1
|
Dahlgren D, Nylander O, Sjöblom M. Hypotonicity-Induced Increase in Duodenal Mucosal Permeability Is Regulated by Cholinergic Receptors in Rats. Dig Dis Sci 2022; 68:1815-1823. [PMID: 36436156 PMCID: PMC10133373 DOI: 10.1007/s10620-022-07764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of cholinergic receptors in the regulation of duodenal mucosal permeability in vivo is currently not fully described. AIMS To elucidate the impact of nicotinic and muscarinic acetylcholine receptor signaling in response to luminal hypotonicity (50 mM NaCl) in the proximal small intestine of rat. METHODS The effect on duodenal blood-to-lumen clearance of 51Cr-EDTA (i.e., mucosal permeability) and motility was studied in the absence and presence of nicotinic and muscarinic receptor agonists and antagonists, a sodium channel blocker (tetrodotoxin), and after bilateral cervical vagotomy. RESULTS Rats with duodenal contractions responded to luminal hypotonicity by substantial increase in intestinal permeability. This response was absent in animals given a non-selective nicotinic receptor antagonist (mecamylamine) or agonist (epibatidine). Pretreatment with tetrodotoxin reduced the increase in mucosal permeability in response to luminal hypotonicity. Further, the non-selective muscarinic receptor antagonist (atropine) and agonist (bethanechol) reduced the hypotonicity-induced increase in mucosal permeability, while vagotomy was without an effect, suggesting that local enteric reflexes dominate. Finally, neither stimulating nor blocking the α7-nicotinic receptor had any significant effects on duodenal permeability in response to luminal hypotonicity, suggesting that this receptor is not involved in regulation of duodenal permeability. The effect of the different drugs on mucosal permeability was similar to the effect observed for duodenal motility. CONCLUSIONS A complex enteric intramural excitatory neural reflex involving both nicotinic and muscarinic receptor subtypes mediates an increase in mucosal permeability induced by luminal hypotonicity.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden.
| | - Olof Nylander
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| |
Collapse
|
2
|
Suchanecka A, Chmielowiec J, Chmielowiec K, Trybek G, Jaroń A, Czarny W, Król P, Masiak J, Grzywacz A. Serotonin Receptor HTR3A Gene Polymorphisms rs1985242 and rs1062613, E-Cigarette Use and Personality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084746. [PMID: 35457612 PMCID: PMC9029000 DOI: 10.3390/ijerph19084746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
We nowadays record growing numbers of e-cigarette users. The development of nicotine dependence is a result of many factors, including genetics and personality. In this study we analyzed two polymorphisms—rs1985242 and rs1062613—in the serotonin receptor HTR3A gene in a group of e-cigarette users (n = 135) and controls (n = 106). Personality traits were measured using the NEO Five-Factor Inventory. The comparison of e-cigarette users with the control group indicates that the former showed significantly higher scores on the neuroticism scale and lower scores on the scales of extraversion and conscientiousness of the NEO-FFI. Homozygote variants of rs1985242 were more frequent in the study group. The results of the 2 × 3 factorial ANOVA for e-cigarette users and the control group as well as interaction between the HTR3A rs1985242 variants were found for the NEO-FFI conscientiousness scale. These results allow us to conclude that the combination of psychological factors and genetic data creates a possibility for making more complete models of substance use disorders.
Collapse
Affiliation(s)
- Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland; (G.T.); (A.J.)
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, Towarnickiego 3 St., 35-959 Rzeszów, Poland;
| | - Paweł Król
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszow, St. Towarnickiego 3, 35-955 Rzeszów, Poland;
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
3
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Potential roles of 5-HT 3 receptor (5-HT 3R) antagonists in modulating the effects of nicotine. Biomed Pharmacother 2019; 112:108630. [PMID: 30797147 DOI: 10.1016/j.biopha.2019.108630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
5-HT3R antagonists such as ondansetron, granisetron and tropisetron have been clinically used to treat nausea and vomiting in chemotherapy patients. However, current study and research revealed novel potentials of these ligands in other diseases like inflammation, Alzheimer's, and drug abuse. Towards utilising these drugs as anti-smoking agents to treat nicotine dependence problem, there are conflicting reports regarding the potential of these ligands in modulating the effects of nicotine in both human and animal behavioural studies. This is complicated by the heterogeneity of 5-HT3R itself, cross regulation between nicotinic acetylcholinergic receptor (nAChR) and distinct pharmacological profiles of 5-HT3R antagonists. This review gathered existing studies conducted investigating the potential of "-setron" class of 5-HT3R antagonists in modulating nicotine effects. We proposed that the mechanism where 5-HT3R antagonists mediate the effects of nicotine could be attributed by both direct at 5-HT3R and indirect mechanism in nicotine addiction downstream regulation. The indirect mechanism mediated by the 5-HT3R antagonist could be through α7 nAChR, 5-HT1B receptor (5-HT1BR), 5-HT1C receptor (5-HT1CR), calcineurin activity, p38 MAPK level, PPAR-γ and NF-κβ. Our review suggested that future studies should focus on newer 5-HT3R antagonist with superior pharmacological profile or the one with multitarget action rather than high selectivity at single receptor.
Collapse
|
5
|
Fitch RW, Snider BB, Zhou Q, Foxman BM, Pandya AA, Yakel JL, Olson TT, Al-Muhtasib N, Xiao Y, Welch KD, Panter KE. Absolute Configuration and Pharmacology of the Poison Frog Alkaloid Phantasmidine. JOURNAL OF NATURAL PRODUCTS 2018; 81:1029-1035. [PMID: 29671588 PMCID: PMC7142328 DOI: 10.1021/acs.jnatprod.8b00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phantasmidine, a rigid congener of the well-known nicotinic acetylcholine receptor agonist epibatidine, is found in the same species of poison frog ( Epipedobates anthonyi). Natural phantasmidine was found to be a 4:1 scalemic mixture, enriched in the (2a R,4a S,9a S) enantiomer by chiral-phase LC-MS comparison to the synthetic enantiomers whose absolute configurations were previously established by Mosher's amide analysis. The major enantiomer has the opposite S configuration at the benzylic carbon to natural epibatidine, whose benzylic carbon is R. Pharmacological characterization of the synthetic racemate and separated enantiomers established that phantasmidine is ∼10-fold less potent than epibatidine, but ∼100-fold more potent than nicotine in most receptors tested. Unlike epibatidine, phantasmidine is sharply enantioselective in its activity and the major natural enantiomer whose benzylic carbon has the 4a S configuration is more active. The stereoselective pharmacology of phantasmidine is ascribed to its rigid and asymmetric shape as compared to the nearly symmetric conformations previously suggested for epibatidine enantiomers. While phantasmidine itself is too toxic for direct therapeutic use, we believe it is a useful platform for the development of potent and selective nicotinic agonists, which may have value as pharmacological tools.
Collapse
Affiliation(s)
- Richard W Fitch
- Department of Chemistry and Physics , Indiana State University , Terre Haute , Indiana 47809 , United States
| | - Barry B Snider
- Department of Chemistry , Brandeis University MS 015 , Waltham , Massachusetts 02453 , United States
| | - Quan Zhou
- Department of Chemistry , Brandeis University MS 015 , Waltham , Massachusetts 02453 , United States
| | - Bruce M Foxman
- Department of Chemistry , Brandeis University MS 015 , Waltham , Massachusetts 02453 , United States
| | - Anshul A Pandya
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, NIH/DHHS , Research Triangle Park , North Carolina 27709 , United States
| | - Jerrel L Yakel
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, NIH/DHHS , Research Triangle Park , North Carolina 27709 , United States
| | - Thao T Olson
- Department of Pharmacology and Physiology , Georgetown University , Washington , D.C. 20057 , United States
| | - Nour Al-Muhtasib
- Department of Pharmacology and Physiology , Georgetown University , Washington , D.C. 20057 , United States
| | - Yingxian Xiao
- Department of Pharmacology and Physiology , Georgetown University , Washington , D.C. 20057 , United States
| | - Kevin D Welch
- Poisonous Plant Research Laboratory, United States Department of Agriculture , Agricultural Research Service , Logan , Utah 84341 , United States
| | - Kip E Panter
- Poisonous Plant Research Laboratory, United States Department of Agriculture , Agricultural Research Service , Logan , Utah 84341 , United States
| |
Collapse
|
6
|
Thompson AJ, Metzger S, Lochner M, Ruepp MD. The binding orientation of epibatidine at α7 nACh receptors. Neuropharmacology 2017; 116:421-428. [PMID: 28089847 PMCID: PMC5390772 DOI: 10.1016/j.neuropharm.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 11/30/2022]
Abstract
Epibatidine is an alkaloid toxin that binds with high affinity to nicotinic and muscarinic acetylcholine receptors, and has been extensively used as a research tool. To examine binding interactions at the nicotinic receptor, it has been co-crystallised with the structural homologue acetylcholine binding protein (AChBP; PDB ID 2BYQ), and with an AChBP chimaera (3SQ6) that shares 64% sequence identity with the α7 nACh receptor. However, the binding orientations revealed by AChBP co-crystal structures may not precisely represent their receptor homologues and experimental evidence is needed to verify the ligand poses. Here we identify potential binding site interactions between epibatidine and AChBP residues, and substitute equivalent positions in the α7 nACh receptor. The effects of these are probed by [3H]epibatidine binding following the expression α7 nACh receptor cysteine mutants in HEK 293 cells. Of the sixteen mutants created, the affinity of epibatidine was unaffected by the substitutions Q55C, L106C, L116C, T146C, D160C and S162C, reduced by C186A and C187A, increased by Q114C and S144C, and abolished by W53C, Y91C, N104C, W145C, Y184C and Y191C. These results are consistent with the predicted orientations in AChBP and suggest that epibatidine is likely to occupy a similar location at α7 nACh receptors. We speculate that steric constraints placed upon the C-5 position of the pyridine ring in 3SQ6 may account for the relatively poor affinities of epibatidine derivatives that are substituted at this position.
Collapse
Affiliation(s)
| | - Simon Metzger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Hahn B, Riegger KE, Elmer GI. Strain dependency of the effects of nicotine and mecamylamine in a rat model of attention. Psychopharmacology (Berl) 2016; 233:1427-34. [PMID: 26875755 PMCID: PMC4814296 DOI: 10.1007/s00213-016-4236-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
Abstract
RATIONALE Processes of attention have a heritable component, suggesting that genetic predispositions may predict variability in the response to attention-enhancing drugs. Among lead compounds with attention-enhancing properties are nicotinic acetylcholine receptor (nAChR) agonists. OBJECTIVES This study aims to test, by comparing three rat strains, whether genotype may influence the sensitivity to nicotine in the 5-choice serial reaction time task (5-CSRTT), a rodent model of attention. METHODS Strains tested were Long Evans (LE), Sprague Dawley (SD), and Wistar rats. The 5-CSRTT requires responses to light stimuli presented randomly in one of five locations. The effect of interest was an increased percentage of responses in the correct location (accuracy), the strongest indicator of improved attention. RESULTS Nicotine (0.05-0.2 mg/kg s.c.) reduced omission errors and response latency and increased anticipatory responding in all strains. In contrast, nicotine dose-dependently increased accuracy in Wistar rats only. The nAChR antagonist mecamylamine (0.75-3 mg/kg s.c.) increased omissions, slowed responses, and reduced anticipatory responding in all strains. There were no effects on accuracy, which was surprising giving the clear improvement with nicotine in the Wistar group. CONCLUSIONS The findings suggest strain differences in the attention-enhancing effects of nicotine, which would indicate that genetic predispositions predict variability in the efficacy of nAChR compounds for enhancing attention. The absence of effect of mecamylamine on response accuracy may suggest a contribution of nAChR desensitization to the attention-enhancing effects of nicotine.
Collapse
Affiliation(s)
- Britta Hahn
- University of Maryland School of Medicine, Maryland Psychiatric Research Center, P.O. Box 21247, Baltimore, MD, 21228, USA.
| | | | | |
Collapse
|
8
|
Otvos RA, Krishnamoorthy Iyer J, van Elk R, Ulens C, Niessen WMA, Somsen GW, Kini RM, Smit AB, Kool J. Development of Plate Reader and On-Line Microfluidic Screening to Identify Ligands of the 5-Hydroxytryptamine Binding Protein in Venoms. Toxins (Basel) 2015; 7:2336-53. [PMID: 26114334 PMCID: PMC4516916 DOI: 10.3390/toxins7072336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
The 5-HT3 receptor is a ligand-gated ion channel, which is expressed in the nervous system. Its antagonists are used clinically for treatment of postoperative- and radiotherapy-induced emesis and irritable bowel syndrome. In order to better understand the structure and function of the 5-HT3 receptor, and to allow for compound screening at this receptor, recently a serotonin binding protein (5HTBP) was engineered with the Acetylcholine Binding Protein as template. In this study, a fluorescence enhancement assay for 5HTBP ligands was developed in plate-reader format and subsequently used in an on-line microfluidic format. Both assay types were validated using an existing radioligand binding assay. The on-line microfluidic assay was coupled to HPLC via a post-column split which allowed parallel coupling to a mass spectrometer to collect MS data. This high-resolution screening (HRS) system is well suitable for compound mixture analysis. As a proof of principle, the venoms of Dendroapsis polylepis, Pseudonaja affinis and Pseudonaja inframacula snakes were screened and the accurate masses of the found bioactives were established. To demonstrate the subsequent workflow towards structural identification of bioactive proteins and peptides, the partial amino acid sequence of one of the bioactives from the Pseudonaja affinis venom was determined using a bottom-up proteomics approach.
Collapse
Affiliation(s)
- Reka A. Otvos
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.E.); (A.B.S.)
| | - Janaki Krishnamoorthy Iyer
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; E-Mails: (J.K.I.); (R.M.K.)
| | - René van Elk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.E.); (A.B.S.)
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Herestraat 49, PB 601, B-3000 Leuven, Belgium; E-Mail:
| | - Wilfried M. A. Niessen
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
- Hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; E-Mails: (J.K.I.); (R.M.K.)
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.E.); (A.B.S.)
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; E-Mails: (R.A.O.); (W.M.A.N.); (G.W.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-20-5987542; Fax: +31-20-5987543
| |
Collapse
|
9
|
Serata D, Kotzalidis GD, Rapinesi C, Janiri D, Di Pietro S, Callovini G, Piacentino D, Gasperoni C, Brugnoli R, Ferri VR, Girardi N, Tatarelli R, Ferracuti S, Angeletti G, Girardi P, Del Casale A. Are 5-HT3 antagonists effective in obsessive-compulsive disorder? A systematic review of literature. Hum Psychopharmacol 2015; 30:70-84. [PMID: 25676060 DOI: 10.1002/hup.2461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/25/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this literature database search-based review was to critically consider and evaluate the findings of literature focusing on efficacy and safety of 5-HT3 antagonists in the treatment of obsessive-compulsive disorder (OCD), so as to test whether preclinical data match clinical therapeutic trials. DESIGN The PubMed database has been searched for papers on 5-HT3 antagonists and OCD in humans and for animal models of OCD and 5-HT3 receptors. RESULTS Of the clinically tested 5-HT3 receptor antagonists, ondansetron has been used to treat OCD in five therapeutic studies, whereas granisetron only in one recent trial. Both showed some efficacy in open studies and superiority to placebo in double-blind studies, along with fair safety. No animal OCD model directly implicated 5-HT3 receptors. CONCLUSIONS Overall, results indicate some utility, but the available literature is too scanty to allow for valid conclusions to be drawn. The mismatch between animal models of obsessive-compulsive disorder and clinical data with 5-HT3 antagonists needs more clinical data to ensure that it is not an artefact.
Collapse
Affiliation(s)
- Daniele Serata
- Neurosciences, Mental Health, and Sensory Organs (NeSMOS) Department, School of Medicine and Psychology, Sapienza University of Rome, UOC Psychiatry, Sant'Andrea Hospital, Roma, Italy; Department of Neuropsychiatry, Villa Rosa Suore Ospedaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hauser SR, Bracken AL, Deehan GA, Toalston JE, Ding ZM, Truitt WA, Bell RL, McBride WJ, Rodd ZA. Selective breeding for high alcohol preference increases the sensitivity of the posterior VTA to the reinforcing effects of nicotine. Addict Biol 2014; 19:800-11. [PMID: 23496648 PMCID: PMC3715585 DOI: 10.1111/adb.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate of codependency for alcohol and nicotine is extremely high. Numerous studies have indicated that there is a common genetic association for alcoholism and nicotine dependency. The current experiments examined whether selective breeding for high alcohol preference in rats may be associated with increased sensitivity of the posterior ventral tegmental area (pVTA) to the reinforcing properties of nicotine. In addition, nicotine can directly bind to the serotonin-3 (5-HT3 ) receptor, which has been shown to mediate the reinforcing properties of other drugs of abuse within the pVTA Wistar rats were assigned to groups that were allowed to self-infuse 0, 10, 50, 100, 200, 400 or 800 μM nicotine in two-lever (active and inactive) operant chambers. P rats were allowed to self-infuse 0, 1, 10, 50 or 100 μM nicotine. Co-infusion of 5-HT3 receptor antagonists with nicotine into the pVTA was also determined. P rats self-infused nicotine at lower concentrations than required to support self-administration in Wistar rats. In addition, P rats received more self-infusions of 50 and 100 μM nicotine than Wistar rats; including a 5HT3 receptor antagonist (LY-278,584 or zacopride) with nicotine reduced responding on the active lever. Overall, the data support an association between selective breeding for high alcohol preference and increased sensitivity of the pVTA to the reinforcing properties of nicotine. In addition, the data suggest that activation of 5HT3 receptors may be required to maintain the local reinforcing actions of nicotine within the pVTA.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Departments of Psychiatry & Anatomy, Indiana School of Medicine, and Department of Psychology, Purdue School of Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hauser SR, Deehan GA, Toalston JE, Bell RL, McBride WJ, Rodd ZA. Enhanced alcohol-seeking behavior by nicotine in the posterior ventral tegmental area of female alcohol-preferring (P) rats: modulation by serotonin-3 and nicotinic cholinergic receptors. Psychopharmacology (Berl) 2014; 231:3745-55. [PMID: 24599396 PMCID: PMC4516288 DOI: 10.1007/s00213-014-3508-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE Alcohol and nicotine co-use can reciprocally promote self-administration and drug-craving/drug-seeking behaviors. To date, the neurocircuitry in which nicotine influences ethanol (EtOH) seeking has not been elucidated. Clinical and preclinical research has suggested that the activation of the mesolimbic dopamine system is involved in the promotion of drug seeking. Alcohol, nicotine, and serotonin-3 (5-HT3) receptors interact within the posterior ventral tegmental area (pVTA) to regulate drug reward. Recently, our laboratory has reported that systemic administration of nicotine can promote context-induced EtOH seeking. OBJECTIVES The goals of the current study were to (1) determine if microinjections of pharmacologically relevant levels of nicotine into the pVTA would enhance EtOH seeking, (2) determine if coadministration of nicotinic cholinergic receptor antagonist (nACh) or 5-HT3 receptor antagonists would block the ability of nicotine microinjected into the pVTA to promote EtOH seeking, and (3) determine if 5-HT3 receptors in the pVTA can modulate EtOH seeking. RESULTS Nicotine (100 and 200 μM) microinjected into the pVTA enhanced EtOH seeking. Coinfusion with 200 μM mecamylamine (nACh antagonist) or 100 and 200 μM zacopride (5-HT3 receptor antagonist) blocked the observed nicotine enhancement of EtOH seeking. The data also indicated that microinjection of 1 μM CPBG (5-HT3 receptor agonist) promotes context-induced EtOH seeking; conversely, microinjection of 100 and 200 μM zacopride alone reduced context-induced EtOH seeking. CONCLUSIONS Overall, the results show that nicotine-enhanced EtOH-seeking behavior is modulated by 5-HT3 and nACh receptors within the pVTA and that the 5-HT3 receptor system within pVTA may be a potential pharmacological target to inhibit EtOH-seeking behaviors.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202-4887, USA,
| | | | | | | | | | | |
Collapse
|
12
|
Schreiner BS, Lehmann R, Thiel U, Ziemba PM, Beltrán LR, Sherkheli MA, Jeanbourquin P, Hugi A, Werner M, Gisselmann G, Hatt H. Direct action and modulating effect of (+)- and (−)-nicotine on ion channels expressed in trigeminal sensory neurons. Eur J Pharmacol 2014; 728:48-58. [DOI: 10.1016/j.ejphar.2014.01.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
|
13
|
Yang Z, Seneviratne C, Wang S, Ma JZ, Payne TJ, Wang J, Li MD. Serotonin transporter and receptor genes significantly impact nicotine dependence through genetic interactions in both European American and African American smokers. Drug Alcohol Depend 2013; 129:217-25. [PMID: 23290502 PMCID: PMC3628090 DOI: 10.1016/j.drugalcdep.2012.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Pharmacologic studies implicate a significant role of genes encoding the serotonin transporter (SLC6A4) and the 5-HT3AB subunits HTR3A and HTR3B in nicotine dependence (ND). However, whether they are involved in ND remains largely unknown. METHODS Here, we examined the impact of variations in the three genes on ND in 1366 individuals from 402 African American (AA) and 671 individuals from 200 European American (EA) families. The ND of each smoker was assessed with smoking quantity (SQ), heaviness of smoking index (HSI), and Fagerström test for nicotine dependence (FTND). RESULTS Association analysis revealed marginal association of rs10160548 in HTR3A with SQ and HSI in AA, 5-HTTLPR in SLC6A4 with FTND in EA, and rs11606194 in HTR3B with SQ and FTND in the pooled sample. Haplotype-based association analysis revealed a few major haplotypes in HTR3A that were significantly associated with ND in the AA, EA, and pooled samples. However, none of these associations remained significant after correcting for multiple testing except for a haplotype G-C-C-T-A-T formed by SNPs rs1150226, rs1062613, rs33940208, rs1985242, rs2276302, and rs10160548 in HTR3A for the AA sample. Considering biological functions of the three genes, we examined interactive effects of variants in the three genes, which revealed significant interactions among rs1062613 and rs10160548 in HTR3A, rs1176744 in HTR3B, and 5-HTTLPR and rs1042173 in SLC6A4 in affecting ND in the three samples. CONCLUSIONS We conclude that SLC6A4, HTR3A and HTR3B play a significant role in ND through genetic interactions.
Collapse
Affiliation(s)
- Zhongli Yang
- Shanxi Key Laboratory of Environmental Veterinary Science, Shanxi Agricultural University, Shanxi, China, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Chamindi Seneviratne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Shaolin Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jennie Z. Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Thomas J. Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Science, Shanxi Agricultural University, Shanxi, China
| | - Ming D. Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA,Correspondence: Professor Ming D Li, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA. Tel: +1 434 243 0570; Fax: +1 434 973 7031;
| |
Collapse
|
14
|
Thompson AJ. Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol Sci 2013; 34:100-9. [DOI: 10.1016/j.tips.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/19/2022]
|
15
|
Structural basis of ligand recognition in 5-HT3 receptors. EMBO Rep 2012; 14:49-56. [PMID: 23196367 PMCID: PMC3537142 DOI: 10.1038/embor.2012.189] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 11/08/2022] Open
Abstract
The crystal structures of a binding protein engineered to recognize serotonin (5-HT) and the anti-emetic granisetron with affinities comparable to the 5-HT3 receptor reveal important structural details of ligand recognition in the 5-HT3 receptor. The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor.
Collapse
|
16
|
Baptista-Hon DT, Deeb TZ, Othman NA, Sharp D, Hales TG. The 5-HT3B subunit affects high-potency inhibition of 5-HT3 receptors by morphine. Br J Pharmacol 2012; 165:693-704. [PMID: 21740409 DOI: 10.1111/j.1476-5381.2011.01582.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Morphine is an antagonist at 5-HT(3) A receptors. 5-HT(3) and opioid receptors are expressed in many of the same neuronal pathways where they modulate gut motility, pain and reinforcement. There is increasing interest in the 5-HT3B subunit, which confers altered pharmacology to 5-HT(3) receptors. We investigated the mechanisms of inhibition by morphine of 5-HT(3) receptors and the influence of the 5-HT3B subunit. EXPERIMENTAL APPROACH 5-HT-evoked currents were recorded from voltage-clamped HEK293 cells expressing human 5-HT3A subunits alone or in combination with 5-HT3B subunits. The affinity of morphine for the orthosteric site of 5-HT(3) A or 5-HT(3) AB receptors was assessed using radioligand binding with the antagonist [(3) H]GR65630. KEY RESULTS When pre-applied, morphine potently inhibited 5-HT-evoked currents mediated by 5-HT(3) A receptors. The 5-HT3B subunit reduced the potency of morphine fourfold and increased the rates of inhibition and recovery. Inhibition by pre-applied morphine was insurmountable by 5-HT, was voltage-independent and occurred through a site outside the second membrane-spanning domain. When applied simultaneously with 5-HT, morphine caused a lower potency, surmountable inhibition of 5-HT(3) A and 5-HT(3) AB receptors. Morphine also fully displaced [(3) H]GR65630 from 5-HT(3) A and 5-HT(3) AB receptors with similar potency. CONCLUSIONS AND IMPLICATIONS These findings suggest that morphine has two sites of action, a low-affinity, competitive site and a high-affinity, non-competitive site that is not available when the channel is activated. The affinity of morphine for the latter is reduced by the 5-HT3B subunit. Our results reveal that morphine causes a high-affinity, insurmountable and subunit-dependent inhibition of human 5-HT(3) receptors.
Collapse
Affiliation(s)
- Daniel T Baptista-Hon
- The Institute of Academic Anaesthesia, Centre for Neuroscience, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
17
|
Thompson AJ, Verheij MHP, de Esch IJP, Lummis SCR. VUF10166, a novel compound with differing activities at 5-HT₃A and 5-HT₃AB receptors. J Pharmacol Exp Ther 2012; 341:350-9. [PMID: 22306960 PMCID: PMC3336813 DOI: 10.1124/jpet.111.190769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/09/2012] [Indexed: 01/11/2023] Open
Abstract
The actions of a novel, potent 5-HT₃ receptor ligand, [2-chloro-(4-methylpiperazine-1-yl)quinoxaline (VUF10166)], were examined at heterologously expressed human 5-HT₃A and 5-HT₃AB receptors. VUF10166 displaced [³H]granisetron binding to 5-HT₃A receptors expressed in human embryonic kidney cells with high affinity (K(i) = 0.04 nM) but was less potent at 5-HT₃AB receptors (K(i) = 22 nM). Dissociation of [³H]granisetron in the presence of VUF10166 was best fit with a single time constant (t(1/2) = 53 min) at 5-HT₃A receptors, but with two time constants (t(1/2) = 55 and 2.4 min) at 5-HT₃AB receptors. Electrophysiological studies in oocytes revealed that VUF10166 inhibited 5-HT-induced responses at 5-HT₃A receptors at nanomolar concentrations, but inhibition and recovery were too slow to determine an IC₅₀. At 5-HT₃AB receptors, inhibition and recovery were faster, yielding an IC₅₀ of 40 nM. Cysteine substitutions in the complementary (-), but not the principal (+), face of the 5-HT₃B subunit produced heteromeric receptors in which the actions of VUF10166 resembled those at homomeric receptors. At 5-HT₃A receptors, VUF10166 at higher concentrations also behaved as a partial agonist (EC₅₀ = 5.2 μM; R(max) = 0.24) but did not elicit significant responses at 5-HT₃AB receptors at ≤100 μM. Thus, we propose that VUF10166 binds to the common A+A- site of both receptor types and to a second A+B- modulatory site in the heteromeric receptor. The ability of VUF10166 to distinguish between 5-HT₃A and 5-HT₃AB receptors could help evaluate differences between these receptor types and has potential therapeutic value.
Collapse
Affiliation(s)
- A J Thompson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
18
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
19
|
Pallanti S, Bernardi S, Antonini S, Singh N, Hollander E. Ondansetron augmentation in treatment-resistant obsessive-compulsive disorder: a preliminary, single-blind, prospective study. CNS Drugs 2009; 23:1047-55. [PMID: 19958042 DOI: 10.2165/11530240-000000000-00000] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Serotonin and dopamine neuronal systems have been implicated in the modulation of obsessive-compulsive disorder (OCD) symptoms. About 40% of OCD patients do not respond to first-line selective serotonin reuptake inhibitor (SSRI) treatment; among those, dopamine blocker augmentation has been reported to improve the rate of response by an additional one-third. Given that serotonin 5-HT(3) receptors are indirect inhibitors of cortico-mesolimbic dopamine release, augmentation with the 5-HT(3) receptor antagonist ondansetron in combination with SSRIs and antipsychotics has potential efficacy in treatment-resistant OCD patients. To assess the efficacy and tolerability of ondansetron in combination with SSRIs and antipsychotics in patients with treatment-resistant OCD. In total, 14 patients with a DSM-IV diagnosis of OCD, who were treatment resistant and receiving stable treatment with SSRIs and antipsychotic augmentation, entered a 12-week, single-blind trial of ondansetron. The drug was initiated at a dosage of 0.25 mg twice daily for 6 weeks and was then titrated to 0.5 mg twice daily for 6 weeks. Of the 14 patients, nine (64.3%) experienced a treatment response (> or =25% reduction in the Yale-Brown Obsessive Compulsive Scale [YBOCS] score and a Clinical Global Impressions-Improvement [CGI-I] score of 1 or 2) at 12 weeks. The average reduction in YBOCS-rated symptoms for the whole group was 23.2%. None of the treated patients experienced symptom exacerbation or significant adverse effects. These results suggest that low-dose ondansetron may have promise as an augmentation strategy for some patients with OCD resistant to SSRIs and antipsychotic augmentation, but further controlled trials are required. Trial registration number (ClinicalTrials.gov): NCT00796497.
Collapse
Affiliation(s)
- Stefano Pallanti
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
20
|
Deeb TZ, Sharp D, Hales TG. Direct subunit-dependent multimodal 5-hydroxytryptamine3 receptor antagonism by methadone. Mol Pharmacol 2009; 75:908-17. [PMID: 19131665 DOI: 10.1124/mol.108.053322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homomeric 5-hydroxytryptamine (5-HT)(3A) and heteromeric 5-HT(3AB) receptors mediate rapid excitatory responses to serotonin in the central and peripheral nervous systems. The alkaloid morphine, in addition to being a mu-opioid receptor agonist, is a potent competitive inhibitor of 5-HT(3) receptors. We examined whether methadone, an opioid often used to treat morphine dependence, also exhibited 5-HT(3) receptor antagonist properties. Racemic (R/S)-methadone inhibited currents mediated by human homomeric 5-HT(3A) receptors (IC(50) = 14.1 +/- 2.5 microM). Incorporation of the 5-HT(3B) subunit into heteromeric 5-HT(3AB) receptors reduced the potency of inhibition by (R/S)-methadone (IC(50) = 41.1 +/- 0.9 microM). (R/S)-Methadone also increased apparent desensitization of both 5-HT(3) receptor subtypes. The inhibition of the 5-HT(3A) receptor was competitive; however, incorporation of the 5-HT(3B) subunit caused the appearance of inhibition that was insurmountable by 5-HT. In the absence of rapid desensitization, when dopamine was used as an agonist of 5-HT(3AB) receptors, the inhibition by (R/S)-methadone was voltage-dependent. The antagonist and desensitization-enhancing effects of (R/S)-methadone were shared by pure (R)- and (S)-methadone enantiomers, which had similar actions on 5-HT-evoked currents mediated by 5-HT(3) receptors. However, (R)-methadone exhibited a larger voltage-dependent inhibition of dopamine-evoked currents mediated by 5-HT(3AB) receptors than did (S)-methadone. Inhibition of 5-HT(3A) receptors by (R/S)-methadone was not influenced by voltage. Thus, methadone displays multimodal subunit-dependent antagonism of 5-HT(3) receptors.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|