1
|
Hayashi S. Variation of tRNA modifications with and without intron dependency. Front Genet 2024; 15:1460902. [PMID: 39296543 PMCID: PMC11408192 DOI: 10.3389/fgene.2024.1460902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
tRNAs have recently gained attention for their novel regulatory roles in translation and for their diverse functions beyond translation. One of the most remarkable aspects of tRNA biogenesis is the incorporation of various chemical modifications, ranging from simple base or ribose methylation to more complex hypermodifications such as formation of queuosine and wybutosine. Some tRNAs are transcribed as intron-containing pre-tRNAs. While the majority of these modifications occur independently of introns, some are catalyzed in an intron-inhibitory manner, and in certain cases, they occur in an intron-dependent manner. This review focuses on pre-tRNA modification, including intron-containing pre-tRNA, in both intron-inhibitory and intron-dependent fashions. Any perturbations in the modification and processing of tRNAs may lead to a range of diseases and disorders, highlighting the importance of understanding these mechanisms in molecular biology and medicine.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
2
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
3
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
4
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Lee BST, Sinha A, Dedon P, Preiser P. Charting new territory: The Plasmodium falciparum tRNA modification landscape. Biomed J 2024:100745. [PMID: 38734409 DOI: 10.1016/j.bj.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonucleoside modifications comprising the epitranscriptome are present in all organisms and all forms of RNA, including mRNA, rRNA and tRNA, the three major RNA components of the translational machinery. Of these, tRNA is the most heavily modified and the tRNA epitranscriptome has the greatest diversity of modifications. In addition to their roles in tRNA biogenesis, quality control, structure, cleavage, and codon recognition, tRNA modifications have been shown to regulate gene expression post-transcriptionally in prokaryotes and eukaryotes, including humans. However, studies investigating the impact of tRNA modifications on gene expression in the malaria parasite Plasmodium falciparum are currently scarce. Current evidence shows that the parasite has a limited capacity for transcriptional control, which points to a heavier reliance on strategies for posttranscriptional regulation such as tRNA epitranscriptome reprogramming. This review addresses the known functions of tRNA modifications in the biology of P. falciparum while highlighting the potential therapeutic opportunities and the value of using P. falciparum as a model organism for addressing several open questions related to the tRNA epitranscriptome.
Collapse
Affiliation(s)
- Benjamin Sian Teck Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore;; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore;; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA.
| | - Peter Preiser
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore;; School of Biological Sciences, Nanyang Technological University, Singapore;.
| |
Collapse
|
6
|
Smith TJ, Giles RN, Koutmou KS. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 2024; 154:105-113. [PMID: 37385829 DOI: 10.1016/j.semcdb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine, and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an extensive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifications in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that individual ASL modifications can differentially influence discrete steps in the translation pathway. This review examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading frame maintenance to ensure the rapid and accurate translation of proteins.
Collapse
Affiliation(s)
- Tyler J Smith
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Rachel N Giles
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Zeng Y, Mao Y, Chen Y, Wang Y, Xu S. DNA methylation induces subtle mechanical alteration but significant chiral selectivity. Chem Commun (Camb) 2023; 59:14855-14858. [PMID: 38015496 PMCID: PMC10794036 DOI: 10.1039/d3cc05211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
DNA methylation is a major epigenetic modification that is closely related to human health. Many experimental techniques as well as theoretical methods have been used to detect the modified nucleotides and identify their effects on molecular binding. It remains challenging to resolve the effect of few methylations of nucleic acids. Using super-resolution force spectroscopy, we firstly revealed that single cytosine methylation increases the mechanical stability of the DNA duplex by 1.9 ± 0.3 pN. Methylation also induces significant chiral selectivity towards drug molecules such as d,l-tetrahydropalmatine. Our results precisely quantify the mechanical effect of methylation and suggest that drug design should take methylation into consideration for enhanced selectivity.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Yujia Mao
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Yanjun Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, TX 77204, USA.
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
8
|
Abstract
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.
Collapse
Affiliation(s)
- Chris H Hill
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom;
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
9
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
10
|
Martin S, Allan KC, Pinkard O, Sweet T, Tesar PJ, Coller J. Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay. Nat Commun 2022; 13:5003. [PMID: 36008413 PMCID: PMC9411196 DOI: 10.1038/s41467-022-32766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
Oligodendrocytes are specialized cells that confer neuronal myelination in the central nervous system. Leukodystrophies associated with oligodendrocyte deficits and hypomyelination are known to result when a number of tRNA metabolism genes are mutated. Thus, for unknown reasons, oligodendrocytes may be hypersensitive to perturbations in tRNA biology. In this study, we survey the tRNA transcriptome in the murine oligodendrocyte cell lineage and find that specific tRNAs are hypomodified in oligodendrocytes within or near the anticodon compared to oligodendrocyte progenitor cells (OPCs). This hypomodified state may be the result of differential expression of key modification enzymes during oligodendrocyte differentiation. Moreover, we observe a concomitant relationship between tRNA hypomodification and tRNA decoding potential; observing oligodendrocyte specific alterations in codon optimality-mediated mRNA decay and ribosome transit. Our results reveal that oligodendrocytes naturally maintain a delicate, hypersensitized tRNA/mRNA axis. We suggest this axis is a potential mediator of pathology in leukodystrophies and white matter disease when further insult to tRNA metabolism is introduced.
Collapse
Affiliation(s)
- Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Otis Pinkard
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Thomas Sweet
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Kleiber N, Lemus-Diaz N, Stiller C, Heinrichs M, Mai MMQ, Hackert P, Richter-Dennerlein R, Höbartner C, Bohnsack KE, Bohnsack MT. The RNA methyltransferase METTL8 installs m 3C 32 in mitochondrial tRNAs Thr/Ser(UCN) to optimise tRNA structure and mitochondrial translation. Nat Commun 2022; 13:209. [PMID: 35017528 PMCID: PMC8752778 DOI: 10.1038/s41467-021-27905-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Pairing
- Cytosine/metabolism
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Methylation
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- RNA, Mitochondrial/chemistry
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Thr/chemistry
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Thr/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Nicole Kleiber
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nicolas Lemus-Diaz
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Carina Stiller
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marleen Heinrichs
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Mandy Mong-Quyen Mai
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Göttingen, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany.
| |
Collapse
|
12
|
Djumagulov M, Demeshkina N, Jenner L, Rozov A, Yusupov M, Yusupova G. Accuracy mechanism of eukaryotic ribosome translocation. Nature 2021; 600:543-546. [PMID: 34853469 PMCID: PMC8674143 DOI: 10.1038/s41586-021-04131-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
Translation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy1. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood. Here we report a high-resolution X-ray structure of the eukaryotic 80S ribosome in a translocation-intermediate state containing mRNA, naturally modified eEF2 and tRNAs. The crystal structure reveals a network of stabilization of codon-anticodon interactions involving diphthamide1 and the hypermodified nucleoside wybutosine at position 37 of phenylalanine tRNA, which is also known to enhance translation accuracy2. The model demonstrates how the decoding centre releases a codon-anticodon duplex, allowing its movement on the ribosome, and emphasizes the function of eEF2 as a 'pawl' defining the directionality of translocation3. This model suggests how eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs undergo large-scale molecular reorganizations to ensure maintenance of the mRNA reading frame during the complex process of translocation.
Collapse
Affiliation(s)
- Muminjon Djumagulov
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France
- Urania Therapeutics, Ostwald, France
| | - Natalia Demeshkina
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Lasse Jenner
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France
| | - Alexey Rozov
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France
- Urania Therapeutics, Ostwald, France
| | - Marat Yusupov
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France.
| | - Gulnara Yusupova
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, Strasbourg, France.
| |
Collapse
|
13
|
Dynamic changes in tRNA modifications and abundance during T cell activation. Proc Natl Acad Sci U S A 2021; 118:2106556118. [PMID: 34642250 DOI: 10.1073/pnas.2106556118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.
Collapse
|
14
|
Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
Demo G, Gamper HB, Loveland AB, Masuda I, Carbone CE, Svidritskiy E, Hou YM, Korostelev AA. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation. Nat Commun 2021; 12:4644. [PMID: 34330903 PMCID: PMC8324841 DOI: 10.1038/s41467-021-24911-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.
Collapse
MESH Headings
- Biocatalysis
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Frameshifting, Ribosomal/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Conformation
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
18
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
19
|
Pan Y, Yan TM, Wang JR, Jiang ZH. The nature of the modification at position 37 of tRNAPhe correlates with acquired taxol resistance. Nucleic Acids Res 2021; 49:38-52. [PMID: 33290562 PMCID: PMC7797046 DOI: 10.1093/nar/gkaa1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/12/2022] Open
Abstract
Acquired drug resistance is a major obstacle in cancer therapy. Recent studies revealed that reprogramming of tRNA modifications modulates cancer survival in response to chemotherapy. However, dynamic changes in tRNA modification were not elucidated. In this study, comparative analysis of the human cancer cell lines and their taxol resistant strains based on tRNA mapping was performed by using UHPLC-MS/MS. It was observed for the first time in all three cell lines that 4-demethylwyosine (imG-14) substitutes for hydroxywybutosine (OHyW) due to tRNA-wybutosine synthesizing enzyme-2 (TYW2) downregulation and becomes the predominant modification at the 37th position of tRNAphe in the taxol-resistant strains. Further analysis indicated that the increase in imG-14 levels is caused by downregulation of TYW2. The time courses of the increase in imG-14 and downregulation of TYW2 are consistent with each other as well as consistent with the time course of the development of taxol-resistance. Knockdown of TYW2 in HeLa cells caused both an accumulation of imG-14 and reduction in taxol potency. Taken together, low expression of TYW2 enzyme promotes the cancer survival and resistance to taxol therapy, implying a novel mechanism for taxol resistance. Reduction of imG-14 deposition offers an underlying rationale to overcome taxol resistance in cancer chemotherapy.
Collapse
MESH Headings
- A549 Cells
- Base Sequence
- Cell Line, Tumor
- Chromatography, High Pressure Liquid
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Female
- Gene Expression Regulation, Enzymologic
- Gene Knockdown Techniques
- Guanosine/analogs & derivatives
- Guanosine/chemistry
- Guanosine/metabolism
- HeLa Cells
- Humans
- Molecular Structure
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nucleic Acid Conformation
- Ovarian Neoplasms/pathology
- Paclitaxel/pharmacology
- RNA Processing, Post-Transcriptional/genetics
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/physiology
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/physiology
- Tandem Mass Spectrometry
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
20
|
Urbonavičius J, Tauraitė D. Biochemical Pathways Leading to the Formation of Wyosine Derivatives in tRNA of Archaea. Biomolecules 2020; 10:E1627. [PMID: 33276555 PMCID: PMC7761594 DOI: 10.3390/biom10121627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Tricyclic wyosine derivatives are present at position 37 in tRNAPhe of both eukaryotes and archaea. In eukaryotes, five different enzymes are needed to form a final product, wybutosine (yW). In archaea, 4-demethylwyosine (imG-14) is an intermediate for the formation of three different wyosine derivatives, yW-72, imG, and mimG. In this review, current knowledge regarding the archaeal enzymes involved in this process and their reaction mechanisms are summarized. The experiments aimed to elucidate missing steps in biosynthesis pathways leading to the formation of wyosine derivatives are suggested. In addition, the chemical synthesis pathways of archaeal wyosine nucleosides are discussed, and the scheme for the formation of yW-86 and yW-72 is proposed. Recent data demonstrating that wyosine derivatives are present in the other tRNA species than those specific for phenylalanine are discussed.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | |
Collapse
|
21
|
Funk HM, Zhao R, Thomas M, Spigelmyer SM, Sebree NJ, Bales RO, Burchett JB, Mamaril JB, Limbach PA, Guy MP. Identification of the enzymes responsible for m2,2G and acp3U formation on cytosolic tRNA from insects and plants. PLoS One 2020; 15:e0242737. [PMID: 33253256 PMCID: PMC7704012 DOI: 10.1371/journal.pone.0242737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.
Collapse
Affiliation(s)
- Holly M. Funk
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Maggie Thomas
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Sarah M. Spigelmyer
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Nichlas J. Sebree
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Regan O. Bales
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Jamison B. Burchett
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Justen B. Mamaril
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael P. Guy
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| |
Collapse
|
22
|
Wang J, Zhou J, Yang Q, Grayhack EJ. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting. eLife 2018; 7:39637. [PMID: 30465652 PMCID: PMC6301793 DOI: 10.7554/elife.39637] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Reading frame maintenance is critical for accurate translation. We show that the conserved eukaryotic/archaeal protein Mbf1 acts with ribosomal proteins Rps3/uS3 and eukaryotic Asc1/RACK1 to prevent frameshifting at inhibitory CGA-CGA codon pairs in the yeast Saccharomyces cerevisiae. Mutations in RPS3 that allow frameshifting implicate eukaryotic conserved residues near the mRNA entry site. Mbf1 and Rps3 cooperate to maintain the reading frame of stalled ribosomes, while Asc1 also mediates distinct events that result in recruitment of the ribosome quality control complex and mRNA decay. Frameshifting occurs through a +1 shift with a CGA codon in the P site and involves competition between codons entering the A site, implying that the wobble interaction of the P site codon destabilizes translation elongation. Thus, eukaryotes have evolved unique mechanisms involving both a universally conserved ribosome component and two eukaryotic-specific proteins to maintain the reading frame at ribosome stalls. Proteins perform all the chemical reactions needed to keep a cell alive; thus, it is essential to assemble them correctly. They are made by molecular machines called ribosomes, which follow a sequence of instructions written in genetic code in molecules known as mRNAs. Ribosomes essentially read the genetic code three letters at a time; each triplet either codes for the insertion of one of 20 building blocks into the emerging protein, or serves as a signal to stop the process. It is critical that, after reading one triplet, the ribosome moves precisely three letters to read the next triplet. If, for example, the ribosome shifted just two letters instead of three – a phenomenon known as “frameshifting” – it would completely change the building blocks that were used to make the protein. This could lead to atypical or aberrant proteins that either do not work or are even toxic to the cell. For a variety of reasons, ribosomes will often stall before they have finished building a protein. When this happens, the ribosome is more likely to frameshift. Cells commonly respond to stalled ribosomes by recruiting other molecules that work as quality control systems, some of which can disassemble the ribosome and break down the mRNA. In budding yeast, one part of the ribosome – named Asc1 – plays a key role in recruiting these quality control systems and in mRNA breakdown. If this component is removed, stalled ribosomes frameshift more frequently and, as a result, aberrant proteins accumulate in the cell. Since the Asc1 recruiter protein sits on the outside of the ribosome, it seemed likely that it might act through other factors to stop the ribosome from frameshifting when it stalls. However, it was unknown if such factors exist, what they are, or how they might work. Now, Wang et al. have identified two additional yeast proteins, named Mbf1 and Rps3, which cooperate to stop the ribosome from frameshifting after it stalls. Rps3, like Asc1, is a component of the ribosome, while Mbf1 is not. It appears that Rps3 likely stops frameshifting via an interaction with the incoming mRNA, because a region of Rps3 near the mRNA entry site to the ribosome is important for its activity. Further experiments then showed that the known Asc1-mediated breakdown of mRNAs did not depend on Mbf1 and Rps3, but also assists in stopping frameshifting. Thus, frameshifting of stalled ribosomes is prevented via two distinct ways: one that directly involves Mbf1 and Rps3 and one that is promoted by Asc1, which reduces the amounts of mRNAs on which ribosomes frameshift. These newly identified factors may provide insights into the precisely controlled protein-production machinery in the cell and into roles of the quality control systems. An improved understanding of mechanisms that prevent frameshifting could eventually lead to better treatments for some human diseases that result when these processes go awry, which include certain neurological conditions.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Center for RNA Biology, University of Rochester, Rochester, New York
| | - Jie Zhou
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Qidi Yang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Center for RNA Biology, University of Rochester, Rochester, New York
| |
Collapse
|
23
|
Ng CS, Sinha A, Aniweh Y, Nah Q, Babu IR, Gu C, Chionh YH, Dedon PC, Preiser PR. tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum. Mol Syst Biol 2018; 14:e8009. [PMID: 30287681 PMCID: PMC6171970 DOI: 10.15252/msb.20178009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
Among components of the translational machinery, ribonucleoside modifications on tRNAs are emerging as critical regulators of cell physiology and stress response. Here, we demonstrate highly coordinated behavior of the repertoire of tRNA modifications of Plasmodium falciparum throughout the intra-erythrocytic developmental cycle (IDC). We observed both a synchronized increase in 22 of 28 modifications from ring to trophozoite stage, consistent with tRNA maturation during translational up-regulation, and asynchronous changes in six modifications. Quantitative analysis of ~2,100 proteins across the IDC revealed that up- and down-regulated proteins in late but not early stages have a marked codon bias that directly correlates with parallel changes in tRNA modifications and enhanced translational efficiency. We thus propose a model in which tRNA modifications modulate the abundance of stage-specific proteins by enhancing translation efficiency of codon-biased transcripts for critical genes. These findings reveal novel epitranscriptomic and translational control mechanisms in the development and pathogenesis of Plasmodium parasites.
Collapse
Affiliation(s)
- Chee Sheng Ng
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaw Aniweh
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Qianhui Nah
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
| | - Indrakanti Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Microbiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
24
|
Han L, Phizicky EM. A rationale for tRNA modification circuits in the anticodon loop. RNA (NEW YORK, N.Y.) 2018; 24:1277-1284. [PMID: 30026310 PMCID: PMC6140457 DOI: 10.1261/rna.067736.118] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The numerous post-transcriptional modifications of tRNA play a crucial role in tRNA function. While most modifications are introduced to tRNA independently, several sets of modifications are found to be interconnected such that the presence of one set of modifications drives the formation of another modification. The vast majority of these modification circuits are found in the anticodon loop (ACL) region where the largest variety and highest density of modifications occur compared to the other parts of the tRNA and where there is relatively limited sequence and structural information. We speculate here that the modification circuits in the ACL region arise to enhance enzyme modification specificity by direct or indirect use of the first modification in the circuit as an additional recognition element for the second modification. We also describe the five well-studied modification circuits in the ACL, and outline possible mechanisms by which they may act. The prevalence of these modification circuits in the ACL and the phylogenetic conservation of some of them suggest that a number of other modification circuits will be found in this region in different organisms.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
25
|
Abstract
Accurate translation of the genetic code is critical to ensure expression of proteins with correct amino acid sequences. Certain tRNAs can cause a shift out of frame (i.e., frameshifting) due to imbalances in tRNA concentrations, lack of tRNA modifications or insertions or deletions in tRNAs (called frameshift suppressors). Here, we determined the structural basis for how frameshift-suppressor tRNASufA6 (a derivative of tRNAPro) reprograms the mRNA frame to translate a 4-nt codon when bound to the bacterial ribosome. After decoding at the aminoacyl (A) site, the crystal structure of the anticodon stem-loop of tRNASufA6 bound in the peptidyl (P) site reveals ASL conformational changes that allow for recoding into the +1 mRNA frame. Furthermore, a crystal structure of full-length tRNASufA6 programmed in the P site shows extensive conformational rearrangements of the 30S head and body domains similar to what is observed in a translocation intermediate state containing elongation factor G (EF-G). The 30S movement positions tRNASufA6 toward the 30S exit (E) site disrupting key 16S rRNA-mRNA interactions that typically define the mRNA frame. In summary, this tRNA-induced 30S domain change in the absence of EF-G causes the ribosome to lose its grip on the mRNA and uncouples the canonical forward movement of the tRNAs during elongation.
Collapse
|
26
|
Grell TJ, Young AP, Drennan CL, Bandarian V. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. J Am Chem Soc 2018; 140:6842-6852. [PMID: 29792696 PMCID: PMC5994729 DOI: 10.1021/jacs.8b01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/03/2022]
Abstract
TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine to form the posttranscriptional modification, 4-demethylwyosine, in situ on transfer RNA (tRNA). Two mechanisms have been proposed for this transformation, with one of the possible mechanisms invoking a Schiff base intermediate formed between a conserved lysine residue and pyruvate. Utilizing a combination of mass spectrometry and X-ray crystallography, we have obtained evidence to support the formation of a Schiff base lysine adduct in TYW1. When 13C labeled pyruvate is used, the mass shift of the adduct matches that of the labeled pyruvate, indicating that pyruvate is the source of the adduct. Furthermore, a crystal structure of TYW1 provides visualization of the Schiff base lysine-pyruvate adduct, which is positioned directly adjacent to the auxiliary [4Fe-4S] cluster. The adduct coordinates the unique iron of the auxiliary cluster through the lysine nitrogen and a carboxylate oxygen, reminiscent of how the radical SAM [4Fe-4S] cluster is coordinated by SAM. The structure provides insight into the binding site for tRNA and further suggests how radical SAM chemistry can be combined with Schiff base chemistry for RNA modification.
Collapse
Affiliation(s)
- Tsehai
A. J. Grell
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony P. Young
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vahe Bandarian
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
28
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
29
|
Han L, Guy MP, Kon Y, Phizicky EM. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway. PLoS Genet 2018; 14:e1007288. [PMID: 29596413 PMCID: PMC5892943 DOI: 10.1371/journal.pgen.1007288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID. The ubiquitous tRNA anticodon loop modifications have important but poorly understood functions in decoding mRNAs in the ribosome to ensure accurate and efficient protein synthesis, and their lack often impairs yeast growth and causes human disease. Here we investigate why ribose methylation of residues 32 and 34 in the anticodon loop is important. Mutations in the corresponding methyltransferase Trm7/FTSJ1 cause poor growth in the budding yeast Saccharomyces cerevisiae and near lethality in the evolutionarily distant fission yeast Schizosaccharomyces pombe, each due to reduced functional tRNAPhe. We previously showed that tRNAPhe anticodon loop modification in yeast and humans required two evolutionarily conserved Trm7 interacting proteins for Cm32 and Gm34 modification, which then stimulated G37 modification. We show here that both S. cerevisiae and S. pombe trm7Δ mutants have apparently normal tRNAPhe charging, but constitutively activate a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. We also show that S. cerevisiae trm7Δ mutants grow poorly due in part to constitutive GAAC activation as well as to the uncharged tRNAPhe. We propose that TRM7 is important to prevent constitutive GAAC activation throughout eukaryotes, including metazoans, which may explain non-syndromic X-linked intellectual disability associated with human FTSJ1 mutations.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Michael P. Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, United States of America
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
30
|
Tuorto F, Lyko F. Genome recoding by tRNA modifications. Open Biol 2017; 6:rsob.160287. [PMID: 27974624 PMCID: PMC5204126 DOI: 10.1098/rsob.160287] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/14/2016] [Indexed: 11/12/2022] Open
Abstract
RNA modifications are emerging as an additional regulatory layer on top of the primary RNA sequence. These modifications are particularly enriched in tRNAs where they can regulate not only global protein translation, but also protein translation at the codon level. Modifications located in or in the vicinity of tRNA anticodons are highly conserved in eukaryotes and have been identified as potential regulators of mRNA decoding. Recent studies have provided novel insights into how these modifications orchestrate the speed and fidelity of translation to ensure proper protein homeostasis. This review highlights the prominent modifications in the tRNA anticodon loop: queuosine, inosine, 5-methoxycarbonylmethyl-2-thiouridine, wybutosine, threonyl-carbamoyl-adenosine and 5-methylcytosine. We discuss the functional relevance of these modifications in protein translation and their emerging role in eukaryotic genome recoding during cellular adaptation and disease.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
31
|
Marín M, Fernández-Calero T, Ehrlich R. Protein folding and tRNA biology. Biophys Rev 2017; 9:573-588. [PMID: 28944442 PMCID: PMC5662057 DOI: 10.1007/s12551-017-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Polypeptides can fold into tertiary structures while they are synthesized by the ribosome. In addition to the amino acid sequence, protein folding is determined by several factors within the cell. Among others, the folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins, ligands, or the ribosome, as well as by the translocation through membrane pores. Particularly, the translation machinery and the population of tRNA under different physiological or adaptive responses can dramatically affect protein folding. This review summarizes the scientific evidence describing the role of translation kinetics and tRNA populations on protein folding and addresses current efforts to better understand tRNA biology. It is organized into three main parts, which are focused on: (i) protein folding in the cellular context; (ii) tRNA biology and the complexity of the tRNA population; and (iii) available methods and technical challenges in the characterization of tRNA pools. In this manner, this work illustrates the ways by which functional properties of proteins may be modulated by cellular tRNA populations.
Collapse
Affiliation(s)
- Mónica Marín
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
32
|
|
33
|
Kessler AC, Silveira d'Almeida G, Alfonzo JD. The role of intracellular compartmentalization on tRNA processing and modification. RNA Biol 2017; 15:554-566. [PMID: 28850002 DOI: 10.1080/15476286.2017.1371402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
A signature of most eukaryotic cells is the presence of intricate membrane systems. Intracellular organization presumably evolved to provide order, and add layers for regulation of intracellular processes; compartmentalization also forcibly led to the appearance of sophisticated transport systems. With nucleus-encoded tRNAs, it led to the uncoupling of tRNA synthesis from many of the maturation steps it undergoes. It is now clear that tRNAs are actively transported across intracellular membranes and at any point, in any compartment, they can be post-transcriptionally modified; modification enzymes themselves may localize to any of the genome-containing compartments. In the following pages, we describe a number of well-known examples of how intracellular compartmentalization of tRNA processing and modification activities impact the function and fate of tRNAs. We raise the possibility that rates of intracellular transport may influence the level of modification and as such increase the diversity of differentially modified tRNAs in cells.
Collapse
Affiliation(s)
- Alan C Kessler
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b The Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| | - Gabriel Silveira d'Almeida
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b The Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| | - Juan D Alfonzo
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b The Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA.,c The Ohio State Biochemistry Program , The Ohio State University , Columbus, Ohio , USA
| |
Collapse
|
34
|
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017; 169:1187-1200. [PMID: 28622506 PMCID: PMC5657247 DOI: 10.1016/j.cell.2017.05.045] [Citation(s) in RCA: 2127] [Impact Index Per Article: 303.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N6-methyladenosine (m6A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information.
Collapse
Affiliation(s)
- Ian A Roundtree
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, 924 East 57(th) Street, Chicago, IL 60637, USA
| | - Molly E Evans
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Department of Chemistry, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Väre VYP, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules 2017; 7:E29. [PMID: 28300792 PMCID: PMC5372741 DOI: 10.3390/biom7010029] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.
Collapse
Affiliation(s)
- Ville Y P Väre
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Emily R Eruysal
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Amithi Narendran
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Kathryn L Sarachan
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Paul F Agris
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
36
|
Han L, Marcus E, D'Silva S, Phizicky EM. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. RNA (NEW YORK, N.Y.) 2017; 23:406-419. [PMID: 28003514 PMCID: PMC5311504 DOI: 10.1261/rna.059667.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 05/25/2023]
Abstract
The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Cytidine/analogs & derivatives
- Cytidine/genetics
- Cytidine/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Thr/chemistry
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Thr/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Substrate Specificity
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sonia D'Silva
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
37
|
Schweizer U, Bohleber S, Fradejas-Villar N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 2017; 14:1197-1208. [PMID: 28277934 PMCID: PMC5699536 DOI: 10.1080/15476286.2017.1294309] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Base 37 in tRNA, 3′-adjacent to the anticodon, is occupied by a purine base that is thought to stabilize codon recognition by stacking interactions on the first Watson-Crick base pair. If the first codon position forms an A.U or U.A base pair, the purine is likely further modified in all domains of life. One of the first base modifications found in tRNA is N6-isopentenyl adenosine (i6A) present in a fraction of tRNAs in bacteria and eukaryotes, which can be further modified to 2-methyl-thio-N6-isopentenyladenosine (ms2i6A) in a subset of tRNAs. Homologous tRNA isopentenyl transferase enzymes have been identified in bacteria (MiaA), yeast (Mod5, Tit1), roundworm (GRO-1), and mammals (TRIT1). In eukaryotes, isopentenylation of cytoplasmic and mitochondrial tRNAs is mediated by products of the same gene. Accordingly, a patient with homozygous mutations in TRIT1 has mitochondrial disease. The role of i6A in a subset of tRNAs in gene expression has been linked with translational fidelity, speed of translation, skewed gene expression, and non-sense suppression. This review will not cover the action of i6A as a cytokinin in plants or the potential function of Mod5 as a prion in yeast.
Collapse
Affiliation(s)
- Ulrich Schweizer
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Simon Bohleber
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Noelia Fradejas-Villar
- a Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|
38
|
Urbonavičius J, Rutkienė R, Lopato A, Tauraitė D, Stankevičiūtė J, Aučynaitė A, Kaliniene L, van Tilbeurgh H, Meškys R. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. RNA (NEW YORK, N.Y.) 2016; 22:1871-1883. [PMID: 27852927 PMCID: PMC5113207 DOI: 10.1261/rna.057059.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. We have suggested previously that a peculiar methyltransferase (aTrm5a/Taw22) likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G; and C7-methylation of imG-14 to yield imG2. Here we show that the recombinant aTrm5a/Taw22-like enzymes from both Pyrococcus abyssi and Nanoarchaeum equitans indeed possess such dual specificity. We also show that substitutions of individual conservative amino acids of P. abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37. We further demonstrate that aTrm5a-type enzyme SSO2439 from Sulfolobus solfataricus, which has no N1-methyltransferase activity, exhibits C7-methyltransferase activity, thereby producing imG2 from imG-14. We thus suggest renaming such aTrm5a methyltransferases as Taw21 to distinguish between monofunctional and bifunctional aTrm5a enzymes.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius 10223, Lithuania
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Anželika Lopato
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius 10223, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Jonita Stankevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Herman van Tilbeurgh
- Institut de Biologie Intégrative de la Cellule, I2BC, CNRS Université Paris-Sud UMR9198, Orsay, France
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| |
Collapse
|
39
|
Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40. [PMID: 27448410 PMCID: PMC5041475 DOI: 10.1093/nar/gkw608] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon-anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson-Crick pairs in the codon-anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon-anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.
Collapse
Affiliation(s)
- Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
40
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
42
|
Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, Kalscheuer VM, Gecz J, Phizicky EM. Defects in tRNA Anticodon Loop 2'-O-Methylation Are Implicated in Nonsyndromic X-Linked Intellectual Disability due to Mutations in FTSJ1. Hum Mutat 2015; 36:1176-87. [PMID: 26310293 DOI: 10.1002/humu.22897] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023]
Abstract
tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .
Collapse
Affiliation(s)
- Michael P Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Marie Shaw
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Catherine L Weiner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Katherine Rose
- Monash Health, Special Medicine Centre, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Vera M Kalscheuer
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin D14195, Germany
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| |
Collapse
|
43
|
Tükenmez H, Xu H, Esberg A, Byström AS. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res 2015; 43:9489-99. [PMID: 26283182 PMCID: PMC4627075 DOI: 10.1093/nar/gkv832] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, 11 out of 42 tRNA species contain 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um) nucleosides in the anticodon at the wobble position (U34). Earlier we showed that mutants unable to form the side chain at position 5 (ncm(5) or mcm(5)) or lacking sulphur at position 2 (s(2)) of U34 result in pleiotropic phenotypes, which are all suppressed by overexpression of hypomodified tRNAs. This observation suggests that the observed phenotypes are due to inefficient reading of cognate codons or an increased frameshifting. The latter may be caused by a ternary complex (aminoacyl-tRNA*eEF1A*GTP) with a modification deficient tRNA inefficiently being accepted to the ribosomal A-site and thereby allowing an increased peptidyl-tRNA slippage and thus a frameshift error. In this study, we have investigated the role of wobble uridine modifications in reading frame maintenance, using either the Renilla/Firefly luciferase bicistronic reporter system or a modified Ty1 frameshifting site in a HIS4A::lacZ reporter system. We here show that the presence of mcm(5) and s(2) side groups at wobble uridines are important for reading frame maintenance and thus the aforementioned mutant phenotypes might partly be due to frameshift errors.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Hao Xu
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Anders Esberg
- Department of Odontology/Cariology, Umeå University, Umeå, 901 87, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
44
|
Schäfer M, Brütting C, Canales IM, Großkinsky DK, Vankova R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4873-84. [PMID: 25998904 PMCID: PMC5147713 DOI: 10.1093/jxb/erv214] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including trans-zeatin and isopentenyladenine-type CKs, have been studied in detail, the role of cis-zeatin-type CKs (cZs) in plant development and in mediating environmental interactions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant development and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant development and defence responses to pathogen and herbivore attack and highlight their potential role as 'novel' stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and their potential for crop improvement.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Ivan Meza Canales
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Stefan Meldau
- KWS SAAT AG, Molecular Physiology (RD-ME-MP), Grimsehlstrasse 31, 37555 Einbeck, Germany, Phone: +49 (0) 5561-311-1391, Fax: +49 (0) 5561-311-1090
| |
Collapse
|
45
|
The importance of codon–anticodon interactions in translation elongation. Biochimie 2015; 114:72-9. [DOI: 10.1016/j.biochi.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
46
|
Sample PJ, Kořený L, Paris Z, Gaston KW, Rubio MAT, Fleming IMC, Hinger S, Horáková E, Limbach PA, Lukeš J, Alfonzo JD. A common tRNA modification at an unusual location: the discovery of wyosine biosynthesis in mitochondria. Nucleic Acids Res 2015; 43:4262-73. [PMID: 25845597 PMCID: PMC4417183 DOI: 10.1093/nar/gkv286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Establishment of the early genetic code likely required strategies to ensure translational accuracy and inevitably involved tRNA post-transcriptional modifications. One such modification, wybutosine/wyosine is crucial for translational fidelity in Archaea and Eukarya; yet it does not occur in Bacteria and has never been described in mitochondria. Here, we present genetic, molecular and mass spectromery data demonstrating the first example of wyosine in mitochondria, a situation thus far unique to kinetoplastids. We also show that these modifications are important for mitochondrial function, underscoring their biological significance. This work focuses on TyW1, the enzyme required for the most critical step of wyosine biosynthesis. Based on molecular phylogeny, we suggest that the kinetoplastids pathways evolved via gene duplication and acquisition of an FMN-binding domain now prevalent in TyW1 of most eukaryotes. These findings are discussed in the context of the extensive U-insertion RNA editing in trypanosome mitochondria, which may have provided selective pressure for maintenance of mitochondrial wyosine in this lineage.
Collapse
Affiliation(s)
- Paul J Sample
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Luděk Kořený
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kirk W Gaston
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mary Anne T Rubio
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ian M C Fleming
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Hinger
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Eva Horáková
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic Canadian Institute For Advanced Research, Toronto, ON M5G 1Z8, Canada
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
47
|
Zhuang Q, Feng T, Coleman ML. Modifying the maker: Oxygenases target ribosome biology. ACTA ACUST UNITED AC 2015; 3:e1009331. [PMID: 26779412 PMCID: PMC4682802 DOI: 10.1080/21690731.2015.1009331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes.
Collapse
Affiliation(s)
- Qinqin Zhuang
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| | - Tianshu Feng
- Centre for Cellular and Molecular Physiology; University of Oxford ; Oxford, UK
| | - Mathew L Coleman
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| |
Collapse
|
48
|
Iron-sulfur proteins responsible for RNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1272-83. [PMID: 25533083 DOI: 10.1016/j.bbamcr.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
Abstract
RNA molecules are decorated with various chemical modifications, which are introduced post-transcriptionally by RNA-modifying enzymes. These modifications are required for proper RNA function. Among more than 100 known species of RNA modifications, several modified bases in tRNAs and rRNAs are introduced by RNA-modifying enzymes containing iron-sulfur (Fe/S) clusters. Most Fe/S-containing RNA-modifying enzymes contain radical SAM domains that catalyze a variety of chemical reactions, including methylation, methylthiolation, carboxymethylation, tricyclic purine formation, and deazaguanine formation. Lack of these modifications can cause pathological consequences. Here, we review recent studies on the biogenesis and function of RNA modifications mediated by Fe/S proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
|
49
|
Urbonavičius J, Meškys R, Grosjean H. Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase. RNA (NEW YORK, N.Y.) 2014; 20:747-753. [PMID: 24837075 PMCID: PMC4024628 DOI: 10.1261/rna.043315.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The presence of tricyclic wyosine derivatives 3'-adjacent to anticodon is a hallmark of tRNA(Phe) in eukaryotes and archaea. In yeast, formation of wybutosine (yW) results from five enzymes acting in a strict sequential order. In archaea, the intermediate compound imG-14 (4-demethylwyosine) is a target of three different enzymes, leading to the formation of distinct wyosine derivatives (yW-86, imG, and imG2). We focus here on a peculiar methyltransferase (aTrm5a) that catalyzes two distinct reactions: N(1)-methylation of guanosine and C(7)-methylation of imG-14, whose function is to allow the production of isowyosine (imG2), an intermediate of the 7-methylwyosine (mimG) biosynthetic pathway. Based on the formation of mesomeric forms of imG-14, a rationale for such dual enzymatic activities is proposed. This bifunctional tRNA:m(1)G/imG2 methyltransferase, acting on two chemically distinct guanosine derivatives located at the same position of tRNA(Phe), is unique to certain archaea and has no homologs in eukaryotes. This enzyme here referred to as Taw22, probably played an important role in the emergence of the multistep biosynthetic pathway of wyosine derivatives in archaea and eukaryotes.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania
| | - Henri Grosjean
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Associée à l'Université Paris-Sud 11, FRC 3115, 91190 Gif-sur-Yvette, France
| |
Collapse
|
50
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|