1
|
Claes Z, Lemaire S, Bollen M. Protocol for analyzing protein-protein interactions by split-luciferase complementation assays in human cell lysates. STAR Protoc 2024; 5:103328. [PMID: 39369386 PMCID: PMC11490698 DOI: 10.1016/j.xpro.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Here, we present a lysate-based split-luciferase assay for examining protein-protein interactions (PPIs) in HEK293T cell lysates, exemplified by interactions between subunits of protein phosphatase PP1. We describe steps for storing and re-using lysates, sensor design, assay setup/optimization, and high-throughput screening of compound libraries. We then detail procedures for applying the assay as a research tool to characterize the dynamics of PPIs, which we illustrate with specific examples. For complete details on the use and execution of this protocol, please refer to Claes and Bollen.1.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Van der Hoeven G, Lemaire S, Cao X, Claes Z, Karamanou S, Bollen M. Spontaneous and chaperone-assisted metal loading in the active site of protein phosphatase-1. FEBS Lett 2024; 598:2876-2885. [PMID: 39245796 PMCID: PMC11626998 DOI: 10.1002/1873-3468.15012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Protein phosphatase PP1 has two active-site metals (Zn2+/Fe2+) that are essential for catalysis. However, when expressed in bacteria, PP1 has two Mn2+-ions in its active site, indicating that the incorporation of Zn2+/Fe2+ depends on additional eukaryotic component(s). Here, we used purified, metal-deficient PP1 to study metal incorporation. Fe2+ was incorporated spontaneously, but Zn2+ was not. Mn2+-incorporation at physiological pH depended on the co-expression of PP1 with PPP1R2 (Inhibitor-2) or PPP1R11 (Inhibitor-3), or a pre-incubation of PP1 at pH 4. We also demonstrate that PPP1R2 and PPP1R11 are Zn2+-binding proteins but are, by themselves, not able to load PP1 with Zn2+. Our data suggest that PPP1R2 and PPP1R11 function as metal chaperones for PP1 but depend on co-chaperone(s) and/or specific modification(s) for the transfer of associated Zn2+ to PP1.
Collapse
Affiliation(s)
- Gerd Van der Hoeven
- Laboratory of Biosignaling & TherapeuticsKU Leuven Department of Cellular and Molecular Medicine, University of LeuvenBelgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & TherapeuticsKU Leuven Department of Cellular and Molecular Medicine, University of LeuvenBelgium
| | - Xinyu Cao
- Laboratory of Biosignaling & TherapeuticsKU Leuven Department of Cellular and Molecular Medicine, University of LeuvenBelgium
| | - Zander Claes
- Laboratory of Biosignaling & TherapeuticsKU Leuven Department of Cellular and Molecular Medicine, University of LeuvenBelgium
| | - Spyridoula Karamanou
- Laboratory of Molecular BacteriologyKU Leuven Department of Microbiology and Immunology, University of LeuvenBelgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & TherapeuticsKU Leuven Department of Cellular and Molecular Medicine, University of LeuvenBelgium
| |
Collapse
|
3
|
Lemaire S, Ferreira M, Claes Z, Derua R, Lake M, Van der Hoeven G, Withof F, Cao X, Greiner EC, Kettenbach AN, Van Eynde A, Bollen M. PPP1R2 stimulates protein phosphatase-1 through stabilisation of dynamic subunit interactions. Nat Commun 2024; 15:9822. [PMID: 39537675 PMCID: PMC11561318 DOI: 10.1038/s41467-024-54256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Protein Ser/Thr phosphatase PP1 is always associated with one or two regulatory subunits or RIPPOs. One of the earliest evolved RIPPOs is PPP1R2, also known as Inhibitor-2. Since its discovery nearly 5 decades ago, PPP1R2 has been variously described as an inhibitor, activator or (metal) chaperone of PP1, but it is still unknown how PPP1R2 affects the function of PP1 in intact cells. Here, using specific research tools, we demonstrate that PPP1R2 stabilises a subgroup of PP1 holoenzymes, exemplified by PP1:RepoMan, thereby promoting the dephosphorylation of their substrates. Mechanistically, the recruitment of PPP1R2 disrupts an inhibitory, fuzzy interaction between the C-terminal tail and catalytic domain of PP1, and generates an additional C-terminal RepoMan-interaction site. The resulting holoenzyme is further stabilized by a direct PPP1R2:RepoMan interaction, which renders it refractory to competitive disruption by RIPPOs that do not interact with PPP1R2. Our data demonstrate that PPP1R2 modulates the function of PP1 by altering the balance between holoenzymes through stabilisation of specific subunit interactions.
Collapse
Affiliation(s)
- Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Zander Claes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Madryn Lake
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Gerd Van der Hoeven
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Fabienne Withof
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Elora C Greiner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Choy MS, Nguyen HT, Kumar GS, Peti W, Kettenbach AN, Page R. A protein phosphatase 1 specific phosphatase targeting peptide (PhosTAP) to identify the PP1 phosphatome. Proc Natl Acad Sci U S A 2024; 121:e2415383121. [PMID: 39446389 PMCID: PMC11536154 DOI: 10.1073/pnas.2415383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Phosphoprotein phosphatases (PPPs) are the key serine/threonine phosphatases that regulate all essential signaling cascades. In particular, Protein Phosphatase 1 (PP1) dephosphorylates ~80% of all ser/thr phosphorylation sites. Here, we developed a phosphatase targeting peptide (PhosTAP) that binds all PP1 isoforms and does so with a stronger affinity than any other known PP1 regulator. This PhosTAP can be used as a PP1 recruitment tool for Phosphorylation Targeting Chimera (PhosTAC)-type recruitment in in vitro and cellular experiments, as well as in phosphoproteomics experiments to identify PP1-specific substrates and phosphosites. The latter is especially important to further our understanding of cellular signaling, as the identification of substrates and especially phosphosites that are targeted by specific phosphatases lags behind that of their kinase counterparts. Using PhosTAP-based proteomics, we show that, counter to our current understanding, many PP1 regulators are also substrates, that the number of residues between regulator PP1-binding and phosphosites vary significantly, and that PP1 counteracts the activities of mitotic kinases. Finally, we also found that Haspin kinase is a direct substrate of PP1 and that its PP1-dependent dephosphorylation modulates its activity during anaphase. Together, we show that PP1-specific PhosTAPs are a powerful tool for +studying PP1 activity in vitro and in cells.
Collapse
Affiliation(s)
- Meng S. Choy
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
| | - Hieu T. Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Ganesan S. Kumar
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
- National Institute of Immunology, New Delhi110067, India
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT06030
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
- Dartmouth Cancer Center, Lebanon, NH03756
| | - Rebecca Page
- Department of Cell Biology, UConn Health, Farmington, CT06030
| |
Collapse
|
5
|
Matos B, Gomes AAS, Bernardino R, Alves MG, Howl J, Jerónimo C, Fardilha M. CAVPENET Peptide Inhibits Prostate Cancer Cells Proliferation and Migration through PP1γ-Dependent Inhibition of AKT Signaling. Pharmaceutics 2024; 16:1199. [PMID: 39339236 PMCID: PMC11434739 DOI: 10.3390/pharmaceutics16091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Protein phosphatase 1 (PP1) complexes have emerged as promising targets for anticancer therapies. The ability of peptides to mimic PP1-docking motifs, and so modulate interactions with regulatory factors, has enabled the creation of highly selective modulators of PP1-dependent cellular processes that promote tumor growth. The major objective of this study was to develop a novel bioactive cell-penetrating peptide (bioportide), which, by mimicking the PP1-binding motif of caveolin-1 (CAV1), would regulate PP1 activity, to hinder prostate cancer (PCa) progression. The designed bioportide, herein designated CAVPENET, and a scrambled homologue, were synthesized using microwave-assisted solid-phase methodologies and evaluated using PCa cell lines. Our findings indicate that CAVPENET successfully entered PCa cells to influence both viability and migration. This tumor suppressor activity of CAVPENET was attributed to inhibition of AKT signaling, a consequence of increased PP1γ activity. This led to the suppression of glycolytic metabolism and alteration in lipid metabolism, collectively representing the primary mechanism responsible for the anticancer properties of CAVPENET. Our results underscore the potential of the designed peptide as a novel therapy for PCa patients, setting the stage for further testing in more advanced models to fully realize its therapeutic promise.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Antoniel A S Gomes
- Department of Biophysics & Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu 18610-034, SP, Brazil
| | - Raquel Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| | - John Howl
- Faculty of Health, Education and Life Sciences, Birmingham City University, Edgbaston, Birmingham B15 3TN, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Wu D, Van der Hoeven G, Claes Z, Van Eynde A, Bollen M. DNA damage-induced allosteric activation of protein phosphatase PP1:NIPP1 through Src kinase-induced circularization of NIPP1. FEBS J 2024; 291:2615-2635. [PMID: 38303113 DOI: 10.1111/febs.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
Protein phosphatase-1 (PP1) complexed to nuclear inhibitor of PP1 (NIPP1) limits DNA repair through dephosphorylation of NIPP1-recruited substrates. However, the PP1:NIPP1 holoenzyme is completely inactive under basal conditions, hinting at a DNA damage-regulated activation mechanism. Here, we report that DNA damage caused the activation of PP1:NIPP1 after a time delay of several hours through phosphorylation of NIPP1 at the C-terminal tyrosine 335 (Y335) by a Src-family kinase. PP1:NIPP1 activation partially resulted from the dissociation of the C terminus of NIPP1 from the active site of PP1. In addition, the released Y335-phosphorylated C terminus interacted with the N terminus of NIPP1 to enhance substrate recruitment by the flanking forkhead-associated (FHA) domain. Constitutive activation of PP1:NIPP1 by knock-in of a phospho-mimicking (Y335E) NIPP1 mutant led to the hypo-phosphorylation of FHA ligands and an accumulation of DNA double-strand breaks. Our data indicate that PP1:NIPP1 activation through circularization of NIPP1 is a late response to DNA damage that contributes to the timely recovery from damage repair.
Collapse
Affiliation(s)
- Dan Wu
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Gerd Van der Hoeven
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Zander Claes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
7
|
Fatalska A, Hodgson G, Freund SMV, Maslen SL, Morgan T, Thorkelsson SR, van Slegtenhorst M, Lorenz S, Andreeva A, Kaat LD, Bertolotti A. Recruitment of trimeric eIF2 by phosphatase non-catalytic subunit PPP1R15B. Mol Cell 2024; 84:506-521.e11. [PMID: 38159565 PMCID: PMC7615683 DOI: 10.1016/j.molcel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tomos Morgan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sigurdur R Thorkelsson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
8
|
Padi SKR, Vos MR, Godek RJ, Fuller JR, Kruse T, Hein JB, Nilsson J, Kelker MS, Page R, Peti W. Cryo-EM structures of PP2A:B55-FAM122A and PP2A:B55-ARPP19. Nature 2024; 625:195-203. [PMID: 38123684 PMCID: PMC10765524 DOI: 10.1038/s41586-023-06870-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation1. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases2, whereas mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B553. Although the role of kinases in mitotic entry is well established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited4. Inhibition of PP2A:B55 is achieved by the intrinsically disordered proteins ARPP195,6 and FAM122A7. Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the single-particle cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies, both intrinsically disordered proteins bind PP2A:B55, but do so in highly distinct manners, leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provide a molecular roadmap for the development of therapeutic interventions for PP2A:B55-related diseases.
Collapse
Affiliation(s)
- Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Margaret R Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Rachel J Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B Hein
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
9
|
Choy MS, Srivastava G, Robinson LC, Tatchell K, Page R, Peti W. The SDS22:PP1:I3 complex: SDS22 binding to PP1 loosens the active site metal to prime metal exchange. J Biol Chem 2024; 300:105515. [PMID: 38042495 PMCID: PMC10776994 DOI: 10.1016/j.jbc.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
SDS22 and Inhibitor-3 (I3) are two ancient regulators of protein phosphatase 1 (PP1) that regulate multiple essential biological processes. Both SDS22 and I3 form stable dimeric complexes with PP1; however, and atypically for PP1 regulators, they also form a triple complex, where both proteins bind to PP1 simultaneously (SPI complex). Here we report the crystal structure of the SPI complex. While both regulators bind PP1 in conformations identical to those observed in their individual PP1 complexes, PP1 adopts the SDS22-bound conformation, which lacks its M1 metal. Unexpectedly, surface plasmon resonance (SPR) revealed that the affinity of I3 for the SDS22:PP1 complex is ∼10-fold lower than PP1 alone. We show that this change in binding affinity is solely due to the interaction of I3 with the PP1 active site, specifically PP1's M2 metal, demonstrating that SDS22 likely allows for PP1 M2 metal exchange and thus PP1 biogenesis.
Collapse
Affiliation(s)
- Meng S Choy
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Gautam Srivastava
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Lucy C Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
10
|
Claes Z, Bollen M. A split-luciferase lysate-based approach to identify small-molecule modulators of phosphatase subunit interactions. Cell Chem Biol 2023; 30:1666-1679.e6. [PMID: 37625414 DOI: 10.1016/j.chembiol.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1β and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Padi SK, Vos MR, Godek RJ, Fuller JR, Kruse T, Hein JB, Nilsson J, Kelker MS, Page R, Peti W. Cryo-EM structures of PP2A:B55-FAM122A and PP2A:B55-ARPP19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555365. [PMID: 37693408 PMCID: PMC10491220 DOI: 10.1101/2023.08.31.555365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation.1 Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases,2 while mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55.3 While the role of kinases in mitotic entry is well-established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.4 For PP2A:B55, inhibition is achieved by the two intrinsically disordered proteins (IDPs), ARPP19 (phosphorylation-dependent)6,7 and FAM122A5 (inhibition is phosphorylation-independent). Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies both IDPs bind PP2A:B55, but do so in highly distinct manners, unexpectedly leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provides a molecular roadmap for the development of therapeutic interventions for PP2A:B55 related diseases.
Collapse
Affiliation(s)
- Sathish K.R. Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| | - Margaret R. Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | - Rachel J. Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | | | - Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B. Hein
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| |
Collapse
|
12
|
Nguyen H, Kettenbach AN. Substrate and phosphorylation site selection by phosphoprotein phosphatases. Trends Biochem Sci 2023; 48:713-725. [PMID: 37173206 PMCID: PMC10523993 DOI: 10.1016/j.tibs.2023.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.
Collapse
Affiliation(s)
- Hieu Nguyen
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; Dartmouth Cancer Center, Lebanon, NH 03756, USA.
| |
Collapse
|
13
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Alba Posse EJ, González C, Carriquiriborde P, Nadra A, Gasulla J. Optimization and validation of a protein phosphatase inhibition assay for accessible microcystin detection. Talanta 2023; 255:124174. [PMID: 36608426 DOI: 10.1016/j.talanta.2022.124174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022]
Abstract
The presence of cyanobacterial toxins in freshwater constitutes an increasing public health concern, especially affecting developing countries where the high cost of available methods makes monitoring programs difficult. The phosphatase inhibition assay (PPIA) is a sensitive method with low instrument requirements that allows the quantification of the most frequent cyanotoxins, microcystins (MCs). In this work, we implemented a PPIA, starting from Protein Phosphatase 1 (PP1) expression up to the validation with samples of algal blooms from Argentina. To do this, we optimized the expression and lyophilization of PP1, and the assay conditions. Also, we included robustness and possible interference analysis. We evaluated the most widely used cyanobacterial lysis methods and determined that heating for 15 min at 95 °C is simple and adequate for this assay. Then, we performed MC spikes recovery assays on water samples from three dams from Argentina, resulting in a recovery ranging from 77 to 115%. The limit of detection (LOD) was 0.4 μg/L and the linear range is 0.4 μg/L - 5 μg/L. Finally, we evaluated 65 environmental samples where MCs was measured by ELISA test containing from 0 μg/L to 625 μg/L. The PPIA showed excellent correlation (Pearson correlation coefficient = 0.967), no false negative and no false positives above the 1 μg/L WHO guideline (0.11 false positive rate). In conclusion, we optimized and validated a PPIA to be an effective and accessible alternative to available commercial tests.
Collapse
Affiliation(s)
- Ezequiel Jorge Alba Posse
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Carolina González
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Universidad de Buenos Aires, Argentina; Centro de investigaciones, Agua y Saneamientos Argentinos, CABA, Argentina
| | - Pedro Carriquiriborde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina; Centro de Investigaciones Del Medio Ambiente (CIM),Universidad Nacional de la Plata-CONICET, La Plata, Argentina
| | - Alejandro Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Javier Gasulla
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina; Centro de Investigaciones Del Medio Ambiente (CIM),Universidad Nacional de la Plata-CONICET, La Plata, Argentina.
| |
Collapse
|
15
|
Srivastava G, Choy MS, Bolik-Coulon N, Page R, Peti W. Inhibitor-3 inhibits Protein Phosphatase 1 via a metal binding dynamic protein-protein interaction. Nat Commun 2023; 14:1798. [PMID: 37002212 PMCID: PMC10066265 DOI: 10.1038/s41467-023-37372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 04/03/2023] Open
Abstract
To achieve substrate specificity, protein phosphate 1 (PP1) forms holoenzymes with hundreds of regulatory and inhibitory proteins. Inhibitor-3 (I3) is an ancient inhibitor of PP1 with putative roles in PP1 maturation and the regulation of PP1 activity. Here, we show that I3 residues 27-68 are necessary and sufficient for PP1 binding and inhibition. In addition to a canonical RVxF motif, which is shared by nearly all PP1 regulators and inhibitors, and a non-canonical SILK motif, I3 also binds PP1 via multiple basic residues that bind directly in the PP1 acidic substrate binding groove, an interaction that provides a blueprint for how substrates bind this groove for dephosphorylation. Unexpectedly, this interaction positions a CCC (cys-cys-cys) motif to bind directly across the PP1 active site. Using biophysical and inhibition assays, we show that the I3 CCC motif binds and inhibits PP1 in an unexpected dynamic, fuzzy manner, via transient engagement of the PP1 active site metals. Together, these data not only provide fundamental insights into the mechanisms by which IDP protein regulators of PP1 achieve inhibition, but also shows that fuzzy interactions between IDPs and their folded binding partners, in addition to enhancing binding affinity, can also directly regulate enzyme activity.
Collapse
Affiliation(s)
- Gautam Srivastava
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Meng S Choy
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Nicolas Bolik-Coulon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
16
|
Foley K, Ward N, Hou H, Mayer A, McKee C, Xia H. Regulation of PP1 interaction with I-2, neurabin, and F-actin. Mol Cell Neurosci 2023; 124:103796. [PMID: 36442541 PMCID: PMC10038014 DOI: 10.1016/j.mcn.2022.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Reversible phosphorylation is a fundamental regulatory mechanism required for many biological processes and is coordinated by the opposing actions of protein kinases and phosphatases. Protein phosphatase 1 (PP1) is a major protein phosphatase that plays an important role in many fundamental physiological processes including synaptic transmission and memory formation. Here we investigate the regulation of PP1 by prominent signaling proteins and synaptic scaffolds including GSK3β, inhibitor-2 (I-2), neurabin (Nrb), and actin. While GSK3β is known to regulate PP1 via phosphorylation of the PP1-binding protein I-2, we found that GSK3β directly regulates PP1 via inhibitory phosphorylation in neurons. Additionally, using bioluminescence resonance energy transfer (BRET), we found that GSK3β alters PP1-I-2 interaction in living cells. The effect of GSK3β on PP1-I-2 interaction is independent of the PP1 C-terminal tail, contrary to predictions based on previous findings from purified proteins. I-2 has been shown to form a trimeric complex with PP1 and Nrb, a major synaptic scaffold for promoting PP1 localization to the actin cytoskeleton. Utilizing BRET, we found that Nrb promotes PP1-actin interaction, however no BRET was detected between I-2 and F-actin. Finally, we found that stabilizing F-actin promotes Nrb-PP1 binding and may also lead to conformational changes between Nrb-I-2 and Nrb-F-actin complexes. Overall, our findings elaborate the dynamic regulation of PP1 complexes by GSK3β, targeting proteins, and actin polymerization.
Collapse
Affiliation(s)
- Karl Foley
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hailong Hou
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Abigail Mayer
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cody McKee
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Houhui Xia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
The ribosomal RNA processing 1B:protein phosphatase 1 holoenzyme reveals non-canonical PP1 interaction motifs. Cell Rep 2022; 41:111726. [PMID: 36450254 PMCID: PMC9813921 DOI: 10.1016/j.celrep.2022.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
The serine/threonine protein phosphatase 1 (PP1) dephosphorylates hundreds of substrates by associating with >200 regulatory proteins to form specific holoenzymes. The major PP1 targeting protein in the nucleolus is RRP1B (ribosomal RNA processing 1B). In addition to selectively recruiting PP1β/PP1γ to the nucleolus, RRP1B also has a key role in ribosome biogenesis, among other functions. How RRP1B binds PP1 and regulates nucleolar phosphorylation signaling is not yet known. Here, we show that RRP1B recruits PP1 via established (RVxF/SILK/ΦΦ) and non-canonical motifs. These atypical interaction sites, the PP1β/γ specificity, and N-terminal AF-binding pockets rely on hydrophobic interactions that contribute to binding and, via phosphorylation, regulate complex formation. This work advances our understanding of PP1 isoform selectivity, reveals key roles of N-terminal PP1 residues in regulator binding, and suggests that additional PP1 interaction sites have yet to be identified, all of which are necessary for a systems biology understanding of PP1 function.
Collapse
|
18
|
Lázár T, Tantos A, Tompa P, Schad E. Intrinsic protein disorder uncouples affinity from binding specificity. Protein Sci 2022; 31:e4455. [PMID: 36305763 PMCID: PMC9601785 DOI: 10.1002/pro.4455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins often function by molecular recognition, in which they undergo induced folding. Based on prior generalizations, the idea prevails in the IDP field that due to the entropic penalty of induced folding, the major functional advantage associated with this binding mode is "uncoupling" specificity from binding strength. Nevertheless, both weaker binding and high specificity of IDPs/IDRs rest on limited experimental observations, making these assumptions more speculations than evidence-supported facts. The issue is also complicated by the rather vague concept of specificity that lacks an exact measure, such as the Kd for binding strength. We addressed these issues by creating and analyzing a comprehensive dataset of well-characterized ID/globular protein complexes, for which both the atomic structure of the complex and free energy (ΔG, Kd ) of interaction is known. Through this analysis, we provide evidence that the affinity distributions of IDP/globular and globular/globular complexes show different trends, whereas specificity does not connote to weaker binding strength of IDPs/IDRs. Furthermore, protein disorder extends the spectrum in the direction of very weak interactions, which may have important regulatory consequences and suggest that, in a biological sense, strict correlation of specificity and binding strength are uncoupled by structural disorder.
Collapse
Affiliation(s)
- Tamas Lázár
- VIB‐VUB Center for Structural BiologyFlanders Institute for Biotechnology (VIB)BrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Agnes Tantos
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| | - Peter Tompa
- VIB‐VUB Center for Structural BiologyFlanders Institute for Biotechnology (VIB)BrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| | - Eva Schad
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| |
Collapse
|
19
|
Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun 2022; 13:6199. [PMID: 36261419 PMCID: PMC9582199 DOI: 10.1038/s41467-022-33693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The delicate alternation between glycogen synthesis and degradation is governed by the interplay between key regulatory enzymes altering the activity of glycogen synthase and phosphorylase. Among these, the PP1 phosphatase promotes glycogenesis while inhibiting glycogenolysis. PP1 is, however, a master regulator of a variety of cellular processes, being conveniently directed to each of them by scaffolding subunits. PTG, Protein Targeting to Glycogen, addresses PP1 action to glycogen granules. In Lafora disease, the most aggressive pediatric epilepsy, genetic alterations leading to PTG accumulation cause the deposition of insoluble polyglucosans in neurons. Here, we report the crystallographic structure of the ternary complex PP1/PTG/carbohydrate. We further refine the mechanism of the PTG-mediated PP1 recruitment to glycogen by identifying i) an unusual combination of recruitment sites, ii) their contributions to the overall binding affinity, and iii) the conformational heterogeneity of this complex by in solution SAXS analyses.
Collapse
|
20
|
Foley K, Altimimi H, Hou H, Zhang Y, McKee C, Papasergi-Scott MM, Yang H, Mayer A, Ward N, MacLean DM, Nairn AC, Stellwagen D, Xia H. Protein phosphatase-1 inhibitor-2 promotes PP1γ positive regulation of synaptic transmission. Front Synaptic Neurosci 2022; 14:1021832. [PMID: 36276179 PMCID: PMC9582336 DOI: 10.3389/fnsyn.2022.1021832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitor-2 (I-2) is a prototypic inhibitor of protein phosphatase-1 (PP1), a major serine-threonine phosphatase that regulates synaptic plasticity and learning and memory. Although I-2 is a potent inhibitor of PP1 in vitro, our previous work has elucidated that, in vivo, I-2 may act as a positive regulator of PP1. Here we show that I-2 and PP1γ, but not PP1α, positively regulate synaptic transmission in hippocampal neurons. Moreover, we demonstrated that I-2 enhanced PP1γ interaction with its major synaptic scaffold, neurabin, by Förster resonance energy transfer (FRET)/Fluorescence lifetime imaging microscopy (FLIM) studies, while having a limited effect on PP1 auto-inhibitory phosphorylation. Furthermore, our study indicates that the effect of I-2 on PP1 activity in vivo is dictated by I-2 threonine-72 phosphorylation. Our work thus demonstrates a molecular mechanism by which I-2 positively regulates PP1 function in synaptic transmission.
Collapse
|
21
|
Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol 2022; 29:966-977. [PMID: 36175670 PMCID: PMC10365013 DOI: 10.1038/s41594-022-00841-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelly Snead
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, UK
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
22
|
Teixeira JMC, Liu ZH, Namini A, Li J, Vernon RM, Krzeminski M, Shamandy AA, Zhang O, Haghighatlari M, Yu L, Head-Gordon T, Forman-Kay JD. IDPConformerGenerator: A Flexible Software Suite for Sampling the Conformational Space of Disordered Protein States. J Phys Chem A 2022; 126:5985-6003. [PMID: 36030416 PMCID: PMC9465686 DOI: 10.1021/acs.jpca.2c03726] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Indexed: 11/29/2022]
Abstract
The power of structural information for informing biological mechanisms is clear for stable folded macromolecules, but similar structure-function insight is more difficult to obtain for highly dynamic systems such as intrinsically disordered proteins (IDPs) which must be described as structural ensembles. Here, we present IDPConformerGenerator, a flexible, modular open-source software platform for generating large and diverse ensembles of disordered protein states that builds conformers that obey geometric, steric, and other physical restraints on the input sequence. IDPConformerGenerator samples backbone phi (φ), psi (ψ), and omega (ω) torsion angles of relevant sequence fragments from loops and secondary structure elements extracted from folded protein structures in the RCSB Protein Data Bank and builds side chains from robust Monte Carlo algorithms using expanded rotamer libraries. IDPConformerGenerator has many user-defined options enabling variable fractional sampling of secondary structures, supports Bayesian models for assessing the agreement of IDP ensembles for consistency with experimental data, and introduces a machine learning approach to transform between internal and Cartesian coordinates with reduced error. IDPConformerGenerator will facilitate the characterization of disordered proteins to ultimately provide structural insights into these states that have key biological functions.
Collapse
Affiliation(s)
- João M. C. Teixeira
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zi Hao Liu
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ashley Namini
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jie Li
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Robert M. Vernon
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Mickaël Krzeminski
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Alaa A. Shamandy
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Oufan Zhang
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Mojtaba Haghighatlari
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lei Yu
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Julie D. Forman-Kay
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
23
|
Jadoon S, Qin Q, Shi W, Longfeng Y, Hou S. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3 participate actively in growth and adaptive responses under abscisic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:990575. [PMID: 36186070 PMCID: PMC9521630 DOI: 10.3389/fpls.2022.990575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.), a worldwide staple food crop, is affected by various environmental stressors that ultimately reduce yield. However, diversified physiological and molecular responses enable it to cope with adverse factors. It includes the integration of numerous signaling in which protein phosphatase 1 (PP1) plays a pivotal role. Research on PP1 has been mostly limited to the PP1 catalytic subunit in numerous cellular progressions. Therefore, we focused on the role of PP1 regulatory subunits (PP1r), OsINH2 and OsINH3, homologs of AtINH2 and AtINH3 in Arabidopsis, in rice growth and stress adaptations. Our observations revealed that these are ubiquitously expressed regulatory subunits that interacted and colocalized with their counter partners, type 1 protein phosphatase (OsTOPPs) but could not change their subcellular localization. The mutation in OsINH2 and OsINH3 reduced pollen viability, thereby affected rice fertility. They were involved in abscisic acid (ABA)-mediated inhibition of seed germination, perhaps by interacting with osmotic stress/ABA-activated protein kinases (OsSAPKs). Meanwhile, they positively participated in osmotic adjustment by proline biosynthesis, detoxifying reactive oxygen species (ROS) through peroxidases (POD), reducing malondialdehyde formation (MDA), and regulating stress-responsive genes. Moreover, their co-interaction proposed they might mediate cellular processes together or by co-regulation; however, the special behavior of two different PP1r is needed to explore. In a nutshell, this research enlightened the involvement of OsINH2 and OsINH3 in the reproductive growth of rice and adaptive strategies under stress. Hence, their genetic interaction with ABA components and deep mechanisms underlying osmotic regulation and ROS adjustment would explain their role in complex signaling. This research offers the basis for introducing stress-resistant crops.
Collapse
|
24
|
Comparative Analysis of Type 1 and Type Z Protein Phosphatases Reveals D615 as a Key Residue for Ppz1 Regulation. Int J Mol Sci 2022; 23:ijms23031327. [PMID: 35163251 PMCID: PMC8836105 DOI: 10.3390/ijms23031327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Type 1 Ser/Thr protein phosphatases are represented in all fungi by two enzymes, the ubiquitous PP1, with a conserved catalytic polypeptide (PP1c) and numerous regulatory subunits, and PPZ, with a C-terminal catalytic domain related to PP1c and a variable N-terminal extension. Current evidence indicates that, although PP1 and PPZ enzymes might share some cellular targets and regulatory subunits, their functions are quite separated, and they have individual regulation. We explored the structures of PP1c and PPZ across 57 fungal species to identify those features that (1) are distinctive among these enzymes and (2) have been preserved through evolution. PP1c enzymes are more conserved than PPZs. Still, we identified 26 residues in the PP1 and PPZ catalytic moieties that are specific for each kind of phosphatase. In some cases, these differences likely affect the distribution of charges in the surface of the protein. In many fungi, Hal3 is a specific inhibitor of the PPZ phosphatases, although the basis for the interaction of these proteins is still obscure. By in vivo co-purification of the catalytic domain of ScPpz1 and ScHal3, followed by chemical cross-linking and MS analysis, we identified a likely Hal3-interacting region in ScPpz1 characterized by two major and conserved differences, D566 and D615 in ScPpz1, which correspond to K210 and K259 in ScPP1c (Glc7). Functional analysis showed that changing D615 to K renders Ppz1 refractory to Hal3 inhibition. Since ScHal3 does not regulate Glc7 but it inhibits all fungal PPZ tested so far, this conserved D residue could be pivotal for the differential regulation of both enzymes in fungi.
Collapse
|
25
|
Morris OM, Torpey JH, Isaacson RL. Intrinsically disordered proteins: modes of binding with emphasis on disordered domains. Open Biol 2021; 11:210222. [PMID: 34610267 PMCID: PMC8492171 DOI: 10.1098/rsob.210222] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our notions of protein function have long been determined by the protein structure-function paradigm. However, the idea that protein function is dictated by a prerequisite complementarity of shapes at the binding interface is becoming increasingly challenged. Interactions involving intrinsically disordered proteins (IDPs) have indicated a significant degree of disorder present in the bound state, ranging from static disorder to complete disorder, termed 'random fuzziness'. This review assesses the anatomy of an IDP and relates how its intrinsic properties permit promiscuity and allow for the various modes of interaction. Furthermore, a mechanistic overview of the types of disordered domains is detailed, while also relating to a recent example and the kinetic and thermodynamic principles governing its formation.
Collapse
Affiliation(s)
- Owen Michael Morris
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - James Hilary Torpey
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Rivka Leah Isaacson
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
26
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Cao X, Lemaire S, Bollen M. Protein phosphatase 1: life-course regulation by SDS22 and Inhibitor-3. FEBS J 2021; 289:3072-3085. [PMID: 34028981 DOI: 10.1111/febs.16029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a sizable fraction of protein Ser/Thr dephosphorylation events. It is tightly regulated in space and time through association with a wide array of regulatory interactors of protein phosphatase one (RIPPOs). Suppressor-of-Dis2-number 2 (SDS22) and Inhibitor-3 (I3), which form a ternary complex with PP1, are the first two evolved and most widely expressed RIPPOs. Their deletion causes mitotic-arrest phenotypes and is lethal in some organisms. The role of SDS22 and I3 in PP1 regulation has been a mystery for decades as they were independently identified as both activators and inhibitors of PP1. This conundrum has largely been solved by recent reports showing that SDS22 and I3 control multiple steps of the life course of PP1. Indeed, they contribute to (a) the stabilization and activation of newly translated PP1, (b) the translocation of PP1 to the nucleus, and (c) the storage of PP1 as a reserve for holoenzyme assembly. Preliminary evidence suggests that SDS22 and I3 may also function as scavengers of released or aged PP1 for re-use in holoenzyme assembly or proteolytical degradation, respectively. Hence, SDS22 and I3 are emerging as master regulators of the life course of PP1.
Collapse
Affiliation(s)
- Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
28
|
Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021; 41:3040-3050. [PMID: 33827970 DOI: 10.1523/jneurosci.2026-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, β, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.
Collapse
|
29
|
Specificity determinants of phosphoprotein phosphatases controlling kinetochore functions. Essays Biochem 2021; 64:325-336. [PMID: 32501472 DOI: 10.1042/ebc20190065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP-SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.
Collapse
|
30
|
Dixit K, Karanth NM, Nair S, Kumari K, Chakrabarti KS, Savithri HS, Sarma SP. Aromatic Interactions Drive the Coupled Folding and Binding of the Intrinsically Disordered Sesbania mosaic Virus VPg Protein. Biochemistry 2020; 59:4663-4680. [PMID: 33269926 DOI: 10.1021/acs.biochem.0c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plant Sesbania mosaic virus [a (+)-ssRNA sobemovirus] VPg protein is intrinsically disordered in solution. For the virus life cycle, the VPg protein is essential for replication and for polyprotein processing that is carried out by a virus-encoded protease. The nuclear magnetic resonance (NMR)-derived tertiary structure of the protease-bound VPg shows it to have a novel tertiary structure with an α-β-β-β topology. The quaternary structure of the high-affinity protease-VPg complex (≈27 kDa) has been determined using HADDOCK protocols with NMR (residual dipolar coupling, dihedral angle, and nuclear Overhauser enhancement) restraints and mutagenesis data as inputs. The geometry of the complex is in excellent agreement with long-range orientational restraints such as residual dipolar couplings and ring-current shifts. A "vein" of aromatic residues on the protease surface is pivotal for the folding of VPg via intermolecular edge-to-face π···π stacking between Trp271 and Trp368 of the protease and VPg, respectively, and for the CH···π interactions between Leu361 of VPg and Trp271 of the protease. The structure of the protease-VPg complex provides a molecular framework for predicting sites of important posttranslational modifications such as RNA linkage and phosphorylation and a better understanding of the coupled folding upon binding of intrinsically disordered proteins. The structural data presented here augment the limited structural data available on viral proteins, given their propensity for structural disorder.
Collapse
Affiliation(s)
- Karuna Dixit
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - N Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Smita Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Khushboo Kumari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Handanahal S Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
31
|
Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics 2020; 19:60-68. [PMID: 29982297 DOI: 10.1093/bfgp/ely023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although for more than a century a protein function was intimately associated with the presence of unique structure in a protein molecule, recent years witnessed a skyrocket rise of the appreciation of protein intrinsic disorder concept that emphasizes the importance of the biologically active proteins without ordered structures. In different proteins, the depth and breadth of disorder penetrance are different, generating an amusing spatiotemporal heterogeneity of intrinsically disordered proteins (IDPs) and intrinsically disordered protein region regions (IDPRs), which are typically described as highly dynamic ensembles of rapidly interconverting conformations (or a multitude of short lifetime structures). IDPs/IDPRs constitute a substantial part of protein kingdom and have unique functions complementary to functional repertoires of ordered proteins. They are recognized as interaction specialists and global controllers that play crucial roles in regulation of functions of their binding partners and in controlling large biological networks. IDPs/IDPRs are characterized by immense binding promiscuity and are able to use a broad spectrum of binding modes, often resulting in the formation of short lifetime complexes. In their turn, functions of IDPs and IDPRs are controlled by various means, such as numerous posttranslational modifications and alternative splicing. Some of the functions of IDPs/IDPRs are briefly considered in this review to shed some light on the biological roles of short-lived structures at large.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
32
|
Protein phosphatase-1: dual activity regulation by Inhibitor-2. Biochem Soc Trans 2020; 48:2229-2240. [DOI: 10.1042/bst20200503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023]
Abstract
Inhibitor-2 (I2) ranks amongst the most ancient regulators of protein phosphatase-1 (PP1). It is a small, intrinsically disordered protein that was originally discovered as a potent inhibitor of PP1. However, later investigations also characterized I2 as an activator of PP1 as well as a chaperone for PP1 folding. Numerous studies disclosed the importance of I2 for diverse cellular processes but did not describe a unifying molecular principle of PP1 regulation. We have re-analyzed the literature on I2 in the light of current insights of PP1 structure and regulation. Extensive biochemical data, largely ignored in the recent I2 literature, provide substantial indirect evidence for a role of I2 as a loader of active-site metals. In addition, I2 appears to function as a competitive inhibitor of PP1 in higher eukaryotes. The published data also demonstrate that several segments of I2 that remain unstructured in the PP1 : I2 complex are in fact essential for PP1 regulation. Together, the available data identify I2 as a dynamic activity-modulator of PP1.
Collapse
|
33
|
Khalife J, Fréville A, Gnangnon B, Pierrot C. The Multifaceted Role of Protein Phosphatase 1 in Plasmodium. Trends Parasitol 2020; 37:154-164. [PMID: 33036936 DOI: 10.1016/j.pt.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.
Collapse
Affiliation(s)
- Jamal Khalife
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France.
| | - Aline Fréville
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Bénédicte Gnangnon
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Christine Pierrot
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
34
|
Fedoryshchak RO, Přechová M, Butler AM, Lee R, O'Reilly N, Flynn HR, Snijders AP, Eder N, Ultanir S, Mouilleron S, Treisman R. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. eLife 2020; 9:61509. [PMID: 32975518 PMCID: PMC7599070 DOI: 10.7554/elife.61509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin αII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Magdalena Přechová
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abbey M Butler
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rebecca Lee
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicola O'Reilly
- Peptide Chemistry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Noreen Eder
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom.,Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Sila Ultanir
- Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
35
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
36
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
37
|
Kieft R, Zhang Y, Marand AP, Moran JD, Bridger R, Wells L, Schmitz RJ, Sabatini R. Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes. PLoS Genet 2020; 16:e1008390. [PMID: 32084124 PMCID: PMC7055916 DOI: 10.1371/journal.pgen.1008390] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/04/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Base J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3'-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of transcription start sites, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes involved in host immune evasion. Our results suggest a novel mechanistic link between base J and Pol II polycistronic transcription termination in kinetoplastids.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Alexandre P. Marand
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Jose Dagoberto Moran
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert Bridger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Cannon JF. Novel phosphorylation-dependent regulation in an unstructured protein. Proteins 2019; 88:366-384. [PMID: 31512287 DOI: 10.1002/prot.25812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
This work explores how phosphorylation of an unstructured protein region in inhibitor-2 (I2) regulates protein phosphatase-1 (PP1) enzyme activity using molecular dynamics (MD). Free I2 is largely unstructured; however, when bound to PP1, three segments adopt a stable structure. In particular, an I2 helix (i-helix) blocks the PP1 active site and inhibits phosphatase activity. I2 phosphorylation in the PP1-I2 complex activates phosphatase activity without I2 dissociation. The I2 Thr74 regulatory phosphorylation site is in an unstructured domain in PP1-I2. PP1-I2 MD demonstrated that I2 phosphorylation promotes early steps of PP1-I2 activation in explicit solvent models. Moreover, phosphorylation-dependent activation occurred in PP1-I2 complexes derived from I2 orthologs with diverse sequences from human, yeast, worm, and protozoa. This system allowed exploration of features of the 73-residue unstructured human I2 domain critical for phosphorylation-dependent activation. These studies revealed that components of I2 unstructured domain are strategically positioned for phosphorylation responsiveness including a transient α-helix. There was no evidence that electrostatic interactions of I2 phosphothreonine74 influenced PP1-I2 activation. Instead, phosphorylation altered the conformation of residues around Thr74. Phosphorylation uncurled the distance between I2 residues Glu71 to Tyr76 to promote PP1-I2 activation, whereas reduced distances reduced activation. This I2 residue Glu71 to Tyr76 distance distribution, independently from Thr74 phosphorylation, controls I2 i-helix displacement from the PP1 active site leading to PP1-I2 activation.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| |
Collapse
|
39
|
Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Structure 2019; 27:1485-1496.e4. [PMID: 31402222 DOI: 10.1016/j.str.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.
Collapse
Affiliation(s)
- Yeyun Zhou
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robyn Millott
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shiyun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tamara Skene-Arnold
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles F B Holmes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
40
|
Essential role of GEXP15, a specific Protein Phosphatase type 1 partner, in Plasmodium berghei in asexual erythrocytic proliferation and transmission. PLoS Pathog 2019; 15:e1007973. [PMID: 31348803 PMCID: PMC6685639 DOI: 10.1371/journal.ppat.1007973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
The essential and distinct functions of Protein Phosphatase type 1 (PP1) catalytic subunit in eukaryotes are exclusively achieved through its interaction with a myriad of regulatory partners. In this work, we report the molecular and functional characterization of Gametocyte EXported Protein 15 (GEXP15), a Plasmodium specific protein, as a regulator of PP1. In vitro interaction studies demonstrated that GEXP15 physically interacts with PP1 through the RVxF binding motif in P. berghei. Functional assays showed that GEXP15 was able to increase PP1 activity and the mutation of the RVxF motif completely abolished this regulation. Immunoprecipitation assays of tagged GEXP15 or PP1 in P. berghei followed by immunoblot or mass spectrometry analyses confirmed their interaction and showed that they are present both in schizont and gametocyte stages in shared protein complexes involved in the spliceosome and proteasome pathways and known to play essential role in parasite development. Phenotypic analysis of viable GEXP15 deficient P. berghei blood parasites showed that they were unable to develop lethal infection in BALB/c mice or to establish experimental cerebral malaria in C57BL/6 mice. Further, although deficient parasites produced gametocytes they did not produce any oocysts/sporozoites indicating a high fitness cost in the mosquito. Global proteomic and phosphoproteomic analyses of GEXP15 deficient schizonts revealed a profound defect with a significant decrease in the abundance and an impact on phosphorylation status of proteins involved in regulation of gene expression or invasion. Moreover, depletion of GEXP15 seemed to impact mainly the abundance of some specific proteins of female gametocytes. Our study provides the first insight into the contribution of a PP1 regulator to Plasmodium virulence and suggests that GEXP15 affects both the asexual and sexual life cycle. In the absence of an effective vaccine and the emerging resistance to artemisinin combination therapy, malaria is still a significant threat to human health. Increasing our understanding of the specific mechanisms of the biology of Plasmodium is essential to propose new strategies to control this infection. Here, we demonstrated that GEXP15, a specific protein in Plasmodium, was able to interact with the Protein Phosphatase 1 and regulate its activity. We showed that both proteins are implicated in common protein complexes involved in the mRNA splicing and proteasome pathways. We reported that the deletion of GEXP15 leads to a loss of parasite virulence during asexual stages and a total abolishment of the capacity of deficient parasites to develop in the mosquito. We also found that this deletion affects both protein phosphorylation status and significantly decreases the expression of essential proteins in schizont and gametocyte stages. This study characterizes for the first time a novel molecular pathway through the control of PP1 by an essential and specific Plasmodium regulator, which may contribute to the discovery of new therapeutic targets to control malaria.
Collapse
|
41
|
Wang X, Obeidat M, Li L, Pasarj P, Aburahess S, Holmes CFB, Ballermann BJ. TIMAP inhibits endothelial myosin light chain phosphatase by competing with MYPT1 for the catalytic protein phosphatase 1 subunit PP1cβ. J Biol Chem 2019; 294:13280-13291. [PMID: 31315927 PMCID: PMC6737228 DOI: 10.1074/jbc.ra118.006075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/17/2019] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-β membrane associated protein (TIMAP) is an endothelial cell (EC)-predominant PP1 regulatory subunit and a member of the myosin phosphatase target (MYPT) protein family. The MYPTs preferentially bind the catalytic protein phosphatase 1 subunit PP1cβ, forming myosin phosphatase holoenzymes. We investigated whether TIMAP/PP1cβ could also function as a myosin phosphatase. Endogenous PP1cβ, myosin light chain 2 (MLC2), and myosin IIA heavy chain coimmunoprecipitated from EC lysates with endogenous TIMAP, and endogenous MLC2 colocalized with TIMAP in EC projections. Purified recombinant GST-TIMAP interacted directly with purified recombinant His-MLC2. However, TIMAP overexpression in EC enhanced MLC2 phosphorylation, an effect not observed with a TIMAP mutant that does not bind PP1cβ. Conversely, MLC2 phosphorylation was reduced in lung lysates from TIMAP-deficient mice and upon silencing of endogenous TIMAP expression in ECs. Ectopically expressed TIMAP slowed the rate of MLC2 dephosphorylation, an effect requiring TIMAP-PP1cβ interaction. The association of MYPT1 with PP1cβ was profoundly reduced in the presence of excess TIMAP, leading to proteasomal MYPT1 degradation. In the absence of TIMAP, MYPT1-associated PP1cβ readily bound immobilized microcystin-LR, an active-site inhibitor of PP1c. By contrast, TIMAP-associated PP1cβ did not interact with microcystin-LR, indicating that the active site of PP1cβ is blocked when it is bound to TIMAP. Thus, TIMAP inhibits myosin phosphatase activity in ECs by competing with MYPT1 for PP1cβ and blocking the PP1cβ active site.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Marya Obeidat
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Laiji Li
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Phuwadet Pasarj
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Salah Aburahess
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Charles F B Holmes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Barbara J Ballermann
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
42
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
43
|
Bertran MT, Mouilleron S, Zhou Y, Bajaj R, Uliana F, Kumar GS, van Drogen A, Lee R, Banerjee JJ, Hauri S, O'Reilly N, Gstaiger M, Page R, Peti W, Tapon N. ASPP proteins discriminate between PP1 catalytic subunits through their SH3 domain and the PP1 C-tail. Nat Commun 2019; 10:771. [PMID: 30770806 PMCID: PMC6377682 DOI: 10.1038/s41467-019-08686-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/25/2019] [Indexed: 11/26/2022] Open
Abstract
Serine/threonine phosphatases such as PP1 lack substrate specificity and associate with a large array of targeting subunits to achieve the requisite selectivity. The tumour suppressor ASPP (apoptosis-stimulating protein of p53) proteins associate with PP1 catalytic subunits and are implicated in multiple functions from transcriptional regulation to cell junction remodelling. Here we show that Drosophila ASPP is part of a multiprotein PP1 complex and that PP1 association is necessary for several in vivo functions of Drosophila ASPP. We solve the crystal structure of the human ASPP2/PP1 complex and show that ASPP2 recruits PP1 using both its canonical RVxF motif, which binds the PP1 catalytic domain, and its SH3 domain, which engages the PP1 C-terminal tail. The ASPP2 SH3 domain can discriminate between PP1 isoforms using an acidic specificity pocket in the n-Src domain, providing an exquisite mechanism where multiple motifs are used combinatorially to tune binding affinity to PP1.
Collapse
Affiliation(s)
- M Teresa Bertran
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stéphane Mouilleron
- Structural Biology - Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Yanxiang Zhou
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rakhi Bajaj
- Chemistry and Biochemistry Department, University of Arizona, 1041 E. Lowell Street, Biosciences West, 517, Tucson, AZ, 85721, USA
| | - Federico Uliana
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Ganesan Senthil Kumar
- Chemistry and Biochemistry Department, University of Arizona, 1041 E. Lowell Street, Biosciences West, 517, Tucson, AZ, 85721, USA
| | - Audrey van Drogen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Rebecca Lee
- Structural Biology - Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jennifer J Banerjee
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Nicola O'Reilly
- Peptide Chemistry Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Rebecca Page
- Chemistry and Biochemistry Department, University of Arizona, 1041 E. Lowell Street, Biosciences West, 517, Tucson, AZ, 85721, USA
| | - Wolfgang Peti
- Chemistry and Biochemistry Department, University of Arizona, 1041 E. Lowell Street, Biosciences West, 517, Tucson, AZ, 85721, USA
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
44
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
45
|
The split protein phosphatase system. Biochem J 2018; 475:3707-3723. [PMID: 30523060 PMCID: PMC6282683 DOI: 10.1042/bcj20170726] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Reversible phosphorylation of proteins is a post-translational modification that regulates all aspect of life through the antagonistic action of kinases and phosphatases. Protein kinases are well characterized, but protein phosphatases have been relatively neglected. Protein phosphatase 1 (PP1) catalyzes the dephosphorylation of a major fraction of phospho-serines and phospho-threonines in cells and thereby controls a broad range of cellular processes. In this review, I will discuss how phosphatases were discovered, how the view that they were unselective emerged and how recent findings have revealed their exquisite selectivity. Unlike kinases, PP1 phosphatases are obligatory heteromers composed of a catalytic subunit bound to one (or two) non-catalytic subunit(s). Based on an in-depth study of two holophosphatases, I propose the following: selective dephosphorylation depends on the assembly of two components, the catalytic subunit and the non-catalytic subunit, which serves as a high-affinity substrate receptor. Because functional complementation of the two modules is required to produce a selective holophosphatase, one can consider that they are split enzymes. The non-catalytic subunit was often referred to as a regulatory subunit, but it is, in fact, an essential component of the holoenzyme. In this model, a phosphatase and its array of mostly orphan substrate receptors constitute the split protein phosphatase system. The set of potentially generalizable principles outlined in this review may facilitate the study of these poorly understood enzymes and the identification of their physiological substrates.
Collapse
|
46
|
Choy MS, Bolik-Coulon N, Archuleta TL, Peti W, Page R. The structure of SDS22 provides insights into the mechanism of heterodimer formation with PP1. Acta Crystallogr F Struct Biol Commun 2018; 74:817-824. [PMID: 30511677 PMCID: PMC6277963 DOI: 10.1107/s2053230x18016503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023] Open
Abstract
Protein phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets by associating with nearly 200 regulatory proteins to form highly specific holoenzymes. The vast majority of regulators are intrinsically disordered proteins (IDPs) and bind PP1 via short linear motifs within their intrinsically disordered regions. One of the most ancient PP1 regulators is SDS22, a protein that is conserved from yeast to mammals. Sequence analysis of SDS22 revealed that it is a leucine-rich repeat (LRR) protein, suggesting that SDS22, unlike nearly every other known PP1 regulator, is not an IDP but instead is fully structured. Here, the 2.9 Å resolution crystal structure of human SDS22 in space group P212121 is reported. SDS22 adopts an LRR fold with the horseshoe-like curvature typical for this family of proteins. The structure results in surfaces with distinct chemical characteristics that are likely to be critical for PP1 binding.
Collapse
Affiliation(s)
- Meng S. Choy
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Nicolas Bolik-Coulon
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Tara L. Archuleta
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Wolfgang Peti
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| | - Rebecca Page
- Chemistry and Biochemistry, University of Arizona, 1041 East Lowell Drive, Biosciences West, Tucson, AZ 85281, USA
| |
Collapse
|
47
|
Yu J, Deng T, Xiang S. Structural basis for protein phosphatase 1 recruitment by glycogen‐targeting subunits. FEBS J 2018; 285:4646-4659. [DOI: 10.1111/febs.14699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Jun Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Tingting Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Song Xiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
- Key laboratory of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University China
| |
Collapse
|
48
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Lenne A, De Witte C, Tellier G, Hollin T, Aliouat EM, Martoriati A, Cailliau K, Saliou JM, Khalife J, Pierrot C. Characterization of a Protein Phosphatase Type-1 and a Kinase Anchoring Protein in Plasmodium falciparum. Front Microbiol 2018; 9:2617. [PMID: 30429842 PMCID: PMC6220109 DOI: 10.3389/fmicb.2018.02617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Astrid Lenne
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Caroline De Witte
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Géraldine Tellier
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Thomas Hollin
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - El Moukhtar Aliouat
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Alain Martoriati
- CNRS, INRA, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Katia Cailliau
- CNRS, INRA, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Jean-Michel Saliou
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jamal Khalife
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Christine Pierrot
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
50
|
SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc Natl Acad Sci U S A 2018; 115:E10576-E10585. [PMID: 30348783 DOI: 10.1073/pnas.1720352115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dephosphorylation of the inhibitory "S259" site on RAF kinases (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. The MRAS GTPase, a close relative of RAS oncoproteins, interacts with SHOC2 and protein phosphatase 1 (PP1) to form a heterotrimeric holoenzyme that dephosphorylates this S259 RAF site. MRAS and SHOC2 function as PP1 regulatory subunits providing the complex with striking specificity against RAF. MRAS also functions as a targeting subunit as membrane localization is required for efficient RAF dephosphorylation and ERK pathway regulation in cells. SHOC2's predicted structure shows remarkable similarities to the A subunit of PP2A, suggesting a case of convergent structural evolution with the PP2A heterotrimer. We have identified multiple regions in SHOC2 involved in complex formation as well as residues in MRAS switch I and the interswitch region that help account for MRAS's unique effector specificity for SHOC2-PP1. MRAS, SHOC2, and PPP1CB are mutated in Noonan syndrome, and we show that syndromic mutations invariably promote complex formation with each other, but not necessarily with other interactors. Thus, Noonan syndrome in individuals with SHOC2, MRAS, or PPPC1B mutations is likely driven at the biochemical level by enhanced ternary complex formation and highlights the crucial role of this phosphatase holoenzyme in RAF S259 dephosphorylation, ERK pathway dynamics, and normal human development.
Collapse
|