse
Affiliation(s)
- Sherry-Ann Brown
- Richard D, Berlin Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
47
|
Jimenez V, Docampo R. Molecular and electrophysiological characterization of a novel cation channel of Trypanosoma cruzi. PLoS Pathog 2012; 8:e1002750. [PMID: 22685407 PMCID: PMC3369953 DOI: 10.1371/journal.ppat.1002750] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023] Open
Abstract
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes. The use of high-resolution electrophysiological techniques to study ion channels has provided a large amount of information on functional aspects of these important membrane proteins. However, the study of ion channels in unicellular eukaryotes has been limited to detection of ion conductances in large cells, gene identification studies, and pharmacological treatments to investigate the potential presence of different ion channels. In this paper we report the first identification, functional expression, purification, reconstitution, and electrophysiological characterization with single-molecule resolution of a novel cation channel (TcCat) from Trypanosoma cruzi. This is a novel channel that shares little sequence and functional similarities to other potassium channels and its peculiar characteristics could be important for the development of specific inhibitors with therapeutic potential against trypanosomiasis. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. We demonstrated the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. In addition, we obtained yeast mutants that will provide a useful genetic system for studies of the assembly and composition of the channel.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| |
Collapse
|
48
|
Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther 2012; 135:133-50. [PMID: 22584144 DOI: 10.1016/j.pharmthera.2012.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 11/21/2022]
Abstract
Cholesterol (CLR) is an essential component of eukaryotic plasma membranes. CLR regulates the membrane physical state, microdomain formation and the activity of membrane-spanning proteins, including ion channels. Large conductance, voltage- and Ca²⁺-gated K⁺ (BK) channels link membrane potential to cell Ca²⁺ homeostasis. Thus, they control many physiological processes and participate in pathophysiological mechanisms leading to human disease. Because plasmalemma BK channels cluster in CLR-rich membrane microdomains, a major driving force for studying BK channel-CLR interactions is determining how membrane CLR controls the BK current phenotype, including its pharmacology, channel sorting, distribution, and role in cell physiology. Since both BK channels and CLR tissue levels play a pathophysiological role in human disease, identifying functional and structural aspects of the CLR-BK channel interaction may open new avenues for therapeutic intervention. Here, we review the studies documenting membrane CLR-BK channel interactions, dissecting out the many factors that determine the final BK current response to changes in membrane CLR content. We also summarize work in reductionist systems where recombinant BK protein is studied in artificial lipid bilayers, which documents a direct inhibition of BK channel activity by CLR and builds a strong case for a direct interaction between CLR and the BK channel-forming protein. Bilayer lipid-mediated mechanisms in CLR action are also discussed. Finally, we review studies of BK channel function during hypercholesterolemia, and underscore the many consequences that the CLR-BK channel interaction brings to cell physiology and human disease.
Collapse
|
49
|
Bettinger JC, Leung K, Bolling MH, Goldsmith AD, Davies AG. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans. PLoS One 2012; 7:e35192. [PMID: 22574115 PMCID: PMC3344825 DOI: 10.1371/journal.pone.0035192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/10/2012] [Indexed: 11/18/2022] Open
Abstract
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.
Collapse
Affiliation(s)
- Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Zhou MH, Yang G, Jiao S, Hu CL, Mei YA. Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. J Neurochem 2012; 120:502-14. [PMID: 22118516 DOI: 10.1111/j.1471-4159.2011.07593.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol is a major component of membrane lipid rafts. It is more abundant in the brain than in other tissues and plays a critical role in maintaining brain function. We report here that a significant enhancement in apoptosis in rat cerebellar granule neurons (CGNs) was observed upon incubation with 5mM K(+) /serum free (LK-S) medium. Cholesterol enrichment further potentiated CGN apoptosis incubated under LK-S medium. On the contrary, cholesterol depletion using methyl-beta-cyclodextrin protected the CGNs from apoptosis induced by LK-S treatment. Cholesterol enrichment, however, did not induce apoptosis in CGNs that have been incubated with 25mM K(+) /serum medium. Mechanistically, increased I(K) currents and DNA fragmentation were found in CGNs incubated in LK-S, which was further potentiated in the presence of cholesterol. Cholesterol-treated CGNs also exhibited increased cAMP levels and up-regulation of Kv2.1 expression. Increased levels of activated form of PKA and phospho-CREB further supported activation of the cAMP/PKA pathway upon treatment of CGNs with cholesterol-containing LK-S medium. Conversely, inhibition of PKA or small G protein Gs abolished the increase in I(K) current and the potentiation of Kv2.1 expression, leading to reduced susceptibility of CGNs to LK-S and cholesterol-induced apoptosis. Our results demonstrate that the elevation of membrane cholesterol enhances CGN susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. Our data provide new evidence for the role of cholesterol in eliciting neuronal cell death.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|